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1 Introduction

The Wiener and Poisson measures are well known to be quasi-invariant under adapted

shifts. This quasi-invariance property has been extended to anticipative shifts by sev-

eral authors; cf. [23], [9] and [26] and references therein in the Wiener case, and, for

example, [2], [16], [17], [18], in the Poisson case.
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In the anticipative case the corresponding Radon-Nikodym density is usually written

as the product

|det2(I +∇u)| exp

(
−δ(u)− 1

2
‖u‖2

)
of a Skorohod-Doléans exponential with the Carleman-Fredholm determinant of the

Malliavin gradient ∇u of the shift u; cf. [23], [9], [26]. A similar formula can be

obtained for Poisson random measures; cf. Section 8.

It has been noted in [27] that the standard Doléans form of the density for anticipative

shifts u : W → H on the Wiener space W with Cameron-Martin space H can be

conserved (i.e. the Carleman-Fredholm determinant det2(I +∇u) equals one) when

the gradient ∇u of the shift u is quasi-nilpotent, that is,

lim
n→∞

‖(∇u)n‖1/n
HS = 0, or equivalently trace(∇u)n = 0, n ≥ 2, (1.1)

cf. [27] or Theorem 3.6.1 of [26]. In particular, when ∇u is quasi-nilpotent and ‖u‖
is constant, it has been shown in [25] that δ(u) has a centered Gaussian law with

variance ‖u‖2, cf. [20] for a simplified proof.

In this paper we consider the Poisson space ΩX over a metric space X with σ-finite in-

tensity measure σ(dx), and investigate the quasi-invariance of random transformations

τ(ω, ·) which are assumed to be quasi-nilpotent in the sense that the finite difference

gradient Dsτ(ω, t) satisfies the cyclic finite difference condition (2.3) below, which is

a strenghtened version of (1.1). We show in particular that such anticipating quasi-

nilpotent transformations are quasi-invariant, and their Radon-Nikodym densities are

given by Doléans stochastic exponentials with jumps. This also extends and recovers

other results on the invariance of random transformations of Poisson measures; cf.

[22].

Our starting point is the classical Girsanov identity for Poisson random measures

which states that

Eσ

[
exp

(
−
∫
X

g(x)σ(dx)

)∏
x∈ω

(1 + g(x))

]
= 1, (1.2)
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and rewrites when g = 1A as

Eσ
[
e−rσ(A)(1 + r)ω(A)

]
= 1, r ∈ IR,

which is equivalent to the vanishing of the expectation

E[Cn(Z, λ)] = 0, n ≥ 1,

for Z = ω(A) a Poisson random variable with intensity λ = σ(A), where Cn(x, λ) is

the Charlier polynomials of degree n ∈ IN, with generating function

e−rλ(1 + r)x =
∞∑
n=0

rn

n!
Cn(x, λ), r > −1.

It is well known, however, that Z need not have a Poisson distribution for E[Cn(Z, λ)]

to vanish when λ is allowed to be random. Indeed, such an identity also holds in the

random adapted case under the form

E[Cn(Nτ−1(t), τ
−1(t))] = 0, n ≥ 1, (1.3)

where (Nt)t∈IR+ is a standard Poisson process generating a filtration (Ft)t∈IR+ and τ(t)

is an Ft-adapted time change, due to the fact that

Cn
(
Nτ−1(t), τ

−1(t)
)

= n!

∫ ∞
0

∫ tn

0

· · ·
∫ t2

0

d(Nτ−1(t1)−dτ−1(t1)) · · · d(Nτ−1(tn)−dτ−1(tn)),

is an adapted nth order iterated multiple stochastic integral with respect to the com-

pensated point martingale (Nτ−1(t) − τ−1(t))t∈IR+ ; cf. [24] and [12] page 320. In this

case we also have

Eσ

[
e−rτ

−1(t)(1 + r)Nτ−1(t)

]
= 1, r ∈ IR,

and more generally

Eσ

exp

(
−
∫ ∞

0

g(τ(s))ds

) ∏
∆Ns=1
0<s<∞

(1 + g(τ(s)))

 = 1, (1.4)

under a Novikov-type integrability condition on g : IR→ IR; cf., for example, [10].
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In Corollary 2.2 below we will extend the Girsanov identity (1.4) to random antici-

pating processes indexed by an abstract space X, by computing the expectation

Eσ[Cn(ω(A), σ(A))], n ≥ 1,

of the random Charlier polynomial Cn(ω(A), σ(A)), where A(ω) is a random, possi-

bly anticipating set. In particular we provide conditions on A(ω) for the expectation

Eσ[Cn(ω(A), σ(A))], n ≥ 1, to vanish, cf. Proposition 7.1 below. Such conditions are

satisfied, in particular, under the quasi-nilpotence condition (2.3) below and include

the adaptedness of (τ(t))t∈IR+ above, which recovers the classical adapted Girsanov

identity (1.4) as a particular case; cf. Proposition 2.1. As a consequence we will obtain

a Girsanov theorem for random transformations of Poisson samples on an arbitrary

measure space.

The above results will be proved using the Skorohod integral and integration by parts

on the Poisson space. This type of argument has been applied in [22] to the inductive

computation of moments of Poisson stochastic integrals and to the invariance of the

Skorohod integral under random intensity preserving transformations. However, the

case of Charlier polynomials is more complicated, and it leads to Girsanov identities

and a Girsanov theorem as additional applications.

Since our use of integration by parts formulas and moment identities relies on com-

pensated Poisson stochastic integrals, we will need to work with a family Bn(y, λ) of

polynomials such that

Bn(y,−λ) = Eλ[(Z + y − λ)n],

where Z is a Poisson random variable with intensity λ > 0, and which are related to

the Charlier polynomials by the relation

Cn(y, λ) =
n∑
k=0

s(n, k)Bk(y − λ, λ),

where s(k, l) is the Stirling number of the first kind, that is, (−1)k−ls(k, l) is the num-

ber of permutations of k elements which contain exactly l permutation cycles, n ∈ IN;
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cf. Proposition 6.1 below.

The outline of this paper is as follows. Section 2 contains our main results on antic-

ipative Girsanov identities and applications to the Girsanov theorem. In Section 3

we consider some examples of anticipating transformations to which this theorem can

be applied; this includes the adapted case as well as transformations that act inside

the convex hull generated by Poisson random measures, given the positions of the ex-

tremal vertices. In Section 4 we show that those results are consequences of identities

for multiple integrals and stochastic exponentials. In Section 5 we review some results

of [22] (cf. also [19]) on the computation of moments of Poisson stochastic integrals,

and we derive some of their corollaries to be applied in this paper. In Section 6 we de-

rive some combinatorial identities that allow us, in particular, to rewrite the Charlier

polynomials into a form suitable to the use of moment identities. Finally in Section 7

we prove the results of Section 4, and in Section 8 we make some remarks on how the

results of this paper can be connected to the Carleman-Fredholm determinant.

2 Main results

Let ΩX denote the configuration space on a σ-compact metric space X with Borel

σ-algebra B(X), that is,

ΩX =
{
ω = (xi)

N
i=1 ⊂ X, xi 6= xj ∀i 6= j, N ∈ IN ∪ {∞}

}
is the space of at most countable locally finite subsets of X, endowed with the Poisson

probability measure πσ with σ-finite diffuse intensity σ(dx) on X, which is character-

ized by its Laplace transform

ψσ(f) = Eσ

[
exp

(∫
X

f(x)(ω(dx)− σ(dx))

)]
= exp

(∫
X

(ef(x) − f(x)− 1)σ(dx)

)
,

(2.1)

f ∈ L2
σ(X), or by the Girsanov identity (1.2) by taking f(x) = log(1 + g(x)), x ∈ X,

g ∈ Cc(X), where Eσ denotes the expectation under πσ, and Cc(X) is the space of

continuous functions with compact support in X.
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Each element ω of ΩX is identified to the Radon point measure

ω =

ω(X)∑
i=1

εxi ,

where εx denotes the Dirac measure at x ∈ X, and ω(X) ∈ IN ∪ {∞} denotes the

cardinality of ω ∈ ΩX .

