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1 Introduction

Consider the Lévy-type potential

V (x) = ibx+
1

2
σ2x2 −

∫
R\{0}

(e−ixk − 1 + ixk1{|k|≤1})ν(dk), x ∈ R, (1.1)

where b, σ ∈ R and the Lévy measure ν satisfies
∫
R\{0}(1 ∧ k

2)ν(dk) < ∞, and the

pseudo-differential operator V (i∇) given by

V (i∇)u(p) = −bu′(p)− σ2

2
u′′(p)−

∫
R\{0}

(u(p+ k)− u(p)− ku′(p)1{|k|≤1})ν(dk),

(1.2)

cf. [12] and the references therein. In this paper we consider the partial differential

equation 
∂u

∂t
(t, p) = −U(p)u(t, p)− V (i∇)u(t, p), (t, p) ∈ (0,∞)× R

u(0, p) = g(p), p ∈ R
(1.3)

with prescribed initial condition g(p) and we derive the Feynman-Kac type formula

u(t, p) = E
[
g(ξt) exp

(
−
∫ t

0

U(ξs) ds

) ∣∣∣ ξ0 = p

]
, (1.4)

for the solution u(t, p) of (1.3), cf. Theorem 2.1 in Section 2.

Here, (ξt)t∈R+ is a real-valued Lévy process on (Ω,F,P), whose characteristic function

is given by the Lévy-Khintchine formula

E [exp (−ix · ξt)] = exp (−tV (x)) , (1.5)

with

V (x) = ibx+
σ2

2
x2 −

∫
R\{0}

(e−ixk − 1)ν(dk),

where
∫
R\{0}(1∧k

2)ν(dk) <∞ and the Lévy measure ν(dk) will be chosen symmetric

under time reversal k → −k so that (1.2) reduces to

V (i∇)u(p) = −bu′(p)− σ2

2
u′′(p)−

∫
R\{0}

(u(p+ k)− u(p))ν(dk).
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The function U(p) in (1.3) is sometimes called killing rate (see Section 3.5 in [1]). We

shall, however, avoid the term ‘killing’ which is inappropriate to our time reversible

framework, and refer simply to the ‘rate’.

Note that formulas such as (1.4) have been implicitly used in the literature, for ex-

ample for the construction of subsolutions and the derivation of blow-up criteria for

semilinear PDEs of the form
∂u

∂t
(t, p) = u1+β(t, p)− V (i∇)u(t, p), (t, p) ∈ (0,∞)× R

u(0, p) = g(p), p ∈ R,

where g is a nonnegative function, β > 0, see e.g. [4], [17], when V (i∇) = −(−∆)α/2

is a fractional Laplacian power, 0 < α ≤ 2, and [16] for the generator

V (i∇)u(p) = −
∫
R\{0}

(u(p+ k)− u(p))
e−k

k
dk,

of the standard gamma process.

In this paper, based on Feynman and Hibbs’ suggestion that in the momentum repre-

sentation of (Euclidean) quantum physics, the underlying stochastic processes should

belong to some class of time reversible jump processes (cf. [10]), we apply our result

to the momentum representation

Ĥu(p) = FHF−1u(p)Ĥu(p) =
p2

2
u(p) + V (i~∇)u(p), (1.6)

of the original (configuration representation) Hamiltonian

H = −~2

2
4+ V,

where ~ is the Planck constant and F is the Fourier transform

Fu(p) =
1√
2π~

∫
R
e−ipx/~u(x)dx,

for any rapidly decreasing function u(·) ∈ S(R), with inverse

F−1v(x) =
1√
2π~

∫
R
eipx/~v(p)dp, v(·) ∈ S(R).
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The corresponding Euclidean version of the associated Schrödinger equation in mo-

mentum representation (in the sense of [22] and [21]) reads

−~∂η̂
∗

∂t
(t, p) = Ĥη̂∗(t, p), (1.7)

which is one of the two adjoint equations whose positive solutions are needed to pro-

duce quantum-like probability measures in [22] and [21].

In addition we will consider a general rate function U(p) instead of p2/2 in (1.6) and

deal with the equation
~
∂η∗

∂t
(t, p) = −U(p)η∗(t, p)− V (i~∇)η∗(t, p), (t, p) ∈ (0,∞)× R

η∗(0, p) = g(p), p ∈ R,
(1.8)

instead of (1.7) with initial condition g(·) ∈ S(R). Finally we will study the limiting

behavior of (1.8) as ~ approaches 0.

