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Abstract

We present several functional inequalities for finite difference gradients, such
as a Cheeger inequality, Poincaré and (modified) logarithmic Sobolev inequali-
ties, associated deviation estimates, and an exponential integrability property.
In the particular case of the geometric distribution on N we use an integration
by parts formula to compute the optimal isoperimetric and Poincaré constants,
and to obtain an improvement of our general logarithmic Sobolev inequality.
By a limiting procedure we recover the corresponding inequalities for the expo-
nential distribution. These results have applications to interacting spin systems
under a geometric reference measure.
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1 Introduction

Isoperimetry consists in finding sets of minimal surface among sets of a given volume,

i.e. to search for optimal constants c in inequalities of the form

cI (µ(A)) ≤ µs(A), (1.1)
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where µs and µ are respectively surface and volume measures and I is a non-negative

function on [0, 1]. Isoperimetric constants are linked, via co-area formulas, to func-

tional inequalities such as Poincaré or logarithmic Sobolev inequalities. Discrete

isoperimetry has been studied in various contexts, such as reversible Markov chains

[10], [15], graph theory [1, 18], statistical mechanics, cf. e.g. [9].

In this paper we consider the general discrete setting of a probability space

(E, E , µ), and a finite difference gradient d+ defined as d+f = f ◦ τ − f , where

τ : E → E is an absolutely continuous mapping. Typically E = N and d+f(k) =

f(k + 1) − f(k), in this case d+ can be used to express the surface measure of a set

as the expectation of a discrete gradient norm. However, E can be a more general,

even uncountable, space. The abstract case of a metric space has been considered in

[5], [2] for a gradient having the derivation property.

In Section 2 we prove a discrete generalization of Cheeger’s inequality [7], i.e. a

lower bound on the spectral gap λµ in terms of the isoperimetry constant hµ, using the

arguments of [1] and [18]. When µ is the geometric distribution π on N with parameter

p ∈ (0, 1) we show in Section 3.1 that hπ = (1 − p)/p and λπ = (1 − √p)2/p. The

lower bound for λπ obtained from Cheeger’s inequality turns out to be optimal for

the geometric distribution.

A measure µ is said to satisfy a logarithmic Sobolev inequality [12] with gra-

dient d and constant C > 0 when

Entµ[f 2] ≤ CEµ
[
|df |2

]
, (1.2)

where Entµ[f ] = Eµ[f log f ]−Eµ[f ] logEµ[f ] denotes the entropy of f under µ. If the

gradient df has the derivation property, (1.2) is equivalent to the following modified

logarithmic Sobolev inequality

Entµ[ef ] ≤ C

4
Eµ
[
|df |2ef

]
. (1.3)

Such modified inequalities have been established for Poisson and Bernoulli measures

on N in [3], using the finite difference gradient d+. On the other hand, modified

logarithmic Sobolev inequalities for the exponential distribution have been obtained

in [2] under the additional hypothesis that f is c−Lipschitz, i.e. |df | ≤ c, when d has

the derivation property.
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In Section 3.2 we adapt the method of [2] to the geometric distribution, which

can be viewed as a discrete analog of the exponential distribution, since the inter-jump

times of the Poisson (resp. binomial) process have exponential (resp. geometric) dis-

tributions. For this we use an integration by parts formula and replace the derivation

rule used in [2] with bounds on the finite difference gradient d+, deduced from the

mean value theorem. As noted in [9], the logarithmic Sobolev inequality does not hold

for d+ as stated in (1.3) under the geometric distribution with parameter p (take e.g.

fa(n) = n log a and let a↗ 1/p). We will show that (1.3) does hold for the geometric

distribution under the further assumption |d+f | ≤ c, with a constant depending on c.

In Section 3.3, using the Herbst method we obtain a deviation result for the geometric

distribution, which differs from the deviation inequality recently obtained in [13] from

the covariance representation method for infinitely divisible distributions. Although

the integral part [X] of an exponential random variable with parameter λ has a geo-

metric law of parameter e−λ, it does not seem possible to apply existing results on the

exponential distribution [2] in our setting. For example when f : N→ R is Lipschitz,

f([X]) is not the composition of a Lipschitz function with X. However, exponential

random variables can be approximated in distribution by geometric random variables,

and in this way we recover the functional inequalities proved in [2] for the exponential

distribution.

In Section 4 we obtain a more general result, stating that any distribution µ

that satisfies a Poincaré inequality with constant λµ for a finite difference gradient

also satisfies a logarithmic Sobolev inequality of modified type for all function f such

that |d+f | ≤ c, which implies deviation bounds.

In Section 4.2 we present an exponential integrability criterion.

Let us mention that the results of this paper can be applied to an interacting

spin system under a geometric reference measure, for which a logarithmic Sobolev

inequality and a deviation inequality can be proved, extending the results established

in [9] under Poisson reference measures.
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Notation

Given a probability space (E, E , µ), let τ : E → E denote a map absolutely continuous

with respect to µ. We denote by d+ the finite difference gradient operator defined as

d+f = f ◦ τ − f = τf − f,

where f ◦ τ will be denoted by τf for shortness of notation. If x ∈ R is such that

µ(f ≥ x) ≥ 1/2 and µ(f ≤ x) ≥ 1/2, we say that x is a median of f under µ, and

write m(f) = x. We recall that for every median of f we have

Eµ [|f −m(f)|] = inf
a∈R

Eµ [|f − a|] .

