
The Fourier-Mehler transform and
generalized dilations of Gaussian and

Poisson measures
Nicolas Privault
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Abstract

We define a family of random dilations of the Wiener and Poisson measures,
and show that they can be represented as generalised Fourier-Mehler trans-
forms. These (not quasi invariant) transformations include transforms given
e.g. by time changes on Brownian motion. The generators of one-parameter
families of such transformations are computed, and the Poisson case is also
considered.
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1 Introduction

The Fourier-Mehler transform, cf. [5], [6], [10], is originally a group (Fθ)θ∈IR of trans-

formations of random variables on Gaussian space, with the property that F−π/2
coincides with the Fourier transform. The adjoint Gθ of the Fourier-Mehler trans-

form Fθ also forms a group whose infinitesimal generator is the sum of the Gross

Laplacian and a number operator. It has been extended in [2] as a two-parameter

family of transformations which includes the group of complex dilations of Gaussian

measures, and in [3], [4] to a family of transformations indexed by continuous map-

pings on S(IR). In this paper we define a general class of transformations of random

functionals that includes as particular cases the dilations of Gaussian measures and

transformations induced by time changes on Brownian motion. The generators of

families of such transformations are computed in a general random setting using

a modified Gross Laplacian and a second quantized operator. In the determinis-

tic case, we show that the generalised Fourier-Mehler transform of [3] can be used

to express our generalised dilations. Although such transformations are not quasi-

invariant with respect to the Gaussian measures they can be defined on a space of
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smooth functionals. We also examine the counterpart of this construction in the

Poisson case.

In Sections 2, 3, 4 and 5 we recall the construction of the Fourier-Mehler transform,

the generalised dilations and the Gross Laplacian. In Sect. 6, derivatives of one-

parameter families of dilations are computed, and the link with the Fourier-Mehler

transform is made in Prop. 2 of Sect. 7. The Poisson case is studied in a similar way

in Sect. 8 and Prop. 4.

2 Notation

Let T be a topological space with Borel measure σ(dt), and let H = L2(T, σ). Let

E = S(T ) ⊂ H ⊂ S ′(T ) = E∗

denote a Gelfand triple satisfying the hypothesis of white noise analysis (see e.g.

[2]). We denote by 〈·, ·〉 the canonical product on S(T )×S ′(T ). In this section, µ is

one of the Gaussian or Poisson measures on S ′(T ) determined by the characteristic

functions ∫
S′(T )

exp(i〈ω, ξ〉)µ(dω) = exp
(
−1

2
‖ξ‖2H

)
,

and ∫
S′(T )

exp(i〈ω, ξ〉)µ(dω) = exp
(∫

T
(eiξ − 1)dσ

)
,

cf. [9]. In this case, every F ∈ L2(S ′(T ), µ) has a decomposition

F =
∞∑
n=0

In(fn), fn ∈ H◦n,

where In(fn) is the multiple stochastic integral of the square-integrable symmetric

function of n variables fn ∈ H◦n with respect to the chosen random measure (Gaus-

sian or Poisson). Let

(E) ⊂ L2(S ′(T ), µ) ⊂ (E)∗

denote the standard of white noise triple test and generalised functionals, and let

〈〈·, ·〉〉 denote the canonical product on (E)×(E)∗. We denote respectively by fn⊗gm
and fn ◦ gm the completed symmetric tensor product of fn ∈ L2(T n), gm ∈ L2(Tm),

and its symmetrization. The exponential vector φξ associated to ξ ∈ L2(T, σ) is

defined as

φξ =
∞∑
n=0

1

n!
In(ξ◦n).
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Definition 1 Let Ξ denote the vector space generated by {φξ : ξ ∈ S(T )}.

The gradient D : L2(S ′(T ), µ), is densely defined as DΦ = (∂tΦ)t∈T , with

∂tΦ =
∞∑
n=1

nIn−1(fn(∗, t)), t ∈ T,

if Φ ∈ (E) is of the form Φ =
∑∞
n=0 In(fn). We denote by IL1,p, p > 1, the space of

processes defined by the norm

‖u‖p1,p = ‖u‖pLp(S′(T ),L2(T )) + ‖Du‖pLp(S′(T ),L2(T 2)).

