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Abstract

We investigate finite-time blow-up and stability of semilinear partial differen-
tial equations of the form ∂wt/∂t = Γwt +νtσw1+β

t , w0(x) = ϕ(x) ≥ 0, x ∈ R+,
where Γ is the generator of the standard gamma process and ν > 0, σ ∈ R,
β > 0 are constants. We show that any initial value satisfying c1x

−a1 ≤ ϕ(x),
x > x0 for some positive constants x0, c1, a1, yields a non-global solution if
a1β < 1 + σ. If ϕ(x) ≤ c2x

−a2 , x > x0, where x0, c2, a2 > 0, and a2β > 1 + σ,
then the solution wt is global and satisfies 0 ≤ wt(x) ≤ Ct−a2 , x ≥ 0, for some
constant C > 0. This complements the results previously obtained in [3, 10, 22]
for symmetric α-stable generators. Systems of semilinear PDE’s with gamma
generators are also considered.
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1 Introduction

Critical exponents for blow-up of semilinear Cauchy problems of the prototype

∂wt(x)

∂t
= Lwt(x) + w1+β

t (x), w0(x) = ϕ(x), x ∈ R
d, (1.1)

where L is a Lévy generator, β > 0 is constant and ϕ ≥ 0, have been investigated

by many authors, specially in the case of the d-dimensional Laplacian L = ∆ (see

[13] and [6] for surveys). When L is the fractional power ∆α = −(−∆)α/2 of the

Laplacian, 0 < α ≤ 2, it was shown in a series of papers [3, 15, 17, 20, 22] that

the critical parameter for blow-up of (1.1) is dc := α/β, meaning that if d ≤ dc

then (1.1) possesses no global nontrivial solutions, and if d > dc, then (1.1) admits a
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nontrivial global solution for all sufficiently small initial values. Critical parameters

for semilinear equations with time-dependent non-linearities of the form tσw1+β
t (x)

were studied in [3] and [10] for L = ∆α. The case of an elliptic operator L on an

exterior domain was investigated in [1] for general time-dependent reaction terms.

The approaches developed in the works quoted above use subtle comparison ar-

guments [1, 22] or probabilistic representations of solutions [3, 15, 17, 20]. In [3] the

Feynman-Kac formula is used to construct subsolutions 0 ≤ ft ≤ gt ≤ ht of (1.1),

where ft = etLϕ, and gt, ht are the mild solutions, respectively, of

∂gt

∂t
= Lgt + fβ

t gt, g0 = ϕ, and
∂ht

∂t
= Lht + gβ

t ht, h0 = ϕ.

It is shown that gt (resp. ht) grows locally to ∞ if d < dc (resp. if d = dc, and in this

case a second application of the Feynman-Kac formula is required). In proving this a

crucial step consists in bounding from below, for suitable classes of Borel sets B ⊂ R
d

and end points x, y ∈ R
d, the bridges

Px(Xs ∈ B |Xt = y), 0 ≤ s ≤ t, (1.2)

of a process {Xt} with generator L. Finite-time blow-up of any non-trivial solution

of (1.1), in dimensions d ≤ dc, then follow from a classical argument that goes back

to [12].

Motivated by the method developed in [3], in this paper we investigate finite-time

blow-up and existence of non-trivial global solutions of semilinear equations of the

form
∂wt

∂t
= Γwt + νtσw1+β

t , w0(x) = ϕ(x), x ∈ R+, (1.3)

where ϕ is a nonnegative function, ν, σ and β are positive constants, and Γ is the

pseudo-differential operator

Γf(x) =

∫ ∞

0

(f(x + y) − f(x))
e−y

y
dy,

i.e. Γ is the generator of the (conservative) transition semigroup of the standard

gamma process. In the linear case β = 0, equations of the type (1.3) are of interest

in reliability models based on the gamma process [25], where the solutions represent
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failure probabilities of a system undergoing random impacts according to a space-time

gamma noise.

Notice that the symmetrized generator

Γ̃f(x) =

∫ ∞

−∞

(f(x + y) − f(x))
e−|y|

|y| dy

has symbol

log(1 + |ξ|) = lim
α→0

α−1((1 + |ξ|)α − 1), ξ ∈ R,

(see e.g. [11]) and can be viewed as the weak limit of α−1((I − ∆1/2)
α − I) as α goes

to 0. In other terms, α-stable processes can be suitably normalized to converge in

distribution to a gamma process, see [5] and [23]. Thus, the study of the behavior

of (1.3) (finite-time blow up vs existence of global solutions) constitutes a natural

follow-up to previous investigations, as it can be considered in a sense as a “limiting

case” α → 0.

Let us recall that the gamma process belongs to a special class of Lévy pro-

cesses called subordinators (see e.g. [2] or [21]), a subordinator being a purely non-

Gaussian Lévy process {Xt} in R, whose Lévy measure ν satisfies ν((−∞, 0)) = 0 and
∫

(0,1]
x ν(dx) < ∞. In particular, the trajectories t 7→ Xt(ω) are increasing functions

a.s. and the transition kernels Pt−s(x, dy) := P (Xt ∈ dy|Xs = x) are supported in

[x,∞).

In contrast with the Brownian and α-stable Lévy motions, subordinators enjoy in

general no scaling or symmetry property, nor dimensional-dependent behavior. This

circumstance makes it difficult to carry out the methods in the papers quoted above

to investigate (1.1), since most of those methods rely significantly on the symmetry

and scaling properties of Gaussian and stable distributions. However, in the case we

are considering here the transition densities of the motion process are explicitly given,

and, moreover, it is known that the bridges (1.2) are beta distributed. Together with

the estimates of [18] for the median of beta distributions, this allows us to obtain lower

bounds for the bridge distribution of the gamma subordinator, making it possible to

exploit the Feynman-Kac approach of [3] to derive criteria for finite-time blow of (1.3).
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We emphasize that the class of Lévy processes for which both, the Lévy measure

and probability density function are explicitly known, is restricted and essentially

limited to Brownian motion and the Poisson, Gamma and Meixner processes (cf.

[16], [9]). On the other hand, the d-dimensional gamma process (i.e. an R
d-valued

stochastic process having as coordinates d independent copies of a Gamma subordina-

tor) seems to require the use of arguments different from the ones used in this paper,

starting with the fundamental Lemma 2.1 below.

Our solutions will be understood in the mild sense (see e.g. [19]), and therefore we

can consider bounded, measurable initial values ϕ ≥ 0. We will show as a consequence

of Corollary 4.3 and Theorem 5.1 that any initial value satisfying

c1x
−a1 ≤ ϕ(x), x > x0,

for some positive constants x0, c1, a1, yields a non-global solution of (1.3) provided

a1β < 1 + σ. Similarly, if the initial value of (1.3) satisfies

ϕ(x) ≤ c2x
−a2 , x > x0,

where x0, c2, a2 are positive numbers and a2β > 1 + σ, then the solution ut is global

and satisfies 0 ≤ ut(x) ≤ Ct−a2 , x ≥ 0, for some constant C > 0. For the particular

case σ = 0, if ϕ(x) ∼x→∞ cx−a for some c > 0 and a > 0, then blow-up of (1.3) occurs

if aβ < 1, and a global solution exists if aβ > 1. Hence, if σ = 0 and for some ε > 0

lim inf
x→∞

x−ε+1/βϕ(x) > 0,

then the solution of (1.3) blows up, whereas if

lim sup
x→∞

xε+1/βϕ(x) = 0,

then the solution of (1.3) exists globally.