We will need the co-area formula

Eµ
[
|d+f |

]
=

∫ +∞

−∞
Eµ
[
|d+1{f>t}|

]
dt, (1.4)

which follows easily from the relations

(b− a)± =

∫ ∞
−∞

(1{a>t} − 1{b>t})
±dt, a, b ∈ R.

If E = N then it is natural to consider the shift τf(k) = f(k + 1), k ∈ N, and the

associated gradient

d+f(k) = f(k + 1)− f(k), k ∈ N. (1.5)

Note that given A ⊂ N we have

{|d+1A| > 0} = {|d+1A| ≥ 1} = {k ∈ A : k + 1 ∈ Ac} ∪ {k ∈ Ac : k + 1 ∈ A},

i.e. {|d+1A| > 0} represents a frontier ∂A of A, and Eµ[|d+1A|] represents the measure

of ∂A. Throughout this paper, µ denotes an arbitrary probability measure on E, while

π denotes the geometric distribution with parameter p ∈ (0, 1) on E = N.

2 Isoperimetric and Poincaré inequalities

Given a measure µ on E, let hµ denote the optimal constant in the inequality

hµEµ [|f −m(f)|] ≤ Eµ
[
|d+f |

]
, (2.1)
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i.e.

hµ = inf
f 6=const

Eµ [|d+f |]
Eµ [|f −m(f)|]

.

Several analogs of Proposition 2.1 and Proposition 2.2 below have already been proved

in [1], [15], [18], for connected graphs and for Markov chains, under reversibility or

ergodicity assumptions. The gradient used in our setting is different but the proofs

are similar and stated for completeness.

Proposition 2.1 We have

hµ = inf
0<µ(A)≤ 1

2

Eµ [|d+1A|]
µ(A)

. (2.2)

Proof. We will prove the equality

hµ = inf
µ(A)>0

Eµ [|d+1A|]
min(µ(A), 1− µ(A))

,

which clearly implies (2.2). Recall that m(1A) = 0 if µ(A) ≤ 1/2, and m(1A) = 1 if

µ(A) ≥ 1/2, and Eµ [|1A −m(1A)|] = min(µ(A), 1− µ(A)). Let

h = inf
0<µ(A)≤ 1

2

Eµ [|d+1A|]
µ(A)

.

We have

hEµ [|1A −m(1A)|] ≤ Eµ
[
|d+1A|

]
, A ∈ E , µ(A) ≤ 1/2.

From the co-area formula (1.4) we have, sincem(1{f>t}) = 0, t ≥ m(f), andm(1{f≤t}) =

0, t ≤ m(f):

Eµ
[
|d+f |

]
=

∫ +∞

−∞
Eµ
[
|d+1{f>t}|

]
dt

≥
∫ +∞

m(f)

Eµ
[
|d+1{f>t}|

]
dt+

∫ m(f)

−∞
Eµ
[
|d+1{f≤t}|

]
dt

≥ h

∫ +∞

m(f)

Eµ
[
1{f>t}

]
dt+ h

∫ m(f)

−∞
Eµ
[
1{f≤t}

]
dt

= hEµ
[
(f −m(f))+

]
+ hEµ

[
(m(f)− f)+

]
= hEµ[|f −m(f)|],

hence h ≤ hµ. This concludes the proof, since the converse inequality is obvious.

�
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Let λµ denote the optimal constant in the Poincaré inequality

λµVarµ[f ] ≤ Eµ
[
|d+f |2

]
, (2.3)

under µ, i.e.

λµ = inf
f 6=const

Eµ [|d+f |2]
Varµ [f ]

.

The next result is a Cheeger type inequality, i.e. a lower bound on λµ which shows

that the strict positivity of hµ implies a Poincaré inequality.

Proposition 2.2 We have (√
1 + hµ − 1

)2
≤ λµ ≤ 2hµ. (2.4)

Proof. Given a function f , let g = f − m(f). We have m(g) = 0, which implies

m(g+
2
) = m(g−

2
) = 0. Applying (2.1) to g+

2
and g−

2
we get

hµEµ
[
g2
]

= hµEµ
[
g+

2
]

+ hµEµ
[
g−

2
]

≤ Eµ
[
|d+g+

2|+ |d+g−
2|
]

= Eµ
[
|2g+d+g+ + |d+g+|2|+ |2g−d+g− + |d+g−|2|

]
≤ 2Eµ

[
g+|d+g+|+ g−|d+g−|

]
+ Eµ

[
|d+g+|2 + |d+g−|2

]
≤ 2Eµ

[
|g|
(
|d+g+|+ |d+g−|

)]
+ Eµ

[
|d+g+|2 + |d+g−|2

]
≤ 2Eµ

[
|g||d+g|

]
+ Eµ

[
|d+g|2

]
≤ 2‖g‖2‖d+g‖2 + ‖d+g‖22,

where we used the relations |d+g+|+ |d+g−| = |d+g| and |d+g+|2 + |d+g−|2 ≤ |d+g|2.
This implies

(
√

1 + hµ − 1)‖g‖2 ≤ ‖d
+g‖2.

In the general case we have

(
√

1 + hµ − 1)2Varµ[f ] = (
√

1 + hµ − 1)2Varµ[g]

≤ (
√

1 + hµ − 1)2‖g‖22
≤ Eµ[|d+g|2] = Eµ[|d+f |2],
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therefore λµ ≥
(√

1 + hµ − 1
)2

. Moreover we have

λµ = inf
f 6=const

Eµ [|d+f |2]
Varµ [f ]

≤ inf
∅6=A∈E

µ(A)≤1/2

Eµ [|d+1A|]
µ(A)(1− µ(A))

≤ 2hµ.

