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Abstract
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1 Introduction

The Wiener and Poisson measures are well known to be quasi-invariant under adapted
shifts. This quasi-invariance property has been extended to anticipative shifts by sev-
eral authors; cf. [23], [9] and [26] and references therein in the Wiener case, and, for

example, [2], [16], [17], [18], in the Poisson case.



In the anticipative case the corresponding Radon-Nikodym density is usually written
as the product

[deta(I + V)| exp (—5(u) - %HUHQ)
of a Skorohod-Doléans exponential with the Carleman-Fredholm determinant of the
Malliavin gradient Vu of the shift w; cf. [23], [9], [26]. A similar formula can be

obtained for Poisson random measures; cf. Section 8.

It has been noted in [27] that the standard Doléans form of the density for anticipative
shifts u : W — H on the Wiener space W with Cameron-Martin space H can be
conserved (i.e. the Carleman-Fredholm determinant dets(/ + Vu) equals one) when

the gradient Vu of the shift u is quasi-nilpotent, that is,

nh—>nolo H(Vu)"“}q/g =0, orequivalently trace(Vu)" =0, n > 2, (1.1)

cf. [27] or Theorem 3.6.1 of [26]. In particular, when Vu is quasi-nilpotent and ||ul|
is constant, it has been shown in [25] that d(u) has a centered Gaussian law with

variance ||ul?, cf. [20] for a simplified proof.

In this paper we consider the Poisson space Q% over a metric space X with o-finite in-
tensity measure o(dx), and investigate the quasi-invariance of random transformations
7(w, -) which are assumed to be quasi-nilpotent in the sense that the finite difference
gradient Dy7(w, t) satisfies the cyclic finite difference condition (2.3) below, which is
a strenghtened version of (1.1). We show in particular that such anticipating quasi-
nilpotent transformations are quasi-invariant, and their Radon-Nikodym densities are
given by Doléans stochastic exponentials with jumps. This also extends and recovers
other results on the invariance of random transformations of Poisson measures; cf.

22].

Our starting point is the classical Girsanov identity for Poisson random measures

which states that

Eq

exp (—/Xg(:v)a(dx)) [Ja +g(:1:))] =1, (1.2)
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and rewrites when g = 14 as
E, [e W (1 +r)*@W] =1, r € R,
which is equivalent to the vanishing of the expectation
E[C.(Z,\)] =0, n>1,

for Z = w(A) a Poisson random variable with intensity A = o(A), where C),(x, \) is
the Charlier polynomials of degree n € N, with generating function

o0 n

e (I+r)* —Cp(z r> —1.
n=0 TL'

<

It is well known, however, that Z need not have a Poisson distribution for E[C,,(Z, \)]
to vanish when A is allowed to be random. Indeed, such an identity also holds in the

random adapted case under the form
E[Cy(Ny-1py, 7 1(t))] = 0, n>1, (1.3)

where (Vy)ier, is a standard Poisson process generating a filtration (F)er, and 7(t)

is an F;-adapted time change, due to the fact that

Cor (Nys, 7 (1)) = ! / / / Ny sy —dr = (0)) - d(N, 1, —dr = (E)),

is an adapted nth order iterated multiple stochastic integral with respect to the com-
pensated point martingale (N,—1p) — 77 (¢))ser,; cf. [24] and [12] page 320. In this

case we also have
E, [e_”fl(t)(l + T)NT‘IW] =1, r € R,
and more generally

o foxw (- [ otrnas) TT @+atrien)| =1 (1.4)

ANg=1
0<s<oo

under a Novikov-type integrability condition on g : R — R; cf., for example, [10].



In Corollary 2.2 below we will extend the Girsanov identity (1.4) to random antici-

pating processes indexed by an abstract space X, by computing the expectation
Es[Cn(w(A),0(A)],  n=1,

of the random Charlier polynomial C,,(w(A),c(A)), where A(w) is a random, possi-
bly anticipating set. In particular we provide conditions on A(w) for the expectation
E,[Ch(w(A),0(A))], n > 1, to vanish, cf. Proposition 7.1 below. Such conditions are
satisfied, in particular, under the quasi-nilpotence condition (2.3) below and include
the adaptedness of (7(t)).cr, above, which recovers the classical adapted Girsanov
identity (1.4) as a particular case; cf. Proposition 2.1. As a consequence we will obtain
a Girsanov theorem for random transformations of Poisson samples on an arbitrary

measure Space.

The above results will be proved using the Skorohod integral and integration by parts
on the Poisson space. This type of argument has been applied in [22] to the inductive
computation of moments of Poisson stochastic integrals and to the invariance of the
Skorohod integral under random intensity preserving transformations. However, the
case of Charlier polynomials is more complicated, and it leads to Girsanov identities

and a Girsanov theorem as additional applications.

Since our use of integration by parts formulas and moment identities relies on com-
pensated Poisson stochastic integrals, we will need to work with a family B, (y, \) of
polynomials such that

Bu(y, =) = E\[(Z +y = \)"],

where Z is a Poisson random variable with intensity A > 0, and which are related to
the Charlier polynomials by the relation

n

Co(y, \) = Y s(n, k) Bily — A, ),
k=0

where s(k, ) is the Stirling number of the first kind, that is, (—1)*'s(k, ) is the num-

ber of permutations of k elements which contain exactly [ permutation cycles, n € N;

4



cf. Proposition 6.1 below.

The outline of this paper is as follows. Section 2 contains our main results on antic-
ipative Girsanov identities and applications to the Girsanov theorem. In Section 3
we consider some examples of anticipating transformations to which this theorem can
be applied; this includes the adapted case as well as transformations that act inside
the convex hull generated by Poisson random measures, given the positions of the ex-
tremal vertices. In Section 4 we show that those results are consequences of identities
for multiple integrals and stochastic exponentials. In Section 5 we review some results
of [22] (cf. also [19]) on the computation of moments of Poisson stochastic integrals,
and we derive some of their corollaries to be applied in this paper. In Section 6 we de-
rive some combinatorial identities that allow us, in particular, to rewrite the Charlier
polynomials into a form suitable to the use of moment identities. Finally in Section 7
we prove the results of Section 4, and in Section 8 we make some remarks on how the

results of this paper can be connected to the Carleman-Fredholm determinant.