Consider a measurable random transformation

τ : ΩX ×X → X,

of X, let τ∗(ω), ω ∈ ΩX , denote the image measure of ω(dx) by τ(ω, ·) : X → X, that

is,

τ∗ : ΩX → ΩX (2.2)

maps

ω =

ω(X)∑
i=1

εxi to τ∗(ω) =

ω(X)∑
i=1

ετ(ω,xi).

In other words, the random mapping τ∗ : ΩX → ΩX shifts each configuration point

x ∈ ω according to x 7→ τ(ω, x).

Let D denote the finite difference gradient defined on any random variable F : ΩX →
IR as

DxF (ω) = F (ω ∪ {x})− F (ω), ω ∈ ΩX , x ∈ X,

for any random variable F : ΩX → IR; cf. [7], [8], [15]. The operator D is continuous

on the space ID2,1 defined by the norm

‖F‖2
2,1 = ‖F‖2

L2(ΩX ,πσ) + ‖DF‖2
L2(ΩX×X,πσ⊗σ), F ∈ ID2,1.

The next result is a Girsanov identity for random, non-adapted shifts of Poisson

configuration points, obtained as a consequence of Proposition 4.1 below which is

proved at the end of Section 4. Here we let Y denote another metric space with Borel

σ-algebra B(Y ).
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Proposition 2.1 Assume that τ : ΩX ×X → Y satisfies the cyclic condition

Dt1τ(ω, t2) · · ·Dtkτ(ω, t1) = 0, σ(dt1), . . . , σ(dtk)− a.e., ω ∈ ΩX , (2.3)

for all k ≥ 2, and let g : Y → IR be a measurable function such that

Eσ

[
e
∫
X |g(τ(ω,x))|σ(dx)

∏
x∈ω

(1 + |g(τ(ω, x))|)

]
<∞. (2.4)

Then we have

Eσ

[
e−

∫
X g(τ(ω,x))σ(dx)

∏
x∈ω

(1 + g(τ(ω, x)))

]
= 1.

As a consequence of Proposition 2.1, if τ : ΩX ×X → X satisfies (2.3) and τ(ω, ·) :

X → Y maps σ to a fixed measure µ on (Y,B(Y )) for all ω ∈ ΩX , then we have

Eσ

[∏
x∈ω

(1 + g(τ(ω, x)))

]
= e

∫
X g(τ(ω,x))σ(dx)

= e
∫
Y g(y)µ(dy), g ∈ Cc(Y );

hence τ∗ : ΩX → ΩX maps πσ to πµ, which recovers Corollary 3.3 of [22].

Proposition 2.1 then implies the following anticipating Girsanov theorem, in which

the Radon-Nikodym density is given by a Doléans exponential.

Corollary 2.2 Assume that for all ω ∈ ΩX , τ(ω, ·) : X → X is invertible on X and

that for all t0, . . . , tk ∈ X, k ≥ 1, there exists i ∈ {0, . . . , k} such that

Dtiτ(ω, x) = 0, (2.5)

for all x in a neighborhood of ti+1 mod k, and that the density

φ(ω, x) :=
dτ−1
∗ (ω, ·)σ
dσ

(x)− 1, x ∈ X,

exists for all ω ∈ ΩX , with

Eσ

[
e(1+ε)

∫
X φ(ω,x)σ(dx)

∏
x∈ω

(1 + φ(ω, x))1+ε

]
<∞, (2.6)
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for some ε > 0. Then we have the Girsanov identity

Eσ

[
F (τ∗(ω))e−

∫
X φ(ω,x)σ(dx)

∏
x∈ω

(1 + φ(ω, x))

]
= Eσ[F ],

for all F ∈ L1(ΩX).

Proof. First we note that from (2.5), for all ω ∈ ΩX and t0, . . . , tk ∈ X, k ≥ 1, there

exists i ∈ {0, . . . , k} such that

Dtiτ(ω, ti+1 mod k) = Dtiφ(ω, ti+1 mod k) = 0. (2.7)

Next from Proposition 2.1, for all f ∈ Cc(X) we have

Eσ

[
e−

∫
X f(x)σ(dx)−

∫
X φ(ω,x)σ(dx)

∏
x∈ω

(1 + f(τ(ω, x)))(1 + φ(ω, x))

]
= Eσ

[
e−

∫
X f(τ(ω,x))(1+φ(ω,x))σ(dx)−

∫
X φ(ω,x)σ(dx)

×
∏
x∈ω

(1 + f(τ(ω, x)) + φ(ω, x) + f(τ(ω, x))φ(ω, x))

]
= 1,

by Proposition 2.1, since

x 7→ f(τ(ω, x)) + φ(ω, x) + f(τ(ω, x))φ(ω, x)

satisfies Condition (2.3) by (2.7). We conclude by the density in L1(ΩX) of linear

combinations of F of the form

F = exp

(
−
∫
X

f(x)σ(dx)

)∏
x∈ω

(1 + f(x)), f ∈ Cc(X).

�

Under the hypotheses of Corollary 2.2, if τ∗ : ΩX → ΩX is invertible then the random

transformation τ−1
∗ : ΩX → ΩX is absolutely continuous with respect to πσ, with

density
dτ−1
∗ πσ
dπσ

= e−
∫
X φ(ω,x)σ(dx)

∏
x∈ω

(1 + φ(ω, x)). (2.8)

In Corollary 2.2, Condition (2.6) actually requires σ(τ(X)) to be a.s. finite.
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3 Examples

In this section we present an example of a random non-adapted transformation sat-

isfying the hypotheses of Corollary 2.2. First we note that Condition (2.3) is an

extension of the usual adaptedness condition, as it holds when τ : X → X is adapted

to a given total binary relation � on X. Indeed, if τ : ΩX ×X → X satisfies

Dxτ(ω, y) = 0, y � x,

then Condition (2.3) is satisfied since for all t1, . . . , tk ∈ X there exists i ∈ {1, . . . , k}
such that tj � ti, for all 1 ≤ j ≤ k; hence Dtiτ(ω, tj) = 0, 1 ≤ j ≤ k. In this case,

Corollary 2.2 recovers a classical result in the case where τ : X → X is deterministic

or adapted; cf., for example, Theorem 3.10.21 of [4].

Next, let X = B̄(0, 1) denote the closed unit ball in IRd, with σ(dx) the Lebesgue

measure. For all ω ∈ ΩX , let C(ω) denote the convex hull of ω in X with interior

Ċ(ω), and let ωe = ω ∩ (C(ω) \ Ċ(ω)) denote the extremal vertices of C(ω). Consider

a measurable mapping τ : ΩX ×X → X such that for all ω ∈ ΩX , τ(ω, ·) is measure

preserving, maps Ċ(ω) to Ċ(ω), and for all ω ∈ ΩX ,

τ(ω, x) =


τ(ωe, x), x ∈ Ċ(ω),

x, x ∈ X \ Ċ(ω),

(3.1)

that is, τ(ω, ·) : X → X modifies only the inside points of the convex hull of ω,

depending on the positions of its extremal vertices, which are left invariant by τ(ω, ·),
as illustrated in the next figure.
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Next, assume that τ(ω, ·) : X → X in (3.1) has the form

τ(ω, x) = x+ ψ(ωe, x), x ∈ X,

for fixed ω ∈ ΩX , where ψ(ωe, ·) : X → X is a diffeomorphism such that τ(ω, ·) : X →
X is invertible for all ω ∈ ΩX ; for example,

ψ(ωe, x) = u1C(ω)(x)
(d(x, C(ω) \ Ċ(ω)))2

1 + (d(x, C(ω) \ Ċ(ω)))2
, x ∈ X, (3.2)

with u ∈ IRd such that ‖u‖d < 1/4, where d(x,A) denotes the Euclidean distance

from x ∈ IRd to the closed set A ⊂ IRd. Then the transformation τ : ΩX × X → X

satisfies the hypotheses of Corollary 2.2 by Proposition 3.1 below, and τ ∗ : ΩX → ΩX

is invertible with

(τ ∗)−1(ω) = ωe ∪
⋃

x∈ω∩Ċ(ω)

{τ−1(ωe, x)}, ω ∈ ΩX ,

thus the associated Radon-Nikodym density (2.8) is given by taking

φ(ω, x) = det (IIRd +∇xψ(ωe, x))− 1, ω ∈ X, x ∈ X.

