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Abstract

Using the Clark predictable representation formula, we give a proof of
the FKG inequality on the Wiener space. Solutions of stochastic differential
equations are treated as applications and we recover by a simple argument the
covariance inequalities obtained for diffusions processes by several authors.
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1 Introduction

Let (Ω,F , P,�) be a probability space equipped with a partial order relation � on

Ω. An (everywhere defined) real-valued random variable F on (Ω,F , P,�) is said

to be non-decreasing if

F (ω1) ≤ F (ω2)

for any ω1, ω2 ∈ Ω satisfying ω1 � ω2. The FKG inequality [4] states that if F and

G are two square-integrable random functionals which are non-decreasing for the

order �, then F and G are non-negatively correlated:

Cov (F, G) ≥ 0.
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It is well known that the FKG inequality holds for the standard ordering on Ω = R,

since given X, Y : R → R two non-decreasing functions on R we have:

Cov (X, Y ) =
1

2

∫
R×R

(X(x)−X(y))(Y (x)− Y (y))P(dx)P(dy)

=
1

2

∫
{y≤x}

(X(x)−X(y))(Y (x)− Y (y))P(dx)P(dy)

+
1

2

∫
{x<y}

(X(y)−X(x))(Y (y)− Y (x))P(dx)P(dy)

≥ 0.

The FKG inequality also holds on Rn for the pointwise ordering, cf. e.g. Bakry and

Michel [2].

On the Wiener space (Ω,F , P) with Brownian motion (Wt)t∈R+ , Barbato [3] intro-

duced a weak ordering on continuous functions and proved an FKG inequality for

Wiener functionals, with application to diffusion processes.

In this paper we recover the results of [3] under weaker hypotheses via a simple

argument. Our approach is inspired by Remark 1.5 stated on the Poisson space in

Wu [14], page 432, which can be carried over to the Wiener space by saying that

the predictable representation of a random variable F as a an Itô integral, obtained

via the Clark formula

F = E[F ] +

∫ 1

0

E[DtF |Ft]dWt,

yields the covariance identity

Cov (F, G) = E
[∫ 1

0

E[DtF |Ft]E[DtG|Ft]dt

]
, (1.1)

where D is the Malliavin gradient expressed as

〈DF, ḣ〉L2([0,1]) =
d

dε
F (ω + εh)|ε=0. (1.2)

From (1.2) we deduce that DF is non-negative when F is non-decreasing, which

implies Cov (F, G) ≥ 0 from (1.1). Applications are given to diffusion processes

and in Theorem 3.4 we recover, under weaker hypotheses, the covariance inequality
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obtained in Theorem 3.2 of [7] and in Theorem 7 of [3].

We proceed as follows. Elements of analysis on the Wiener space and applications to

covariance identities are recalled in Sections 2. The FKG inequality and covariance

inequalities for diffusions are proved in Section 3. We also show that our method

allows us to deal with the discrete case, cf. Section 4.

2 Analysis on the Wiener space

In this section we recall some elements of stochastic analysis on the classical Wiener

space (Ω,F , P) on Ω = C0([0, 1]; R), with canonical Brownian motion (Wt)t∈[0,1]

generating the filtration (Ft)t∈[0,1]. Our results extend without difficulty to the

Wiener space on C0(R+; R). Let H denote the Cameron-Martin space, i.e. the

space of absolutely continuous functions with square-integrable derivative:

H =

{
h : [0, 1] → R :

∫ 1

0

|ḣ(s)|2ds < ∞
}

.

Let In(fn), n ≥ 1, denote the iterated stochastic integral of fn in the space L2
s([0, 1]n)

of symmetric square-integrable functions in n variables on [0, 1]n, defined as

In(fn) = n!

∫ 1

0

∫ tn

0

· · ·
∫ t2

0

fn(t1, . . . , tn)dWt1 · · · dWtn ,

with the isometry formula

E[In(fn)Im(gm)] = n!1{n=m}〈fn, gm〉L2([0,1]n).

Every F ∈ L2(Ω) admits a unique Wiener chaos expansion

F = E[F ] +
∞∑

n=1

In(fn)

with fn ∈ L2
s([0, 1]n), n ≥ 1. Let (ek)k≥1 denote the dyadic basis of L2([0, 1]) given

by

ek = 2n/21[ k−2n

2n , k+1−2n

2n ], 2n ≤ k ≤ 2n+1 − 1, n ∈ N.