2 Main results

Let QX denote the configuration space on a o-compact metric space X with Borel

o-algebra B(X), that is,
O ={w= ()X, CX, z; #x;Vi#j, Ne NU{co}}

is the space of at most countable locally finite subsets of X, endowed with the Poisson
probability measure 7, with o-finite diffuse intensity o(dz) on X, which is character-

ized by its Laplace transform

Vo (f) = E, {exp (/ f(x)(w(dx) — a(dw)))} = exp (/ (ef@ — f(z) — l)a(dx)) ,
* * (2.1)

f € LA(X), or by the Girsanov identity (1.2) by taking f(z) = log(1 + g(z)), = € X,

g € C.(X), where E, denotes the expectation under m,, and C.(X) is the space of

continuous functions with compact support in X.



Each element w of Q¥ is identified to the Radon point measure

w(X)

w = § €x;)

i=1
where ¢, denotes the Dirac measure at © € X, and w(X) € N U {oo} denotes the
cardinality of w € QX.

Consider a measurable random transformation
T x X = X,

of X, let 7, (w), w € ¥, denote the image measure of w(dx) by 7(w, ) : X — X, that
is,
7.0 Q% = QF (2.2)

maps
w(X) w(X)

w= Z €z, to  T(w) = Z Er(w,mi)-

i=1 i=1
In other words, the random mapping 7, : Q% — QX shifts each configuration point

x € w according to z — T(w, x).

Let D denote the finite difference gradient defined on any random variable F : QX —
R as
D,F(w) = FlwU{z}) — F(w), we, zreX,

for any random variable F : QX — R; cf. [7], [8], [15]. The operator D is continuous

on the space D, defined by the norm
1FN3: = I1FlI720x a0y + IDFl 205 xxmp00y,  F € Do

The next result is a Girsanov identity for random, non-adapted shifts of Poisson
configuration points, obtained as a consequence of Proposition 4.1 below which is

proved at the end of Section 4. Here we let Y denote another metric space with Borel
o-algebra B(Y').



Proposition 2.1 Assume that 7 : QX x X =Y satisfies the cyclic condition
Dy 7m(w,ta) -+ Dy 7(w,t1) =0, o(dty),...,o(dty) —ae., weQ, (2.3)

forall k> 2, and let g : Y — R be a measurable function such that

E,

6fX lg(7(w,z))|o(dx) H(l + |g(7—(w7 :L‘))D] < 0. (24)

TEW
Then we have

Es

e IX g(’?’(w,$))0'(dl‘) H(l + g(T(UJ, x)))] — ]_

A

As a consequence of Proposition 2.1, if 7 : Q% x X — X satisfies (2.3) and 7(w,-) :

X — Y maps o to a fixed measure p on (Y, B(Y)) for all w € 2%, then we have

E,

H(]‘ + g(T(UJ, SI?)))] — efX g(T(UJ,x))O'(dx)
TEW

= elv9wnldy) geC(Y):

hence 7, : QX — QX maps 7, to 7,, which recovers Corollary 3.3 of [22].

Proposition 2.1 then implies the following anticipating Girsanov theorem, in which

the Radon-Nikodym density is given by a Doléans exponential.

Corollary 2.2 Assume that for allw € QX, 7(w,-) : X — X is invertible on X and
that for all to, ..., tx € X, k > 1, there exists i € {0,...,k} such that

Dti’r(wvz) =0, (25)

for all x in a neighborhood of t; 11 mear, and that the density

drHw, -
sy =T e
exists for all w € QX , with
E, e(14e) [x d(w,z)o(dw) H(1 +¢(w’x))1+a < o0, (2.6)
TrTEW
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for some € > 0. Then we have the Girsanov identity

Ey | F(ru(w))e” x o7 @) TT(1 4 p(w, 2)) | = E,[F],

rew

for all F € L'(QX).

Proof. First we note that from (2.5), for all w € Q% and t,...,t, € X, k > 1, there
exists ¢ € {0,...,k} such that

Dy, 7(w, tis1 moak) = Di,d(w, tit1 moar) = 0. (2.7)

Next from Proposition 2.1, for all f € C.(X) we have

Es

o= Ix F@a(dw) =[x ww)ad@H(1+f(7(w,:v)))(1+¢(w,:r))]

TEW

= F, [e* [x f(r(w,2)(1+d(w,z))o(dr)— [y b( (d)

x [10+ f(r(w,2)) + $lw,2) + f(r(w, 2))(w, l’))]

rTEW

= 1,
by Proposition 2.1, since

z = [(1(w,2)) + o(w, ) + [(7(w, 2))p(w, 7)

satisfies Condition (2.3) by (2.7). We conclude by the density in L'(2X) of linear

combinations of I’ of the form

P (- [ flootan) [I0+ f@). fecix)

TEW

O

Under the hypotheses of Corollary 2.2, if 7, : QX — QX is invertible then the random
transformation 77! : QX — QX is absolutely continuous with respect to m,, with
density

dr tw,

_ o= Jx d(wm)o(da) H(l + ¢(w, x)). (2.8)

dm
i zEW

In Corollary 2.2, Condition (2.6) actually requires o(7(X)) to be a.s. finite.
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3 Examples

In this section we present an example of a random non-adapted transformation sat-
isfying the hypotheses of Corollary 2.2. First we note that Condition (2.3) is an
extension of the usual adaptedness condition, as it holds when 7 : X — X is adapted

to a given total binary relation < on X. Indeed, if 7 : Q% x X — X satisfies
Dyr(w,y) =0,  y3w,

then Condition (2.3) is satisfied since for all ¢y, ... ,t; € X there exists ¢ € {1,...,k}
such that t; < ¢;, for all 1 < j < k; hence Dy, 7(w,t;) =0, 1 < j < k. In this case,
Corollary 2.2 recovers a classical result in the case where 7 : X — X is deterministic

or adapted; cf., for example, Theorem 3.10.21 of [4].