Usually there are two different methods to derive a Feynman-Kac type formula:

• martingale methods combined with the Itô formula (see for example Section 5.7

of [14] and Section 3.19 of [23]), or

• semigroup methods (see Section 6.7.2 in [1], Section 3.19 in [23] and Section 1.5

of [11]).

The first method is generally applicable under the main assumption that the par-

tial integro-differential equation (1.3) has a solution with suitable growth assumption

(see Proposition 4 in [18] and Theorem 4.1 in [6] for more details by using stochastic

integrals driven by Lévy processes). However, an unbounded rate U(p) function is

not compatible with the conditions of [18] and [6]. In this paper, we use the second

(semigroup) method to prove the existence (and even the uniqueness) of a solution

for (1.3) and to induce a Feynman-Kac type formula for the solution simultaneously.

It is also known that the semigroup method (with infinitesimal generator) only works

for (at least) bounded rates. In order to deal with the unbounded rate, in this paper
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we use this method in a weaker form (explained at the beginning of Section 2) which

is explicitly presented in Theorem 2.1 and Theorem 2.3.

In addition we also study the limiting behaviors of the solutions given by Feynman-

Kac type formulas in terms of large deviations. In particular we show in detail that

these limiting behaviors have exactly the same patterns as the semiclassical limits of

(Euclidean) quantum mechanics in several special cases, and we derive precise asymp-

totics as well for the drift terms in both configuration and momentum representations.

The reader is referred to [28] for more about the underlying notion of Euclidean quan-

tum mechanics.

This paper is organized as follows. In Section 2 we present the Feyman-Kac formula

(1.4) and its proof. The limiting behaviors of the solution given by Feynman-Kac

type formula are then studied in terms of large deviations in Section 3.

2 Feynman-Kac type formulas

Let A be the infinitesimal generator of the semigroup

Ttf(x) := E[f(ξt)|ξ0 = x],

of a time-homogeneous Markov process ξt where f is in a space B of bounded mea-

surable functions with the uniform norm, and such that

lim
t→0+

sup
x

∣∣∣∣Ttf(x)− f(x)

t
− Af(x)

∣∣∣∣ = 0, f ∈ B.

For every f in the domain of A, the function

u(t, x) := Ttf(x) = Ex[f(ξt)]

is the unique (in the sense of boundedness) solution of

∂u

∂t
(t, x) = Au(t, x) with u(0, x) = f(x).
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The main ideas for the derivation of Feynman-Kac type formulas by semigroup meth-

ods for differential equations of the form

∂v

∂t
(t, x) = Av(t, x)− c(x)v(t, x), v(0, x) = f(x) (2.1)

with rate c(x), can be formulated as follows, see Section 3.19 of [23] and Section 1.5

of [11] for details.

The idea of the semigroup method is to show that

Ãf(x) := Af(x)− c(x)f(x)

is the infinitesimal generator of the new semigroup

T̃tf(x) := Ex
[
f(ξt) exp

(
−
∫ t

0

c(ξs)ds

)]
,

i.e. v(t, x) := T̃tf(x) is a solution of (2.1). This only holds under (strong) assumptions,

including the boundedness of c(x), cf. [23]. Note that in this case the derivative

∂v

∂t
(t, x) = Av(t, x)− c(x)v(t, x)

is uniform in x, in the sense that

lim
h→0

sup
x

∣∣∣∣v(t+ h, x)− v(t, x)

h
− (Av(t, x)− c(x)v(t, x))

∣∣∣∣ = 0, (2.2)

for every fixed t > 0. However, pointwise convergence is sufficient in (2.2) for the

analysis of a differential equation, and we choose to weaken the boundedness condi-

tion on c(x) when deriving our Feynman-Kac formulas.

In the sequel, (ξt)t≥0 will be a Lévy process defined on (Ω,F,P) whose characteristic

exponent is given by (1.5), and which is Markov with respect to the increasing fil-

tration Pt = σ(ξs, 0 ≤ s ≤ t). Furthermore, (ξt)t≥0 has a modification (still denoted

by (ξt)t≥0) which is right continuous with left limits. We say that the process ξ has

bounded jumps if there is C > 0 such that

sup
t≥0
|ξt − ξt−| < C a.s.
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It follows from Corollary 2.4.9 of [1] that ξ has bounded jumps if and only if ν has a

bounded support.