Recall the following two equivalent definitions of the Malliavin gradient D and its

domain Dom (D), cf. Lemma 1.2 of [8] and [10]:
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a) Finite dimensional approximations. Given F ∈ L2(Ω), let for all n ∈ N:

Gn = σ(I1(e2n), . . . , I1(e2n+1−1)),

and Fn = E[F |Gn], and consider fn a square-integrable function with respect

to the standard Gaussian measure on R2n
, such that

Fn = fn(I1(e2n), . . . , I1(e2n+1−1)).

Then F ∈ Dom(D) if and only if fn belongs for all n ≥ 1 to the Sobolev

space W 2,1(R2n
) with respect to the standard Gaussian measure on R2n

, and

the sequence

DtFn :=
2n∑
i=1

e2n+i−1(t)
∂fn

∂xi

(I1(e2n), . . . , I1(e2n+1−1)), t ∈ [0, 1],

converges in L2(Ω× [0, 1]). In this case we let

DF := lim
n→∞

DFn.

b) Chaos expansions. Let G ∈ L2(Ω) be given by

G = E[G] +
∞∑

n=1

In(gn).

Then G belongs to Dom (D) if and only if the series

∞∑
n=1

n!n‖gn‖2
L2([0,1]n)

converges, and in this case,

DtG = g1(t) +
∞∑

n=1

nIn−1(gn(∗, t)), t ∈ [0, 1].

In case (a) above the gradient 〈DFn, ḣ〉L2([0,1]), h ∈ H, coincides with the directional

derivative

〈DFn, ḣ〉L2([0,1])

=
d

dε
fn(I1(e2n) + ε〈e2n , ḣ〉L2([0,1]), . . . , I1(e2n+1−1) + ε〈e2n+1−1, ḣ〉L2([0,1]))|ε=0

=
d

dε
Fn(ω + εh)|ε=0,
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where the limit exists in L2(Ω).

Similarly, the Ornstein-Uhlenbeck semi-group (Pt)t∈R+ admits the following equiva-

lent definitions, cf. e.g. [9], [12], [13]:

a) Integral representation. For any F ∈ L2(Ω) and t ∈ R+, let

PtF (ω) =

∫
Ω

F (e−tω +
√

1− e−2tω̃)dP(ω̃), P(dω)− a.s. (2.1)

b) Chaos representation. For any F ∈ L2(Ω) with the chaos expansion

F = E[F ] +
∞∑

n=1

In(fn),

we have

PtF = E[F ] +
∞∑

n=1

e−ntIn(fn), t ∈ R+. (2.2)

The operator D satisfies the Clark formula, i.e.

F = E[F ] +

∫ 1

0

E[DtF |Ft]dWt, F ∈ Dom(D), (2.3)

cf. e.g. [12]. By continuity of the operator mapping F ∈ L2(Ω) to the adapted and

square-integrable process (ut)t∈R+ appearing in predictable representation

F = E[F ] +

∫ 1

0

utdWt, (2.4)

the Clark formula can be extended to any F ∈ L2(Ω) as in the following proposition.

Proposition 2.1. The operator F 7→ (E[DtF |Ft])t∈[0,1] extends as a continuous

operator on L2(Ω).

Proof. We use the bound

E
[∫ 1

0

(E[DtF |Ft])
2dt

]
= E[(F − E[F ])2] = E[F 2]− (E[F ])2 ≤ ‖F‖2

L2(Ω), (2.5)

for F ∈ Dom(D).

Moreover, by uniqueness of the predictable representation of F ∈ L2(Ω), an expres-

sion of the form

F = c +

∫ 1

0

utdWt
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where c ∈ R and (ut)t∈R+ is adapted and square-integrable, implies ut = E[DtF |Ft],

dt× dP-a.e. The Clark formula and the Itô isometry yield the following covariance

identity, cf. Proposition 2.1 of [6].

