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Abstract

We investigate finite-time blow-up and stability of semilinear partial differen-
tial equations of the form dw; /0t = INwy —I—Vt"w?rﬂ, wo(z) = p(x) >0,z € Ry,
where I' is the generator of the standard gamma process and v > 0, ¢ € R,
B > 0 are constants. We show that any initial value satisfying c12~% < ¢(x),
x > xg for some positive constants zg,ci,a;, yields a non-global solution if
af <140 Ifp(x) <cox %, x> xy, where g, c2,a9 > 0, and as3 > 1+ o,
then the solution w; is global and satisfies 0 < wy(z) < Ct~%, x > 0, for some
constant C' > 0. This complements the results previously obtained in [3, 10, 22]
for symmetric a-stable generators. Systems of semilinear PDE’s with gamma
generators are also considered.

Key words: Semilinear partial differential equations, Feynman-Kac representation, blow-
up of semilinear systems, gamma processes.
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1 Introduction

Critical exponents for blow-up of semilinear Cauchy problems of the prototype

Owy(x)
ot

= Lw(x) + wtlw(x), wo(z) = p(x), x€RY (1.1)

where L is a Lévy generator, 3 > 0 is constant and ¢ > 0, have been investigated
by many authors, specially in the case of the d-dimensional Laplacian L = A (see
[13] and [6] for surveys). When L is the fractional power A, = —(—A)*2 of the
Laplacian, 0 < « < 2, it was shown in a series of papers [3, 15, 17, 20, 22] that
the critical parameter for blow-up of (1.1) is d. := «/f, meaning that if d < d.

then (1.1) possesses no global nontrivial solutions, and if d > d,, then (1.1) admits a



nontrivial global solution for all sufficiently small initial values. Critical parameters
for semilinear equations with time-dependent non-linearities of the form t“w; ™ (z)
were studied in [3] and [10] for L = A,. The case of an elliptic operator L on an
exterior domain was investigated in [1] for general time-dependent reaction terms.
The approaches developed in the works quoted above use subtle comparison ar-
guments [1, 22] or probabilistic representations of solutions [3, 15, 17, 20]. In [3] the
Feynman-Kac formula is used to construct subsolutions 0 < f; < g, < hy of (1.1),

where f, = etf¢, and ¢, h; are the mild solutions, respectively, of

0 oh
% :Lgt+ftﬁgta go = ¥, and (9—1: :Lht+9tﬁht> ho

@.

It is shown that g; (resp. h;) grows locally to oo if d < d,. (resp. if d = d., and in this
case a second application of the Feynman-Kac formula is required). In proving this a
crucial step consists in bounding from below, for suitable classes of Borel sets B C R?

and end points z,y € RY, the bridges
P.X.€B|X,=y), 0<s<t, (1.2)

of a process {X;} with generator L. Finite-time blow-up of any non-trivial solution
of (1.1), in dimensions d < d., then follow from a classical argument that goes back
to [12].

Motivated by the method developed in [3], in this paper we investigate finite-time
blow-up and existence of non-trivial global solutions of semilinear equations of the
form

wy 1+

e T'wy + vt%w, ™", wo(x) = @(x), r e Ry, (1.3)

where ¢ is a nonnegative function, v, o and ( are positive constants, and " is the

pseudo-differential operator

If(x) = / (e ty) Fa) <~ dy

i.e. I' is the generator of the (conservative) transition semigroup of the standard
gamma process. In the linear case 5 = 0, equations of the type (1.3) are of interest

in reliability models based on the gamma process [25], where the solutions represent



failure probabilities of a system undergoing random impacts according to a space-time
gamma noise.

Notice that the symmetrized generator

- o0 e~ vl
17@w=[ (Fla+9) = Fa) T dy

0 [yl

has symbol
log(1+ [¢]) = lm o™ (L [e)* — 1), €eR

(see e.g. [11]) and can be viewed as the weak limit of a1 ((1 — Ay2)* — I) as « goes
to 0. In other terms, a-stable processes can be suitably normalized to converge in
distribution to a gamma process, see [5] and [23]. Thus, the study of the behavior
of (1.3) (finite-time blow up wvs existence of global solutions) constitutes a natural
follow-up to previous investigations, as it can be considered in a sense as a “limiting
case” a — 0.

Let us recall that the gamma process belongs to a special class of Lévy pro-
cesses called subordinators (see e.g. [2] or [21]), a subordinator being a purely non-
Gaussian Lévy process { X;} in R, whose Lévy measure v satisfies v((—o0,0)) = 0 and
| 01 % v(dz) < oo. In particular, the trajectories ¢t — X;(w) are increasing functions
a.s. and the transition kernels P (x,dy) := P(X; € dy|Xs = x) are supported in
[z, 00).

In contrast with the Brownian and a-stable Lévy motions, subordinators enjoy in
general no scaling or symmetry property, nor dimensional-dependent behavior. This
circumstance makes it difficult to carry out the methods in the papers quoted above
to investigate (1.1), since most of those methods rely significantly on the symmetry
and scaling properties of Gaussian and stable distributions. However, in the case we
are considering here the transition densities of the motion process are explicitly given,
and, moreover, it is known that the bridges (1.2) are beta distributed. Together with
the estimates of [18] for the median of beta distributions, this allows us to obtain lower
bounds for the bridge distribution of the gamma subordinator, making it possible to

exploit the Feynman-Kac approach of [3] to derive criteria for finite-time blow of (1.3).