Next, let X = B(0,1) denote the closed unit ball in R?, with o(dz) the Lebesgue
measure. For all w € Q¥ let C(w) denote the convex hull of w in X with interior
C(w), and let w, = w N (C(w) \ C(w)) denote the extremal vertices of C(w). Consider
a measurable mapping 7 : Q% x X — X such that for all w € Q¥ 7(w, -) is measure
preserving, maps C(w) to C(w), and for all w € Q¥

T(we, ), z € C(w),
T(w,z) = . (3.1)
x, r € X\ Clw),

that is, 7(w,-) : X — X modifies only the inside points of the convex hull of w,
depending on the positions of its extremal vertices, which are left invariant by 7(w, ),

as illustrated in the next figure.




Next, assume that 7(w,-) : X — X in (3.1) has the form
T(w7x) :m+w(we7$)7 x €X7

for fixed w € QX where ¥ (w,, ) : X — X is a diffeomorphism such that 7(w,) : X —
X is invertible for all w € Q¥; for example,

d(z,C(w) \ C(w)))?
T
with u € R? such that ||uly < 1/4, where d(z, A) denotes the Euclidean distance
from 2 € R? to the closed set A C RY. Then the transformation 7 : Q¥ x X — X

P(we, ) = ule)(x) (3.2)

satisfies the hypotheses of Corollary 2.2 by Proposition 3.1 below, and 7* : Q¥ — QX

is invertible with

)W =wU | {7 wer)},  wek,

zewnC(w)

thus the associated Radon-Nikodym density (2.8) is given by taking
d(w, z) = det (Iga + Voh(we, z)) — 1, weX, relX.

This quasi-invariance property is related to the intuitive fact that a Poisson random
measure remains Poisson within its convex hull when its configuration points are

shifted given to the position of its extremal vertices, cf., for example, [6].

Proposition 3.1 Assume that the random transformation 7 : QX x X — X satisfies

Condition (3.1). Then 7 satisfies the cyclic Condition (2.5) of Corollary 2.2.

Proof. Let ty,...,t,y € X. First, if there exists i € {1,...,k} such that t; € C(w),
then for all z € X we have t; € C(w U {z}), and by Lemma 3.2 below we get

Dy, 1(w,z) =0, r € X;
thus (2.5) holds, and we may assume that ¢; ¢ C(w) for all i = 1,..., k. In this case,
if ti11 mod x & Cw U {t;}) for some i =1,..., k, then by Lemma 3.2 we have
DtiT(wa ti-i—l mod k) = 07

hence (2.5) holds since the set C(w U {t;}) is closed. Next, if t; € C(w U {tx}), tx €
ClwU{tk_1}), ..., ta € C(wU{t1}), then we have t; € C(wU{t}) and ¢, € C(wU{t1}),
which implies t; =t ¢ C(w), and we check that D;, 7(w,t,) = 0. O
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Next we present the proof of Lemma 3.2; cf. [22].

Lemma 3.2 [22] For all x,y € X and w € Q% we have

relClwU{y}) = D,7(w,y)=0 (3.3)
and

yeClwuU{z}) = D,7r(w,y)=0. (3.4)
Proof. Let x,y € X and w € Q¥. First, if y ¢ C(w U {z}) we have 7(w U {z},y) =

T(w,y) = y. Next, if z € C(w U {y}), we can distinguish two cases:

a) x € C(w). In this case we have C(w U {z}) = C(w); hence 7(w U {z},y) = 7(w,y)
for all y € X.

b) z € ClwU {y})\ Clw). Ify € C(wU {z}), then = y ¢ C(w U {x}); hence
T(wU{z},y) = 7(w,y). On the other hand if y ¢ C(wU{x}), then 7(wU{z},y) =

T(w,y) = y as above.

We conclude that D,7(w,y) = 0 in both cases. O

We refer to [22] for more examples of transformations 7 : Q% x X — X that satisfy

the cyclic condition (2.3).

4 Multiple integrals and stochastic exponentials

The proofs of the above results will use properties of stochastic exponentials and

multiple stochastic integrals which are introduced and proved in this section. Let now

L(f)(w) = [ falar,. . zn)(wlder) = o(day)) - - (wldwn) — o(den))

An

denote the multiple Poisson stochastic integral of the symmetric function f,, € L2(X™),

where
Ap={(2r,.cma) € X" 1 ai#ay, Vi )

with



for ¢ € L2(X) with bounded support, where “®” denotes the tensor product of
functions in L2(X). For all (possibly random) disjoint subsets Ay, ..., A, of X with

finite measure, we have the relation

In(Lys 001 e) Hck A)) (4.1)

between the multiple Poisson integrals and the Charlier polynomials, where “o” de-
notes the symmetric tensor product of functions in L2(X) and N = ky + - - - + ky; cf.,
for example, Proposition 6.2.9 in [21].

Proposition 2.1 will be proved using the following Proposition 4.1 which is a restate-
ment of Corollary 7.2 below. It provides a formula for the expectation of a multiple

stochastic integral of a time-changed function.
Proposition 4.1 Assume that 7 : Q% x X =Y satisfies
Dir(w,t) =0, weQY, teX. (4.2)

Then for all symmetric step functions g : Y — R of the form

®F1 ®kn
— O+++0
g Z Ckl ~~~~~ knlBlykl 1Bn,kn
kq+-+kn=N
1<n<N
where N > 1 and By, ..., Bk, are deterministic disjoint Borel subsets of Y and

Chy...kn, € R, we have

.....

E, [In(Lan ()7 (w,")] = E, [ " Dy - Dyyg(m(w,t), ..., 7(w, tn))o(dty) - - - a(dtN)] :
for all compact subset A € B(X) of X.