Proposition 2.2. For any F, G ∈ L2(Ω) we have

Cov (F, G) = E
[∫ 1

0

E[DtF |Ft]E[DtG|Ft]dt

]
. (2.6)

This identity can be written as

Cov (F, G) = E
[∫ 1

0

E[DtF |Ft]DtGdt

]
, (2.7)

provided G ∈ Dom(D). The following lemma is an immediate consequence of (2.6).

Lemma 2.3. Let F, G ∈ L2(Ω) such that

E[DtF |Ft] · E[DtG|Ft] ≥ 0, dt× dP− a.e.

Then F and G are non-negatively correlated:

Cov (F, G) ≥ 0.

If G ∈ Dom(D), resp. F, G ∈ Dom(D), the above condition can be replaced by

E[DtF |Ft] ≥ 0 and DtG ≥ 0, dt× dP− a.e.,

resp.

DtF ≥ 0 and DtG ≥ 0, dt× dP− a.e..

As recalled in the introduction, if X is a real random variable and f, g are C1(R) func-

tions with non-negative derivatives f ′, g′, then f(X) and g(X) are non-negatively

correlated. Lemma 2.3 provides an analog of this result on the Wiener space, re-

placing the ordinary derivative with the adapted process (E[DtF |Ft])t∈[0,1].

3 FKG inequality on the Wiener space

We consider the order relation introduced in [3].

Definition 3.1. Given ω1, ω2 ∈ Ω, we say that ω1 � ω2 if and only if we have

ω1(t2)− ω1(t1) ≤ ω2(t2)− ω2(t1), 0 ≤ t1 ≤ t2 ≤ 1.
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The class of non-decreasing functionals with respect to � is larger than that of

non-decreasing functionals with respect to the pointwise order on Ω defined by

ω1(t) ≤ ω2(t), t ∈ [0, 1], ω1, ω2 ∈ Ω.

Definition 3.2. A random variable F : Ω → R is said to be non-decreasing if

ω1 � ω2 ⇒ F (ω1) ≤ F (ω2), P(dω1)⊗ P(dω2)− a.s.

Note that unlike in [3], the above definition allows for almost-surely defined func-

tionals. The next result is the FKG inequality on the Wiener space. It recovers

Theorem 4 of [3] under weaker (i.e. almost-sure) hypotheses.

Theorem 3.1. For any non-decreasing functionals F, G ∈ L2(Ω) we have

Cov (F, G) ≥ 0.

The proof of this result is a direct consequence of Lemma 2.3 and Proposition 3.3

below.

Lemma 3.2. For every non-decreasing F ∈ Dom (D) we have

DtF ≥ 0, dt× dP− a.e.

Proof. For n ∈ N, let πn denotes the orthogonal projection from L2([0, 1]) onto the

linear space generated by (ek)2n≤k<2n+1 . Consider h in the Cameron-Martin space

H and let

hn(t) =

∫ t

0

[πnḣ](s)ds, t ∈ [0, 1], n ∈ N.

Let Λn denote the square-integrable and Gn-measurable random variable

Λn = exp

(∫ 1

0

[πnḣ](s)dWs −
1

2

∫ 1

0

|[πnḣ](s)|2ds

)
.

From the Cameron-Martin theorem, for all n ∈ N and Gn-measurable bounded

random variable Gn we have, letting Fn = E[F | Gn]:

E[Fn(·+ hn)Gn] = E[ΛnFnGn(· − hn)]

= E[ΛnE[F |Gn]Gn(· − hn)]

= E[E[ΛnFGn(· − hn)|Gn]]

= E[ΛnFGn(· − hn)]

= E[F (·+ hn)Gn],
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hence

Fn(ω + hn) = E[F (·+ hn)|Gn](ω), P(dω)− a.s.

If ḣ is non-negative, then πnḣ is non-negative by construction hence ω � ω + hn,

ω ∈ Ω, and we have

F (ω) ≤ F (ω + hn), P(dω)− a.s.,

since from the Cameron-Martin theorem, P({ω + hn : ω ∈ Ω}) = 1. Hence with

the notation of Section 2,

Fn(ω + h) = fn(I1(e2n) + 〈e2n , ḣ〉L2([0,1]), . . . , I1(e2n+1−1) + 〈e2n+1−1, ḣ〉L2([0,1]))