�

Note that (2.4) also yields an upper bound on hµ in terms of λµ:

hµ ≤ λµ + 2
√
λµ. (2.5)

3 The geometric distribution

3.1 Optimal isoperimetric and Poincaré constants

We take E = N and the gradient

d+f(k) = f(k + 1)− f(k), k ∈ N.

Under π the Laplacian L = −d+∗
π d+ is given by

−d+∗
π d+f(k) = f(k + 1)− f(k) +

1

p
1{k≥1}(f(k − 1)− f(k)),

i.e. L = d+ + 1
p
d− with

d−f(k) = 1{k≥1}(f(k − 1)− f(k)), k ∈ N.

Poincaré inequalities for general discrete distributions have been proved in [4], [6],

[8], [17]. Theorem 1.3 in [4] shows in particular that a discrete distribution µ on N
satisfies (2.3) if and only if

µ({n}) ≥ cµ([0, n])(1− µ([0, n])), n ≥ 0,

for some constant c > 0. It is easily seen that the geometric distribution π with

parameter p ∈ (0, 1) given by:

π({k}) = pk(1− p), k ∈ N,

does satisfy this hypothesis. We now prove an isoperimetric inequality for the geo-

metric distribution, which will imply a Poincaré inequality from Cheeger’s inequality

(2.4). The proof relies as in [2] on an integration by parts formula under π.
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Lemma 3.1 Let f : N→ R. We have

Eπ[f ] = f(0) +
p

1− p
Eπ[d+f ]. (3.1)

Proof. Letting g = f − f(0) we have the Radon-Nikodym type relation

Eπ[τg] =
1

p
Eπ[g], (3.2)

since g(0) = 0, and

Eπ[d+f ] = Eπ[d+g] = Eπ[τg]− Eπ[g] =

(
1

p
− 1

)
Eπ[g] =

1− p
p

(Eπ[f ]− f(0)).

�

Note that to some extent, (3.2) characterizes the values π(k) of the geometric dis-

tribution, k ≥ 1, except for π(0). Instead of d+ we may use the gradient d−, since

similarly to the integration by parts formula we have the isometry

Eπ[N(d+f)] =
1

p
Eπ[N(−d−f)],

for e.g. N(x) = x, N(x) = |x|, N(x) = |x|2, which is equivalent to the reversibility of

the birth and death process with generator L = −d+∗
π d+. In particular the gradient

norm expectations generally used in the context of graphs and Markov chains [1], [15],

[18], are here of the form

Eπ[N(d+f)] +
1

p
Eπ[N(d−f)] = 2Eπ[N(d+f)]

for N(x) = |x|, N(x) = |x|2, and coincide with Eπ[N(d+f)] up to a constant factor.

Proposition 3.2 Under the geometric distribution π we have

hπ =
1− p
p

. (3.3)

Proof. From the integration by parts formula (3.1) we have

Eπ [|f −m(f)|] ≤ Eπ [|f − f(0)|] =
p

1− p
Eπ
[
d+|f − f(0)|

]
≤ p

1− p
Eπ
[
|d+f |

]
,

which shows hπ ≥ (1 − p)/p. On the other hand, letting fn = 1[n+1,∞), n ∈ N, we

have for any n ∈ N such that π([n+ 1,∞)) ≤ 1/2:

hπ ≤
Eπ [|d+f |]

Eπ [|f −m(f)|]
=

π({n})
π([n+ 1,∞))

=
1− p
p

.

�

8



In particular, the isoperimetric inequality becomes an inequality for functions of the

form fn = 1[n+1,∞), with n ≥ − log 2/ log p.

Proposition 3.3 Under the geometric distribution π we have

λπ =
(1−√p)2

p
. (3.4)

Proof. Using Cheeger’s inequality (2.4) and Relation (3.3) we get (1−√p)2/p ≤ λπ.

On the other hand, with fa(k) = ak we have:

λπ ≤
Eπ [|d+fa|2]

Varπ[fa]
= (a− 1)2

a2p2 + 1− 2ap

a2p+ p− 2ap
, a < 1/

√
p,

and taking the limit as a→ 1/
√
p we get λπ ≤ (1−√p)2/p. �

Here, the lower bound on λπ obtained from Cheeger’s inequality coincides with the

optimal Poincaré constant. The Poincaré inequality under π is not an equality in the

linear case f(k) = a+ bk:

(1− p)2

p
Varπ[f ] = Eπ

[
|d+f |2

]
.

In fact, from Corollary 5.1 of [8], equality in the linear case holds only under the

Poisson distribution.

Remark 3.4 The lower bound of λπ can be directly obtained from the integration by

parts formula (3.1) under π.

Proof. Letting g = f−f(0) we have g(0) = 0 and from (3.1) applied to g2 we obtain:

‖g‖22 =
p

1− p
Eπ
[
d+(g2)

]
=

p

1− p
Eπ
[
gd+g + τgd+g

]
≤ p

1− p
(
‖g‖2‖d

+g‖2 + ‖τg‖2‖d+g‖2
)

=
p

1− p

(
‖g‖2‖d

+f‖2 +
1
√
p
‖g‖2‖d

+f‖2
)

=

√
p

1−√p
‖g‖2‖d

+f‖2,
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hence

‖g‖2 ≤
√
p

1−√p
‖d+f‖2,

and

(1−√p)2

p
Varπ[f ] =

(1−√p)2

p
Varπ[g] ≤

(1−√p)2

p
‖g‖22 ≤ Eπ

[
|d+f |2

]
.