Proof. It suffices to prove that for all deterministic disjoint Borel subsets By, ..., B,

of Y we have

E, [JN(1AN1®E§(B) 1%, )| = Bo (15 gy 00155 )]

/ (H Dy, ) (1 @ ® 1gkn (T(w, t1), ... ,T(w,tN))) o(dty)--- a(dtN)] 7

with N =k + -+ + k,,, and this is a direct consequence of Relation (4.1) above and
Corollary 7.2 below applied to the random sets AN T 1(By),...,ANTYB,). O
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As a particular case of Proposition 4.1, for g = 15 and B € B(Y) such that 771(B) C
A a.s., where A is a fixed compact subset of X, we have

n

Dy, -+ Dy, H 15(7(w, sp))o(dsy)---o(dsy)| ,

p=1

E, [Cy(rww(B), 1w0(B))] = E,

An

(4.3)
under Condition (4.2). When D¢1p(7(w,t)) is quasi-nilpotent in the sense of Condi-
tion (2.3) above for all k > 2, w € Q¥ Relation (4.3) and Lemma 4.3 below show
that

E, [Cy(ruw(B), 7.0(B))] = 0,

and this extends (1.3) as a particular case since when X = R, Condition (2.3) holds

in particular when either

or

Dig(7(w,s)) =0, 0<s<t,

that is, when the process 7(w,t) is forward or backward adapted with respect to the

filtration generated by the standard Poisson process (Ny):e(o11-

Proof of Proposition 2.1. We take g : Y — R to be the step function
g(t) =Y alp(t), tey,
i=1

where ¢y,...,¢, € Rand By, ..., B, € B(Y) are disjoint Borel subsets of Y. Then

the expression

n k
Cola ) = 32 (7)<—A>n—ls<k,z>, s ER,
0

k=0 =

for the Charlier polynomial of order n € N, shows that
" /n
Colz, N <) a* > ( )A"—ls(k,n =Co(z,=N),  x,\>0;
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hence

Z Il |C’ z,\)| < e+ |r])e, reR,

and letting A € B(X ) be a compact subset of X we have

E, Z%Un(lm(')g@n(T@"(%')))’]

n=0

= F, Z Z (H L '> Iy (12:-1._1(3 1%1)(]22—1(3 ))

N=0| ki++kn=N
n>0

oo n
= B> | X H
N=0| ki1++kn=N =1
n>0

IN
=

o0 n

A
=

N=0 ki++kn=N =1
n>0

[ n oo

c ki
= 112 ’k_|'c (WANTTH(BY), —o(AN 77 (B))

= L HeXP (|Ci|O(A N T_I(BZ-))) (1+ |Ci|>w(AmT—1(Bi))]
=1

I
=

[T exp (lcilmo(B:)) (1 + e )w(&-)]
| i=1

= B, el rale@ T 1+ Jg(r(e, x>>|>]

rTEW

< 0oQ.

Consequently we can apply the Fubini theorem, which shows that

E, |~ fastrtomat@n TT (1 4 g(r(w,2)))

r€EANW

[e.o]

1

By (L (L (g™ (7" (,)))]

14

1
:EU Zﬁjﬂ(lAn()g
n=0

(WANTH(By)), o(ANT(B)))

wANTH(Bi), o(ANTH(B))))l

> > H%%w(mf-%m —o(ANT(B))

(4.4)

(T (w, )



n

/An D, --- D, Hg(T(w, sp))o(dsy) -+~ o(ds,)

p=1

=1
= ;EE"
= 0,

by Proposition 4.1, provided

n

Dy, --- Dy, Hg(T(u), sp))o(dsy) - --o(ds,) =0, n>1, (4.5)

T, (dw)-a.s., which holds by Lemma 4.3 below since Dy7(w,t) is quasi-nilpotent in
the sense of (2.3). The extension from A to X, and then from g, a step function, to

a measurable function satisfying (2.4) can be done by dominated convergence using
bound (4.4) above. O

The above results can also be summarized in the following general statement which

is also proved in Section 7 by the same argument as in the proof of Proposition 2.1.

Proposition 4.2 Assume that 7 : Q% x X =Y satisfies
Dyr(w,t) =0, wer, teX.

Then for all bounded measurable functions g : Y — R satisfying (2.4) we have

Eo

e~ Ixstrwaotdn) TT(1 + g(r(w, m)))]

TEW

o0 1 n
— Z EEU - D, ---D,, Hg(T(w, sp))o(dsy) - .g(dsn)] , (4.6)
n=0 p=1
provided
oo 1 n
ZO HEU - D, --- D, 1_[1g(7'(w, sp))o(dsy) - o(ds,)|| < oo. (4.7)
n= p=

In the next lemma we show that Relation (4.5) is satisfied provided Dy7(w,t) satisfies

the cyclic condition (4.8) below.

Lemma 4.3 Let N > 1, and assume that 7 : QX x X — X satisfies the cyclic

condition
Dyym(w, 1) -+ Dy, T(w, tg) = 0, we, to,....tp € X, (4.8)

15



fork=1,...,N. Then we have

k
Dy Dy [To(rw,t,) =0, to,...tr € X,
p=0

fork=1,...,N.

Proof. We use the relation

n

Dso "'DSj HQ(T(W,Sp)) = Z D@OQ(T(W,S()))"'D@ng(T(w,Sn)),
p=0 ©0U-UO,={0,1,....5}
(4.9)
50, ...,5, € X, where Dg := HDSJ‘ when © C {0,1,...,5}, 0 < j < n, which follows
JjEO

from the product rule
Di(FG) = FD,G + GDF + D.F D,G, te X, (4.10)

which is satisfied by D; as a finite difference operator. Without loss of generality we
may assume that ©g #0,...,0; # 0 and ©,NO; =0, 0 < k # [ < j. In this case we

can construct a sequence (ki, ..., k;) by choosing
0 # kl € @07 k? € @k17 o '7ki71 € @kifga

until k; =0 € Oy, , for some i € {2,...,5} since OpgN---NO; =0 and OyU---UO,; =
{0,1,...,7}. Hence by (4.8) we have

D5k1 g(T(wa 850))D5k2-g(7—(w7 Ssiy )) T DSki_lg(T(wv sski_Q))DSOg(T(w’ Ssi,_ )) =0,

by (4.8), which implies

D@OQ(T(W, 50))D9klg(7—(wa Skl)) T Deki_2g(7—(w’ Ski72))D@ki_19<T(w> 31&'71)) =0,

since

(kl,...,kifl,()) € @0 X @kl X X @ki—l'
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5 Moment identities for Poisson integrals

In this section we state some results obtained in [22] on the moments of Poisson
stochastic integrals, and we reformulate them in view of our applications to Girsanov

identities and to random Charlier polynomial functionals.