= fn(I1(e2n) + 〈e2n , πnḣ〉L2([0,1]), . . . , I1(e2n+1−1) + 〈e2n+1−1, πnḣ〉L2([0,1]))

= Fn(ω + hn)

= E[F (·+ hn)|Gn](ω)

≥ E[F |Gn](ω)

= Fn(ω), P(dω)− a.s.,

i.e. for any ε1 ≤ ε2 and h ∈ H such that ḣ is non-negative we have

Fn(ω + ε1h) ≤ Fn(ω + ε2h),

and the smooth function ε 7→ Fn(ω + εh) is non-decreasing in ε on R, P(dω)-a.s. As

a consequence,

〈DFn, ḣ〉L2([0,1]) =
d

dε
Fn(ω + εh)|ε=0 ≥ 0,

for all h ∈ H such that ḣ ≥ 0, hence DFn ≥ 0. Taking the limit of (DFn)n∈N as n

goes to infinity shows that DF ≥ 0.

Next, we extend Lemma 3.2 to F ∈ L2(Ω).

Proposition 3.3. For any non-decreasing functional F ∈ L2(Ω) we have

E[DtF |Ft] ≥ 0, dt× dP− a.e.

Proof. Assume that F ∈ L2(Ω) is non-decreasing. Then P1/nF , n ≥ 1, is non-

decreasing from (2.1), and belongs to Dom(D) from (2.2). From Lemma 3.2 we

have

DtP1/nF ≥ 0, dt× dP− a.e.,
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hence

E[DtP1/nF |Ft] ≥ 0, dt× dP− a.e.

Taking the limit as n goes to infinity yields E[DtF |Ft] ≥ 0, dt× dP-a.e. from (2.5)

and the fact that P1/nF converges to F in L2(Ω) as n goes to infinity.

Conversely it is not difficult to show that if u ∈ L2([0, 1]) is a non-negative deter-

ministic function, then the Wiener integral
∫ 1

0
utdWt is a non-decreasing functional.

Note however that the stochastic integral of a non-negative square-integrable pro-

cess may not necessarily be a non-decreasing functional. For example, consider

ut = G1[a,1], t ∈ [0, 1], where G ∈ L2(Ω,Fa) is non-negative and decreasing, then∫ 1

0

utdWt = G(B1 −Ba)

is not non-decreasing.

Example: maximum of Brownian motion.

By Proposition 2.1.3 of [9] the maximum M = sup0≤t≤1 W (t) of Brownian motion on

[0, 1] belongs to Dom (D) and satisfies DM = 1[0,τ ] ≥ 0, where τ is the a.s. unique

point where M attains its maximum. Here, M is clearly an increasing functional.

Example: diffusion processes.

Consider the stochastic differential equations{
dXt = bt(Xt)dt + σt(Xt)dWt

X0 = x0,
(3.1)

and {
dX̃t = b̃t(X̃t)dt + σ̃t(X̃t)dWt

X̃0 = x0,
(3.2)

where b, b̃, σ, σ̃ are functions on R+ × R satisfying the following global Lipschitz

and boundedness conditions, cf. [9], page 99:

(i) |σt(x)− σt(y)|+ |bt(x)− bt(y)| ≤ K|x− y|, x, y ∈ R, t ∈ [0, 1],
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(ii) t 7→ σt(0) and t 7→ bt(0) are bounded on [0, 1],

for some K > 0. Lemma 8 of [3] shows that the solutions (Xt)t∈[0,1], (X̃t)t∈[0,1] of

(3.1) and (3.2) are increasing functionals when σ(x), σ̃(x) are differentiable with

Lipschitz derivative in one variable and satisfy uniform bounds of the form

0 < ε ≤ σ(x) ≤ M < ∞ and 0 < ε̃ ≤ σ̃(x) ≤ M̃ < ∞, x ∈ R.

Thus from Proposition 3.3 it satisfies the FKG inequality as in Theorem 7 of [3]. Here

the same covariance inequality can be obtained without using the FKG inequality,

and under weaker hypotheses.

Theorem 3.4. Let s, t ∈ [0, 1] and assume that σ, σ̃ satisfy the condition

σr(x)σ̃r(y) ≥ 0, x, y ∈ R, 0 ≤ r ≤ s ∧ t.