For p = 2 we have

‖u‖21,2 =
∞∑
n=0

(n+ 1)!‖fn+1‖2L2(Tn+1),

if u(·) =
∑∞
n=0 In(fn+1(∗, ·)). The unbounded creation operator δ : L2(S ′(T )×T ) −→

L2(S ′(T )) is defined by linearity as

δ(In(un(∗, ·))) = In+1(ũn),

where ũn denotes the symmetrization of un ∈ H◦n⊗H in n variables. It is continuous

from IL1,2 into L2(S ′(T ), µ) with the bound

‖δ(u)‖L2(S,µ) ≤ ‖u‖1,2,

and closable on L2(S ′(T ), µ), its L2 domain being denoted by Dom(δ). The second

quantization of the deterministic operator R is defined as

Γ(R)φu = φRu, u ∈ S(T ).

Given Φ ∈ (E)∗, the U -transform U [Φ] : S(T ) −→ IR of Φ is defined as

U [Φ](ξ) = 〈〈Φ, φξ〉〉, ξ ∈ S(T ),

cf. [7].

3 The Fourier-Mehler transform

Let µ denote the Gaussian measure on S ′(T ), defined by its characteristic function

Under the identification between L2(S ′(T ), µ) and the Fock space on L2(T, σ) we

have

φξ = exp
(
I1(ξ)−

1

2
‖ξ‖2H

)
, ξ ∈ L2(T, σ),
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and the formula

δ(Φu) = Φδ(u)− 〈DΦ, u〉, (1)

for Φ ∈ Ξ and u ∈ Dom(δ) such that uΦ ∈ Dom(δ). The Fourier transform FΦ of Φ

is the unique (cf. [15]) functional in (E)∗ satisfying

U [FΦ](ξ) = 〈〈Φ, exp(−i〈·, ξ〉)〉〉, ξ ∈ S(T ).

The Fourier-Mehler transform FθΦ of Φ with parameter θ ∈ IR is the unique func-

tional in (E)∗ satisfying

U [FθΦ](ξ) = 〈〈Φ, exp(eiθ〈·, ξ〉)〉〉 exp

(
−1 + e2iθ

2

|ξ|2

2

)
, ξ ∈ S(T ),

or

U [FθΦ](ξ) = exp

(
ieiθ sin θ

2
|ξ|2

)
U [Φ](eiθξ), ξ ∈ S(T ).

It satisfies the group property

FθFθ′ = Fθ+θ′ , θ, θ′ ∈ IR.

The dual Gθ of the Fourier-Mehler transform Gθ is given as

Gθ = Γ(eiθI) exp

(
e2iθ − 1

4
∆G

)
= Γ(eiθI) exp

(
ieiθ sin θ

2
∆G

)
,

where ∆G is the Gross Laplacian and I denotes the identity operator on H. It has

been proved in Cor. 4.4-(v) of [2] that complex dilations of Gaussian measures can

be expressed via the adjoint of a generalised Fourier-Mehler transform, as

Λ(eiθI) = Γ(eiθI) exp
(
ieiθ(sin θ)∆G

)
.

In the sequel we will extend this type of result to more general families of transfor-

mations.

4 Generalised dilations of Gaussian measures

Under the identification between L2(S ′(T ), µ) and the Fock space on L2(T, σ), the

space Ξ is also an algebra, which is dense in L2(S ′(T ), µ), moreover each element

F ∈ Ξ can be expressed as

F = f(I1(ξ1), . . . , I1(ξn)), ξ1, . . . , ξn ∈ S(T ),

where f ∈ C∞(IRn).
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Definition 2 Let R : S(T ) −→ Dom(δ) be a given mapping. We densely define on

Ξ the linear operator Λ(R) as

Λ(R)φξ = exp
(
−1

2
‖ξ‖2H

)
exp(δ(Rξ)), ξ ∈ S(T ).