The Poisson-Skorohod integral operator § is defined on any measurable process u :

0% x X — R by the expression

d(u) = /Xu(w \ {t},t)(w(dt) — o(dt)), (5.1)
provided E, {/X |u(w,t)|a(dt)} < 00, cf., for example, [14], [21].

Note that if Dyu; = 0, t € X, and in particular when applying (5.1) to u € L1(X) a

deterministic function, we have

5(u) = /X () (w(dt) — o(dt)), (5.2)

that is, d(u) with the compensated Poisson-Stieltjes integral of w. In addition, if

X =R, and o(dt) = \dt, we have
0
for all square-integrable predictable processes (u;)ier, , where N; = w([0,t]),t € Ry, is
a Poisson process with intensity A, > 0; cf., for instance, the Example page 518 of [15].
From Corollaries 1 and 5 in [15] or Proposition 6.4.3 in [21] the operators D and §
are closable and satisfy the duality relation
E,[(DF,u)1a00) = E[Fo(w)), (5.4

which can be seen as a formulation of the Mecke [11] identity for Poisson random mea-
sures, on their L? domains Dom (§) C L*(Q* x X, 7, ® 0) and Dom (D) = IDy; C

L2(Q%,7,) under the Poisson measure 7, with intensity o.
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The operator ¢ is continuous on the space ILo; C Dom (6) defined by the norm

||u||§1 =FE, {/ |ut|2a(dt)} + E, [/ |D5ut|20(d5)a(dt)} ,
X X
and the operator ¢§ satisfies the Skorohod isometry
E, [0(u)’] = E, [/ |ut|20(dt)} + E, {/ / DsutDtusa(ds)a(dt)} : (5.5)
X xJx

for any u € ILy 1, cf. Corollary 4 and pages 517-518 of [15].

In addition, from (5.1), for any v € Dom (0) we have the commutation relation

or

(I + Dy)d(u) = 6((1 + Dy)u) + uy, te X, (5.7)

provided Dyu € Loy, t € X.

The following lemma relies on the application of Relations (5.4) and (5.6), and extends

(5.5) to powers of order greater than two; cf. Lemma 2.4 in [22].

Lemma 5.1 [22] Let u € ILy; be such that Dyu € ILyq, t € X, 6(u)™ € Dy, and

x| [ =130+ Dol atan)| < oo, £, (13601 [ lul*atan)] < o,

0<k<mn. Then we have
n—1
Bt = X () ot [ uviotan)]
X

.y (Z)EU [ /X u;:'f+1(5((1+Dt)u)k—fS(u)’“)o(dt)},
for alln > 1.

When h is a deterministic function, Lemma 5.1 yields the recursive covariance identity

E,[5(h)") =>" (Z) /X R (o (dt)E, [6(R)* ],  n>0, (5.8)

k=1
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for the Poisson stochastic integral

o(h) = /X h(z)(w(dz) — o(dz)).

By induction, (5.8) shows that the moments of the above Poisson stochastic integral

can be computed as

Z > H (kl“ B 1) H / hher—h g, (5.9)

a=1 0=k1 <K <Kkgr1=n l=1

for all n > 1 and deterministic h € ﬂ LP(X), where a < b means a < b — 1,
p=2An
a,b € N. This result can also be recovered from the relation

Z Z R|B;| " K|By| (5.10)

where the sum runs over all partitions of {1,...,n}, |B;| denotes the cardinality of

B;, and k1 =0, k, = [, h"(t)o(dt), n > 2, denote the cumulants of §(h).

In particular, Relations (5.9) and (5.10) yield the identity
E[(Z = A" =) A\"Sy(n,a) (5.11)

for the central moments of a Poisson random variable Z with intensity A, where

sma= Y I (kl“ B 1)

0=k1 <K <kqgt1=n [=1

represents the number of partitions of a set of size m into a subsets of size at least 2.

In the sequel we let

rq—1—(b—q)

L+ -+l +qg—1
Cly,... ls,b) = > H 11 (l1+___+lpl+q>, (5.12)

0=rp 1 <--<ro=a+b+1 q=0 p=rq41—(b—q—1)
which represents the number of partitions of a set of I; + --- + [, + b elements into
a subsets of lengths [y, ... [, and b singletons. We will need the following result; cf.
Lemma 5.2 of [22].
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Proposition 5.2 [22] Let F : QX — R be a bounded random variable, and let u :

QX x X — R be a bounded process with compact support in X. For alln > 0 we have

/X N (f[(z + Dsi)F>

1

n n—a

SSS e Y Clh b,

a=0 b=0 l1+-+lag=n—b
I1yela>1

lp

< H H [ + DSZ usq) H H(I + Dsi)usp U(dsl) s U(d8a+b)

a+1 i=1 1 i=1
= = i#p

In the above proposition, by saying that v : QX x X — R has a compact support
in X we mean that there exists a compact K € B(X) such that u(w,z) = 0 for all
weNandre X\ K.

In particular when u = 14 is a (random) indicator function we get the following

proposition, which will be used to prove Proposition 7.1 below. We let
1 - e—1{C\m
S(n,c) ==Y (-1) } l (5.13)
=0

denote the Stirling number of the second kind, that is, the number of ways to partition
a set of m objects into ¢ non-empty subsets. In the next proposition, which is an
application of Proposition 5.2, the random indicator function (z,w) — Law)(x) on
0% x X denotes a measurable process u : %X x X — R such that u?(w,t) = u(w, t),
we QX teX.