�

Using an approximation in distribution of exponential random variables by geometric

random variables, we recover the Poincaré inequality of Lemma 2.1 in [2] for the

exponential distribution with its optimal constant, cf. [11].

Proposition 3.5 Let Y be an exponentially distributed random variable with param-

eter − log p. We have

Var [f(Y )] ≤ 4

(log p)2
E
[
|f ′(Y )|2

]
for all Lipschitz function f on R.

Proof. Let Xε be a geometric random variable with parameter pε. We have

Var [f(εXε)] ≤
ε2pε

(1−
√
pε)2

E

[(
f(εXε + ε)− f(εXε)

ε

)2
]
.

It remains to let ε go to 0 and to use the convergence of εXε in distribution to the

exponential random variable Y with parameter − log p. �

In a similar way, Proposition 3.2 yields an isoperimetric inequality under the expo-

nential distribution with parameter − log p:

E[|f(Y )−m(f(Y ))|] ≤ − 1

log p
E [|f ′(Y )|] .

The above constants h = − log p and λ = (log p)2/4 also satisfy the classical Cheeger

inequality λ ≥ h2/4 which holds in the continuous case, cf. [7].

10



3.2 Modified logarithmic Sobolev inequality

In this section we obtain a modified logarithmic Sobolev inequality for the geometric

distribution π on E = N, with d+f(k) = f(k + 1)− f(k), k ∈ N.

Lemma 3.6 Let c < − log p and let f : N → R be such that d+f ≤ c and f(0) = 0.

We have

Eπ
[
f 2ef

]
≤ pec

(1−
√
pec)2

Eπ
[
ef |d+f |2

]
. (3.5)

Proof. From the integration by parts formula (3.1) we have

Eπ
[
f 2ef

]
=

p

1− p
Eπ
[
d+(f 2ef )

]
=

p

1− p
Eπ
[
ef
(
ed

+f
(
|d+f |2 + 2fd+f

)
+ f 2(ed

+f − 1)
)]

≤ pec

1− p
Eπ
[
ef
(
|d+f |2 + 2|f ||d+f |

)]
+
p(ec − 1)

1− p
Eπ
[
f 2ef

]
,

hence

Eπ
[
f 2ef

]
≤ pec

1− pec
Eπ
[
ef
(
|d+f |2 + 2|f ||d+f |

)]
≤ pec

1− pec
Eπ
[
|d+f |2ef

]
+ 2

pec

1− pec
Eπ
[
f 2ef

]1/2 Eπ [ef |d+f |2
]1/2

,

which implies (3.5). �

Theorem 3.7 Let 0 < c < − log p and let f : N→ R such that |d+f | ≤ c. We have

Entπ
[
ef
]
≤ pec

(1− p)(1−
√
pec)

Eπ
[
|d+f |2ef

]
. (3.6)

Proof. From the inequality −u lnu ≤ 1− u, u > 0, we have:

Entπ
[
ef
]

= Eπ
[
fef
]
− Eπ

[
ef
]

lnEπ
[
ef
]
≤ Eπ

[
fef − ef + 1

]
. (3.7)

Let again g = f − f(0), and let h(v) = vev − ev + 1. We have h ◦ g(0) = 0, and

applying (3.1) to h ◦ g we get :

Entπ [eg] ≤ Eπ[h ◦ g]

=
p

1− p
Eπ[d+(h ◦ g)]
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=
p

1− p
Eπ[h ◦ (g + d+g)− h ◦ g]

≤ p

1− p
Eπ
[(
|d+g|2 + |g||d+g|

)
eg+|d

+g|
]
,

where the inequality

h(a+ b)− h(a) ≤ (b2 + |ab|)ea+|b|, a, b ∈ R,

follows from the mean value theorem. From Lemma 3.6 and the Schwarz inequality

we obtain:

Entπ
[
ef
]

= ef(0)Entπ [eg]

≤ pef(0)

1− p
Eπ
[(
|d+g|2 + |g||d+g|

)
eg+|d

+g|
]
.

≤ pec+f(0)

1− p

(
Eπ
[
|d+g|2eg

]
+ Eπ

[
g2eg

]1/2 Eπ [eg|d+g|2
]1/2)

≤ pec+f(0)

1− p

(
1 +

√
pec

1−
√
pec

)
Eπ
[
|d+g|2eg

]
=

pec

(1− p)(1−
√
pec)

Eπ
[
|d+f |2ef

]
.