Note that without additional difficulty we may replace the operator Γ in (1.3)

with the generator Γλ given by

Γλf(x) =

∫ ∞

0

(f(x + y) − f(x))
e−λy

y
dy, x ∈ R+,
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where λ is a strictly positive parameter. Indeed, for f ∈ Dom(Γλ) we have the relation

Γλf(x) = Γfλ(λx), where fλ(x) = f(x/λ). This means that fλ is solution of (1.3) if

and only if f is solution of (1.3) with Γλ in place of Γ .

We remark that, for the parameter constellation aβ = σ + 1 in Corollary 4.3 and

in Theorem 5.1, our semigroup bounds (see Lemma 2.1) seem to be not sharp enough

to yield, using our present methods, a subsolution ht of (1.3) growing uniformly on a

ball. Therefore, the blow-up behavior of (1.3) for such constellation remains open.

In the case of systems of equations of the form


















∂ut

∂t
= Γλut + νu1+β1

t vβ2

t , u0 = ϕ1,

∂vt

∂t
= Γµvt + Ft(ut, vt), v0 = ϕ2,

where λ 6= µ, ν > 0, and Ft is a positive and measurable function, the solution cannot

be constructed directly from the case λ = µ = 1, nevertheless the existence and

blow-up criteria for solutions are independent of the values of λ, µ > 0. In this case

we show that if ϕ1(x) ≥ cx−a1 and ϕ2(x) ≥ cx−a2 , for x large enough, then blow-up

occurs provided a1β1 + a2β2 < 1. We also study the semilinear system


















∂ut

∂t
= Γλ1

ut + ν1u
β11

t vβ12

t , u0 = ϕ1,

∂vt

∂t
= Γλ2

vt + ν2u
β21

t vβ22

t , v0 = ϕ2,

ν1, ν2 > 0, with integer exponents βij ≥ 1 and initial values satisfying ϕ1(x) ≤ c1x
−a1

and ϕ2(x) ≤ c2x
−a2 for x large enough, where a1, a2 ∈ (1,∞). We show that this

system admits a global solution provided the constants c1, c2 > 0 are sufficiently

small. In particular, the solution of the system


















∂ut

∂t
= Γut + utvt

∂vt

∂t
= Γvt + utvt,

(1.4)

with u0(x) ∼ cx−a1 and v0(x) ∼ cx−a2 for x large enough, is global if min(a2, a1) > 1

and c is sufficiently small. We also show that blow-up occurs if min(a2, a1) < 1,
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and deal under additional assumptions with critical cases with time-dependent non-

linearities.

We point out that critical blow-up and global existence parameters for semilinear

systems of the form (1.4), with the Laplacian ∆ instead of the operator Γ , were

investigated in [7] for more general non-linear terms.

Our methods of proof are motivated by the approaches developed in [3] and [17].

As mentioned before, to prove explosion of semilinear equations we use the Feynman-

Kac representation as well as estimates of probability transition densities and bridge

distributions. Existence of global solutions is proved using a general criterion origi-

nally obtained in [17]. Global existence for systems of equations is proved along the

lines of [14] and [17].

The paper is organized as follows. In Section 2 we recall some basic facts about

the gamma process and its infinitesimal generator, and obtain bounds for the gamma

semigroup that will be useful in the sequel. In Section 3 we recall the Feynman-Kac

representation of (1.3), and derive from this representation a criterion for blow-up of

semilinear PDE’s. Using a general argument deduced from [24], we show existence of

global solutions in Section 4. Blow-up of solutions of (1.3) is dealt with in Section 5,

and systems of semilinear PDE’s with gamma generators are considered in Section 6.

2 Estimates of the gamma semigroup

Let G denote the gamma function, i.e.

G(t) =

∫ ∞

0

xt−1e−x dx, t > 0,

and let (XΓ
t )t∈R+

denote the standard gamma process starting from 0, having transi-

tion densities

γt(x) =
xt−1

G(t)
e−x1[0,∞)(x), x ∈ R, t > 0,

and generator

Γf(x) =

∫ ∞

0

(f(x + y) − f(x))
e−y

y
dy.
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Let {T Γ
t , t ≥ 0} denote the operator semigroup generated by Γ , which is given by

T Γ
t ϕ(y) = E[ϕ(XΓ

t + y)] =

∫ ∞

0

ϕ(x + y)γt(x)dx =

∫ ∞

y

ϕ(x)γt(x − y)dx, (2.1)

y ∈ R+. In the next lemma we prove asymptotic estimates for the semigroup {T Γ
t , t ≥

0}, using results of [4] on the median of the gamma density. Recall that for t > 1, γt

is increasing on [0, t − 1] and decreasing on [t − 1,∞).

Lemma 2.1 Let ϕ : R+ → R+ be bounded and measurable. Assume that there exist

c1 ∈ [0,∞), c2 ∈ (0,∞], and a1 ≥ a2 > 0 such that for all x large enough,

c1x
−a1 ≤ ϕ(x) ≤ c2x

−a2 . (2.2)

Then, for all η ≥ 0 and 0 < ε ≤ 1 there exists t0 = t0(ε, η) > 0 such that

1. For all t > t0 and all y ≥ 0,
(

1 − ε

2 + ε

)a1 c1

2
t−a11[0,t+η](y) ≤ T Γ

t ϕ(y) ≤ c2(1 + ε)t−a2 . (2.3)

2. For all t > t0 and any 0 ≤ y ≤ η + t/2,

(1 − ε)
c1

21+a1
t−a11[0,η+t/2](y) ≤ T Γ

t (1[t−1/3,2t]ϕ)(y) ≤ c2(1 + ε)t−a2 . (2.4)

3. For all t > t0 and any 0 ≤ y ≤ η ≤ 1,

(1 − ε)
ηc1√
2π

t−a1−1/21[0,η](y) ≤ T Γ
t (1[t−η,t]ϕ)(y) ≤ (1 + ε)

ηc2√
2π

t−a2−1/2. (2.5)

Proof. There exists x0 > 0 such that for all 0 < y < t + η,

T Γ
t ϕ(y) =

∫ ∞

0

ϕ(x + y)γt(x)dx

≥ c1

∫ ∞

x0

(x + y)−a1γt(x)dx

≥ c1

∫ ∞

x0

(x + t + η)−a1γt(x)dx

= c1
G(t − a1)

G(t)

∫ ∞

x0

(1 + (t + η)/x)−a1γt−a1
(x)dx

≥ c1
G(t − a1)