Proposition 5.3 Let F : Q%X — R be a bounded random variable, and consider a
measurable random indicator function (z,w) — 1ae)(x) on QX x X, with compact

support in X. Then for alln > 0 we have

S =33 r(2)stn-ac-a)

c=0 a=0

E, / (H(I+D NF )HH I+ Dy)1a(sy)o(dsy) - o(ds,)

i=1 plll
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Proof. Taking u = 1,4 in Proposition 5.2 yields

E, [F(0(u))"] = Y (—-1)° Z C(l,...,1l,b)E, /Xa+b (H(I+D5i)F>
atdb a 7
H H (I 4+ Ds,)1a(sp)o(dsy) - o(dSats)
= Z ()S(n—a,c—a)
E, / (H I+ D, F> HH (I + D, )1a(sp)o(dsy) - o(ds,)
= (—1)“(Z>S(n—a c—a)
E, [ /. (Hu + Dsz.><Fa<A>c—“>) TLLIC + Daatsy)otds) - odsa) |

after checking that we have

(Z)S(n—b,@): Z C(ly,...,la,b),

l1+-+lg=n—b
gyl >1

which is the number of partitions of a set of n elements into a non-empty subsets and

one subset of size b. O

When the set A is deterministic, Proposition 5.3 yields

BE\[(Z -\ = zn; Ac;(—w (Z) S(n — a,c — a),

for the central moments of a Poisson random variable Z = w(A) with intensity A\ =

o(A), which, from (5.11), shows the combinatorial identity

So(n, ) = i(—l)a(n)S(n—a,c—a). (5.14)
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6 Poisson moments and polynomials

As mentioned in the introduction we need to introduce another family of polynomials
whose generating function and associated combinatorics will be better adapted to our
approach, making it possible to apply the moment identities of Proposition 5.3 and

the integration by parts formula (5.4).

In terms of polynomials the identity (4.3) is easy to check for n = 1 and n = 2, in

which case we have
Ci(w(A),0(A4)) = w(A) — o(A) = (1),
and
Co(w(A),0(A)) = (w(A) —0(A))* = (w(A) = a(A)) — o(A)
= §(14)* —6(14) —a(A), (6.1)
hence
E, [Cy(w(A),0(A))] = E,[0(14)°] — o(A)
_ B, [ /X /X Do1A()DyLa(s)o(ds)o(d)| |

from the Skorohod isometry (5.5).

In the sequel we will need to extend the above calculations and the proof of (4.3)
to Charlier polynomials C,(z, A) of all orders. For this, in Section 7 we will use the
moment identities for the Skorohod integral 6(1,4) of Proposition 5.3, and for this
reason we will need to rewrite C,,(w(A),c(A)), a linear combination of polynomials
of the form B, (0(14),0(A)), where B,,(x,\) is another polynomial of degree n. This
construction is done using Stirling numbers and combinatorial arguments; cf. Propo-

sition 6.1 below.

In other words, instead of using the identity (1.2) we need its Laplace form (2.1), that
is,

x [ow (30~ [ @9 1)~ Dotan) )| 1. (62)
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obtained from (1.2) by taking

f(x) =log(1+ g(x)), r e X.

In particular when f = 1,4 with A € B(X) a fixed compact subset of X, Relation (6.2)
reads
E, [P0 oWE0 =1 teR, (6.3)

where §(14) = w(A) —o(A) is a compensated Poisson random variable with intensity
a(A) > 0.

We let (B, (z,\))nen denote the family of polynomials defined by the generating

0o
ty Aet—t—1) E

n=0

function
n

~+

'Bn teR, (6.4)

S

for all y, A\ € R. This definition implies in particular that

where Z is a Poisson random variable with intensity A > 0, and

B.(y,\) = Z (Z) y"Bn_1(0,\), AeR, nel. (6.5)
k=0

For example one has that By(y,\) = y and By(y, \) = y*> — \; hence (6.1) reads
Co(xz,A) = Ba(x — A\ A) — Bi(x — A\ A),
and these relations will extended to all polynomial degrees in Proposition 6.1 below.

In addition, the definition of B, (x, ) generalizes that of the Bell (or Touchard) poly-
nomials B, (\) defined by the generating function

: = ¢
Aet—-1) __ v
e = E n!Bn()\),

which satisfy
B.(A) = Bu(A, =) = E\[2"] = ) X°S(n, ), (6.6)



where 7 is a Poisson random variable with intensity A > 0, cf.; for example, Proposi-

tion 2 of [5] or Section 3.1 of [13].

Next we show that the Charlier polynomials C),(z, A) with exponential generating
function

e M1+ 1)* Z Ca:)\ z,t, ) € R,

are dual to the generalized Bell polynomlals Bp(x— A, \) under the Stirling transform.

Proposition 6.1 We have the relations

n

Co(y, \) =Y s(n,k)Be(y — A, A)  and By ( Zs n, k)Cr(y + X, \),
k=0 k=0
y, A€ R, n e N.

Proof. For the first relation, for all fixed y, A € R we let
Alt) = e M1+ t)v™ = Z C (y+A\A), teR,

and note that

A(et o 1) (y+)\ Aet—1) Z

n=0

n

4

'Bn teR,

S

which implies

By \) =Y S(n.k)Ci(y+ A\, neN,

(see e.g. [3] page 2). The second part can be proved by inversion using Stirling

numbers of the first kind, as

> S k)Chy+ AN = YD S(n,k)s(k,1)Bi(y, \)

k=0 k=0 =0
= Z Bi(y, \) Z S(n, k)s(k,1)
=0 k=l
= Bn(y7 )‘)7

from the inversion formula

> S(n,k)s(k,1) = 1pmyy,  ml€N, (6.7)
k=l

for Stirling numbers; cf., for example, page 825 of [1]. O
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The combinatorial identity proved in the next lemma will be used in Section 7 for the

proof of Proposition 7.1. For b = 0 it yields the identity

Aﬂnﬂ):§é<ﬁ)&0%—qa—c% (6.8)

c=0 ¢
which is the inversion formula of (5.14), and has a natural interpretation by stating
that Sy(m,b) is the number of partitions of a set of m elements made of b sets of

cardinal greater or equal to 2.

Lemma 6.2 For all a,b € N we have

(2 s =EE () sose v

1=0 k=l
Proof. 'This identity can be proved by a combinatorial argument. For each value of

k =0,...,n one chooses a subset of {1,...,n} of size k which is partitioned into a
non-empty subsets, the remaining set of size n — k being partitioned into [ singletons
and b — [ subsets of size at least 2. In this process the b subsets mentioned above are
counted including>their combinations within a + b sets, which explains the binomial

coefficient <a on the right-hand side. 0
a

7 Random Charlier polynomials

In order to simplify the presentation of our results it will sometimes be convenient to

use the symbolic notation

Ny A, H Us, = Z Doyt - - Do, us, , (7.1)
p=0

OgU---U0np={0,1,..., i}
0¢00,....i¢O;

S0,...,5, € X, 0<j <n, for any measurable process u : ¥ x X — R.