�

In higher dimensions, consider the multi-dimensional gradient defined as

d+
i f(k) = f(k + ei)− f(k), i = 1, . . . , n,

where f is a function on Nn, k = (k1, . . . , kn) ∈ Nn, (e1, . . . , en) is the canonical basis

of Rn, and the gradient norm

‖d+f(k)‖2 =
n∑
i=1

|d+
i f(k)|2 =

n∑
i=1

|f(k + ei)− f(k)|2. (3.8)

From the tensorization property of entropy, (3.6) still holds with respect to π⊗n in

any finite dimension n:

Entπ⊗n
[
ef
]
≤ pec

(1− p)(1−
√
pec)

Eπ⊗n
[
‖d+f‖2ef

]
, (3.9)

provided |dif | ≤ c, i = 1, . . . , n (we may also take (1−p)−1(1−
√
pec)−1 as logarithmic

Sobolev constant). Using an approximation in law of the exponential distribution by

renormalized geometric random variables, we recover the logarithmic Sobolev inequal-

ity of Proposition 2.2 in [2].
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Proposition 3.8 Let Y be an exponentially distributed random variable with param-

eter − log p. We have

Ent
[
ef(Y )

]
≤ 2

(log p)(log(p) + c)
E
[
ef(Y )|f ′(Y )|2

]
,

for every c-Lipschitz function f on R.

Proof. We apply (3.6) to Xε, and get for every c-Lipschitz function f :

Entπ
[
ef(εXε)

]
≤ ε2pεeεc

(1− pε)(1−
√
pεeεc)

Eπ

[
ef(εXε)

(
f(εXε + ε)− f(εXε)

ε

)2
]
.

It remains to let ε go to 0. �

3.3 Deviation inequality

In this section we prove a deviation inequality for functions of several variables under

π⊗n using the Herbst method and the above modified logarithmic Sobolev inequality.

Corollary 3.9 Let 0 < c < − log p and let f such that |d+
i f | ≤ β, i = 1, . . . , n, and

‖d+f‖2 ≤ α2 for some α, β > 0. Then for all r > 0,

π⊗n(f − Eπ⊗n [f ] ≥ r) ≤ exp

(
−min

(
c2r2

4ap,cα2β2
,
rc

β
− α2ap,c

))
, (3.10)

where

ap,c =
pec

(1− p)(1−
√
pec)

denotes the logarithmic Sobolev constant in (3.6).

Proof. Assume that |d+
i f | ≤ c, i = 1, . . . , n. For 0 < t ≤ 1, let

H(t) =
1

t
logEπ⊗n [etf ]

with H(0+) = Eπ⊗n [f ]. In order for H(t) to be finite we may first assume that f

is bounded, and then remove this assumption via a limiting argument once (3.10) is

obtained. From (3.6) we have:

H ′(t) =
1

t2
Entπ⊗n [etf ]

Eπ⊗n [etf ]
≤ α2ap,c,
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so that

H(t) ≤ Eπ⊗n [f ] + tα2ap,c,

hence

Eπ⊗n [etf ] ≤ exp
(
tEπ⊗n [f ] + t2α2ap,c

)
, 0 < t ≤ 1. (3.11)

Finally, using Chebychev’s inequality we obtain from (3.11):

π⊗n(f − Eπ⊗n [f ] ≥ r) ≤ inf
t∈(0,1]

e−trEπ⊗n [exp(t(f − Eπ⊗n [f ]))]

≤ exp

(
inf
t∈(0,1]

(−tr + t2α2ap,c)

)
= exp

(
−min

(
r2

4α2ap,c
, r − α2ap,c

))
, r > 0,

where we used the fact (see e.g. Corollary 2.11 in [16]) that the above minimum is

attained at t = min(1, r
2α2ap,c

). Assume now that f satisfies |d+
i f | ≤ β, i = 1, . . . , n,

for some β > 0. Then cf/β satisfies the above hypothesis and we get

π⊗n(f − Eπ⊗n [f ] ≥ r) ≤ exp

(
−min

(
c2r2

4ap,cα2β2
,
rc

β
− α2ap,c

))
.

�

Corollary 3.9 implies in particular Eπ[eαf ] < ∞ for all α < c/β and |d+f | < c. The

condition c < − log p in Corollary 3.9 is necessary, since f(k) = ck is not exponentially

integrable under the geometric distribution π when c ≥ − log p. When n = 1, α = β

and r ≥ 2cβap,c, we have

π(f − Eπ[f ] ≥ r) ≤ exp

(
−rc
β

+ c2ap,c

)
≤ exp

(
− rc

2β

)
, (3.12)

and if r ≤ 2cβap,c:

π(f − Eπ[f ] ≥ r) ≤ exp

(
− r2

4ap,cβ2

)
.

These bounds can be compared to the result of [13] :

π(f − Eπ[f ] ≥ r) ≤
(

1 + (1− p) r
β

)
exp

(
−
(
r

β
+

p

1− p

)
log

p+ p(1− p)r/β
p+ (1− p)r/β

)
,

r > 0, and to the exact deviation

π(X − Eπ[X] ≥ r) = exp

(([
r +

1

1− p

]
− 1

)
log p

)
14



for X a geometric random variable with parameter p, where [x] denotes the integral

part of x ∈ R. Applying the inequality (3.10) to −f , we obtain the concentration

inequality

π⊗n(|f − Eπ[f ]| ≥ r) ≤ 2 exp

(
−min

(
c2r2

4ap,cα2β2
,
rc

β
− α2ap,c

))
. (3.13)

Consider the negative binomial distribution ν with parameters n ≥ 1 and p ∈ (0, 1),

defined as

ν({k}) =

(
n+ k − 1

n− 1

)
(1− p)npk, k ∈ N.