The operator Λ(R) is well-defined on Ξ since each element F ∈ Ξ has a unique

expression as

F =
i=n∑
i=1

αiφξi ,

since the family {φξ1 , . . . , φξn} is linearly independent whenever ξi 6= ξj, i 6= j, cf.

[1]. It satisfies

Λ(R)F = f(δ(Rξ1), . . . , δ(Rξn)),

if F = f(I1(ξ1), . . . , I1(ξn)), f ∈ C1(IRn), and it is a morphism with respect to the

pointwise product:

Λ(R)f(F1, . . . , Fn) = f(Λ(R)F1, . . . ,Λ(R)Fn), f ∈ C1(IRn).

We now mention some particular cases generalised dilations, which correspond to

deterministic R.

• Dilations of the Gaussian measure, with R = αI, α ∈ C.

• Time changes on Brownian motion. In this case, T = IR+, σ(dt) = dt, and R

is given by Rξ = ξ ◦ h where h ∈ L2(IR+). If h : IR+ −→ IR+ is bijective, then

the action of Λ(R) is to evaluate a functional Φ ∈ Ξ on a Brownian motion

which is time-changed according to h, since a.s. we have∫ ∞
0

u(h(t))dB(t) =
∫ ∞
0

u(t)dB(h−1(t)) = −
∫ ∞
0

u′(t)B(h−1(t))dt, u ∈ S(IR+).

5 Generalized Gross Laplacians

The Gross Laplacian, cf. [7], has been generalized in different directions. In [2],

Def. 3.1, Gross Laplacians associated to deterministic continuous operators on S(T )

have been defined. In [16], [17], [18], [19], similar operators have been defined in

association with deterministic unbounded derivation operators on S(IR+). Let K :

S(T ) −→ IL1,4 be a given mapping and let τ(K) denote the linear trace operator

associated to K, and defined as

〈τ(K), ξ ⊗ η〉 = 〈Kξ, η〉, ξ, η ∈ S(T ), µ− a.s.
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Let ∆G(K) be defined on Ξ as

∆G(K)Φ = τ(K)DDΦ, Φ ∈ Ξ,

or

∆G(K) =
∫
T 2
τ(K)(s, t)∂s∂tdsdt.

IfK = I is the identity, then ∆G(I) = ∆G is the Gross Laplacian. IfK is deterministic

we have

∆G(K)φξ = 〈Kξ, ξ〉φξ

and

exp(∆G(K))φξ = exp(〈Kξ, ξ〉)φξ, ξ ∈ Ξ.

We also define the differential second quantization dΓ(K) as

dΓ(K)Φ = δ(KDΦ), Φ ∈ Ξ,

which can also be denoted as

dΓ(K) =
∫
T 2
∂∗t τ(K)(s, t)∂sdsdt,

extending the definitions of [4], Sect. 3, to the case of random K.

6 Derivatives of one-parameter families of trans-

formations

In this section we are interested in the derivatives of one-parameter families of trans-

formations of Gaussian measures, without adaptedness restrictions on the transfor-

mation R. The following proposition extends analog results proved in [2], [3] in the

deterministic case.

Proposition 1 Let (Rε)ε∈[0,1] be a family of mappings with R0 = I, such that

(Rεξ)ε∈[0,1] is differentiable in IL1,4 at ε = 0, ∀ξ ∈ S(T ), and let

Kξ =
d

dε
Rεξ|ε=0, ξ ∈ S(T ).