G(t)

∫ ∞

t−a1−1/3

(1 + (t + η)/x)−a1γt−a1
(x)dx
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≥ c1
G(t − a1)

G(t)

∫ ∞

t−a1−1/3

(

1 +
t + η

t − a1 − 1/3

)−a1

γt−a1
(x)dx

≥ c1
G(t − a1)

G(t)

(1 − ε)a1

2a1

∫ ∞

t−a1−1/3

γt−a1
(x)dx

≥ c1

2

(1 − ε)a1

(2 + ε)a1
t−a1 ,

for all sufficiently large t, provided (a1 + 1/3)/t < ε and η/t < ε. Here we used the

equivalence G(t − a1)/G(t) ∼ t−a1 as t → ∞, which follows from Stirling’s formula

G(t) ∼
√

2πtt−1/2e−t, and the fact that the median of the gamma distribution with

parameter t−a1 is greater than t−a1 − 1/3 (and smaller than t−a1), see Theorem 2

of [4]. Analogously we have, for all y > 0 and all t, x0 big enough,

T Γ
t ϕ(y) =

∫ ∞

0

ϕ(x + y)γt(x)dx

≤ c2

∫ ∞

x0

(x + y)−a2γt(x)dx + ‖ϕ‖∞
∫ x0

0

γt(x)dx

≤ c2

∫ ∞

x0

x−a2γt(x)dx + x0‖ϕ‖∞γt(x0)

≤ c2
G(t − a2)

G(t)

∫ ∞

0

γt−a2
(x)dx + x0‖ϕ‖∞γt(x0)

≤
(

c2(1 + ε/2) + x0e
−x0‖ϕ‖∞

xt−1
0 ta2

G(t)

)

t−a2

≤ c2(1 + ε)t−a2 ,

which proves (2.3). Concerning (2.4) we have for 0 < y ≤ η + t/2 and t sufficiently

large:

∫ 2t

t−1/3

ϕ(x)γt(x − y)dx ≥ c1

∫ 2t

t−1/3

x−a1γt(x − y)dx

≥ c1(2t)
−a1

∫ 2t

t−1/3

γt(x − y)dx

≥ c1(2t)
−a1

∫ −η+3t/2

t−1/3

γt(x)dx

≥ c1(2t)
−a

(

1

2
−
∫ ∞

−η+3t/2

γt(x)dx

)

≥ (1 − ε)
c1

2
(2t)−a,
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since
∫∞

t−1/3
γt(x)dx ≥ 1/2 and

∫∞

−η+3t/2
γt(x)dx = P (XΓ

t ≥ −η + 3t
2
) → 0 as t → ∞ by

the law of large numbers. Similarly, for t large enough,
∫ 2t

t−1/3

ϕ(x)γt(x − y) dx ≤ c2

∫ 2t

t−1/3

x−a2γt(x − y) dx

≤ c2(t − 1/3)−a2

∫ 2t

t−1/3

γt(x − y) dx

≤ c2(t − 1/3)−a2

≤ (1 + ε)c2t
−a2 .

Concerning (2.5) we have, for 0 < y ≤ η ≤ 1 and t > 2,

γt(t − 1)

∫ t

t−η

ϕ(x) dx ≥
∫ t

t−η

ϕ(x)γt(x − y) dx ≥ (γt(t) ∧ γt(t − 2))

∫ t

t−η

ϕ(x) dx.

Since for any l ≥ 0,

γt(t − l) =
(t − l)t−1

G(t)
e−t+l ∼ (t − l)t−1el

√
2πtt−1/2

∼ t−1/2

√
2π

, t → ∞,

it follows that for any 0 < ε < 1 and for all sufficiently large t,

(1 + ε)
t−1/2

√
2π

∫ t

t−η

ϕ(x) dx ≥
∫ t

t−η

ϕ(x)γt(x − y) dx ≥ (1 − ε)
t−1/2

√
2π

∫ t

t−η

ϕ(x) dx.

It remains to note that
∫ t

t−η

x−adx =
t−a

1 − a
(1 − (1 − η/t)1−a) ∼ ηt−a

for all a ≥ 0 as t goes to infinity, and to use (2.2). �

Remark 2.2 Let {T λ
t , t ≥ 0} be the operator semigroup with generator Γλ. From

the relation T λ
t ϕ(x) = [T Γ

t ϕλ](λx) we get, for t > t0 and y ≥ 0,

c1

2

(

1 − ε

3

)a1
(

t

λ

)−a1

1[0,t+η](y) ≤ T λ
t ϕ(y) ≤ c2(1 + ε)

(

t

λ

)−a2

,

(1 − ε)
c1

21+a1

(

t

λ

)−a1

1[0,η+t/2](y) ≤ T Γ
t (1[t−1/3,2t]ϕ)(y) ≤ c2(1 + ε)

(

t

λ

)−a2

,

(1 − ε)
ηc1√
2π

(

t

λ

)−a1

1[0,η](y) ≤ T Γ
t (1[t−η,t]ϕ)(y) ≤ (1 + ε)

ηc2√
2π

(

t

λ

)−a2

.
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Recall that for 0 ≤ s < t and x > 0, the conditional law of XΓ
s , given that XΓ

t = x, is

the beta distribution with density

βs,t(z, x) :=
γs(z)γt−s(x − z)

γt(x)
=

1

x

G(t)

G(s)G(t − s)

( z

x

)s−1 (

1 − z

x

)t−s−1

, 0 ≤ z ≤ x.

(2.6)

Using the result of [18] on the median of the beta distribution we obtain the following

estimates.

Lemma 2.3 Let η > 0. We have

Py(0 < XΓ
s < s + η|XΓ

t = x) ≥ 1/2 (2.7)

for all 0 < s < t/2, 0 < y < η, 0 < t − 2η < t − η < x < t, and

Py(0 < XΓ
s < 2s + t/2|XΓ

t = x) ≥ 1/2 (2.8)

for all 0 < s < t/2, 0 < y < t/2 and 0 < t/2 < x < 2t.

Proof. We have

Py(0 < XΓ
s < s + η|XΓ

t = x) = P (0 < y + XΓ
s < s + η|XΓ

t = x − y)

≥ P (0 < XΓ
s < s|XΓ

t = x − y)

=

∫ s

0

βs,t(z, x − y)dz

=
G(t)

G(s)G(t − s)

∫ s/(x−y)

0

zs−1(1 − z)t−s−1dz

≥ G(t)

G(s)G(t − s)

∫ s/t

0

zs−1(1 − z)t−s−1dz

=

∫ s/t

0

βs,t(z, 1)dz

≥ 1/2,

because, from Theorem 1 of [18], the median ms,t of the standard beta density βs,t(·, 1)

with mean s/t satisfies

0 < ms,t <
s

t
< ms,t +

t − 2s

(t − 2)t
,
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provided s < t/2. Similarly we have

Py(0 < XΓ
s < 2s + t/2|XΓ

t = x) = P (0 < y + XΓ
s < 2s + t/2|XΓ

t = x − y)

≥ P (0 < XΓ
s < 2s|XΓ

t = x − y)

=

∫ 2s

0

βs,t(z, x − y)dz

=
G(t)

G(s)G(t − s)

∫ 2s/(x−y)

0

zs−1(1 − z)t−s−1dz

≥ G(t)

G(s)G(t − s)

∫ s/t

0

zs−1(1 − z)t−s−1dz

≥ 1/2.