This quasi-invariance property is related to the intuitive fact that a Poisson random

measure remains Poisson within its convex hull when its configuration points are

shifted given to the position of its extremal vertices, cf., for example, [6].

Proposition 3.1 Assume that the random transformation τ : ΩX ×X → X satisfies

Condition (3.1). Then τ satisfies the cyclic Condition (2.5) of Corollary 2.2.

Proof. Let t1, . . . , tk ∈ X. First, if there exists i ∈ {1, . . . , k} such that ti ∈ C(ω),

then for all x ∈ X we have ti ∈ C(ω ∪ {x}), and by Lemma 3.2 below we get

Dtiτ(ω, x) = 0, x ∈ X;

thus (2.5) holds, and we may assume that ti /∈ C(ω) for all i = 1, . . . , k. In this case,

if ti+1 mod k /∈ C(ω ∪ {ti}) for some i = 1, . . . , k, then by Lemma 3.2 we have

Dtiτ(ω, ti+1 mod k) = 0;

hence (2.5) holds since the set C(ω ∪ {ti}) is closed. Next, if t1 ∈ C(ω ∪ {tk}), tk ∈
C(ω∪{tk−1}), . . ., t2 ∈ C(ω∪{t1}), then we have t1 ∈ C(ω∪{tk}) and tk ∈ C(ω∪{t1}),
which implies t1 = tk /∈ C(ω), and we check that Dtkτ(ω, t1) = 0. �
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Next we present the proof of Lemma 3.2; cf. [22].

Lemma 3.2 [22] For all x, y ∈ X and ω ∈ ΩX we have

x ∈ C(ω ∪ {y}) =⇒ Dxτ(ω, y) = 0 (3.3)

and

y ∈ C(ω ∪ {x}) =⇒ Dxτ(ω, y) = 0. (3.4)

Proof. Let x, y ∈ X and ω ∈ ΩX . First, if y /∈ C(ω ∪ {x}) we have τ(ω ∪ {x}, y) =

τ(ω, y) = y. Next, if x ∈ C(ω ∪ {y}), we can distinguish two cases:

a) x ∈ C(ω). In this case we have C(ω ∪ {x}) = C(ω); hence τ(ω ∪ {x}, y) = τ(ω, y)

for all y ∈ X.

b) x ∈ C(ω ∪ {y}) \ C(ω). If y ∈ C(ω ∪ {x}), then x = y /∈ Ċ(ω ∪ {x}); hence

τ(ω∪{x}, y) = τ(ω, y). On the other hand if y /∈ C(ω∪{x}), then τ(ω∪{x}, y) =

τ(ω, y) = y as above.

We conclude that Dxτ(ω, y) = 0 in both cases. �

We refer to [22] for more examples of transformations τ : ΩX ×X → X that satisfy

the cyclic condition (2.3).

4 Multiple integrals and stochastic exponentials

The proofs of the above results will use properties of stochastic exponentials and

multiple stochastic integrals which are introduced and proved in this section. Let now

In(fn)(ω) =

∫
∆n

fn(x1, . . . , xn)(ω(dx1)− σ(dx1)) · · · (ω(dxn)− σ(dxn))

denote the multiple Poisson stochastic integral of the symmetric function fn ∈ L2
σ(Xn),

where

∆n = {(x1, . . . , xn) ∈ Xn : xi 6= xj, ∀i 6= j},

with

e−
∫
X g(x)σ(dx)

∏
x∈ω

(1 + g(x)) =
∞∑
n=0

1

n!
In(g⊗n),

11



for g ∈ L2
σ(X) with bounded support, where “⊗” denotes the tensor product of

functions in L2
σ(X). For all (possibly random) disjoint subsets A1, . . . , An of X with

finite measure, we have the relation

IN(1
A
k1
1
◦ · · · ◦ 1Aknn ) =

n∏
i=1

Cki(ω(Ai), σ(Ai)) (4.1)

between the multiple Poisson integrals and the Charlier polynomials, where “◦” de-

notes the symmetric tensor product of functions in L2
σ(X) and N = k1 + · · ·+ kn; cf.,

for example, Proposition 6.2.9 in [21].

Proposition 2.1 will be proved using the following Proposition 4.1 which is a restate-

ment of Corollary 7.2 below. It provides a formula for the expectation of a multiple

stochastic integral of a time-changed function.

Proposition 4.1 Assume that τ : ΩX ×X → Y satisfies

Dtτ(ω, t) = 0, ω ∈ ΩX , t ∈ X. (4.2)

Then for all symmetric step functions g : Y N → IR of the form

g =
∑

k1+···+kn=N
1≤n≤N

ck1,...,kn1
⊗k1

B1,k1
◦ · · · ◦ 1⊗knBn,kn

where N ≥ 1 and B1,k1 , . . . , Bn,kn are deterministic disjoint Borel subsets of Y and

ck1,...,kn ∈ IR, we have

Eσ
[
IN(1AN (·)τ⊗N(ω, ·))

]
= Eσ

[∫
AN

Dt1 · · ·DtNg(τ(ω, t1), . . . , τ(ω, tN))σ(dt1) · · ·σ(dtN)

]
,

for all compact subset A ∈ B(X) of X.

Proof. It suffices to prove that for all deterministic disjoint Borel subsets B1, . . . , Bn

of Y we have

Eσ

[
IN(1AN1

⊗k1

τ−1(B1) ◦ · · · ◦ 1
⊗kn
τ−1(Bn))

]
= Eσ

[
IN(1⊗k1

A∩τ−1(B1) ◦ · · · ◦ 1
⊗kn
A∩τ−1(Bn))

]
= Eσ

[∫
AN

(
N∏
i=1

Dti

)(
1
B
k1
1
⊗ · · · ⊗ 1Bknn (τ(ω, t1), . . . , τ(ω, tN))

)
σ(dt1) · · ·σ(dtN)

]
,

with N = k1 + · · ·+ kn, and this is a direct consequence of Relation (4.1) above and

Corollary 7.2 below applied to the random sets A ∩ τ−1(B1), . . . , A ∩ τ−1(Bn). �
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As a particular case of Proposition 4.1, for g = 1B and B ∈ B(Y ) such that τ−1(B) ⊂
A a.s., where A is a fixed compact subset of X, we have

Eσ [Cn(τ∗ω(B), τ∗σ(B))] = Eσ

[∫
An
Ds1 · · ·Dsn

n∏
p=1

1B(τ(ω, sp))σ(ds1) · · ·σ(dsn)

]
,

(4.3)

under Condition (4.2). When Ds1B(τ(ω, t)) is quasi-nilpotent in the sense of Condi-

tion (2.3) above for all k ≥ 2, ω ∈ ΩX , Relation (4.3) and Lemma 4.3 below show

that

Eσ [Cn(τ∗ω(B), τ∗σ(B))] = 0,

and this extends (1.3) as a particular case since when X = IR+, Condition (2.3) holds

in particular when either

Dsg(τ(ω, t)) = 0, 0 ≤ s ≤ t,

or

Dtg(τ(ω, s)) = 0, 0 ≤ s ≤ t,

that is, when the process τ(ω, t) is forward or backward adapted with respect to the

filtration generated by the standard Poisson process (Nt)t∈[0,T ].

Proof of Proposition 2.1. We take g : Y → IR to be the step function

g(t) =
m∑
i=1

ci1Bi(t), t ∈ Y,

where c1, . . . , cm ∈ IR and B1, . . . , Bm ∈ B(Y ) are disjoint Borel subsets of Y . Then

the expression

Cn(x, λ) =
n∑
k=0

xk
k∑
l=0

(
n

l

)
(−λ)n−ls(k, l), x, λ ∈ IR,

for the Charlier polynomial of order n ∈ IN, shows that

|Cn(x, λ)| ≤
n∑
k=0

xk
k∑
l=0

(
n

l

)
λn−ls(k, l) = Cn(x,−λ), x, λ ≥ 0;
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hence ∞∑
n=0

|r|n

n!
|Cn(x, λ)| ≤ e|rλ|(1 + |r|)x, r ∈ IR,

and letting A ∈ B(X) be a compact subset of X we have

Eσ

[
∞∑
n=0

1

n!
|In(1An(·)g⊗n(τ⊗n(ω, ·)))|

]

= Eσ

 ∞∑
N=0

∣∣∣∣∣∣∣
∑

k1+···+kn=N
n≥0

(
n∏
l=1

ckii
ki!