Then the derivative on Ξ of (Λ(Rε))ε∈[0,1] at ε = 0 is

dΛ(K) := ∆G(K) + dΓ(K). (2)
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Proof. By assumption, exp(δ(ξ))Kξ belongs to IL1,2 and to Dom(δ), thus from (1):

d

dε
exp(δ(Rεξ))|ε=0 = δ(Kξ) exp(δ(ξ))

= 〈Kξ, ξ〉 exp(δ(ξ)) + δ(exp(δ(ξ))Kξ)

= (∆G(K) + dΓ(K)) exp(δ(ξ)), ξ ∈ S(T ),

and by linearity we have

d

dε
Λ(Rε)Φ|ε=0 = (∆G(K) + dΓ(K)) Φ, Φ ∈ Ξ,

hence (2) holds on Ξ.
2

If K is deterministic then the operator dΛ(K) can also be written as

dΛ(K) =
∫
T 2
Ḃ(t)τ(K)(s, t)∂sdsdt,

which generalises the family of operators studied in Sect. 7 of [4] and Sect. 5.1 of

[12], [13], in the particular case τ(K)(s, t)dsdt = ξ(t)δs(t)dsdt, where ξ : IR −→ IR is

a deterministic function.

7 Generalized dilations and Fourier-Mehler trans-

forms

In this section we work in the case where the operators R and K are deterministic. In

order to include transformations by time changes, no continuity property is assumed

on these operators. If A,B : S(T ) −→ S(T ) are two continuous linear mappings,

the transform G(A,B) has been defined in [2] as

G(A,B) = Γ(B) exp(∆G(A)).

We note that this still defines an operator on Ξ without continuity assumptions on

A,B : S(T ) −→ S(T ). The following result extends Th. 6.4. of [4].

Lemma 1 Given B,R : S(T ) −→ S(T ), we have the commutation relation on Ξ:

exp (∆G(B)) Γ(R) = Γ(R) exp (∆G(R∗BR)) .
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Proof. This relation is checked on exponential vectors:

Γ(R) exp (∆G(R∗BR))φξ = Γ(R) exp (〈R∗BRξ, ξ〉)φξ

= exp (〈BRξ,Rξ〉)φRξ = exp (∆G(B))φRξ

= exp (∆G(B)) Γ(R)φξ. 2

The following proposition extends the formula

Λ(eiθI) = Γ(eiθI) exp
(
ieiθ(sin θ)∆G

)
= Gθ

of Cor. 4.4-(v) of [2] which concerns complex dilations, to generalised random dila-

tions.

Proposition 2 Let R : S(T ) −→ S(T ) be deterministic and admitting an adjoint

R∗ : S(T ) −→ S(T ). Then

Λ(R) = Γ(R) exp
(

1

2
∆G(R∗R− I)

)
= G

(
1

2
(R∗R− I), R

)
.

If moreover R is invertible, then

Λ(R) = exp
(

1

2
∆G(I− (R∗R)−1)

)
Γ(R). (3)

Proof. We have

Λ(R)φξ = Λ(R) exp
(
δ(ξ)− 1

2
| ξ |2

)
= exp

(
δ(Rξ)− 1

2
| ξ |2

)
= exp

(
1

2
(| Rξ |2 − | ξ |2)

)
exp

(
δ(Rξ)− 1

2
| Rξ |2

)
= exp

(
1

2
(| Rξ |2 − | ξ |2)

)
φRξ = exp

(
1

2
(| Rξ |2 − | ξ |2)

)
Γ(R)φξ

= Γ(R) exp
(

1

2
∆G (R∗R− I)

)
φξ.

From Prop. 2 and Lemma 1 we obtain (3).
2

By differentiation of this identity we also obtain Prop. 2 since the derivative of

(Γ(Rε))ε∈[0,1] is dΓ(K), and the derivative of 1
2
(RεR

∗
ε − I) at ε = 0 is 1

2
(K +K∗). In

the particular case R = rI, r ∈ C,

Λ(rI) = Γ(rI) exp
(

1

2
(r2 − 1)∆G

)
= exp

(
1

2
(1− r−2)∆G

)
Γ(rI),

Λ(etI) = Γ(etI) exp
(

1

2
(e2t − 1)∆G

)
= exp

(
1

2
(1− e−2t)∆G

)
Γ(etI), t ∈ C,
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and

Λ(eiθI) = Γ(eiθI) exp
(
ieiθ sin θ∆G

)
, θ ∈ IR,

which is Cor. 4.4-v of [2]. With Rε = eαεI, α ∈ C, we obtain

dΛ(I) = α(∆G + dΓ(I)).