Negative binomial random variables can be constructed as sums of n independent and

identically distributed geometric variables with parameter p. Therefore, if we apply

(3.10) to

f(k1, . . . , kn) = φ(k1 + · · ·+ kn), (k1, . . . , kn) ∈ Nn,

we obtain the modified logarithmic Sobolev inequality

Entν
[
eφ
]
≤ nap,cEν

[
|d+φ|2eφ

]
,

and the deviation inequality

ν(φ− Eν [φ] ≥ r) ≤ exp

(
−min

(
r2

4nap,cβ2
,
rc

β
− c2nap,c

))
,

where φ : N→ R satisfies |dφ| ≤ β, for the negative binomial distribution µ. Similar

results can be obtained for the tensor product of negative binomial laws with param-

eters n1, . . . , nd, namely by replacing ap,c = pec

(1−p)(1−
√
pec)

with (n1 + · · · + nd)ap,c in

(3.6) and (3.10).

Geometric and negative binomial random variables can be constructed as hit-

ting times of the binomial process, thus they can be viewed as random variables on

Bernoulli space. However, applying to them the Poincaré and logarithmic Sobolev

inequalities on Bernoulli space (see e.g. [14]) yields results that are weaker than the

above inequalities.

4 The abstract case

In this section, we turn again to the general case of a probability space (E, E , µ) with

an absolutely continuous mapping τ : E → E. We show that modified logarithmic

15



Sobolev and deviation inequalities hold for every measure µ on E which satisfies a

Poincaré inequality

λµVarµ[f ] ≤ Eµ
[
|d+f |2

]
(4.1)

with respect to d+, i.e. for every measure µ such that λµ > 0. The application of

the general results of this section to the geometric distribution using the spectral gap

value (3.4) of λπ allow to recover the inequalities of Section 3.2. However, explicit

calculations show that the results are recovered with worse constants for all p ∈
(0, e−c), especially as p approaches e−c.

4.1 Logarithmic Sobolev inequality and deviation inequality

Before turning to the main result of this section, we need the two following propositions

whose proofs are adapted from [2], replacing the chain rule of derivation by the mean

value theorem, and postponed to the end of this section. The next proposition is a

generalization of Lemma 3.6.

Proposition 4.1 Let c > 0. For any f on E such that |d+f | ≤ c with c2ec ≤ 4λµ

and Eµ[f ] = 0,

Eµ
[
f 2ef

]
≤ αµ,cEµ

[
|d+f |2ef

]
, (4.2)

where αµ,c =
ec((2+c)

√
λµ+c)

2

λµ(2
√
λµ−cec/2)

2 .

The next statement is a modification of Proposition 3.4 in [2].

Proposition 4.2 For any f : E → R such that Eµ[f ] = 0 and |d+f | ≤ c we have

Eµ
[
f 2 + τf 2

]
≤ e

c
(
1+
√

5
λµ

)
Eµ
[(
f 2 + τf 2

)
e−|f |

]
. (4.3)

The following is a modified logarithmic Sobolev inequality which holds whenever λµ >

0.

Theorem 4.3 Assume that f : E → R satisfies |d+f | ≤ c with c2ec ≤ 4λµ,

Entµ
[
ef
]
≤ 1

2
e
c
(
1+
√

5
λµ

)
Eµ
[
(αµ,c|d+f |2 + 2e2cαµ,c|d+τf |2 + 2e2c‖d+f‖2L2(µ))e

f
]
.

(4.4)

16



Proof. It suffices to suppose Eµ[f ] = 0. From the inequality x log x ≥ x− 1, x > 0,

we have

Entµ
[
ef
]
≤ Eµ

[
fef − ef + 1

]
= Eµ

[∫ 1

0

tf 2etfdt

]
,

hence

Entµ
[
ef
]
≤
∫ 1

0

tϕ(t)dt,

where ϕ(t) = Eµ
[
(f 2 + τf 2) etf

]
, 0 ≤ t ≤ 1, is a convex function which satisfies

ϕ(t) ≤ max(ϕ(0), ϕ(1)), 0 ≤ t ≤ 1. Moreover, by Proposition 4.2 we have

ϕ(0) ≤ e
c
(
1+
√

5
λµ

)
ϕ(1),

hence

Entµ
[
ef
]
≤
∫ 1

0

te
c
(
1+
√

5
λµ

)
ϕ(1)dt =

1

2
e
c
(
1+
√

5
λµ

)
Eµ
[(
f 2 + τf 2

)
ef
]
.

Since |d+ (τf − Eµ[τf ]) | = |d+τf | ≤ c, Proposition 4.1 applied to τf−Eµ[τf ] implies:

Eµ
[
τf 2ef

]
≤ ecEµ

[
τf 2eτf

]
≤ 2ec+Eµ[τf ]Eµ

[
(τf − Eµ[τf ])2 eτf−Eµ[τf ]

]
+ 2ec(Eµ[τf ])2Eµ

[
eτf
]

≤ 2ecαµ,cEµ
[
|d+τf |2eτf

]
+ 2e2c(Eµ[τf ])2Eµ

[
ef
]

= 2e2cαµ,cEµ
[
|d+τf |2ef

]
+ 2e2c(Eµ[d+f ])2Eµ

[
ef
]
.

Hence

Entµ
[
ef
]
≤ 1

2
e
c
(
1+
√

5
λµ

)
Eµ
[(
f 2 + τf 2

)
ef
]

≤ 1

2
e
c
(
1+
√

5
λµ

)
Eµ
[
(αµ,c|d+f |2 + 2e2cαµ,c|d+τf |2 + 2e2cEµ[|d+f |2])ef

]
.