We emphasize that the class of Lévy processes for which both, the Lévy measure
and probability density function are explicitly known, is restricted and essentially
limited to Brownian motion and the Poisson, Gamma and Meixner processes (cf.
[16], [9]). On the other hand, the d-dimensional gamma process (i.e. an R%-valued
stochastic process having as coordinates d independent copies of a Gamma subordina-
tor) seems to require the use of arguments different from the ones used in this paper,

starting with the fundamental Lemma 2.1 below.

Our solutions will be understood in the mild sense (see e.g. [19]), and therefore we
can consider bounded, measurable initial values ¢ > 0. We will show as a consequence

of Corollary 4.3 and Theorem 5.1 that any initial value satisfying
ar < p(x), x > xg,

for some positive constants g, ¢, aq, yields a non-global solution of (1.3) provided

a1 < 1+ o. Similarly, if the initial value of (1.3) satisfies

az

QO(Z') S CQx_ ) T > To,

where g, 9, as are positive numbers and as3 > 1 + o, then the solution u, is global
and satisfies 0 < uy(z) < Ct~*, x > 0, for some constant C' > 0. For the particular
case 0 = 0, if () ~p_ 0o cx™® for some ¢ > 0 and a > 0, then blow-up of (1.3) occurs
if af < 1, and a global solution exists if a8 > 1. Hence, if 0 = 0 and for some € > 0

lim inf =5+ /Pp(z) > 0,

Ir—00

then the solution of (1.3) blows up, whereas if
lim sup 2° /8 (x) = 0,
then the solution of (1.3) exists globally.
Note that without additional difficulty we may replace the operator I" in (1.3)
with the generator I'y given by

e~

dya LS R—i—u

fla) = / T ty) - 1)
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where A is a strictly positive parameter. Indeed, for f € Dom(I')) we have the relation
I'vf(x) = I' fA(Az), where fy(z) = f(z/A). This means that fy is solution of (1.3) if
and only if f is solution of (1.3) with I’y in place of I'.

We remark that, for the parameter constellation a3 = o 4+ 1 in Corollary 4.3 and
in Theorem 5.1, our semigroup bounds (see Lemma 2.1) seem to be not sharp enough
to yield, using our present methods, a subsolution h; of (1.3) growing uniformly on a

ball. Therefore, the blow-up behavior of (1.3) for such constellation remains open.

In the case of systems of equations of the form

Ouy 1

— = Ny + l/ut+ﬁlvt62, Uy = 1,
ot

31),5

rrie Lo+ Fi(ug, vy, Vo = P2,

where A # u, v > 0, and F;} is a positive and measurable function, the solution cannot
be constructed directly from the case A = p = 1, nevertheless the existence and
blow-up criteria for solutions are independent of the values of A,z > 0. In this case
we show that if p1(z) > cz™® and @o(x) > cx™, for = large enough, then blow-up

occurs provided a0 + a3 < 1. We also study the semilinear system

aut
=L = Iy up + vru ol Uy = 1,
ot
a’l]t
ot Dy, ve + vou)/? v, vy = 2,

v, 2 > 0, with integer exponents ;; > 1 and initial values satisfying ¢;(z) < c;x™*

and p9(x) < cox™? for = large enough, where aj,as € (1,00). We show that this
system admits a global solution provided the constants ci,co > 0 are sufficiently

small. In particular, the solution of the system

0
% = FUt + UVt
(1.4)
v
a—tt = F’Ut + UV,

with ug(z) ~ ca™ and vo(x) ~ cx™® for x large enough, is global if min(ag,a;) > 1

and c is sufficiently small. We also show that blow-up occurs if min(ag,a;) < 1,

5



and deal under additional assumptions with critical cases with time-dependent non-
linearities.

We point out that critical blow-up and global existence parameters for semilinear
systems of the form (1.4), with the Laplacian A instead of the operator I', were
investigated in [7] for more general non-linear terms.

Our methods of proof are motivated by the approaches developed in [3] and [17].
As mentioned before, to prove explosion of semilinear equations we use the Feynman-
Kac representation as well as estimates of probability transition densities and bridge
distributions. Existence of global solutions is proved using a general criterion origi-
nally obtained in [17]. Global existence for systems of equations is proved along the
lines of [14] and [17].

The paper is organized as follows. In Section 2 we recall some basic facts about
the gamma process and its infinitesimal generator, and obtain bounds for the gamma
semigroup that will be useful in the sequel. In Section 3 we recall the Feynman-Kac
representation of (1.3), and derive from this representation a criterion for blow-up of
semilinear PDE’s. Using a general argument deduced from [24], we show existence of
global solutions in Section 4. Blow-up of solutions of (1.3) is dealt with in Section 5,

and systems of semilinear PDE’s with gamma generators are considered in Section 6.

2 Estimates of the gamma semigroup

Let G denote the gamma function, i.e.

and let (X]);er, denote the standard gamma process starting from 0, having transi-

tion densities
-1 B

Ye(x) = G(t)e Lo,00) (), reR, t>0,

and generator
e_y

If(x) = / (e ty) - Fa) < dy.