Remark 1 From the expression of characteristic functions, Λ(R) preserves Gaus-

sian measures if and only if R is an isometry. The above Lemma shows that this

condition is equivalent to Λ(R) = Γ(R).

We now turn to the particular case of time changes on Brownian motion i.e. Rε is

given by Rεξ = ξ ◦ ν where ν ∈ S(IR+) with ν(0) = 0. Let Kh, h ∈ S(IR), denote

the operator Kh : S(IR+) −→ S(IR+) defined as

Khξ(t) = h(t)ξ′(t), t ∈ IR, ξ ∈ S(IR+).

Assume that ν is bijective with

ν(t) = t+ h(t) and ν−1(t) = t+ h̃(t), t ∈ IR+.

The following corollary is an application of Prop. 2 in the case of time changes.

Corollary 1 We have Λ(Rν) = G (−Kh̃, Rν), i.e. on Ξ:

Λ(Rν) = Γ(Rν) exp (−∆G(Kh̃)) = exp (∆G(Kh)) Γ(Rν). (4)

Proof. We have

〈Rξ,Rξ〉 =
∫ ∞
0

ξ(ν(t))ξ(ν(t))dt

= −2
∫ ∞
0

ξ(ν(t))ξ′(ν(t))ν ′(t)tdt = −2
∫ ∞
0

ξ(t)ξ′(t)ν−1(t)dt

= −2
∫ ∞
0

ξ(t)ξ′(t)h̃(t)dt− 2
∫ ∞
0

ξ(t)ξ′(t)ν−1(t)dt

= −2
∫ ∞
0

ξ(t)ξ′(t)h̃(t)dt+
∫ ∞
0

ξ(t)ξ(t)dt

= −2〈ξ,Kh̃ξ〉+ 〈ξ, ξ〉, ξ ∈ S(IR+),

hence

∆G(R∗R) = −2∆G(Kh̃) + ∆G.
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On the other hand,

〈R−1ξ, R−1ξ〉 =
∫ ∞
0

ξ(ν−1(t))ξ(ν−1(t))dt

=
∫ ∞
0

ξ(t)ξ(t)ν ′(t)dt = −2
∫ ∞
0

ξ(t)ξ′(t)ν(t)dt

= −2
∫ ∞
0

ξ(t)ξ′(t)h(t)dt− 2
∫ ∞
0

ξ(t)ξ′(t)tdt

= −2
∫ ∞
0

ξ(t)ξ′(t)h(t)dt+
∫ ∞
0

ξ(t)ξ(t)dt

= −2〈ξ,Khξ〉+ 〈ξ, ξ〉, ξ ∈ S(IR+),

hence

∆G(R−1(R∗)−1) = −2∆G(Kh) + ∆G.

It remains to apply Prop. 2.
2

In [8], related calculations are performed in the case of changes of variances for

Brownian motion. We note that if (Rε)ε∈[0,1] is a family of (random) transforma-

tions such that Λ(Rε), ε ∈ [0, 1] preserves the Gaussian measure, then ∆G(K)

is conservative, i.e. E[∆G(K)Φ] = 0, Φ ∈ Ξ, since if Rε is measure preserving,

then E[Λ(Rε)Φ] = E[Φ], Φ ∈ Ξ, hence by differentiation E[∆G(K)Φ] = 0 since

E[dΓ(K)Φ] = 0.

8 The Poisson case

Let πσ denote the Poisson measure on S ′(T ) with finite diffuse intensity measure σ

on T , defined by ∫
S′(T )

exp(i〈ω, ξ〉)µ(dω) = exp
(∫

T
(eiξ − 1)dσ

)
.