�

3 Feynman-Kac representation and subsolutions

Let (Xt)t∈R+
be a Lévy process in R+ with generator L and transition semigroup

{T L
t , t ≥ 0}. Recall (see e.g. [8]) that the mild solution of

∂wt

∂t
(y) = Lwt(y) + ζt(y)wt(y), w0 = ϕ, (3.1)

admits the Feynman-Kac representation

wt(y) = E

[

ϕ(y + Xt) exp

∫ t

0

ζt−s(y + Xs)ds

]

, t ≥ 0, y ≥ 0. (3.2)

If ζt is positive (3.2) implies

wt(y) ≥ E [ϕ(y + Xt)] = T L
t ϕ(y), y ∈ R+, t ≥ 0.

Thus, the solution of
∂wt

∂t
= Lwt, w0 = ϕ ≥ 0,

is also a subsolution of (3.1) provided ζt ≥ 0. By linearity this implies the following

lemma.

Lemma 3.1 Let ϕ ≥ 0 be bounded and measurable. If ut, vt respectively solve

∂ut

∂t
(y) = Lut(y) + ζt(y)ut(y),

∂vt

∂t
(y) = Lvt(y) + ξt(y)vt(y),

with u0 ≥ v0 and ζt ≥ ξt, then ut ≥ vt.
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We will use the fact that if ut is a subsolution of

∂wt

∂t
(y) = Lwt(y) + νw1+β

t (y), w0 = ϕ, (3.3)

where ν, β > 0, then any solution of

∂vt

∂t
(y) = Lvt(y) + νuβ

t (y)vt(y), v0 = ϕ,

remains a subsolution of (3.3). This follows from Lemma 3.1.

Going back to (3.1), notice that from the Feynman-Kac representation,

wt(y) =

∫ ∞

−∞

ϕ(y + x)E

[

exp

∫ t

0

ζt−s(y + Xs) ds
∣

∣

∣
Xt = x

]

pt(x)dx

=

∫ ∞

−∞

ϕ(x)pt(x − y)E

[

exp

∫ t

0

ζt−s(y + Xs)ds
∣

∣

∣
y + Xt = x

]

dx

=

∫ ∞

−∞

ϕ(x)pt(x − y)Ey

[

exp

∫ t

0

ζt−s(Xs)ds
∣

∣

∣
Xt = x

]

dx

≥
∫ ∞

−∞

ϕ(x)pt(x − y) exp

(

Ey

[
∫ t

0

ζt−s(Xs)ds
∣

∣

∣
Xt = x

])

dx, (3.4)

where on the last line we used Jensen’s inequality. Hence, when L = Γ , (3.4) reads

wt(y) ≥
∫ ∞

y

ϕ(x)γt(x − y) exp

(
∫ t

0

∫ x

y

βs,t(z − y, x − y)ζt−s(z)dzds

)

dx,

where βs,t(z − y, x − y) is given by (2.6).

We close this section with a lemma that will be helpful in the proof of explosion, see

§4 in [12] for the case L = ∆.

Lemma 3.2 Let σ ∈ R and ν > 0. Assume that the solution ut of

∂wt

∂t
(y) = Γwt(y) + νtσvt(y)wt(y), w0 = ϕ, (3.5)

satisfies

lim
t→∞

inf
0≤x≤1

ut(x) = ∞,

where v : R
2
+ → R+ is a measurable function such that uβ

t ≤ vt for all t ≥ 0. Then ut

blows up in finite time, in the sense that there exists t > 0 such that
∫ 1

0

ut(x) dx = ∞.

In particular, explosion in Lp(R+)-norm occurs for all p ∈ [1,∞].
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Proof. Given t0 > 0, let ut = wt0+t and K(t0) = inf0≤y≤1 wt0(y). The mild solution

of (3.5) is given by

ut(x) =

∫ ∞

0

γt(y − x)u0(y) dy + ν

∫ t

0

sσ

∫ ∞

0

γt−s(y − x)us(y)vs+t0(y) dy ds.

Thus, for any ε ∈ (0, 1) and t < (1 − ε)β ∧ 1,

∫ 1

0

ut(x) dx

≥
∫ 1

0

∫ ∞

0

γt(y − x)u0(y)dydx + ν

∫ t

0

sσ

∫ 1

0

∫ ∞

0

γt−s(y − x)u1+β
s (y)dydxds

≥
∫ 1

0

∫ 1

x

γt(y − x)u0(y)dydx + ν

∫ t

0

sσ

∫ 1

0

∫ 1

x

γt−s(y − x)u1+β
s (y)dydxds

≥ K(t0)

∫ 1

0

∫ y

0

γt(x − y)dxdy + ν

∫ t

0

sσ

∫ 1

0

u1+β
s (y)

∫ y

0

γt−s(x − y)dxdyds

≥ K(t0)

∫ 1

0

∫ y

0

γt(x)dxdy + ν

∫ t

0

sσ

∫ 1

0

u1+β
s (y)

∫ y

0

γt−s(x)dxdyds

≥ 1

4
K(t0)

∫ 1

0

∫ y

0

xt−1

G(t)
dxdy +

ν

4

∫ t

0

sσ

∫ 1

0

u1+β
s (y)

∫ y

0

xt−s−1

G(t − s)
dxdyds

≥ 1

4

K(t0)

tG(t)

∫ 1

0

ytdy +
ν

4

∫ t

0

sσ

∫ 1

0

u1+β
s (y)

yt−s

(t − s)γ(t − s)
dyds

≥ 1

4
K(t0)

∫ 1

0

yβdy +
ν

4

∫ t

0

sσ

∫ 1

0

u1+β
s (y)y(1−ε)βdyds

≥ K(t0)

4(1 + β)
+

ν

4

∫ t

0

sσ

∫ 1

0

u1+β
s (y)y(1−ε)βdyds,

where we used the inequalities 0 ≤ t− s ≤ t < (1− ε)β and 0 ≤ tG(t) ≤ 1, 0 ≤ t ≤ 1.

Hölder’s inequality yields

(
∫ 1

0

us(y)dy

)1+β

≤
(
∫ 1

0

u1+β
s (y)y(1−ε)βdy

)(
∫ 1

0

y−(1−ε)dy

)β

= ε−β

∫ 1

0

u1+β
s (y)y(1−ε)βdy,

hence letting ũ(t) =
∫ 1

0
ut(x) dx we get

ũ(t) ≥ K(t0)

4(1 + β)
+

νεβ

4

∫ t

0

sσũ1+β(s) ds, t < (1 − ε)β ∧ 1.