Let {T}, t > 0} denote the operator semigroup generated by I', which is given by

106) = Bl + ) = [ platpyutadds = [ plapule - p)ds,  (2)

y € R,. In the next lemma we prove asymptotic estimates for the semigroup {7}, t >

0}, using results of [4] on the median of the gamma density. Recall that for t > 1, v,

is increasing on [0,¢ — 1] and decreasing on [t — 1, 00).

Lemma 2.1 Let ¢ : R, — Ry be bounded and measurable. Assume that there exist

c1 €10,00), ¢y € (0,00], and a3 > ag > 0 such that for all x large enough,

a2

ar ™ < p(x) < cox™

Then, for alln >0 and 0 < & < 1 there exists to = to(e,n) > 0 such that

1. For allt >ty and all y > 0,

(

1—eN\"er,, w
s0) S ) S TVel) < ol

2. Forallt >ty and any 0 <y <n+1t/2,

(1—-¢)

G —a
sirart  Hoa/2(Y) < T} (1g-1y3209) (y) < co1+ )t~

3. Forallt >ty and any 0 <y <n <1,

(1—-¢)

nec

V2r

nes

t_a1_1/21[0,n] (y) < TtF(l[t_w]so)(y) <(1+ 5)—75_&2_1/2‘

Vor

Proof. There exists xg > 0 such that for all 0 < y <t + 7,

T} ¢(y)

A%

vV

v

Amﬂx+w%@Mw
c1 /Oo(x +y) " y(x)de

Zo

cl/ (x +t+n)" Yy (x)dx

cl% / 00(1 F(t+ 1) /7)Yy, (2)d

zo

61%;;1) /tjl—l/g(l + (t+n)/2)" " Y—a, () dz

7

(2.2)

(2.3)

(2.4)



G(t—CLl) /OO t+7] —a
> - 7/ S —
= G(t) t—a;—1/3 b t—a; — 1/3 e (m)dx

G(t—a)(l—g)n /°°
> ¢ —ay (2)dx
- ! G(t) 20 t—a1—1/3 K ( )
C1 (1 — €>a1 —a;

2 (2+¢e)m

for all sufficiently large ¢, provided (a; + 1/3)/t < € and n/t < . Here we used the
equivalence G(t — a1)/G(t) ~ t~* as t — oo, which follows from Stirling’s formula
G(t) ~ V2rt"1/2e7t and the fact that the median of the gamma distribution with
parameter t — a; is greater than ¢t —a; — 1/3 (and smaller than t — a, ), see Theorem 2

of [4]. Analogously we have, for all y > 0 and all ¢, xy big enough,

T o(y) = /OOO o(x + y)ve(x)de

< o[ @rn) e + el / " @)
< o / " 2 @)z + 2o oe(0)

< % / T @) + ol Pllaoi0)
<

xé‘lt‘”
(62(1 +£/2) + zoe” ™[]l G(t) )tw

S 02(1 + €)t_a2,

which proves (2.3). Concerning (2.4) we have for 0 < y < n+t/2 and ¢t sufficiently

large:

v

2t 2t
/ c@mla—y)dr > o / Tz — y)da
t t

~1/3 ~1/3

2t
c(2t)~% / Ye(x — y)dx
¢

~1/3

A%

v

—n+3t/2
c(2t) / Ye(x)dz
t

-1/3

o (26 (% - /_ th/Q %(ar)da:)

-5 @)™,

v

v



since f:_ol/3 v¢(z)dx > 1/2 and f_O:;+3t/2 Ye(z)dz = P(X] > —n+2) — 0ast — oo by

the law of large numbers. Similarly, for ¢ large enough,

2t 2t
/ @)z —y)dr < c / vy (r —y)d
t t

-1/3 -1/3
2t
< oot - 1/3)‘“2/ Ve(r —y)dr
t-1/3
S Cg(t - 1/3)—112

< (1 + 8)02t_a2.

Concerning (2.5) we have, for 0 <y <n <1 and ¢t > 2,
t t t
ot —1) / ola)de > / @ —y)de > (n(t) At — 2)) / o(z) du.
t—n t—n t—n

Since for any [ > 0,
(t o l)t—l i (t . l)t—lel t_l/2

t—1)=——+—¢€ ~ ~ , t— o0,
il ) G(t) V2mtt—1/2 V2o
it follows that for any 0 < ¢ < 1 and for all sufficiently large t,
t_l/2 t t t_1/2 t
1+¢ xde/ 2)w(x —y)de > (1 —¢ z)dz.
( )\/ﬁ t_nso( ) t_ncﬂ( )iz —y) ( )m t_ncﬂ( )
It remains to note that
t t—a
| artar= - gy e
t—n 1l—a
for all @ > 0 as ¢ goes to infinity, and to use (2.2). g

Remark 2.2 Let {T}, t > 0} be the operator semigroup with generator I'y. From
the relation T} o(z) = [TF o\ (\x) we get, for t >ty and y > 0,

¢ 1—e\" [/t ™" £\ "%
51 ( 3 ) (X) Lot (y) < Tg\go(y) < (1 +¢) (X) 7
s

¢ AN t
e (5) lowa) < T Qcpanl) < calt+2) (§)

e \7}% G) 0 0) < T (g )(0) < (14 \7}(2% G) h



Recall that for 0 < s < t and o > 0, the conditional law of X! given that X[ = z, is
the beta distribution with density

o) = MG B ()T 0D esess
(2.6)

Using the result of [18] on the median of the beta distribution we obtain the following

estimates.