Then we have

Cov (f(Xs), g(X̃t)) ≥ 0, (3.3)

for all non-decreasing Lipschitz functions f , g.

Proof. From Proposition 1.2.3 and Theorem 2.2.1 of [9], we have f(Xs) ∈ Dom(D),

s ∈ [0, 1], and

Drf(Xs) = 1[0,s](r)σr(Xr)f
′(Xs)e

R s
r αudWu+

R s
r (βu− 1

2
α2

u)du, (3.4)

r, s ∈ [0, 1], where (αu)u∈[0,1] and (βu)u∈[0,1] are uniformly bounded adapted pro-

cesses. Hence we have

E[DrXs | Fr] = 1[0,s](r)σr(Xr)E
[
f ′(Xs)e

R s
r αudWu+

R s
r (βu− 1

2
α2

u)du
∣∣∣Fr

]
,

r, s ∈ [0, 1]. Similarly we show that E[Drg(X̃t) | Fr] has the form

E[Drg(X̃t) | Fr] = 1[0,t](r)σ̃r(X̃r)E
[
g′(X̃t)e

R t
r α̃udWu+

R t
r (β̃u− 1

2
α̃2

u)du
∣∣∣Fr

]
,

r, t ∈ [0, 1], and we conclude the proof from Lemma 2.3.

Note that (3.3) has also been obtained for s = t and X = X̃ in [7], Theorem 3.2, by

semigroup methods. In this case it also follows by applying Corollary 1.4 of [5] in

dimension one. The argument of [7] can in fact be extended to recover Theorem 3.4

as above. Also, (3.3) may also hold under local Lipschitz hypotheses on σ and σ̃,

for example as a consequence of Corollary 4.2 of [1].
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4 The discrete case

Let Ω = {−1, 1}N and consider the family (Xk)k≥1 of independent Bernoulli {−1, 1}-
valued random variables constructed as the canonical projections on Ω, under a

measure P such that

pn = P(Xn = 1) and qn = P(Xn = −1), n ∈ N.

Let F−1 = {∅, Ω} and

Fn = σ(X0, . . . , Xn), n ∈ N.

Consider the linear gradient operator D defined as

DkF (ω) =
√

pkqk(F ((ωi1{i6=k} + 1{i=k})i∈N)− F (ωi1{i6=k} − 1{i=k})i∈N), (4.1)

k ∈ N. Recall the discrete Clark Formula, cf. Proposition 7 of [11]:

F = E[F ] +
∞∑

k=0

E[DkF |Fk−1]Yk, (4.2)

where

Yk = 1{Xk=1}

√
qk

pk

− 1{Xk=−1}

√
pk

qk

, k ∈ N,

defines a normalized i.i.d. sequence of centered random variables with unit variance.

The Clark formula entails the following covariance identity, cf. Theorem 2 of [11]:

Cov (F, G) = E

[
∞∑

k=0

E[DkF |Fk−1]E[DkG|Fk−1]

]
,

which yields a discrete time analog of Lemma 2.3.

Lemma 4.1. Let F, G ∈ L2(Ω) such that

E[DkF |Fk−1] · E[DkG|Fk−1] ≥ 0, k ∈ N.

Then F and G are non-negatively correlated:

Cov (F, G) ≥ 0.

According to the next definition, a non-decreasing functional F satisfies DkF ≥ 0

for all k ∈ N.
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Definition 4.1. A random variable F : Ω → R is said to be non-decreasing if for

all ω1, ω2 ∈ Ω we have

ω1(k) ≤ ω2(k), ∀k ∈ N, ⇒ F (ω1) ≤ F (ω2).

The following result is then immediate from (4.1) and Lemma 4.1, and shows that

the FKG inequality holds on Ω.

Proposition 4.2. If F, G ∈ L2(Ω) are non-decreasing then F and G are non-

negatively correlated:

Cov (F, G) ≥ 0.

Note however that the assumptions of Lemma 4.1 are actually weaker as they do

not require F and G to be non-decreasing.
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[7] Y.Z. Hu. Itô-Wiener chaos expansion with exact residual and correlation, variance inequalities.
J. Theoret. Probab., 10(4):835–848, 1997.

[8] D. Nualart. Markov fields and transformations of the Wiener measure. In T. Lindstrøm,
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