)
IN

(
1⊗k1

A∩τ−1(B1) ◦ · · · ◦ 1
⊗kn
A∩τ−1(Bn)

)∣∣∣∣∣∣∣


= Eσ

 ∞∑
N=0

∣∣∣∣∣∣∣
∑

k1+···+kn=N
n≥0

n∏
i=1

ckii
ki!
Cki(ω(A ∩ τ−1(Bi)), σ(A ∩ τ−1(Bi)))

∣∣∣∣∣∣∣


≤ Eσ

 ∞∑
N=0

∑
k1+···+kn=N

n≥0

n∏
i=1

|ci|ki
ki!
|Cki(ω(A ∩ τ−1(Bi)), σ(A ∩ τ−1(Bi)))|


≤ Eσ

 ∞∑
N=0

∑
k1+···+kn=N

n≥0

n∏
i=1

|ci|ki
ki!

Cki(ω(A ∩ τ−1(Bi)),−σ(A ∩ τ−1(Bi)))


= Eσ

[
n∏
i=1

∞∑
ki=0

|ci|ki
ki!

Cki(ω(A ∩ τ−1(Bi)),−σ(A ∩ τ−1(Bi)))

]

= Eσ

[
n∏
i=1

exp
(
|ci|σ(A ∩ τ−1(Bi))

)
(1 + |ci|)ω(A∩τ−1(Bi))

]

≤ Eσ

[
n∏
i=1

exp (|ci|τ∗σ(Bi)) (1 + |ci|)τ∗ω(Bi)

]

= Eσ

[
e
∫
X |g(τ(ω,x))|σ(dx)

∏
x∈ω

(1 + |g(τ(ω, x))|)

]
< ∞. (4.4)

Consequently we can apply the Fubini theorem, which shows that

Eσ

[
e−

∫
A g(τ(ω,x))σ(dx)

∏
x∈A∩ω

(1 + g(τ(ω, x)))

]
= Eσ

[
∞∑
n=0

1

n!
In(1An(·)g⊗n(τ⊗n(ω, ·)))

]

=
∞∑
n=0

1

n!
Eσ
[
In(1An(·)g⊗n(τ⊗n(ω, ·)))

]
14



=
∞∑
n=0

1

n!
Eσ

[∫
An
Ds1 · · ·Dsn

n∏
p=1

g(τ(ω, sp))σ(ds1) · · ·σ(dsn)

]
= 0,

by Proposition 4.1, provided∫
An
Ds1 · · ·Dsn

n∏
p=1

g(τ(ω, sp))σ(ds1) · · ·σ(dsn) = 0, n ≥ 1, (4.5)

πσ(dω)-a.s., which holds by Lemma 4.3 below since Dsτ(ω, t) is quasi-nilpotent in

the sense of (2.3). The extension from A to X, and then from g, a step function, to

a measurable function satisfying (2.4) can be done by dominated convergence using

bound (4.4) above. �

The above results can also be summarized in the following general statement which

is also proved in Section 7 by the same argument as in the proof of Proposition 2.1.

Proposition 4.2 Assume that τ : ΩX ×X → Y satisfies

Dtτ(ω, t) = 0, ω ∈ ΩX , t ∈ X.

Then for all bounded measurable functions g : Y → IR satisfying (2.4) we have

Eσ

[
e−

∫
X g(τ(ω,x))σ(dx)

∏
x∈ω

(1 + g(τ(ω, x)))

]

=
∞∑
n=0

1

n!
Eσ

[∫
Xn

Ds1 · · ·Dsn

n∏
p=1

g(τ(ω, sp))σ(ds1) · · ·σ(dsn)

]
, (4.6)

provided

∞∑
n=0

1

n!
Eσ

[∫
Xn

∣∣∣∣∣Ds1 · · ·Dsn

n∏
p=1

g(τ(ω, sp))σ(ds1) · · ·σ(dsn)

∣∣∣∣∣
]
<∞. (4.7)

In the next lemma we show that Relation (4.5) is satisfied provided Dsτ(ω, t) satisfies

the cyclic condition (4.8) below.

Lemma 4.3 Let N ≥ 1, and assume that τ : ΩX × X → X satisfies the cyclic

condition

Dt0τ(ω, t1) · · ·Dtkτ(ω, t0) = 0, ω ∈ ΩX , t0, . . . , tk ∈ X, (4.8)

15



for k = 1, . . . , N . Then we have

Dt0 · · ·Dtk

k∏
p=0

g(τ(ω, tp)) = 0, t0, . . . tk ∈ X,

for k = 1, . . . , N .

Proof. We use the relation

Ds0 · · ·Dsj

n∏
p=0

g(τ(ω, sp)) =
∑

Θ0∪···∪Θn={0,1,...,j}

DΘ0g(τ(ω, s0)) · · ·DΘng(τ(ω, sn)),

(4.9)

s0, . . . , sn ∈ X, where DΘ :=
∏
j∈Θ

Dsj when Θ ⊂ {0, 1, . . . , j}, 0 ≤ j ≤ n, which follows

from the product rule

Dt(FG) = FDtG+GDtF +DtFDtG, t ∈ X, (4.10)

which is satisfied by Dt as a finite difference operator. Without loss of generality we

may assume that Θ0 6= ∅, . . . ,Θj 6= ∅ and Θk ∩Θl = ∅, 0 ≤ k 6= l ≤ j. In this case we

can construct a sequence (k1, . . . , ki) by choosing

0 6= k1 ∈ Θ0, k2 ∈ Θk1 , . . . , ki−1 ∈ Θki−2
,

until ki = 0 ∈ Θki−1
for some i ∈ {2, . . . , j} since Θ0∩· · ·∩Θj = ∅ and Θ0∪· · ·∪Θj =

{0, 1, . . . , j}. Hence by (4.8) we have

Dsk1
g(τ(ω, ss0))Dsk2

g(τ(ω, ssk1
)) · · ·Dski−1

g(τ(ω, sski−2
))Ds0g(τ(ω, sski−1

)) = 0,

by (4.8), which implies

DΘ0g(τ(ω, s0))DΘk1
g(τ(ω, sk1)) · · ·DΘki−2

g(τ(ω, ski−2
))DΘki−1

g(τ(ω, ski−1
)) = 0,

since

(k1, . . . , ki−1, 0) ∈ Θ0 ×Θk1 × · · · ×Θki−1
.

�
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5 Moment identities for Poisson integrals

In this section we state some results obtained in [22] on the moments of Poisson

stochastic integrals, and we reformulate them in view of our applications to Girsanov

identities and to random Charlier polynomial functionals.

The Poisson-Skorohod integral operator δ is defined on any measurable process u :

ΩX ×X → IR by the expression

δ(u) =

∫
X

u(ω \ {t}, t)(ω(dt)− σ(dt)), (5.1)

provided Eσ

[∫
X

|u(ω, t)|σ(dt)

]
<∞, cf., for example, [14], [21].

Note that if Dtut = 0, t ∈ X, and in particular when applying (5.1) to u ∈ L1
σ(X) a

deterministic function, we have

δ(u) =

∫
X

u(t)(ω(dt)− σ(dt)), (5.2)

that is, δ(u) with the compensated Poisson-Stieltjes integral of u. In addition, if

X = IR+ and σ(dt) = λtdt, we have

δ(u) =

∫ ∞
0

ut(dNt − λtdt) (5.3)

for all square-integrable predictable processes (ut)t∈IR+ , where Nt = ω([0, t]), t ∈ IR+, is

a Poisson process with intensity λt > 0; cf., for instance, the Example page 518 of [15].