Lemma 2.3 Letn > 0. We have
P,(0< X! <s+nX] =2)>1/2 (2.7)
forall0 <s<t/2,0<y<n 0<t—2n<t—n<z<t, and
P,(0 < X! <2s+t/2|X] =2)>1/2 (2.8)

forall0 <s<t/2,0<y<t/2 and0<t/2 <z <2t

Proof. We have

P0< X <s+nXf=2) = PO<y+ X <s+nXf =2—y)

v

PO< X! <s| X =2 —vy)

/58tzx )dz

I
Q
—~
~
N—
O\m
H
S
N
®
|
-
—
—_
N
SN—
s
®
-
SN
N

vV
«Q
»
S~—
“Q
~
|
V)
N—
O\
<
>
N
Vel
|
—
—
—_
N
SN—
=
w0
—
=¥
N

= Bst(2,1)dz
> 1/2,

because, from Theorem 1 of [18], the median m; of the standard beta density Fs (-, 1)
with mean s/t satisfies

t—2s

0< < i < + —
mg n ms )
g =2t

10



provided s < t/2. Similarly we have

P0< X' <2s+t/2|X] =2) = PO<y+ X! <2s+t/2|X] =z —vy)

> P0< X! <2s|X] =2 —1y)
2s

= Bst(z,x —y)dz
0

_ & 2o/te=y) s—1 . t—s—1
= G(s)G(t—S)/O 2271 —2) dz

G(t) o/t s—1 . t—s—1
—G(S)G(t—s)/o 27 (1 = 2) dz

v

vV
—_
~
o

3 Feynman-Kac representation and subsolutions

Let (Xi)icr, be a Lévy process in Ry with generator L and transition semigroup
{TF, t > 0}. Recall (see e.g. [8]) that the mild solution of
O
ot

admits the Feynman-Kac representation

(y) = Lwi(y) + G(y)we(y),  wo = ¢, (3.1)

t
wi(y) = E [@(y + Xt)eXP/ Ci—s(y + Xs)ds] ,  t>0, y>0. (32)
0
If ¢; is positive (3.2) implies
wi(y) > Elply + Xo)] = Tro(y), yeRy, t>0.

Thus, the solution of

Oy
ot
is also a subsolution of (3.1) provided (; > 0. By linearity this implies the following

:Lwt7 wOZQOZO;

lemma.

Lemma 3.1 Let ¢ > 0 be bounded and measurable. If us, vy respectively solve

%(y) = Luy(y) + G (y)uey), %

with ug > vy and ¢ > &, then uy > vy.

(y) = Lou(y) + & (y)ve(y),

11



We will use the fact that if u; is a subsolution of

0wt
ﬁ (Z/)

where v, 3 > 0, then any solution of

0
W) = Lu(y) + vl (o), v =,

= Lwy(y) + v (y),  wo =, (3.3)

remains a subsolution of (3.3). This follows from Lemma 3.1.

Going back to (3.1), notice that from the Feynman-Kac representation,
wi(y) = / ply+o)E {eXp/ Gi-s(y + Xs) dS‘Xt—x} pi(x)dx

o(x)p(x —y)E {exp/o Coos(y + X)ds

.
- / p(z)plx —y)Ey {exp /0 t Groo(X,)ds
/ p(x)pe(z —y) exp (Ey [/Ot Ct—s(Xs)dS)Xt - xD dr. (3.4)

where on the last line we used Jensen’s inequality. Hence, when L = I'; (3.4) reads

wly) > /yooso@m(x—y esxp ( / / Btz — .2 — )Gz >dzds) dr,

where 3, ,(z —y,z — y) is given by (2.6).

y—i—Xt:x] dx

X; :x] dx

>

We close this section with a lemma that will be helpful in the proof of explosion, see

84 in [12] for the case L = A.

Lemma 3.2 Let 0 € R and v > 0. Assume that the solution u; of

%@) = T'wi(y) + vi7v(y)wi(y), Wo = ¢, (3-5)

satisfies

lim inf w(x) = oo,
t—o0 0<z<1

where v : Ri — R, is a measurable function such that utﬁ < forallt > 0. Then u;

blows up in finite time, in the sense that there exists t > 0 such that

/Olut(x) dr = 00

In particular, explosion in LP(R, )-norm occurs for all p € [1,0].

12



Proof.  Given ty > 0, let uy = wyy4¢ and K (ty) = info<y<q wy, (y). The mild solution

of (3.5) is given by

ut(x):/o Ye(y — x)up(y dy—l—u/ / Ye—s( Us(Y) Vs, (y) dy ds.

Thus, for any € € (0,1) and t < (1 —¢)B A1,

1
/ut(x)dx
0
> / |ty = 2ot -+ v [ / | ety =t )dydeds
A T
> //% — z)up(y)dydx + v s//% sy — ) ul P (y)dydads
0 0
y
K (to) / / el —y d:vdy+1// s/ 15 /%_S(x—y)dxdyds
0 0
K(to)/ / %(x)dxdy—i-u/ 8”/ ui+6(y)/ Ye—s(x)dxdyds
1+ﬁ
[ [ Gt [ / 0 [ Gyt
0 ! 6 t
¢ 1+
4th)/0 W / / t—s)y(t 5 s
1
> )/ yPdy + — / / LBy y 1 dyds
0
) / / 1+6 1 —e)B
1"‘5 dyds,

where we used the inequalities 0 <t—s <t < (l—¢)fand 0 <tG(t) <1,0<t < 1.