13



It remains to choose t0 such that the blow-up time of the equation

ũ(t) =
K(t0)

4(1 + β)
+

νεβ

4

∫ t

0

sσũ1+β(s)ds, t < (1 − ε)β ∧ 1,

is smaller than (1 − ε)β ∧ 1. �

Choosing vt = uβ
t in Lemma 3.2 yields immediately:

Corollary 3.3 Let σ ∈ R and ν > 0. If the solution ut of

∂wt

∂t
(y) = Γwt(y) + νtσw1+β

t (y), w0 = ϕ,

satisfies

lim
t→∞

inf
0≤x≤1

ut(x) = ∞,

then ut blows up in finite time, in the sense that there exists t > 0 such that

∫ 1

0

ut(x) dx = ∞.

�

4 Existence of global solutions

We have the following non-explosion result, obtained originally by Nagasawa and Sirao

[17] for integer β ≥ 1. In the next theorem, as in the previous section, {T L
t , t ≥ 0}

denotes the transition semigroup of a Lévy process with generator L.

Theorem 4.1 Let σ ∈ R and β, ν > 0. Assume that
∫ ∞

0

rσ‖T L
r ϕ‖β

∞ dr <
b

νβ

for some b ∈ (0, 1). Then the equation

∂wt

∂t
= Lwt + νtσw1+β

t , w0 = ϕ, (4.1)

admits a global solution ut(x) which satisfies

0 ≤ ut(x) ≤ b1/βT L
t ϕ(x)

(

b − νβ
∫ t

0
rσ‖T L

r ϕ‖β
∞dr

)1/β
, x ∈ R+, t ≥ 0.
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Proof. This is an adaptation of the proof of Theorem 3 in [24] to our context of

time-dependent non-linearities. Recall that the mild solution of (4.1) is given by

ut(x) = T L
t ϕ(x) + ν

∫ t

0

rσT L
t−ru

1+β
r (x) dr. (4.2)

Defining

B(t) =

(

b − βν

∫ t

0

rσ‖T L
r ϕ‖β

∞dr

)−1/β

, t ≥ 0,

we have B(0) = b−1/β and

d

dt
B(t) = νtσ‖T L

t ϕ‖β
∞

(

b − βν

∫ t

0

rσ‖T L
r ϕ‖β

∞dr

)−1−1/β

= νtσ‖T L
t ϕ‖β

∞B1+β(t),

hence

B(t) = b−1/β + ν

∫ t

0

rσ‖T L
r ϕ‖β

∞B1+β(r) dr.

Let (t, x) 7→ vt(x) be a continuous function such that vt(·) ∈ C0(R+), t ≥ 0, and

T L
t ϕ(x) ≤ vt(x) ≤ b1/βB(t)T L

t ϕ(x), t ≥ 0, x ∈ R+.

Let now

R(v)(t, x) = T L
t ϕ(x) + ν

∫ t

0

rσT L
t−rv

1+β
r (x)dr.

We have

R(v)(t, x) ≤ T L
t ϕ(x) + νb1+1/β

∫ t

0

rσB1+β(r)T L
t−r(T

L
r ϕ(x))1+βdr

≤ T L
t ϕ(x) + νb1+1/β

∫ t

0

rσB1+β(r)T L
t−rT

L
r ϕ(x)‖T L

r ϕ‖β
∞dr

= b1/βT L
t ϕ(x)

(

b−1/β + νb

∫ t

0

rσB1+β(r)‖T L
r ϕ‖β

∞dr

)

,

hence

T L
t ϕ(x) ≤ R(v)(t, x) ≤ b1/βB(t)T L

t ϕ(x), t ≥ 0, x ∈ R+.

Let

u0
t (x) = T L

t ϕ(x), and un+1
t (x) = R(un)(t, x), n ∈ N.

Then u0
t (x) ≤ u1

t (x), t ≥ 0, x ∈ R+. Since T L
t is non-negative, using induction we

obtain

0 ≤ un
t (x) ≤ un+1

t (x), n ≥ 0.
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Letting n → ∞ yields, for t ≥ 0 and x ∈ R+,

0 ≤ ut(x) = lim
n→∞

un
t (x) ≤ b1/βB(t)T L

t ϕ(x) ≤ b1/βT L
t ϕ(x)

(

b − νβ
∫ t

0
rσ‖T L

r ϕ‖β
∞dr

)1/β
< ∞.

Consequently, ut is a global solution of (4.2) due to the monotone convergence theo-

rem. �

As an application of Theorem 4.1 to the case L = Γ , a global existence result can be

obtained under an integrability condition on ϕ.

Corollary 4.2 Let 1 ≤ q < ∞, σ > −1, ν > 0, and β > 2q(1 + σ). If ϕ ∈ Lq(R+) is

non-negative and ‖ϕ‖q is sufficiently small, then the solution ut of

∂wt

∂t
= Γwt + νtσw1+β

t , w0 = ϕ,

is global and satisfies, for some c > 0,

0 ≤ ut(x) ≤ ct−1/(2q), x ∈ R+,

for all t large enough.

Proof. From Hölder’s inequality and (2.1) we have

|T Γ
t ϕ(y)| ≤ ‖ϕ‖q‖γt‖p, 1/p = 1 − 1/q,

where

‖γt‖p =

(
∫ ∞

0

xp(t−1)

G(t)p
e−pxdx

)1/p

=
G(p(t − 1) + 1)1/p

pt−1G(t)

(
∫ ∞

0

(px)p(t−1)

G(p(t − 1) + 1)
e−pxdx

)1/p

=
G(p(t − 1) + 1)1/p

pt−1+1/pG(t)

∼ (p(t − 1) + 1)(t−1)+1/(2p)e1−1/p

pt−1+1/ptt−1/2
(2π)−1/2+1/(2p)

∼ t1/2 (1 − 1/t + 1/(pt))t(p(t − 1) + 1)1/(2p)e1−1/p

(t − 1 + 1/p)p1/p
(2π)−1/(2q)
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∼ t1/2 (p(t − 1) + 1)1/(2p)

(t − 1 + 1/p)p1/p
(2π)−1/(2q)

∼ t−1/2t1/(2p)p−1/(2p)(2π)−1/(2q)

∼ (2πt)−1/(2q)p−1/(2p),

as t → ∞. Hence for some t0 > 0 and c > 0,

∫ ∞

0

tσ‖T Γ
t ϕ‖β

∞dt ≤ ‖ϕ‖β
∞

∫ t0

0

tσdt + c‖ϕ‖β
q

∫ ∞

t0

tσ‖γt‖β
pdt < ∞

provided β > 2q(1 + σ), and the conclusion follows from Theorem 4.1. �

Under a polynomial growth assumption on ϕ we get the following more specialized

result as another corollary of Theorem 4.1.

Corollary 4.3 Let σ ∈ R and assume that there exist c ≥ 0, a ≥ 0 and x0 ≥ 0 such

that

ϕ(x) ≤ cx−a, x > x0.