The above formula implies in particular Ag us, = 0, and it can be used to rewrite the

Skorohod isometry (5.5) as

&p@ﬂzaww@4+E{A4A¢m%wwww%
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since by definition we have
AA(usuy) = Dguy Dyus, s, t e X.
In this section we show the following proposition.

Proposition 7.1 Let n > 1 and let Ay(w),..., A,(w) be a.e. disjoint random Borel

sets, all of them being a.s. contained in a fired compact set K of X. Then we have

Eo

H Cr(0(1a;) + 0(Ai), 0 (Ay))

= E, |:/ A81 "'ASN(lA’fl ®”'®1Aﬁ")<317"'73N>0<d81)"'U(dSN):| )
KN
kivo k€N, with N = ky+ - + k.

For n = 1, Proposition 7.1 yields, in particular,

Kn

A A [ 1a(sp)o(dsh) - a(dsn)] :

for A a.s. contained in a fixed compact set K of X, which leads to (4.3) by Lemma 7.3
under Condition (4.2), as in the following corollary which is used for the proof of

Proposition 4.1.

Corollary 7.2 Assume that 7 : QX x X — X satisfies
Dit(w,t) =0, weY, tecX. (7.2)

Then for all deterministic disjoint By, ..., B, € B(X) we have

E,

[1 G (AN (B)), o(An ()

= FE, [ o Dy, - DSN((le1 ® - @ Lk )(T(W, 81), .-, T(w, sN)))o(ds1) - - - o(dsn) |

ki,....kn € N, with N =ky + -+ ky, for all compact A € B(X).
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Proof. We apply Proposition 7.1 by letting A;(w) = AN 77w, B;), and we note
that we have
o)) = [ 1a(rwf)olan
A
= o(ANnT Yw, By)).
On the other hand, by (7.2) we have D;14,(t) = Di1p,(7(w,t)) = 0; hence from
Lemma 7.4 below we have
§(14)+0(4) = 6(Qalp o7)+o(ANTHBY))
= wANT(B)).

Finally we note that from (7.1) and (7.2) we have

D, D, =A,, - A

SN
and we apply Proposition 7.1. O

The proof of Proposition 7.1 relies on the following lemma.

Lemma 7.3 Let F': QX — R be a bounded random variable, and consider a random

set A, a.s. contained in a fived compact set K of X. For all k > 1 we have

E, [FCy(0(1a) +0(A),0(A))]

= Z(_l)k—z (lz) E, /Xk H([ + DSJ)FHI—I(] + Dsj)lA(Sp)o'(dsl) .. -O'(dsk)

=1 j=1
P J#p

Proof. Using Proposition 5.3 and Lemma 6.2 we have

o
Il
)

o
i
=)
o
Il
o
w
|
=)

3
I
—
|
—_
S—
o
2
—
3
|
\'N.
@)
N—
L[]
—
|
—_
SN—
4
|
n
VRS
N o
N——
W
—
o~
|
“l\z
D
|
N
N—



<ﬁI+D V(Fo(A C+”>HHI+D 1a(s,)o (dsl)---a(dsz)]

p_17 1

&,
Il
—

-3 ; <7Z> gSQ(n i) :<—1)“ (i) S(i—zk—c—2)

S L0 = [ -
=2 ;(—1)’“%; (@> ; (z> So(n —i,¢)S(i — 2,k — ¢ — z)

< (I + Dsj)(Fa(A)k_Z)> H (I + Ds,)1a(sp)o(dsy) - - U(dsz)}

Hence from Proposition 6.1 or the inversion formula (6.7) we get

Ey [FCw(6(1a) +0(A),0(A))]

k z k =z
= (_1)k—z <§)Eg |:/Xk H([ + DSJ')FHH<]+ D8j>1A(Sp)0-(d81) .. -0'(d8k) .

O

In particular, Lemma 7.3 applied to F' = 1 shows that

_ Z(—n(k)E /. f[lf[uwsj)u(sp)o(dsl)---a(dsw
_ §<_1)“<’2>EU / HlHl (I + A )La(s,)0 (dsl)---a(dsk):
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= E, /k (H(I+ A, — > HlA sp)o(dsy) - (dsk)]

k

- B, A, - A, H 14(sp)o(dsy)-- .o'(dSk)] ;

k
L X p=1

which is Proposition 7.1 for n = 1. Next we will apply this argument to prove

Proposition 7.1 from Lemma 7.3 by induction.

Proof of Proposition 7.1. From Lemma 7.3 we have

Eq [FCr (6(14,) + (A1), 0(A1))] (7.3)
_ Z(_l)kl_m( ) /K H (I+D, ) FHH (I + Dy, V1, (51,)0(ds1y) -+~ o(dsip)

The first induction step is to apply the above equality to the random variable

F=]]Cr(14) +a(Ai), o(A)).
i=2
Here F' is not bounded, however since A;(w) C K, a.s., i = 1,...,n, for a fixed

compact K € B(X), we check that |F| is bounded by a polynomial in w(K), and

21

[[¢z+D.,)F

j=1

is bounded by another a polynomial in w(K), uniformly in si,...,s, € X. Hence
by dominated convergence we can extend (7.3) from the bounded random variable
max(min(F, —C),C), C > 0, to F' by letting C go to infinity. From Relation (5.7) we

have

H(I + Dsl,j)(S(]'Ai) = 0 (H([ + DSl,j>1Ai> H [+ Dsl,j)]‘Ai(Sl,k)
Jj=1 '