Vv

v

Vv

K(to

)
)

v

>

Holder’s inequality yields

</01u3(y)dy)1+6 < </Olui+6(y)y(1—e)ﬁdy) (/01 y‘“‘a)dy)ﬁ

1
= ¢’ / ul P (y)y =y,
0

hence letting a(t) = fol u(z) dx we get

vehl
u(t) > 4{?("{0)@) + %/0 s70 P (s) ds, t<(1l—g)BAL

13



It remains to choose ty such that the blow-up time of the equation

~ _ K(to) vel [ o~1403
U(t) = m—i—T/o sTu (S)dS, t < (1—6)6/\ 1,
is smaller than (1 —¢)8 A 1. O

Choosing v, = utﬁ in Lemma 3.2 yields immediately:

Corollary 3.3 Let 0 € R and v > 0. If the solution u; of

ow "
) = Puly) + W), wo =,
satisfies

lim inf w(x) = oo,
t—o0 0<z<1

then u; blows up in finite time, in the sense that there exists t > 0 such that

/Olut(m) iz = oo,

4 Existence of global solutions

We have the following non-explosion result, obtained originally by Nagasawa and Sirao
[17] for integer 3 > 1. In the next theorem, as in the previous section, {T}, ¢t > 0}

denotes the transition semigroup of a Lévy process with generator L.

Theorem 4.1 Let 0 € R and B,v > 0. Assume that
|t ar < o
0 v

for some b € (0,1). Then the equation

0
% = Lw, + vt®w} P, wo = ¢, (4.1)

admits a global solution u,(x) which satisfies

1/,6’TL
0 < w(z) < T o) . zER,, t>0,

(b= v Jy o TFl fdr)

14



Proof.  This is an adaptation of the proof of Theorem 3 in [24] to our context of

time-dependent non-linearities. Recall that the mild solution of (4.1) is given by
t
uy () = Trop(z) + 1// roTE ul P (x) dr. (4.2)
0

Defining
-1/

t
B(t) = (b — ﬁl// T’UHTTL@Hgodr) , t>0,
0
we have B(0) = b~/ and

d

t -1-1/8
80 =ve ol (v-ov [lztaltar) = velTEeE ),
0

hence .
Blt) = b7 4 v / v T l|2 B2 () dr.
0
Let (¢, 2) — v;(x) be a continuous function such that v(-) € Co(R, ), t > 0, and
Tho(x) <u(z) <BPBMTE(), 20, 1€R,.
Let now
t
R(0)(t.2) = Tho(o) +v [ r°TE ol (o)
0

We have

t
RO)(t2) < Thela) + 009 [ 17 BHOG)TE, (Thola) ar
0

t
S TtL()O(x) + Vbl—i_l/ﬁ/ TUBl—’_B(T)Tt[LrTTLQO(;E)”Tf’gp”god’[”
0

= orset) (7 4 [ BT ).
0
hence
TEo(z) < R(v)(t,z) < bYPB(t)TEp(x), t>0, zeRy.
Let
u)(z) = TFe(z), and ul™(z) = R(u")(t,r), n €N.
Then ud(x) < ui(z), t > 0, x € Ry. Since T} is non-negative, using induction we

obtain

0 < ul(z) <ul(z), n > 0.

15



Letting n — oo yields, for t > 0 and x € R,
b/OT ()
1/8
(b= v Jy ro Tl edr)

0 < uy(z) = lim u(z) < VYPB(t)TEp(z) <

n—00 -

< Q0.

Consequently, u, is a global solution of (4.2) due to the monotone convergence theo-

rem. O

As an application of Theorem 4.1 to the case L = I', a global existence result can be

obtained under an integrability condition on ¢.

Corollary 4.2 Let 1 <g<oo,0>—1,v>0, and 3 >2q(1+0). If p € LYR,) is

non-negatiwe and |||, is sufficiently small, then the solution u; of

ow
6—;:Fwt+vtawtl+ﬁ, wo = ¢,

is global and satisfies, for some ¢ > 0,

0 <wu(z) < et/ () x € Ry,

for all t large enough.

Proof. From Holder’s inequality and (2.1) we have

TF o)l < llellgllvell,,  1/p=1-1/q,

where

Ooxp(t_l) 1/[)
Il = ( dx)
0

G(t)p
Gp(t — 1)+ D)V [ (% (pz)rt) 1/p
p1G(t) </0 Gt —1) + 1)6 da:)

G(p(t—1)+1)¥»
PG (1)
(p(t = 1) + UDHCRIE o)
~ pt—1+1/pgt—1/2 (2m)

1172 (1 - 1/t + 1/(pt))t(p(t — 1) + 1)1/(2p)61_1/p
(t—1+1/p)p'/r

(gw)—l/@q)
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PP =D DD

(t—1+1/p)p'/r
~ V21D 1/2D) (91 (20)

~ (Qm)—l/@q)p—l/(?p),

as t — oo. Hence for some ty > 0 and ¢ > 0,

0o to o]
| eIl < el [ edeclely [ < oo
0 0

to

provided > 2¢(1 + o), and the conclusion follows from Theorem 4.1. O

Under a polynomial growth assumption on ¢ we get the following more specialized

result as another corollary of Theorem 4.1.