�

We also have

Entµ
[
ef
]
≤ 1

2
e
c
(
1+
√

5
λµ

)
(αµ,c + 2e2cαµ,c + 2e2c)|d+f |∞Eµ[ef ], |d+f | ≤ c.

By tensorization, Theorem 4.3 implies in higher dimensions

Entµ⊗n
[
ef
]
≤ 1

2
e
c
(
1+
√

5
λµ

)
Eµ
[
(αµ,c‖d+f‖2 + 2e2cαµ,c‖d+τf‖2 + 2e2c‖d+f‖2L2(E;Rn))e

f
]

17



≤ mµ,c‖d+f‖2L∞(En,Rn)Eµ
[
ef
]
,

where

mµ,c =
1

2
e
c
(
1+
√

5
λµ

) (
αµ,c + 2e2cαµ,c + 2e2c

)
and

d+
i f(x1, . . . , xn) = τif(x1, . . . , xn)− f(x1, . . . , xn),

= f(x1, . . . , xi−1, τi(xi), xi+1, . . . , xn)− f(x1, . . . , xn),

provided |d+
i f | ≤ c, i = 1, . . . , n. As in Section 3.2, we obtain as a corollary a

deviation inequality for the product measure µ⊗n on En:

Corollary 4.4 Assume that µ satisfies a Poincaré inequality (4.1). Let c > 0 such

that c2ec ≤ 4λµ, and let f such that |d+
i f | ≤ β, i = 1, . . . , d, and ‖d+f‖2 ≤ α2, for

some α, β > 0. Then for all r > 0,

µ⊗n
(
f − E⊗nµ [f ] ≥ r

)
≤ exp

(
−min

(
c2r2

4mµ,cα2β2
,
rc

β
− α2mµ,c

))
. (4.5)

Next we provide the proofs of Proposition 4.1 and Proposition 4.2.

Proof of Proposition 4.1. Set a2 = Eµ
[
f 2ef

]
and b2 = Eµ

[
|d+f |2ef

]
. Since Eµ[f ] = 0,

the Poincaré inequality (4.1) implies

λ2µEµ
[
fef/2

]2 ≤ Eµ
[
|d+f |2

]
Eµ
[
|d+
(
ef/2

)
|2
]

≤ 1

4
Eµ
[
|d+f |2

]
Eµ
[
|d+f |2ef+|d+f |

]
≤ 1

4
ec c2 b2. (4.6)

Applying again the Poincaré inequality to fef/2 and using the mean value theorem

we have

λµVar
[
fef/2

]
≤ Eµ

[
|d+f |2

(
1 +
|f |+ |d+f |

2

)2

ef+|d
+f |

]

≤ ec Eµ

[
|d+f |2

(
1 +
|f |+ c

2

)2

ef

]

≤
(

1 +
c

2

)2
ecb2 +

c2eca2

4
+
(

1 +
c

2

)
ecEµ

[
|d+f |2|f |ef

]
18



≤
(

1 +
c

2

)2
ecb2 +

c2eca2

4
+
(

1 +
c

2

)
ecabc

≤ ec
((

1 +
c

2

)
b+

ac

2

)2
.

Hence

a2 = Eµ
[
fef/2

]2
+ Var

[
fef/2

]
≤ ec c2 b2

4λ2µ
+
ec

λµ

((
1 +

c

2

)
b+

ac

2

)2
,

which leads to

a ≤
ec/2

(
(2 + c)

√
λµ + c

)√
λµ
(
2
√
λµ − cec/2

) ,
from which the conclusion follows. �

With λπ = (1 − √p)2/p, the condition c2ec ≤ 4λπ implies c < − log p, p ∈ (0, 1),

hence Theorem 4.3 and Corollary 4.4 are weaker than Theorem 3.7 and Corollary 3.9

respectively, when µ = π is the geometric distribution.

Proof of Proposition 4.2. We have from the Poincaré inequality (4.1):

λµEµ
[
f 4
]

= λµVarµ
[
f 2
]

+ λµ(Eµ
[
f 2
]
)2

≤ Eµ
[
|d+f 2|2

]
+ λµ(Eµ

[
f 2
]
)2

= Eµ
[
|d+f |2 (f + τf)2

]
+ λµ(Eµ

[
f 2
]
)2

≤ 2c2Eµ
[
f 2 + τf 2

]
+ Eµ

[
|d+f |2

]
Eµ
[
f 2
]

≤ 3c2Eµ
[
f 2
]

+ 2c2Eµ
[
τf 2
]
.

Hence for all u > 0,

Eµ
[
|f |3
]
≤ u

2
Eµ
[
f 2
]

+
1

2u
Eµ
[
f 4
]
≤ c1Eµ

[
f 2
]

+ c2Eµ
[
τf 2
]

(4.7)

with c1 = 3c2

2uλµ
+ u

2
and c2 = c2

uλµ
. Let us consider the probability measure

dρ =
c1f

2 + c2τf
2

c1Eµ [f 2] + c2Eµ [τf 2]
dµ.

By Jensen’s inequality,

Eµ
[(
c1f

2 + c2τf
2
)
e−|f |

]
= Eρ

[
e−|f |

]
Eµ
[
c1f

2 + c2τf
2
]
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≥ e−Eρ[|f |]Eµ
[
c1f

2 + c2τf
2
]
.