If aβ > 1 + σ, then the solution ut of

∂wt

∂t
= Γwt + νtσw1+β

t , w0 = ϕ

is global, and there exists C > 0 such that

0 ≤ ut(x) ≤ Ct−a, x ∈ R+,

for all t large enough.

Proof. Let ã be such that a < ã < (1 + σ)/β. For any c̃ > 0 there exists x̃0 such

that ϕ(x) ≤ c̃x−ã, x > x̃0. It remains to apply (2.3) of Lemma 2.1 and Theorem 4.1.

�

5 Blow-up of solutions

In this section we obtain a partial converse to Corollary 4.3.
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Theorem 5.1 Assume that ϕ ≥ 0 satisfies ϕ(x) ≥ cx−a for all x large enough, where

a, c ≥ 0. Let ν > 0, β > 0 and aβ < 1 + σ. Then the equation

∂wt

∂t
= Γwt + νtσw1+β

t , w0 = ϕ,

blows up in finite time.

This result is a consequence of the lemmas 3.1 and 3.2 above, and of the following

lemma.

Lemma 5.2 Assume that ϕ ≥ 0 is such that ϕ(x) ≥ cx−a for all x large enough,

where a, c ≥ 0. Let ν > 0, β > 0, and let gt be the solution of

∂wt

∂t
(y) = Γwt(y) + νtσ(T Γ

t ϕ)β(y)wt(y), w0 = ϕ. (5.1)

If aβ < 1 + σ, then

lim
t→∞

inf
0≤x≤1

gt(x) = ∞.

Proof. Let 0 < η < 1. The Feynman-Kac representation and (2.3) yield, for

0 < y < η + t/2, t > 6t0 (where t0 is defined in Lemma 2.1), and some c0 > 0:

gt(y) =

∫ ∞

y

ϕ(x)γt(x − y)Ey

[

exp

(

ν

∫ t

0

(t − s)σ(T Γ
t−sϕ(XΓ

s ))βds

)

∣

∣

∣
XΓ

t = x

]

dx

≥
∫ ∞

y

ϕ(x)γt(x − y)Ey

[

exp

(

c0ν

∫ t−t0

t0

1[0,η+t−s](X
Γ
s )(t − s)σ−aβds

)

∣

∣

∣
XΓ

t = x

]

dx

≥
∫ 2t

t−1/3

ϕ(x)γt(x − y) exp

(

c0ν

∫ t−t0

t0

(t − s)σ−aβPy(0 < XΓ
s < η + t − s|XΓ

t = x)ds

)

dx

≥
∫ 2t

t−1/3

ϕ(x)γt(x − y) exp

(

c0ν

∫ t/6

t0

(t − s)σ−aβPy(0 < XΓ
s < 2s + t/2|XΓ

t = x)ds

)

dx

≥ c11[0,η+t/2](y)t−a exp

(

c0ν

2

∫ t/6

t0

(t − s)σ−aβds

)

,

where we used (2.4) and (2.8) to obtain the last inequality. Hence

gt(y) ≥ 1[0,η+t/2](y)c1t
−a exp

(

c0ν

2

∫ t/6

t0

(t − s)σ−aβds

)

(5.2)

= 1[0,η+t/2](y)c1t
−a exp

(

c0ν

2(1 + σ − aβ)

(

(t − t0)
1+σ−aβ −

(

5t

6

)1+σ−aβ
))

,

and it suffices that aβ < 1 + σ in order to get inf0<y<1 gt(y) → ∞ as t → ∞. �
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Notice that the criteria for blow-up of Lemma 5.2 can easily be adapted to other

time-dependent non-linearities. More precisely, a time-dependent non-linearity of the

form α(t) will lead to finite-time blow-up provided

lim inf
t→∞

t−ε

∫ t/6

t0

(t − s)−aβα(t − s) ds > 0,

for some ε > 0.

6 Systems of semilinear equations

First we consider the following system of semilinear equations


















∂ut

∂t
= Γλ1

ut + ν1u
β11

t vβ12

t

∂vt

∂t
= Γλ2

vt + ν2u
β21

t vβ22

t ,

(6.1)

where u0 = ϕ1 and v0 = ϕ2 are nonnegative bounded measurable functions, ν1, ν2 > 0,

and βij ∈ {1, 2, . . .}, i, j = 1, 2. The solution of this system can be expressed in terms

of a continuous-time, two-type branching process evolving in the following way. The

particles of type i = 1, 2 live independent exponential lifetimes of mean 1/νi. During

its lifetime a type-i particle develops an independent Markov motion of generator

Γλi
and, at the end of its life, it branches, leaving behind βi1 individuals of type 1

and βi2 individuals of type 2 that appear where the parent particle died, and evolve

independently under the same rules. The state space of such branching process is the

space Nf(S) of finite counting measures on S := R+ × {1, 2}, where a measure

µ =

n
∑

i=1

δ(xi,1) +

m
∑

j=1

δ(yj ,2)

represents a population consisting of n individuals of type 1 at positions x1, . . . , xn,

and m individuals of type 2 at positions y1, . . . , ym. Let Xµ
t be the random element of

Nf(S) representing the population configuration at time t ≥ 0, starting from a given

µ ∈ Nf(S). For any bounded measurable f : S → [0,∞) we define

wt(µ) = Eµ



eSt

∏

z∈supp(Xµ
t )

f(z)



 , µ ∈ Nf(S), t ≥ 0, (6.2)
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where Eµ denotes expectation with respect to P ( · |X0 = µ), and St = ν1

∫ t

0
Ns,1 ds +

ν2

∫ t

0
Ns,2 ds, where Ns,i is the number of particles of type i in the population at time

s. Choosing f so that f(·, i) = ϕi for i = 1, 2, one can show, similarly as in [14], that

the solution of (6.1) is given by ut = wt(·, 1) and vt = wt(·, 2), where for shortness of

notation we write wt(x, i) when µ = δ(x,i). We now prove the following theorem.

Theorem 6.1 Let the initial values ϕ1, ϕ2 of (6.1) be bounded measurable functions

such that, for some constants c1, c2 > 0 and a1, a2 ∈ (1,∞),

0 ≤ ϕ1(x) ≤ c1x
−a1 and 0 ≤ ϕ2(x) ≤ c2x

−a2

for all x large enough. If c1, c2 are sufficiently small, then the solution of (6.1) is

global.

The proof of the above theorem uses substantially the probabilistic representation of

(ut, vt) derived from (6.2); see [14] for a short argument in the case βij = 1, i, j = 1, 2,

and for a detailed description of the probabilistic framework.

Proof. Without loss of generality we assume that f(x, i) := ϕi(x) ≤ ci(x
−ai ∧ 1) for

all x > 0 and i = 1, 2. Let κ = κ(t) denote the number of branchings occurring in the

interval [0, t], and let w
(k)
t (µ) = Eµ

[

eSt
∏

z∈supp(Xµ
t ) f(z); κ = k

]

, µ ∈ Nf(S), k ∈ N.