We assume that for all ξ ∈ S(T ) such that ‖ξ‖∞ < 1 we have eξ − 1 ∈ S(T ) and

log(1 + ξ) ∈ S(T ). Moreover, in this section Ξ denotes the vector space generated

by

{φξ : ξ ∈ S(T ), ‖ξ‖∞ < 1} .

The exponential vector φξ ∈ Ξ satisfies

φξ = exp
(
−
∫
T
ξdσ

) ∏
t∈T

(1 + ξ(t)ω({t}))

= exp
(
−
∫
T
ξdσ +

∫
T

log(1 + ξ(t))ω(dt)
)
, µ(dω)− a.s., ξ ∈ S(T ).
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We let

ω\t = ω − εt1{ω({t})=1} =

{
ω if ω({t}) = 1
ω − εt if ω({t}) = 0, ω ∈ S ′(T ), t ∈ T,

and

ω ∪ t = ω + εt1{ω({t})=0} =

{
ω + εt if ω({t}) = 0
ω if ω({t}) = 1, ω ∈ S ′(T ), t ∈ T,

where εt denotes the Dirac measure at t ∈ T . We have the identity

Φδ(u) = δ(uΦ) + 〈u,DΦ〉+ δ(uDΦ), (5)

for Φ ∈ Ξ and u ∈ IL1,4. If u : S ′(T )× T −→ IR is square-integrable with respect to

µ⊗ σ and belongs to Dom(δ), then from Prop. 2 of [11] we have

δ(u) =
∫
T
u(t, ω \ t)ω(dt)−

∫
T
u(t, ω)σ(dt), a.s., (6)

cf. also [14], and ∂t is a finite difference operator:

∂tΦ(ω) = Φ(ω \ t)− Φ(ω), µ(dω)⊗ σ(dt)− a.e., Φ ∈ Ξ.

Definition 3 Let R : S(T ) −→ L2(S ′(T )×T ) be a mapping such that R log(1+ξ) ∈
Dom(δ), ξ ∈ S(T ), ‖ξ‖∞ < 1. The transformation Λ(R) is defined on Ξ as

Λ(R)φξ = exp
(
−
∫
T
ξdσ +

∫
T
R(log(1 + ξ))(t, ω \ t)ω(dt)

)
.

From (6) we can also write

Λ(R)φξ = exp
(
−
∫
T
ξdσ + δ(R(log(1 + ξ)) +

∫
T
R(log(1 + ξ))dσ

)
, a.s.,

and

Λ(R)Φ = f
(∫

T
(Rξ1)(t, ω \ t)ω(dt), . . . ,

∫
T

(Rξn)(t, ω \ t)ω(dt)
)
, ξ1, . . . , ξn ∈ S(T ),

for Φ = f (
∫
T ξ1dω, . . . ,

∫
T ξndω) ∈ Ξ, and the transformation Λ(R) is well-defined on

Ξ. We now mention some particular cases generalised dilations.

• Dilations of Poisson measures, with R = αI, α ∈ C.

• Shifts of configurations. In this case, R is given by Rξ = ξ◦h where h : T −→ T

is measurable. If h : T −→ T is bijective, then the action of Λ(R) is to evaluate

a functional Φ on configurations ωh that are shifted according to h, since∫
T
ξ ◦ h dω =

∫
T
ξdωh,

where ωh denotes the image measure of ω by h.
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Given a mapping A : S(T ) −→ S(T ), we denote by ∇(A) the operator defined on Ξ

as

∇(A)Φ =
∫
T

(A⊗ I)DΦdσ, Φ ∈ Ξ.

Proposition 3 Let (Rε)ε∈[0,1] be a family of operators from S(T ) into IL1,4 such that

Rεξ is differentiable in IL1,4, ∀ξ ∈ S(T ). We let

Kξ =
d

dε
Rεξ|ε=0, ξ ∈ S(T ).

If K has the derivation property, then the derivative of (Λ(Rε))ε∈[0,1] is

dΛ(K) = dΓ(K) +∇(K).