Corollary 4.3 Let 0 € R and assume that there exist ¢ > 0, a > 0 and x¢g > 0 such
that

o(x) < cx™?, x> x.
If aB > 1+ o, then the solution u; of

ow
L = Iw, + vt"w, ™, wy =

ot
1s global, and there exists C' > 0 such that

0 <u(zx) <Ct ™, r e Ry,

for all t large enough.

Proof.  Let a be such that a« < @ < (14 0)/p. For any ¢ > 0 there exists o such
that p(z) < ér~% x > Zo. It remains to apply (2.3) of Lemma 2.1 and Theorem 4.1.
U

5 Blow-up of solutions

In this section we obtain a partial converse to Corollary 4.3.

17



Theorem 5.1 Assume that ¢ > 0 satisfies p(x) > cx™® for all x large enough, where
a,c>0. Letv>0, >0 and af <1+ o. Then the equation

ow
—t_ Tw,; + Vt"thﬁ, wy = @,

ot

blows up in finite time.

This result is a consequence of the lemmas 3.1 and 3.2 above, and of the following

lemma.

Lemma 5.2 Assume that ¢ > 0 is such that ¢(x) > cx™® for all x large enough,
where a,c > 0. Letv >0, 3> 0, and let g; be the solution of
Jwy
ot
If af <1+ o, then

(y) = Twi(y) + vi" (T} )’ (Ywey),  wo = . (5.1)

lim inf g¢;(z) = oo.
t—00 0<z<1

Proof.  Let 0 < n < 1. The Feynman-Kac representation and (2.3) yield, for
0<y<mn+t/2,t> 6ty (where ty is defined in Lemma 2.1), and some ¢y > 0:

) = [ elaute = )8, [exn (v | (=5 (L o) ) 5T = o] o
> /y N p(x) 1z —y)E, {eXp <60V / o Logi—s (XDt — s)”‘“ﬁds) ‘Xf = g;] dx

to

2t t—to
> / ()i (x — y) exp (COV/ (t=s)""Py(0 < XJ <n+t—s]X; =x)ds
t—1/3 to

Vv

2t £/6
/ o(x)y(xr — y) exp <Col// (t—5)"""P,(0 < X} < 25 +1/2|X] = x)ds)
t

-1/3 to

_ cnl t/6 -
C1l o2 ()" exp <% / (t — 5)7%ds | |

to

Vv

where we used (2.4) and (2.8) to obtain the last inequality. Hence

to

—a CoV o 5¢ 1+o—afB
= 1[0777+t/2] (y)CIt eXp (m ((t — t0>1+ 6 - <E) ,

and it suffices that a8 < 1+ o in order to get infocy<1 g:(y) — 00 as t — oo. O

v [
gt(y) = Liogesg(y)eit " exp 7/ (t—s)7"Pds (5.2)

18
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Notice that the criteria for blow-up of Lemma 5.2 can easily be adapted to other
time-dependent non-linearities. More precisely, a time-dependent non-linearity of the

form «(t) will lead to finite-time blow-up provided

t/6
lim inf t_a/ (t —s)"aft — s)ds > 0,
¢

t—o0
0

for some € > 0.

6 Systems of semilinear equations

First we consider the following system of semilinear equations

aut

o = Dt v/ o)

(6.1)
avt
E = F)\gvt + VQUtQIUtﬁQQ,

where ug = 1 and vy = @9 are nonnegative bounded measurable functions, v, 5 > 0,
and f;; € {1,2,...}, 7,7 = 1,2. The solution of this system can be expressed in terms
of a continuous-time, two-type branching process evolving in the following way. The
particles of type i = 1,2 live independent exponential lifetimes of mean 1/v;. During
its lifetime a type-i particle develops an independent Markov motion of generator
I'\, and, at the end of its life, it branches, leaving behind (3;; individuals of type 1
and 3, individuals of type 2 that appear where the parent particle died, and evolve
independently under the same rules. The state space of such branching process is the

space N¢(S) of finite counting measures on S := R x {1,2}, where a measure

= Z O(ws,1) + Z O(y;,2)
i=1 j=1

represents a population consisting of n individuals of type 1 at positions z1, ..., z,,
and m individuals of type 2 at positions yy, ..., ym. Let X} be the random element of
N;(S) representing the population configuration at time ¢ > 0, starting from a given

p € N¢(S). For any bounded measurable f : .S — [0,00) we define

wi(p)=E, | [ fG)|, weN(sS), t>0, (6.2)

z€supp(X})
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where E, denotes expectation with respect to P(-|Xy = p), and S; = 14 fot Ns1ds+
Vo f(f Nsods, where N ; is the number of particles of type ¢ in the population at time
s. Choosing f so that f(-,i) = ¢; for i = 1,2, one can show, similarly as in [14], that
the solution of (6.1) is given by u; = wy(-, 1) and v; = wy(+, 2), where for shortness of

notation we write wy(z,7) when p = 6, ;. We now prove the following theorem.

Theorem 6.1 Let the initial values p1,ps of (6.1) be bounded measurable functions

such that, for some constants c1,co > 0 and aq,aq € (1,00),
0<¢i(z) <cz™™  and 0< () < o™

for all x large enough. If c1,co are sufficiently small, then the solution of (6.1) is

global.