Therefore,

wt(µ) =

∞
∑

k=0

w
(k)
t (µ), µ ∈ Nf(S), t ≥ 0.

Writing γλi
t for the transition densities of the gamma process of parameter λi, i = 1, 2,

and defining

πtf(x, i) :=

∫

R

f(y, i)γλi
t (y − x) dy, (x, i) ∈ S, t ≥ 0,

we see that, for µ =
∑n

i=1 δ(xi,1) +
∑m

j=1 δ(yj ,2),

w
(0)
t (µ) =

(

n
∏

i=1

πtf(xi, 1)

)(

m
∏

j=1

πtf(yj, 2)

)

.

Recall that the first branching time, τ , is exponentially distributed with parameter

nν1 + mν2. Given that τ ≥ s, the evolution of the population up to time s follows a
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stochastic translation originated by the particle motion processes. Hence,

Ss =

∫ s

0

(nν1 + mν2) dr.

Notice that a given particle of type i performs the first branching with probability

νi/(nν1 + mν2). Consequently, conditioning on the first branching time, the above

equality yields

w
(1)
t (µ) = 1{n6=0}

ν1

nν1 + mν2

n
∑

i=1

∫ t

0

(nν1 + mν2)e
−(nν1+mν2)se

R s
0
(nν1+mν2) dr

·
∫

R

γλ1

s (z − xi) (πt−sf(z, 1))β11 (πt−sf(z, 2))β12 dz

×
n
∏

l=1

l6=i

πsw
(0)
t−s(xl, 1)

m
∏

h=1

πsw
(0)
t−s(yh, 2) ds

+ 1{m6=0}
ν2

nν1 + mν2

m
∑

j=1

∫ t

0

(nν1 + mν2)e
−(nν1+mν2)se

R s

0
(nν1+mν2) dr

·
∫

R

γλ2

s (z − yj) (πt−sf(z, 1))β21 (πt−sf(z, 2))β22 dz

×
n
∏

l=1

πsw
(0)
t−s(xl, 1)

m
∏

h=1

h6=j

πsw
(0)
t−s(yh, 2) ds,

and therefore,

w
(1)
t (µ) ≤ ν1n

n
∏

l=1

πtf(xl, 1)

m
∏

h=1

πtf(yh, 2)

∫ t

0

(

sup
z∈S

πsf(z)

)β11+β12−1

ds

+ ν2m

n
∏

l=1

πtf(xl, 1)

m
∏

h=1

πtf(yh, 2)

∫ t

0

(

sup
z∈S

πsf(z)

)β21+β22−1

ds,

where we used that ‖f‖∞ ≤ 1 and πsw
(0)
t−s(z, i) = πtf(z, i) , (z, i) ∈ S, t ≥ 0 .

Hence,

w
(1)
t (µ) ≤ (ν1 ∨ ν2)(n + m)w

(0)
t (µ)

∫ t

0

(

sup
z∈S

πsf(z)

)[(β11+β12)∧(β21+β22)]−1

ds. (6.3)

More generally, for k = 0, 1, . . . ,

w
(k+1)
t (µ) = 1{n6=0}ν1

n
∑

i=1

∫ t

0

πs

(

∫

Nf (S)

w
(k)
t−s(χ)K(·)(dχ)

)

(xi, 1) (6.4)
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×
n
∏

l=1

l6=i

πsw
(k)
t−s(xl, 1)

m
∏

h=1

πsw
(k)
t−s(yh, 2) ds

+ 1{m6=0}ν2

m
∑

j=1

∫ t

0

πs

(

∫

Nf (S)

w
(k)
t−s(χ)K(·)(dχ)

)

(yh, 2)

×
n
∏

l=1

πsw
(k)
t−s(xl, 1)

m
∏

h=1

h6=j

πsw
(k)
t−s(yh, 2) ds,

where the measure K(z,i)(dχ) is supported by a population at site z, consisting of βi1

type-1, and βi1 type-2 individuals. By induction on k we will prove that for t ≥ 0 ,

µ =
∑n

i=1 δ(xi,1) +
∑m

j=1 δ(yj ,2) and k ≥ 1,

w
(k)
t (µ) ≤ νk

k!

k−1
∏

i=0

(n + m + i(β∗ − 1))

(

∫ t

0

(

sup
z∈S

πsf(z)

)β∗−1

ds

)k

w
(0)
t (µ), (6.5)

where ν = ν1 ∨ ν2 , β∗ = (β11+β12) ∧(β21+β22) and β∗ = (β11+β12) ∨ (β21+β22) .

In fact, we have seen above that (6.5) is valid for k = 1. If (6.5) holds for some k ≥ 1,

then, using that a branching of type i contributes to the current population with

βi1 − δi1 individuals of type 1, and βi2 − δi2 individuals of type 2, we obtain from (6.4)

that

w
(k+1)
t (µ)

≤ νk

k!

k−1
∏

ι=0

(n + m + β11 + β12 − 1 + ι(β∗ − 1))

·
∫ t

0

[

∫ t−s

0

(

sup
z∈S

πrf(z)

)β∗−1

dr

]k

ds

·ν1

n
∑

i=1

πsπt−sf(xi, 1)

n
∏

l=1

l6=i

πsπt−sf(xl, 1)

m
∏

h=1

πsπt−sf(yh, 2)

(

sup
z∈S

πsf(z)

)β∗−1

+
νk

k!

k−1
∏

ι=0

(n + m + β21 + β22 − 1 + ι(β∗ − 1))

·
∫ t

0

[

∫ t−s

0

(

sup
z∈S

πrf(z)

)β∗−1

dr

]k

ds

·ν2

m
∑

j=1

πsπt−sf(yj, 2)

n
∏

l=1

πsπt−sf(xl, 1)

m
∏

h=1

h6=j

πsπt−sf(yh, 2)

(

sup
z∈S

πsf(z)

)β∗−1
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≤ νk+1

k!

k−1
∏

ι=0

(n + m + (ι + 1)(β∗ − 1))w
(0)
t (µ)

n + m

k + 1

[

∫ t

0

(

sup
z∈S

πrf(z)

)β∗−1

dr

]k+1

≤ νk+1

(k + 1)!

k
∏

ι=0

(n + m + ι(β∗ − 1))w
(0)
t (µ)

[

∫ t

0

(

sup
z∈S

πrf(z)

)β∗−1

dr

]k+1

,

which proves the desired estimate.

Setting X0 = µ = δ(z,i) in (6.5) yields

wt(z, i) ≤ πtf(z, i)

(

1 +
∞
∑

k=1

vk(t)

)

, t ≥ 0, (6.6)

where

vk(t) =
1

k!

k−1
∏

i=0

(1 + i(β∗ − 1))

(

ν

∫ t

0

(

sup
z∈S

πsf(z)

)β∗−1

ds

)k

.