Jj=1 k=

— (ﬁ([ + DSM)1AZ,> :

j=1

1 =1
J#k
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Z1
0<2 <kyi>2 when s1; € H(I+ Dy, )A1, 1 <k < ky, since

j=1
i#k
zZ1 Z1
[[Z+ D )Aiw), ..., T]I + Ds, ) An(w)
po gt

are disjoint, 1 < k < ki, w € Q¥ hence

11_1[1(1 + D, ) F = ﬁl([ + Dy, ) Qcki@(lm) +0(A), 0(A))
— f!ok (ﬁ([ + Dy, ;)6(1a,) + ﬁ([ + Dy, ,)o(A), ﬁl(] T Dslﬁ-)o(Ai)>
= ﬁ(]k (5 (ﬁ([+ Dslyj)lAi> + ﬁ(l+ Dsly].)O'(Ai),ﬁ(I—i‘ Dslyj)a(Ai)> ,
which yields, from (J7.3), ) }
E, ﬁcki@(lAi)-FU(Ai),a(Ai))
-z (f)
E, /X ﬁ Ch, (6 (ﬁ(l + Dsl,j)lAi) + ﬁ([ + Dy, )o(4), ﬁ(l + Dslyj)a(Ai)>
ﬁﬁu + Dy, )1a, (s1p)0(ds11) - - o(dsig,)

J#p

Next, we apply Lemma 7.3 again to

I
=

Ci. (6 (ﬁ(r + Dsl,j>1A2> L0+ Do o, T+ Dsl,j>a<Az>)

j=1 j=1 j=1
and to
ki =1
F= H H([ + DS1,j)1A1 (Sl,P)
p=1 j=1

J#p
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n

X HC]CZ

1=3

(5 ( (I + Dsl,j)]‘Ai) +
j=1

and by iteration of this argument we obtain

Es

H Cri(6(14,) + 0 (A), 0(A)

kn k1 n n k
N I (| (Zl)
=0  21=0 =1 1=1
n oz k;
E, / ) H H(I + Dy, ) H 14,(sij)0(ds1q) - o(dsp,)
XM =1 =1 i=1 j=1
kn k1 n ’ i n kl
— Z C Z H(—l) 1—2 H (Zl)
zn=0 21=0 [=1 =1
B n  z n k;
E, / (H (I + ASZ])) H H 1Ai<slj)0(d51 1) U<d8n7kn)]
/X G2 =t i=1 j=1
B n  k; n i
= FE, / (H (I+A, — [)) H H 14,(8:5)0(ds1q) a(dsmkn)]
L XN =1 j=1 i=1 j=1
B n ki n k;
= £, / (H Asw) H H 14,(sij)o(ds1q) a(dsmkn)]
| JXN 2T =1 i=1 j=1

Next we prove Proposition 4.2.

Proof of Proposition 4.2. Taking g : Y — R to be the step function

m

9= Zci]-Bp

i=1

where ¢1,...,¢,, € R and By, ..

., By, € B(Y) are disjoint Borel subsets of Y, Corol-

lary 7.2 shows that for compact A € B(X) we have

E, [em astrene@ TT (1 + g(r(w,z)))
rEANW
00 19 mok; m
%
= >3 (H k') bo ]
k1=0  km=0 \i=1 =

=F,

He—clo(AﬁT’l(Bl)) (1 + Cl)w(AﬂT’l(Bl))
=1 =1

|



= 3 B [ (g™ (% )]

[e.9]

1
= ZEE”

n=0

n

| auean T otrwsotds) - olds,)

p=1

In the general case with g : ¥ — R bounded measurable the conclusion follows by
approximation of g by step functions and dominated convergence under (2.4), followed

by extension to A = X using the bound (4.7). O

Finally we state the following lemma which has been used in the proof of Corollary 7.2.

Lemma 7.4 Assume that
Dyt (w,t) =0, we’, teX. (7.4)
Then we have

/X 1A4(t)R(7(w,t))w(dt) = 6(1ahoT)(w) + / hoT(w,t)o(dt), we

A

for all compact A € B(X) and all bounded measurable functions h : X — R.

Proof. We note that Condition (7.4) above means that 7(w,t) does not depend on

the presence or absence of a point in w at t, and in particular,
T(w,t) = T(wU{t}, 1), t ¢ w,

and

T(w,t) = 7(w\ {t}, 1), t e w.

Hence we have

d(LahoT)+ /A hoT(w,t)o(dt)
La@h(r(w\{t},1))(w(dl) — o(dt)) + /X La(t)h(7(w, t))o(dl)
Lah(r(w\ {t},1))w(dl)

1A(t)R(7(w,t))w(dt).

Il
———

32



8 Link with the Carleman-Fredholm determinant

In this section we make some remarks on differences between the Poisson and Wiener
cases, in relation to the quasi-nilpotence of random transformations. We consider a
Poisson random measure on R, x [—1,1]? on the real line with flat intensity measure,
in which case it is known [16], [17], [18], that, building the Poisson measure as a
product of exponential and uniform densities on the sequence space RY, we have the

Girsanov identity,
EF(I + u)|dety(I + Vu)|exp(—V*(u))] = E[F],

where u : RN — RY is a random shift satisfying certain conditions, dety(I + Vu) is
the Carleman-Fredholm determinant of I 4+ Vu and V*(u) is a Skorohod-type integral
of the discrete-time process wu.

When it is invertible, (I + u).7, is absolutely continuous with respect to 7, with

d(]Jr—u)*_lef = |deta (I + Vu)|exp(—V*(u)).

dm,

It can be checked (cf. [16], [17], [18]) that in the adapted case this yields the usual
Girsanov theorem for the change of intensity of Poisson random measures when the
configuration points are shifted by an adapted smooth diffeomorphism ¢ : Q¥ x R, x
[0,1] — R, x [0, 1]%, in which case I + Du becomes a block diagonal matrix, each

d x d block having the Jacobian determinant |9, ,¢(w, Tk, 71, ..., x})|, and we have

dets(I + V) exp(—V*(u)) = e Jr x(0,1)d(19s,28(w,s,.2)|-1)dsdz H |at,m¢(W, T, l’llg; o ,$Z)|
k=1

The main difference with the Wiener case is that here Vu is not quasi-nilpotent on
(*(N) and we do not have dety(I + Vu) = 1. Nevertheless it should be possible to

recover Proposition 4.1 in a weaker form by checking the relation

o0

det(! + Vu) = [[ 1010w, T, 2}, . .., )|

k=1
for anticipating shifts ¢ : Q% x Ry x [0,1]¢ — Ry x [0, 1]¢, under smoothness and

quasi-nilpotence assumptions stronger than those assumed in this paper.
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