The proof of the above theorem uses substantially the probabilistic representation of
(ug, v) derived from (6.2); see [14] for a short argument in the case 8;; =1, 4,7 = 1, 2,

and for a detailed description of the probabilistic framework.

Proof. Without loss of generality we assume that f(z,7) 1= @;(z) < ¢;(x7% A1) for
all z > 0 and i = 1,2. Let k = k(t) denote the number of branchings occurring in the
interval [0,1], and let wf* () = B, |5 [Leqppixsy S(2)i 5= k|, 1 € Ny(S), b € N

Therefore,

wi(p) =Y wi (),  peNKS), t>0.
k=0

Writing 7;\ * for the transition densities of the gamma process of parameter \;, i = 1, 2,

and defining
mﬂaw:/jmww@—m@, (2,i) €S, t>0,
R

we see that, for g1 =370 | 8, 1) + D200 Oy,.2),s

wi () = <H Wtf(@&)) <H7th(yj>2)> :

Recall that the first branching time, 7, is exponentially distributed with parameter

nvy + muy. Given that 7 > s, the evolution of the population up to time s follows a
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stochastic translation originated by the particle motion processes. Hence,

S, = / (nvy + muy) dr.
0

Notice that a given particle of type ¢ performs the first branching with probability
v;/(nvy + muy). Consequently, conditioning on the first branching time, the above

equality yields
n ¢
141 _ s
= lipoy———— (nv1+mue)s [ (nv1+mue) dr
wy (1) {n£0} — ZEZI /0 (nvy + mun)e e
. A1 — . 1 P11 2 B2 d
Vs (Z xl) (ﬂ-t—sf(za )) (ﬂ-t—sf(zy )) zZ

R
X ﬂswt(g)s(xl, 1) H Wswt((i)s(yh, 2)ds
=1 h=1

[

m.
Vo —(nv1+mua)s , [ (nvi+mus) dr
Lim E 1 2 o
T Mo nuy +muy S /0 (a + mws)e ‘
. A2 _ o). 1 B21 9 B22 d
V2 (2 = y) (mems f(2,1))7 (M= f(2,2))7* dz
R

X H mw'” (1) H T (yn, 2) ds,
I=1 h=1
hts

and therefore,

) n m t B11+B12—1
w! )(M) < VmH?th(xl, 1) Hwtf(yh,Q)/ (supﬂsf(z)) ds
=1 h=1 0

z€S
n m t B21+B22—1
+ ngHmf(xl,l)Hmf(yhﬂ)/ (supwsf(z)) ds,
=1 h=1 0 \z€5
where we used that [|f|lc < 1 and Wswt(g)s(z,i) = mf(z,4), (2,4) € S, t > 0.
Hence,
W © t [(B114B12)A(B21+B22)]—1
al) < vt myul®) [ (supmsa) b (63)
0 zEe

More generally, for £k = 0,1, ..

° )

n t
() = Ly Y / s ( / wt(f)s(x)K("(dX)> (zi,1)  (6:4)
— J, NF(S)
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X H ﬂswt(ﬁ)s(xl, 1) H ﬁswt(ﬁ)s(yh, 2)ds
h=1

+ 1{m¢0}’/22/ s (/N © wi, () K (dx)> (yn,2)

X H 71-su)t s mlu H wzgﬁ)s(yfw 2) dS,
h=1

3

h#j
where the measure K (%% (dy) is supported by a population at site z, consisting of 3
type-1, and (3;; type-2 individuals. By induction on k& we will prove that for ¢ > 0,
f= i Oy Z;nzl O(y;,2) and k > 1,

kk’l

¢ Bu—1 k
wi (p) < k,Hn+m+z<ﬁ ~ 1)) ( / (sumsf(Z)) ds> w® (), (6.5)

zeS
where v = v1 V vy, B = (Bi1+512) A(Ba+522) and % = (B11+Fi2) V (B21+Faz2) -
In fact, we have seen above that (6.5) is valid for & = 1. If (6.5) holds for some k > 1,
then, using that a branching of type ¢ contributes to the current population with
B — d;1 individuals of type 1, and ;2 — d;2 individuals of type 2, we obtain from (6.4)
that

k
w ()
1%

p k=1
< Hn(n—i—m—l-@n—l-ﬁlz—1+L(6*—1))

=0 .
L1 () ]

n n m Bx—1
‘1 Z Wswt—sf(xia ]-) H 7"-377-13—3.]0(3:17 ]-) H 71-sﬂ-t—sf(yha 2) (Sup st(Z))
=1 h=1

= 2€8
1#£i
e k=1

+ %g(n—km—i-ﬁm—i-ﬁm—1+L(6*_1))

t t—s Bo—1 7k
[ sup WTf(Z)) dr] ds

z€S

B-1
szwsm s f(y;,2 stm sf (1,1 stm 5.f (Yn 2 (Supﬂsf(Z))

z€S
h#a
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k—1
Vk+1

o, n+m| [t g1
< g(n +m+ e+ 13" = 1))w () F 1 /0 (itelg mf(z)) dr]
+1 kK ‘ 8.—1 k+1
< 11n+m+aﬁ —1))w ()(u) [/0 (Sztelgmf(z)) dr] ,

which proves the desired estimate.