Taking M > 0 large enough we obtain from Remark 2.2 that

vk(t) ≤
(

β∗ν

(

∫ M

0

(

sup
z∈S

πsf(z)

)β∗−1

ds + Const.

∫ ∞

M

(

(c1 ∨ c2)s
−a1∧a2

)β∗−1
ds

))k

.

Thus, if c1, c2 are so small that vk(t) < 1 uniformly in t for all k, then, due to

(a1 ∧ a2)(β∗ − 1) > 1, the solution of (6.1) is global. �

Next, consider the nonlinear system of equations:



















∂ut

∂t
= Γλut + νtσu1+β1

t vβ2

t

∂vt

∂t
= Γµvt + Ft(ut, vt),

(6.7)

u0 = ϕ1, v0 = ϕ2, λ, µ, ν > 0, where Ft is a positive and measurable function.

Proposition 6.2 Assume that ϕ1(x) ≥ cx−a1 and ϕ2(x) ≥ cx−a2 for x large enough,

with a1, a2 ≥ 0. Then (6.7) blows up if a1β1 + a2β2 < 1 + σ.

Proof. From Lemma 3.1 and Lemma 2.1 we have T Γ
t ϕ2(y) ≥ c2µ

a2t−a21[0,t](y), and

vβ2

t (y) ≥ (T Γ
t ϕ2(y))β2 ≥ cβ2

2 µa2β2t−a2β21[0,t](y).

We conclude by an application of Theorem 5.1 and Lemma 3.1. �
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In the remaining part of this section we obtain conditions for explosion in finite time

of the system



















∂ut

∂t
= Γut + tσ1utvt

∂vt

∂t
= Γvt + (1 ∨ t)σ2utvt,

(6.8)

with u0 = ϕ1, v0 = ϕ2, and σ1, σ2 ∈ R.

Lemma 6.3 Assume that σ2 ≥ σ1 and that for some initial conditions ϕ1 ≤ ϕ2, the

solution ut of (6.8) satisfies

inf
0≤x≤1

ut(x) → ∞

as t → ∞. Then ut blows up in finite time, in the sense that there exists t > 0 such

that
∫ 1

0

ut(x)dx = ∞.

Proof. By linearity, ut − vt is solution of

∂

∂t
(ut − vt) = Γ (ut − vt) + utvt(t

σ1 − (1 ∨ t)σ2), (6.9)

with u0 − v0 = ϕ1 − ϕ2 ≤ 0, hence from the integral form of (6.9):

(ut − vt)(x) = T Γ
t (u0 − v0) +

∫ t

0

(sσ1 − (1 ∨ s)σ2)T Γ
t−s(usvs)(x)ds,

we have ut − vt ≤ 0, t ≥ 0. It remains to apply Lemma 3.2 to the equation

∂ut

∂t
(y) = Γut(y) + tσ1vt(y)ut(y),

with β = 1, ν = 1, and to use the inequality vt ≥ ut. �

The above explosion criterion also implies blow-up in all Lp norms, p ∈ [1,∞], and is

used in the next proposition.

Proposition 6.4 Assume that σ2 ≥ σ1 and ϕ1(x) ≥ cx−a1 , ϕ2(x) ≥ cx−a2 , for x

large enough. Then (6.8) blows up if min(a1, a2) < 1 + σ1. In the critical case

min(a1, a2) = 1 + σ1, blow-up occurs if max(a1, a2) < 1 + σ2.
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Proof. It suffices to prove blow-up for any pair of functions ϕ1, ϕ2 such that ϕ1(x) =

cx−a1 and ϕ2(x) = cx−a2 for x large enough. Moreover, without loss of generality we

may assume that a1 ≥ a2 and ϕ1 ≤ ϕ2. From (2.3) of Lemma 2.1, there exists t0 > 0

such that for all t ≥ t0 and y ∈ R+,

ut(y) ≥ T Γ
t ϕ1(y) ≥ ct−a11[0,t+η](y)

and

vt(y) ≥ T Γ
t ϕ2(y) ≥ ct−a21[0,t+η](y).

The Feynman-Kac formula, (2.4) and (2.8) yield, for 0 ≤ y ≤ η + t/2 and t > 2 ∨ t0,

ut(y) =

∫ ∞

−∞

ϕ1(x)γt(x − y)Ey

[

exp

∫ t

0

vt−s(X
Γ
s )ds

∣

∣

∣
XΓ

t = x

]

dx

≥
∫ ∞

y

ϕ1(x)γt(x − y)Ey

[

exp

(

c

∫ t/6

t0

(t − s)−a2+σ11[0,η+t−s](X
Γ
s )ds

)

∣

∣

∣
XΓ

t = x

]

dx

≥
∫ 2t

t−1/3

ϕ1(x)γt(x − y)

× exp

(

c

∫ t/6

t0

(t − s)−a2+σ1Py(0 < XΓ
t−s < η + t − s|XΓ

t = x)ds

)

dx

≥
∫ 2t

t−1/3

ϕ1(x)γt(x − y)

× exp

(

c

∫ t/6

t0

(t − s)−a2+σ1Py(0 < XΓ
t−s < 2s + t/2|XΓ

t = x)ds

)

dx

≥
∫ 2t

t−1/3

ϕ1(x)γt(x − y) exp

(

c

2

∫ t/6

t0

(t − s)−a2+σ1ds

)

dx

≥ c2t
−a1 exp

(

1

2

∫ t/6

t0

(t − s)−a2+σ1ds

)

≥ c2t
−a1 exp

(

c

2(1 + σ1 − a2)

(

(t − t0)
σ1−a2+1 −

(

5t

6

)σ1−a2+1
))

.

Hence, with η = 1, we infer blow-up from Lemma 6.3 if a2 < 1 + σ1. Turning to the

critical case, if a2 = 1 + σ1 the above estimate yields ut(y) ≥ c21[0,η+t/2](y)t−a1 , and

from (2.7) and (2.5) we have, for all 0 ≤ y ≤ η,

vt(y) =

∫ ∞

−∞

ϕ2(x)γt(x − y)Ey

[

exp

∫ t

0

ut−s(X
Γ
s )ds

∣

∣

∣
XΓ

t = x

]

dx
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≥
∫ t

t−η

ϕ2(x)γt(x − y)

× exp

(

c2

∫ t

t0

(t − s)−a1+σ2Py(0 < XΓ
s < η + (t − s)/2|XΓ

t = x)ds

)

dx

≥
∫ t

t−η

ϕ2(x)γt(x − y)

× exp

(

c2

∫ t/3

t0

(t − s)−a1+σ2Py(0 < XΓ
s < η + s|XΓ

t = x)ds

)

dx

≥ c2

∫ t

t−η

ϕ2(x) dx t−1/2 exp

(

c2

2

∫ t/3

t0

(t − s)−a1+σ2ds

)

≥ c2t
−a2−1/2 exp

(

c2

2

∫ t/3

t0

(t − s)−a1+σ2ds

)

.

Hence, Lemma 6.3 implies blow-up provided a1 < 1 + σ2. �
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