Proof. Since K is a derivation, we have from (5) and the identity D exp(δ(ξ)) =

(eξ − 1) exp(δ(ξ)), ξ ∈ S(T ):

(dΓ(K) +∇(L)) exp(δ(ξ)) = δ(KD exp(δ(ξ))) +
∫
T
KD exp(δ(ξ))dσ

= δ(exp(δ(ξ))K(eξ − 1)) + exp(δ(ξ))
∫
T
K(eξ − 1)dσ

= δ(eξ(Kξ) exp(δ(ξ))) + exp(δ(ξ))
∫
T
eξ(Kξ)dσ

= δ((Kξ)D exp(δ(ξ))) + δ((Kξ) exp(δ(ξ)))

+
∫
T

(Kξ)D exp(δ(ξ))dσ + exp(δ(ξ))
∫
T
Kξdσ

= exp(δ(ξ))δ(Kξ) + exp(δ(ξ))
∫
T
Kξdσ

= exp(δ(ξ))(dΓ(K) +∇(K))δ(ξ).

(we used the fact that exp(δ(ξ))K(eξ − 1) ∈ IL1,2), hence

d

dε
[Λ(Rε) exp (δ(ξ))]|ε=0 =

d

dε
exp

(
δ(Rεξ) +

∫
T
Rεξdσ −

∫
T
ξdσ

)
|ε=0

=
(
δ(Kξ) +

∫
T
Kξdσ

)
exp(δ(ξ))

= (∇(K) + dΓ(K)) exp(δ(ξ)). 2

From (5) and (6) we also have the expression

dΛ(K) =
∫
T

[∫
T
τ(K)(t, s)∂sΦds

]
(ω \ t)ω(dt),

and K has the derivation property if Rε is multiplicative, ε ∈ [0, 1]. This suggests

the definition of a generalised Fourier-Mehler type operator G(A,B) in the Poisson

case as

G(A,B) = Γ(B) exp(∇(A)).

12



Lemma 2 Let A,B : S(T ) −→ S(T ). We have the commutation relation

Γ(B) exp (∇(A)) = exp (∇(A ◦B)) Γ(A).

Proof. We have

Γ(B) exp (∇(A))φξ = Γ(B) exp
(∫

T
Aξdσ

)
φξ = exp

(∫
T
Aξdσ

)
φBξ

= exp (∇(A ◦B))φBξ = exp (∇(A ◦B)) Γ(B)φξ. 2

The following is the Poisson analog of Prop. 2.

Proposition 4 Let R : S(T ) −→ S(T ) be a deterministic and bounded operator.

Then

Λ(R) = Γ(R) exp (∇(R− I)) = G(R− I, R). (7)

If R : S(T ) −→ S(T ) is invertible, then

Λ(R) = exp
(
∇(I−R−1)

)
Γ(R). (8)

Proof. We have

Λ(R)φξ = exp
(∫

T
(Rξ − ξ)dσ

)
φRξ

= Γ(R) exp
(∫

T
(Rξ − ξ)dσ

)
φξ = Γ(R) exp (∇(R− I))φξ.

Relation (8) follows from (7) and Lemma. 2.
2

If R is deterministic, then Λ(R) preserves the Poisson measure if and only if R pre-

serves the measure σ, from the characteristic function of the Poisson measure. From

the above Lemma we check that this is equivalent to saying that Λ(R) = Γ(R).

We note that if (Rε)ε∈[0,1] is a family of transformations preserving the Poisson

measure, then dΛ(K) is conservative, since if Λ(Rε) is measure preserving then

E[Λ(Rε)F ] = E[F ], F ∈ S, hence by differentiationE[∇(K)F ] = 0, sinceE[dΓ(K)F ] =

0.
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[18] N. Privault. An analytic approach to stochastic calculus. C. R. Acad. Sci. Paris Sér.
I Math., 326:353–358, 1998.

[19] N. Privault. A calculus on Fock space and its probabilistic interpretations. Bull. Sci.
Math., 123(2):97–114, 1999.

14