Setting Xo = p1 = d(. ;) in (6.5) yields

wy(z,1) < mf(z,1) <1+ka >, t>0, (6.6)

where

w(t) = %:ﬁu Fi(B - 1)) <,, /Ot (sup?rsf(z))ﬁ*_l ds)k

z€S

Taking M > 0 large enough we obtain from Remark 2.2 that

M Bi—1 %) k
ve(t) < (ﬁ*u (/0 (51615) st(z)) ds + Const. /M ((c1 v cz)s_“””)ﬁ*_l ds)) :

Thus, if ¢1, ¢y are so small that vg(t) < 1 uniformly in ¢ for all &, then, due to

(a3 A az)(B« — 1) > 1, the solution of (6.1) is global. O

Next, consider the nonlinear system of equations:

8(;;15 — Iy —G—I/ta 1+61 ﬁz

(6.7)
a’l]t
E = Fuvt —+ Ft(ut,vt),

up = 1, Vg = Y2, A\, i, v > 0, where F} is a positive and measurable function.

Proposition 6.2 Assume that pi(x) > cx™® and ps(x) > cx=* for x large enough,
with ay,a9 > 0. Then (6.7) blows up if a1 + azfs < 1+ 0.

Proof. From Lemma 3.1 and Lemma 2.1 we have T s (y) > cop®t %21 4(y), and
v (y) = (T a(y)™ = P25 10 4 (y).
We conclude by an application of Theorem 5.1 and Lemma 3.1. 0
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In the remaining part of this section we obtain conditions for explosion in finite time

of the system

ou
a—tt = FUt + t”lutvt
(6.8)
9v: _ Ty + (1Vt)2uw
8t - t tUt

with ug = 1, vg = o, and oy, 09 € R.

Lemma 6.3 Assume that o9 > o1 and that for some initial conditions p1 < g, the
solution u; of (6.8) satisfies

inf w(r) — o0
0<z<1

ast — oo. Then u; blows up in finite time, in the sense that there exists t > 0 such

that .
/ w(z)dz = oo.
0
Proof. By linearity, u; — v; is solution of

9 o o
(= v) = Dy = v) + w17 = (1V 1)), (6.9)

with ug — vg = ¢1 — 2 < 0, hence from the integral form of (6.9):

(e — 00)(x) = TF (o — v0) + / (s — (1V 8)7)TF (uav,) (2)ds,

we have u; —v; <0, t > 0. It remains to apply Lemma 3.2 to the equation

ou "
a—;(y) = Tug(y) + 17 ve(y)ue(y),
with 6 =1, v =1, and to use the inequality v; > u;. O

The above explosion criterion also implies blow-up in all L? norms, p € [1, o], and is

used in the next proposition.

Proposition 6.4 Assume that oo > o1 and @1(x) > cx™™, po(x) > cx™®, for x
large enough. Then (6.8) blows up if min(ay,as) < 14 oy. In the critical case

min(ay, az) = 1+ o1, blow-up occurs if max(ay,as) < 1+ o3.
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Proof. 1t suffices to prove blow-up for any pair of functions @1, s such that ¢ (z) =
cx™™ and @y(x) = cx™ for x large enough. Moreover, without loss of generality we
may assume that a; > as and ¢; < 9. From (2.3) of Lemma 2.1, there exists ¢y > 0
such that for all ¢ > ¢ty and y € R,

Ut(@/) > TtFQOI (y) > Ct_all[O,t-Hﬂ (y>
and
vi(y) > T paly) > ct™ 10,4497 ().

The Feynman-Kac formula, (2.4) and (2.8) yield, for 0 <y <n+t/2 and t > 2V ¢,

w) = [ ot =B o [ v XD

t/6
exp (C / (t = )7 Lo ) (X )d8> ‘Xf = l’] dz
to

Vel :x] dz

> / " @)z — y)E,

-/ @)

~1/3

£/6
X exp (c/ (t—s5)" 2t P,0< X, <n+t—s|X] = x)ds) dx

to

2t
> [ ey
t—1/3
t/6
X exp c/ (t—s) 2t P,(0 < X}, < 2s+t/2|X} =x)ds | dx
to
>

2t c t/6
/ p1(z)y(z —y)exp | 5 / (t —s)~2*1ds | da

t—1/3 2 to

—a 1 e —ag+o
> ot Mexp | = (t—s)"*"'ds
2 Ji
c 5t o1—ag+1

> Ty b g )ormaetl (20 '
oo (g (0= () )

Hence, with n = 1, we infer blow-up from Lemma 6.3 if ay < 1 + o;. Turning to the

critical case, if a; = 1 4 0y the above estimate yields u¢(y) > caljg /9 (y)t™*, and

from (2.7) and (2.5) we have, for all 0 <y <,

t

w) = [ eaorite -0, | [ u(xDas|xE =2 a

[e.e]
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> [ etz
X exp (cz /tt(t — )P0 < XU < (t— 5)/2|XT = x)ds) dz
> /t ; p2(2)%(r —y)

t/3
X exp 02/ (t—s)" 2P, (0 < XI <n+s| X =2)ds | do
t

0

t o (3
> / QPQ(QE) dz t_1/2 exp | — / (t _ S)—a1+02ds
t—n 2 ¢

0

t/3
c
> ot 2 2 exp 52/ (t —s)" 11725
t

0

Hence, Lemma 6.3 implies blow-up provided a; < 1 + o5. O
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