From Corollaries 1 and 5 in [15] or Proposition 6.4.3 in [21] the operators D and δ

are closable and satisfy the duality relation

Eσ[〈DF, u〉L2
σ(X)] = Eσ[Fδ(u)], (5.4)

which can be seen as a formulation of the Mecke [11] identity for Poisson random mea-

sures, on their L2 domains Dom (δ) ⊂ L2(ΩX × X, πσ ⊗ σ) and Dom (D) = ID2,1 ⊂
L2(ΩX , πσ) under the Poisson measure πσ with intensity σ.
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The operator δ is continuous on the space IL2,1 ⊂ Dom (δ) defined by the norm

‖u‖2
2,1 = Eσ

[∫
X

|ut|2σ(dt)

]
+ Eσ

[∫
X

|Dsut|2σ(ds)σ(dt)

]
,

and the operator δ satisfies the Skorohod isometry

Eσ
[
δ(u)2

]
= Eσ

[∫
X

|ut|2σ(dt)

]
+ Eσ

[∫
X

∫
X

DsutDtusσ(ds)σ(dt)

]
, (5.5)

for any u ∈ IL2,1, cf. Corollary 4 and pages 517-518 of [15].

In addition, from (5.1), for any u ∈ Dom (δ) we have the commutation relation

Dtδ(u) = δ(Dtu) + ut, t ∈ X, (5.6)

or

(I +Dt)δ(u) = δ((I +Dt)u) + ut, t ∈ X, (5.7)

provided Dtu ∈ IL2,1, t ∈ X.

The following lemma relies on the application of Relations (5.4) and (5.6), and extends

(5.5) to powers of order greater than two; cf. Lemma 2.4 in [22].

Lemma 5.1 [22] Let u ∈ IL2,1 be such that Dtu ∈ IL2,1, t ∈ X, δ(u)n ∈ ID2,1, and

Eσ

[∫
X

|ut|n−k+1|δ((I +Dt)u)|kσ(dt)

]
<∞, Eσ

[
|δ(u)|k

∫
X

|ut|n−k+1σ(dt)

]
<∞,

0 ≤ k ≤ n. Then we have

Eσ[δ(u)n+1] =
n−1∑
k=0

(
n

k

)
Eσ

[
δ(u)k

∫
X

un−k+1
t σ(dt)

]
+

n∑
k=1

(
n

k

)
Eσ

[∫
X

un−k+1
t (δ((I +Dt)u)k − δ(u)k)σ(dt)

]
,

for all n ≥ 1.

When h is a deterministic function, Lemma 5.1 yields the recursive covariance identity

Eσ[δ(h)n+1] =
n∑
k=1

(
n

k

)∫
X

hk+1(t)σ(dt)Eσ
[
δ(h)n−k

]
, n ≥ 0, (5.8)
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for the Poisson stochastic integral

δ(h) =

∫
X

h(x)(ω(dx)− σ(dx)).

By induction, (5.8) shows that the moments of the above Poisson stochastic integral

can be computed as

Eσ[δ(h)n] =
n−1∑
a=1

∑
0=k1�···�ka+1=n

a∏
l=1

(
kl+1 − 1

kl

) a∏
l=1

∫
X

hkl+1−kldσ, (5.9)

for all n ≥ 1 and deterministic h ∈
n⋂

p=2∧n

Lpσ(X), where a � b means a < b − 1,

a, b ∈ IN. This result can also be recovered from the relation

Eσ[δ(h)n] =
n∑
d=1

∑
B1,...,Bd

κ|B1| · · ·κ|Bd| (5.10)

where the sum runs over all partitions of {1, . . . , n}, |Bi| denotes the cardinality of

Bi, and κ1 = 0, κn =
∫
X
hn(t)σ(dt), n ≥ 2, denote the cumulants of δ(h).

In particular, Relations (5.9) and (5.10) yield the identity

Eλ[(Z − λ)n] =
n∑
a=0

λaS2(n, a) (5.11)

for the central moments of a Poisson random variable Z with intensity λ, where

S2(n, a) :=
∑

0=k1�···�ka+1=n

a∏
l=1

(
kl+1 − 1

kl

)
,

represents the number of partitions of a set of size m into a subsets of size at least 2.

In the sequel we let

C(l1, . . . , la, b) =
∑

0=rb+1<···<r0=a+b+1

b∏
q=0

rq−1−(b−q)∏
p=rq+1−(b−q−1)

(
l1 + · · ·+ lp + q − 1

l1 + · · ·+ lp−1 + q

)
, (5.12)

which represents the number of partitions of a set of l1 + · · · + la + b elements into

a subsets of lengths l1, . . . , la and b singletons. We will need the following result; cf.

Lemma 5.2 of [22].
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Proposition 5.2 [22] Let F : ΩX → IR be a bounded random variable, and let u :

ΩX ×X → IR be a bounded process with compact support in X. For all n ≥ 0 we have

Eσ [Fδσ(u)n] =
n∑
a=0

n−a∑
b=0

(−1)b
∑

l1+···+la=n−b
l1,...,la≥1

C(l1, . . . , la, b)Eσ

[∫
Xa+b

(
a∏
i=1

(I +Dsi)F

)

×

(
a+b∏

q=a+1

a∏
i=1

(I +Dsi)usq

)
a∏
p=1

 a∏
i=1
i6=p

(I +Dsi)usp


lp

σ(ds1) · · · σ(dsa+b)

 .
In the above proposition, by saying that u : ΩX × X → IR has a compact support

in X we mean that there exists a compact K ∈ B(X) such that u(ω, x) = 0 for all

ω ∈ ΩX and x ∈ X \K.

In particular when u = 1A is a (random) indicator function we get the following

proposition, which will be used to prove Proposition 7.1 below. We let

S(n, c) =
1

c!

c∑
l=0

(−1)c−l
(
c

l

)
ln (5.13)

denote the Stirling number of the second kind, that is, the number of ways to partition

a set of n objects into c non-empty subsets. In the next proposition, which is an

application of Proposition 5.2, the random indicator function (x, ω) 7→ 1A(ω)(x) on

ΩX ×X denotes a measurable process u : ΩX ×X → IR such that u2(ω, t) = u(ω, t),

ω ∈ ΩX , t ∈ X.

Proposition 5.3 Let F : ΩX → IR be a bounded random variable, and consider a

measurable random indicator function (x, ω) 7→ 1A(ω)(x) on ΩX × X, with compact

support in X. Then for all n ≥ 0 we have

Eσ [Fδ(1A)n] =
n∑
c=0

c∑
a=0

(−1)a
(
n

a

)
S(n− a, c− a)

Eσ

∫
Xa

(
a∏
i=1

(I +Dsi)(Fσ(A)c−a)

)
a∏
p=1

a∏
i=1
i 6=p

(I +Dsi)1A(sp)σ(ds1) · · ·σ(dsa)

 .
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Proof. Taking u = 1A in Proposition 5.2 yields

Eσ [F (δ(u))n] =
n∑
a=0

n−a∑
b=0

(−1)b
∑

l1+···+la=n−b
l1,...,la≥1

C(l1, . . . , la, b)Eσ

[∫
Xa+b

(
a∏
i=1

(I +Dsi)F

)

a+b∏
p=1

a∏
i=1
i6=p

(I +Dsi)1A(sp)σ(ds1) · · ·σ(dsa+b)


=

n∑
c=0

c∑
a=0

(−1)a
(
n

a

)
S(n− a, c− a)

Eσ

∫
Xc

(
a∏
i=1

(I +Dsi)F

)
c∏

p=1

a∏
i=1
i 6=p

(I +Dsi)1A(sp)σ(ds1) · · ·σ(dsc)


=

n∑
c=0

c∑
a=0

(−1)a
(
n

a

)
S(n− a, c− a)

Eσ

∫
Xa

(
a∏
i=1

(I +Dsi)(Fσ(A)c−a)

)
a∏
p=1

a∏
i=1
i 6=p

(I +Dsi)1A(sp)σ(ds1) · · ·σ(dsa)

 ,
after checking that we have(

n

b

)
S(n− b, a) =

∑
l1+···+la=n−b
l1,...,la≥1

C(l1, . . . , la, b),

which is the number of partitions of a set of n elements into a non-empty subsets and

one subset of size b. �

When the set A is deterministic, Proposition 5.3 yields

Eλ [(Z − λ)n] =
n∑
c=0

λc
c∑

a=0

(−1)a
(
n

a

)
S(n− a, c− a),

for the central moments of a Poisson random variable Z = ω(A) with intensity λ =

σ(A), which, from (5.11), shows the combinatorial identity

S2(n, c) =
c∑

a=0

(−1)a
(
n

a

)
S(n− a, c− a). (5.14)
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6 Poisson moments and polynomials

As mentioned in the introduction we need to introduce another family of polynomials

whose generating function and associated combinatorics will be better adapted to our

approach, making it possible to apply the moment identities of Proposition 5.3 and

the integration by parts formula (5.4).