From the inequality ab2 ≤ a3 + |b− a|(a2 + b2), a, b ≥ 0, we have

|f |τf 2 ≤ |f |3 + c
(
f 2 + τf 2

)
,

hence

Eρ [|f |]Eµ
[
c1f

2 + c2τf
2
]

= Eµ
[
c1|f |3 + c2|f |τf 2

]
≤ Eµ

[
(c1 + c2)|f |3 + c2c

(
f 2 + τf 2

)]
≤ (c1 + c2)Eµ

[
c1f

2 + c2τf
2
]

+ c2cEµ
[
f 2 + τf 2

]
≤ (c1 + c2 + c)Eµ

[
c1f

2 + c2τf
2
]
,

where we used the fact that c2 ≤ c1. Therefore,

Eρ [|f |] ≤ c1 + c2 + c =
5c2 + u2λµ

2uλµ
+ c.

Optimizing in u we obtain for u = c
√

5
λµ

:

Eρ [|f |] ≤ c

(
1 +

√
5

λµ

)
.

�

As in [2] and references therein, we can obtain the following bound.

Proposition 4.5 Let A,B be disjoint subsets of E. We have

µ(A)µ(B) ≤ 3 exp(−
√
λµe

−γ1/2d(A,B)), (4.8)

with γ21e
γ1 = 2λµ.

Proof. From the Poincaré inequality on (E2, µ⊗2) we have:

λµEµ⊗2 [f 2] ≤ Eµ⊗2 [|d+
1 f |2 + |d+

2 f |2],

provided Eµ⊗2 [f ] = 0. Applying this inequality to f(x, y) = sinh(tg(x, y)/2), 0 ≤ t <

γ1 with g(x, y) = h(x)− h(y) and |dh| ≤ 1, and using the bound

| sinh(x+ y)− sinh(x)| ≤ |y|e|y| coshx, x, y ∈ R,
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we have:

λµEµ⊗2 [cosh2(tg/2)]− λµ = λµEµ⊗2 [sinh2(tg/2)]

≤ t2

4
Eµ⊗2

[(
|d+

1 g|2et|d
+
1 g| + |d+

2 g|2et|d
+
2 g|
)

cosh2(tg/2)
]

≤ t2

2
eγ1Eµ⊗2

[
cosh2(tg/2)

]
.

Hence

Eµ⊗2 [cosh2(tg/2)] =
1

2

(
Eµ⊗2 [etg] + 1

)
≤ 2λµ

2λµ − t2eγ1
,

and for all t < γ1, if h(x) = d(x,B) then

etd(A,B)µ(A)µ(B) ≤ Eµ⊗2 [1A×Be
tg] ≤ Eµ⊗2 [etg] ≤ 2λµ + t2eγ1

2λµ − t2eγ1
.

and it remains to take t =
√
λµe

−γ1/2. �

4.2 Exponential integrability

The Herbst method used in the preceding sections relies on exponential integrability.

Following [2], we obtain a bound of the Laplace transform with respect to any measure

µ on E, provided it follows a Poincaré inequality (4.1).

Proposition 4.6 Let f : E → R such that Eµ[f ] = 0, with |d+f | ≤ β for some

β > 0, and let c such that c2ec ≤ 4λµ. Then, for every 0 ≤ t < c/β we have

Eµ[etf ] ≤
2
√
λµ + tβec/2

2
√
λµ − tβec/2

. (4.9)

Proof. We adapt the proof of Proposition 4.1 in [2]. It is sufficient to assume β = 1.

We have

|d+e
t
2
f (x)| = |e

t
2
τf(x) − e

t
2
f(x)|

=
t

2

∣∣∣∣∣
∫ f(τ(x))

f(x)

e
t
2dt

∣∣∣∣∣
≤ t

2
e
t
2
(f(x)+|d+f(x)|)|d+f(x)|

≤ t

2
e
c
2
+ t

2
f(x)|d+f(x)|, x ∈ E,
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and applying (4.1) to e
t
2
f we get, with u(t) = Eµ[etf ]:

λµ
(
u(t)− u(t/2)2

)
≤ ec

t2

4
u(t),

i.e.

u(t) ≤ 4λµ
4λµ − t2ec

u(t/2)2.

Applying the same inequality for t/2 and iterating, we have

u(t) ≤
∞∏
k=0

(
4λµ

4λµ − ect2/4k

)2k

≤ 4λµ
4λµ − ect2

V (t),

with

V (t) =
∞∏
k=1

(
4λµ

4λµ − ect2/4k

)2k

,

where the product converges whenever t < c. It can be shown as in [2] that
√
V is

convex. Moreover V (0) = 1 and V

(
2
√
λµ

ec/2

)
≤ 4, hence

√
V (t) ≤

2
√
λµ + tec/2

2
√
λµ

.

�

It is easily checked that the assumption of Corollary 4.4 is consistent with that of

Proposition 4.6.
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[5] S.G. Bobkov and C. Houdré. Isoperimetric constants for product probability measures. Ann.
Probab., 25(1):184–205, 1997.

[6] T. Cacoullos and V. Papathanasiou. Characterizations of distributions by generalizations of
variance bounds and simple proofs of the CLT. J. Statist. Plann. Inference, 63(2):157–171,
1997.

[7] J. Cheeger. A lower bound for the smallest eigenvalue of the Laplacian. In Problems in analysis
(Papers dedicated to Salomon Bochner, 1969), pages 195–199. Princeton Univ. Press, Princeton,
N. J., 1970.

[8] L. H. Y. Chen and J. H. Lou. Characterization of probability distributions by Poincaré-type
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