In terms of polynomials the identity (4.3) is easy to check for n = 1 and n = 2, in

which case we have

C1(ω(A), σ(A)) = ω(A)− σ(A) = δ(1A),

and

C2(ω(A), σ(A)) = (ω(A)− σ(A))2 − (ω(A)− σ(A))− σ(A)

= δ(1A)2 − δ(1A)− σ(A), (6.1)

hence

Eσ [C2(ω(A), σ(A))] = Eσ[δ(1A)2]− σ(A)

= Eσ

[∫
X

∫
X

Ds1A(t)Dt1A(s)σ(ds)σ(dt)

]
,

from the Skorohod isometry (5.5).

In the sequel we will need to extend the above calculations and the proof of (4.3)

to Charlier polynomials Cn(x, λ) of all orders. For this, in Section 7 we will use the

moment identities for the Skorohod integral δ(1A) of Proposition 5.3, and for this

reason we will need to rewrite Cn(ω(A), σ(A)), a linear combination of polynomials

of the form Bn(δ(1A), σ(A)), where Bn(x, λ) is another polynomial of degree n. This

construction is done using Stirling numbers and combinatorial arguments; cf. Propo-

sition 6.1 below.

In other words, instead of using the identity (1.2) we need its Laplace form (2.1), that

is,

Eσ

[
exp

(
δ(f)−

∫
X

(ef(x) − f(x)− 1)σ(dx)

)]
= 1, (6.2)
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obtained from (1.2) by taking

f(x) = log(1 + g(x)), x ∈ X.

In particular when f = 1A with A ∈ B(X) a fixed compact subset of X, Relation (6.2)

reads

Eσ

[
etδ(1A)−σ(A)(et−t−1)

]
= 1, t ∈ IR, (6.3)

where δ(1A) = ω(A)−σ(A) is a compensated Poisson random variable with intensity

σ(A) > 0.

We let (Bn(x, λ))n∈IN denote the family of polynomials defined by the generating

function

ety−λ(et−t−1) =
∞∑
n=0

tn

n!
Bn(y, λ), t ∈ IR, (6.4)

for all y, λ ∈ IR. This definition implies in particular that

Bn(y,−λ) = Eλ[(Z + y − λ)n],

where Z is a Poisson random variable with intensity λ > 0, and

Bn(y, λ) =
n∑
k=0

(
n

k

)
ykBn−k(0, λ), λ ∈ IR, n ∈ IN. (6.5)

For example one has that B1(y, λ) = y and B2(y, λ) = y2 − λ; hence (6.1) reads

C2(x, λ) = B2(x− λ, λ)−B1(x− λ, λ),

and these relations will extended to all polynomial degrees in Proposition 6.1 below.

In addition, the definition of Bn(x, λ) generalizes that of the Bell (or Touchard) poly-

nomials Bn(λ) defined by the generating function

eλ(et−1) =
∞∑
n=0

tn

n!
Bn(λ),

which satisfy

Bn(λ) = Bn(λ,−λ) = Eλ[Z
n] =

n∑
c=0

λcS(n, c), (6.6)
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where Z is a Poisson random variable with intensity λ > 0, cf., for example, Proposi-

tion 2 of [5] or Section 3.1 of [13].

Next we show that the Charlier polynomials Cn(x, λ) with exponential generating

function

e−λt(1 + t)x =
∞∑
n=0

tn

n!
Cn(x, λ), x, t, λ ∈ IR,

are dual to the generalized Bell polynomials Bn(x−λ, λ) under the Stirling transform.

Proposition 6.1 We have the relations

Cn(y, λ) =
n∑
k=0

s(n, k)Bk(y − λ, λ) and Bn(y, λ) =
n∑
k=0

S(n, k)Ck(y + λ, λ),

y, λ ∈ IR, n ∈ IN.

Proof. For the first relation, for all fixed y, λ ∈ IR we let

A(t) = e−λt(1 + t)y+λ =
∞∑
n=0

tn

n!
Cn(y + λ, λ), t ∈ IR,

and note that

A(et − 1) = et(y+λ)−λ(et−1) =
∞∑
n=0

tn

n!
Bn(y, λ), t ∈ IR,

which implies

Bn(y, λ) =
n∑
k=0

S(n, k)Ck(y + λ, λ), n ∈ IN,

(see e.g. [3] page 2). The second part can be proved by inversion using Stirling

numbers of the first kind, as

n∑
k=0

S(n, k)Ck(y + λ, λ) =
n∑
k=0

k∑
l=0

S(n, k)s(k, l)Bl(y, λ)

=
n∑
l=0

Bl(y, λ)
n∑
k=l

S(n, k)s(k, l)

= Bn(y, λ),

from the inversion formula
n∑
k=l

S(n, k)s(k, l) = 1{n=l}, n, l ∈ IN, (6.7)

for Stirling numbers; cf., for example, page 825 of [1]. �

24



The combinatorial identity proved in the next lemma will be used in Section 7 for the

proof of Proposition 7.1. For b = 0 it yields the identity

S(n, a) =
a∑
c=0

(
n

c

)
S2(n− c, a− c), (6.8)

which is the inversion formula of (5.14), and has a natural interpretation by stating

that S2(m, b) is the number of partitions of a set of m elements made of b sets of

cardinal greater or equal to 2.

Lemma 6.2 For all a, b ∈ IN we have(
a+ b

a

)
S(n, a+ b) =

b∑
l=0

n∑
k=l

(
n

k

)(
k

l

)
S(k − l, a)S2(n− k, b− l).

Proof. This identity can be proved by a combinatorial argument. For each value of

k = 0, . . . , n one chooses a subset of {1, . . . , n} of size k which is partitioned into a

non-empty subsets, the remaining set of size n− k being partitioned into l singletons

and b− l subsets of size at least 2. In this process the b subsets mentioned above are

counted including their combinations within a + b sets, which explains the binomial

coefficient

(
a+ b

a

)
on the right-hand side. �

7 Random Charlier polynomials

In order to simplify the presentation of our results it will sometimes be convenient to

use the symbolic notation

∆s0 · · ·∆sj

n∏
p=0

usp =
∑

Θ0∪···∪Θn={0,1,...,j}
0/∈Θ0,...,j /∈Θj

DΘ0us0 · · ·DΘnusn , (7.1)

s0, . . . , sn ∈ X, 0 ≤ j ≤ n, for any measurable process u : ΩX ×X → IR.

The above formula implies in particular ∆s0us0 = 0, and it can be used to rewrite the

Skorohod isometry (5.5) as

Eσ
[
δ(u)2

]
= Eσ

[
‖u‖2

L2
σ(X)

]
+ Eσ

[∫
X

∫
X

∆s∆t(utus)σ(ds)σ(dt)

]
,
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since by definition we have

∆s∆t(usut) = DsutDtus, s, t ∈ X.

In this section we show the following proposition.

Proposition 7.1 Let n ≥ 1 and let A1(ω), . . . , An(ω) be a.e. disjoint random Borel

sets, all of them being a.s. contained in a fixed compact set K of X. Then we have

Eσ

[
n∏
i=1

Cki(δ(1Ai) + σ(Ai), σ(Ai))

]

= Eσ

[∫
KN

∆s1 · · ·∆sN (1
A
k1
1
⊗ · · · ⊗ 1Aknn )(s1, . . . , sN)σ(ds1) · · ·σ(dsN)

]
,

k1, . . . , kn ∈ IN, with N = k1 + · · ·+ kn.

For n = 1, Proposition 7.1 yields, in particular,

Eσ [Cn(ω(A), σ(A))] = Eσ

[∫
Kn

∆s1 · · ·∆sn

n∏
p=1

1A(sp)σ(ds1) · · ·σ(dsn)

]
,

for A a.s. contained in a fixed compact set K of X, which leads to (4.3) by Lemma 7.3

under Condition (4.2), as in the following corollary which is used for the proof of

Proposition 4.1.

Corollary 7.2 Assume that τ : ΩX ×X → X satisfies

Dtτ(ω, t) = 0, ω ∈ ΩX , t ∈ X. (7.2)

Then for all deterministic disjoint B1, . . . , Bn ∈ B(X) we have

Eσ

[
n∏
i=1

Cki(ω(A ∩ τ−1(Bi)), σ(A ∩ τ−1(Bi)))

]

= Eσ

[∫
AN

Ds1 · · ·DsN ((1
B
k1
1
⊗ · · · ⊗ 1Bknn )(τ(ω, s1), . . . , τ(ω, sN)))σ(ds1) · · ·σ(dsN)

]
,

k1, . . . , kn ∈ IN, with N = k1 + · · ·+ kn, for all compact A ∈ B(X).
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Proof. We apply Proposition 7.1 by letting Ai(ω) = A ∩ τ−1(ω,Bi), and we note

that we have

σ(Ai(ω)) =

∫
A

1Bi(τ(ω, t))σ(dt)

= σ(A ∩ τ−1(ω,Bi)).

On the other hand, by (7.2) we have Dt1Ai(t) = Dt1Bi(τ(ω, t)) = 0; hence from

Lemma 7.4 below we have

δ(1Ai) + σ(Ai) = δ(1A1Bi ◦ τ) + σ(A ∩ τ−1(Bi))

= ω(A ∩ τ−1(Bi)).

Finally we note that from (7.1) and (7.2) we have

Ds1 · · ·DsN = ∆s1 · · ·∆sN ,

and we apply Proposition 7.1. �

The proof of Proposition 7.1 relies on the following lemma.

Lemma 7.3 Let F : ΩX → IR be a bounded random variable, and consider a random

set A, a.s. contained in a fixed compact set K of X. For all k ≥ 1 we have

Eσ [FCk(δ(1A) + σ(A), σ(A))]

=
k∑
z=0

(−1)k−z
(
k

z

)
Eσ

∫
Xk

z∏
j=1

(I +Dsj)F
k∏
p=1

z∏
j=1
j 6=p

(I +Dsj)1A(sp)σ(ds1) · · ·σ(dsk)

 .
Proof. Using Proposition 5.3 and Lemma 6.2 we have

Eσ [FBn(δ(1A), σ(A))]

=
n∑
i=0

(
n

i

)
Eσ
[
F (δ(1A))iBn−i(0, σ(A))

]
=

n∑
i=0

(
n

i

) n−i∑
c=0

(−1)cS2(n− i, c)Eσ
[
F (δ(1A))iσ(A)c

]
=

n∑
i=0

(
n

i

) n−i∑
c=0

(−1)cS2(n− i, c)
i∑

e=0

e∑
z=0

(−1)e−z
(
i

z

)
S(i− z, e− z)
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Eσ

∫
Xz

(
z∏
j=1

(I +Dsj)(Fσ(A)c+e−z)

)
z∏
p=1

z∏
j=1
j 6=p

(I +Dsj)1A(sp)σ(ds1) · · · σ(dsz)


=

n−1∑
k=0

n∑
i=0

(
n

i

) n−i∑
c=0

S2(n− i, c)
k−c∑
z=0

(−1)k−z
(
i

z

)
S(i− z, k − c− z)

Eσ

∫
Xz

(
z∏
j=1

(I +Dsj)(Fσ(A)k−z)

)
z∏
p=1

z∏
j=1
j 6=p

(I +Dsj)1A(sp)σ(ds1) · · · σ(dsz)


=

n−1∑
k=0

k∑
z=0

(−1)k−z
n∑
i=0

(
n

i

) n−i∑
c=0

(
i

z

)
S2(n− i, c)S(i− z, k − c− z)

Eσ

∫
Xz

(
z∏
j=1

(I +Dsj)(Fσ(A)k−z)

)
z∏
p=1

z∏
j=1
j 6=p

(I +Dsj)1A(sp)σ(ds1) · · · σ(dsz)


=

n∑
k=0

S(n, k)
k∑
z=0

(−1)k−z
(
k

z

)

Eσ

∫
Xz

(
z∏
j=1

(I +Dsj)(Fσ(A)k−z)

)
z∏
p=1

z∏
j=1
j 6=p

(I +Dsj)1A(sp)σ(ds1) · · · σ(dsz)

 .
Hence from Proposition 6.1 or the inversion formula (6.7) we get

Eσ [FCk(δ(1A) + σ(A), σ(A))]

=
k∑
z=0

(−1)k−z
(
k

z

)
Eσ

∫
Xk

z∏
j=1

(I +Dsj)F
k∏
p=1

z∏
j=1
j 6=p

(I +Dsj)1A(sp)σ(ds1) · · ·σ(dsk)

 .
�

In particular, Lemma 7.3 applied to F = 1 shows that

Eσ [Ck(δ(1A) + σ(A), σ(A))]

=
k∑
z=0

(−1)k−z
(
k

z

)
Eσ

∫
Xk

k∏
p=1

z∏
j=1
j 6=p

(I +Dsj)1A(sp)σ(ds1) · · ·σ(dsk)


=

k∑
z=0

(−1)k−z
(
k

z

)
Eσ

[∫
Xk

k∏
p=1

z∏
j=1

(I + ∆sj)1A(sp)σ(ds1) · · ·σ(dsk)

]
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= Eσ

[∫
Xk

(
k∏
j=1

(I + ∆sj − I)

)
k∏
p=1

1A(sp)σ(ds1) · · ·σ(dsk)

]

= Eσ

[∫
Xk

∆s1 · · ·∆sk

k∏
p=1

1A(sp)σ(ds1) · · · σ(dsk)

]
,

which is Proposition 7.1 for n = 1. Next we will apply this argument to prove

Proposition 7.1 from Lemma 7.3 by induction.

Proof of Proposition 7.1. From Lemma 7.3 we have

Eσ [FCk1(δ(1A1) + σ(A1), σ(A1))] (7.3)

=

k1∑
z1=0

(−1)k1−z1
(
k1

z1

)
Eσ

∫
Kk1

z1∏
j=1

(I +Ds1,j)F

k1∏
p=1

z1∏
j=1
j 6=p

(I +Ds1,j)1A1(s1,p)σ(ds1,1) · · ·σ(ds1,k1)

 .
The first induction step is to apply the above equality to the random variable

F =
n∏
i=2

Cki(δ(1Ai) + σ(Ai), σ(Ai)).

Here F is not bounded, however since Ai(ω) ⊂ K, a.s., i = 1, . . . , n, for a fixed

compact K ∈ B(X), we check that |F | is bounded by a polynomial in ω(K), and∣∣∣∣∣
z1∏
j=1

(I +Ds1,j)F

∣∣∣∣∣
is bounded by another a polynomial in ω(K), uniformly in s1, . . . , sk1 ∈ X. Hence

by dominated convergence we can extend (7.3) from the bounded random variable

max(min(F,−C), C), C > 0, to F by letting C go to infinity. From Relation (5.7) we

have

z1∏
j=1

(I +Ds1,j)δ(1Ai) = δ

(
z1∏
j=1

(I +Ds1,j)1Ai

)
+

z1∑
k=1

z1∏
j=1
j 6=k

(I +Ds1,j)1Ai(s1,k)

= δ

(
z1∏
j=1

(I +Ds1,j)1Ai

)
,
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0 ≤ z1 ≤ k1, i ≥ 2, when s1,k ∈
z1∏
j=1
j 6=k

(I +Ds1,j)A1, 1 ≤ k ≤ k1, since

z1∏
j=1
j 6=k

(I +Ds1,j)A1(ω), . . . ,

z1∏
j=1
j 6=k

(I +Ds1,j)An(ω)

are disjoint, 1 ≤ k ≤ k1, ω ∈ ΩX , hence

z1∏
j=1

(I +Ds1,j)F =

z1∏
j=1

(I +Ds1,j)
n∏
i=2

Cki(δ(1Ai) + σ(Ai), σ(Ai))

=
n∏
i=2

Cki

(
z1∏
j=1

(I +Ds1,j)δ(1Ai) +

z1∏
j=1

(I +Ds1,j)σ(Ai),

z1∏
j=1

(I +Ds1,j)σ(Ai)

)

=
n∏
i=2

Cki

(
δ

(
z1∏
j=1

(I +Ds1,j)1Ai

)
+

z1∏
j=1

(I +Ds1,j)σ(Ai),

z1∏
j=1

(I +Ds1,j)σ(Ai)

)
,

which yields, from (7.3),

Eσ

[
n∏
i=1

Cki(δ(1Ai) + σ(Ai), σ(Ai))

]

=

k1∑
z1=0

(−1)k1−z1
(
k1

z1

)

Eσ

[∫
Xk1

n∏
i=2

Cki

(
δ

(
z1∏
j=1

(I +Ds1,j)1Ai

)
+

z1∏
j=1

(I +Ds1,j)σ(Ai),

z1∏
j=1

(I +Ds1,j)σ(Ai)

)
k1∏
p=1

z1∏
j=1
j 6=p

(I +Ds1,j)1A1(s1,p)σ(ds1,1) · · ·σ(ds1,k1)

 .
Next, we apply Lemma 7.3 again to

Ck2

(
δ

(
z1∏
j=1

(I +Ds1,j)1A2

)
+

z1∏
j=1

(I +Ds1,j)σ(A2),

z1∏
j=1

(I +Ds1,j)σ(A2)

)

and to

F =

k1∏
p=1

z1∏
j=1
j 6=p

(I +Ds1,j)1A1(s1,p)
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×
n∏
i=3

Cki

(
δ

(
z1∏
j=1

(I +Ds1,j)1Ai

)
+

z1∏
j=1

(I +Ds1,j)σ(Ai),

z1∏
j=1

(I +Ds1,j)σ(Ai)

)
,

and by iteration of this argument we obtain

Eσ

[
n∏
i=1

Cki(δ(1Ai) + σ(Ai), σ(Ai))

]

=
kn∑
zn=0

· · ·
k1∑
z1=0

n∏
l=1

(−1)kl−zl
n∏
l=1

(
kl
zl

)

Eσ

∫
Xk1

n∏
i=1

zi∏
j=1
j 6=p

(I +Dsi,j)
n∏
i=1

ki∏
j=1

1Ai(si,j)σ(ds1,1) · · ·σ(dsn,kn)


=

kn∑
zn=0

· · ·
k1∑
z1=0

n∏
l=1

(−1)kl−zl
n∏
l=1

(
kl
zl

)

Eσ

[∫
Xk1

(
n∏
i=1

zi∏
j=1

(I + ∆si,j)

)
n∏
i=1

ki∏
j=1

1Ai(si,j)σ(ds1,1) · · ·σ(dsn,kn)

]

= Eσ

[∫
XN

(
n∏
i=1

ki∏
j=1

(I + ∆si,j − I)

)
n∏
i=1

ki∏
j=1

1Ai(si,j)σ(ds1,1) · · · σ(dsn,kn)

]

= Eσ

[∫
XN

(
n∏
i=1

ki∏
j=1

∆si,j

)
n∏
i=1

ki∏
j=1

1Ai(si,j)σ(ds1,1) · · ·σ(dsn,kn)

]
.

�

Next we prove Proposition 4.2.

Proof of Proposition 4.2. Taking g : Y → IR to be the step function

g =
m∑
i=1

ci1Bi ,

where c1, . . . , cm ∈ IR and B1, . . . , Bm ∈ B(Y ) are disjoint Borel subsets of Y , Corol-

lary 7.2 shows that for compact A ∈ B(X) we have

Eσ

[
e−

∫
A g(τ(ω,t))σ(dt)

∏
x∈A∩ω

(1 + g(τ(ω, x)))

]
= Eσ

[
m∏
l=1

e−clσ(A∩τ−1(Bl))

m∏
l=1

(1 + cl)
ω(A∩τ−1(Bl))

]

=
∞∑
k1=0

· · ·
∞∑

km=0

(
m∏
i=1

ckii
ki!

)
Eσ

[
m∏
i=1

Cki(ω(A ∩ τ−1(Bi)), σ(A ∩ τ−1(Bi)))

]
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=
∞∑
n=0

1

n!
Eσ
[
In(1An(·)g⊗n(τ⊗n(ω, ·)))

]
=

∞∑
n=0

1

n!
Eσ

[∫
An

∆s1 · · ·∆sn

n∏
p=1

g(τ(ω, sp))σ(ds1) · · ·σ(dsn)

]
.

In the general case with g : Y → IR bounded measurable the conclusion follows by

approximation of g by step functions and dominated convergence under (2.4), followed

by extension to A = X using the bound (4.7). �

Finally we state the following lemma which has been used in the proof of Corollary 7.2.

Lemma 7.4 Assume that

Dtτ(ω, t) = 0, ω ∈ ΩX , t ∈ X. (7.4)

Then we have∫
X

1A(t)h(τ(ω, t))ω(dt) = δ(1Ah ◦ τ)(ω) +

∫
A

h ◦ τ(ω, t)σ(dt), ω ∈ ΩX ,

for all compact A ∈ B(X) and all bounded measurable functions h : X → IR.

Proof. We note that Condition (7.4) above means that τ(ω, t) does not depend on

the presence or absence of a point in ω at t, and in particular,

τ(ω, t) = τ(ω ∪ {t}, t), t /∈ ω,

and

τ(ω, t) = τ(ω \ {t}, t), t ∈ ω.

Hence we have

δ(1Ah ◦ τ) +

∫
A

h ◦ τ(ω, t)σ(dt)

=

∫
X

1A(t)h(τ(ω \ {t}, t))(ω(dt)− σ(dt)) +

∫
X

1A(t)h(τ(ω, t))σ(dt)

=

∫
X

1A(t)h(τ(ω \ {t}, t))ω(dt)

=

∫
X

1A(t)h(τ(ω, t))ω(dt).

�
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8 Link with the Carleman-Fredholm determinant

In this section we make some remarks on differences between the Poisson and Wiener

cases, in relation to the quasi-nilpotence of random transformations. We consider a

Poisson random measure on IR+× [−1, 1]d on the real line with flat intensity measure,

in which case it is known [16], [17], [18], that, building the Poisson measure as a

product of exponential and uniform densities on the sequence space IRIN, we have the

Girsanov identity,

E [F (I + u)|det2(I +∇u)| exp(−∇∗(u))] = E [F ] ,

where u : IRIN → IRIN is a random shift satisfying certain conditions, det2(I +∇u) is

the Carleman-Fredholm determinant of I+∇u and ∇∗(u) is a Skorohod-type integral

of the discrete-time process u.

When it is invertible, (I + u)∗πσ is absolutely continuous with respect to πσ with

d(I + u)−1
∗ πσ

dπσ
= |det2(I +∇u)| exp(−∇∗(u)).

It can be checked (cf. [16], [17], [18]) that in the adapted case this yields the usual

Girsanov theorem for the change of intensity of Poisson random measures when the

configuration points are shifted by an adapted smooth diffeomorphism φ : ΩX× IR+×
[0, 1]d −→ IR+ × [0, 1]d, in which case I + Du becomes a block diagonal matrix, each

d× d block having the Jacobian determinant |∂t,xφ(ω, Tk, x
1
k, . . . , x

d
k)|, and we have

det2(I +∇u) exp(−∇∗(u)) = e
−

∫
IR+×[0,1]d

(|∂s,xφ(ω,s,x)|−1)dsdx
∞∏
k=1

|∂t,xφ(ω, Tk, x
1
k, . . . , x

d
k)|.

The main difference with the Wiener case is that here ∇u is not quasi-nilpotent on

`2(IN) and we do not have det2(I + ∇u) = 1. Nevertheless it should be possible to

recover Proposition 4.1 in a weaker form by checking the relation

det(I +∇u) =
∞∏
k=1

|∂t,xφ(ω, Tk, x
1
k, . . . , x

d
k)|

for anticipating shifts φ : ΩX × IR+ × [0, 1]d −→ IR+ × [0, 1]d, under smoothness and

quasi-nilpotence assumptions stronger than those assumed in this paper.
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Basel, 1995.
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