We denote by

S(R,C) :=

{
f(·) : R→ C with sup

x

∣∣xmf (n)(x)
∣∣ <∞, ∀ m,n ∈ N

}
,

the Schwartz space of all infinitely differentiable rapidly decreasing functions with

bounded n-th derivatives f (n)(x) on the real line R to the complex plane C, with

S(R) = S(R,R).

Theorem 2.1. Assume that the rate function U(p) is smooth and such that

U(p) ≥ c|p|a, |p| > C, (2.3)

for some c > 0, a ≥ 1 and C > 0, and that its derivatives satisfy∣∣U (n)(p)
∣∣ ≤ c(n)

(
1 + |p|k(n)

)
, |p| > C, (2.4)

for some c(n), k(n) > 0. Then (1.4) is a solution to (1.3) provided ν has moments of

all orders and g ∈ S(R).

Proof. Throughout this proof we take U(p) = p2/2 without loss of generality. For any

bounded measurable f(x), let Ttf(x) = E[f(ξt + x)] denote the semigroup associated

with the Lévy process ξt started at ξ0 = 0. For any function g ∈ S(R), the infinitesimal

generator A of ξt is

Ag(x) = bg′(x) +
σ2

2
g′′(x) +

∫
R\{0}

(g(x+ k)− g(x)) ν(dk),

see Theorem 3.3.3 in [1]. We also define

T̃tg(x) = E
[
g(ξt) exp

(
−1

2

∫ t

0

|ξs|2 ds
) ∣∣∣ξ0 = x

]
and let Ãg(x) := Ag(x)− x2g(x)/2.
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Step 1: We show for each fixed x ∈ R and g ∈ S(R) that

lim
t→0+

t−1
(
T̃tg(x)− g(x)

)
= Ãg(x). (2.5)

By the relation

T̃tg(x)− g(x) =

∫ t

0

T̃sÃg(x)ds (2.6)

which follows from martingale arguments, cf. e.g. Section 3.19 of [23], we get

lim
t→0+

t−1
(
T̃tg(x)− g(x)

)
= lim

t→0+
t−1

∫ t

0

T̃sÃg(x)

= lim
t→0+

t−1

∫ t

0

E
[(
Ag(ξs)−

1

2
|ξs|2g(ξs)

)
exp

(
−1

2

∫ s

0

|ξu|2 du
) ∣∣∣ ξ0 = x

]
ds

= lim
t→0+

∫ 1

0

E
[(
Ag(ξtθ)−

1

2
|ξtθ|2g(ξtθ)

)
exp

(
−1

2

∫ tθ

0

|ξu|2 du
) ∣∣∣ ξ0 = x

]
dθ.

The first term is easily to be computed as

lim
t→0+

∫ 1

0

E
[
Ag(ξtθ) exp

(
−1

2

∫ tθ

0

|ξu|2 du
) ∣∣∣ ξ0 = x

]
dθ = Ag(x)

since Ag(x) is bounded and continuous in x. The second limit

lim
t→0+

∫ 1

0

E
[
ξ2
tθ · g(ξtθ) exp

(
−1

2

∫ tθ

0

|ξu|2 du
) ∣∣∣ ξ0 = x

]
dθ = x2g(x) (2.7)

since x2g(x) is bounded and continuous in x which is from the fact that g ∈ S(R).

However, here we present another proof of (2.7) which works for any (only) bounded

and continuous g. The reason why we give this proof is that, in Theorem 2.3 below,

the initial g is only assumed to be bounded and continuous, and such a proof is needed

there. Under the existence of moments of all orders for ν we have the moment bounds

sup
t∈[0,1]

E [(ξt)
m | ξ0 = x] <∞, m ≥ 1, (2.8)

cf. e.g. [2] and Relations (1.1)-(1.2) in [19]. We write

lim
t→0+

∫ 1

0

E
[
|ξtθ|2g(ξtθ) exp

(
−1

2

∫ tθ

0

|ξu|2 du
) ∣∣∣ ξ0 = x

]
dθ

= lim
t→0+

∫ 1

0

E
[
|ξtθ|2g(ξtθ)

∣∣∣ ξ0 = x
]
dθ
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+ lim
t→0+

∫ 1

0

E
[
|ξtθ|2g(ξtθ)

(
exp

(
−1

2

∫ tθ

0

|ξu|2 du
)
− 1

) ∣∣∣ ξ0 = x

]
dθ

=: I + II,

with I = x2g(x) because of (2.8). The second component vanishes by noting that

E

[(
exp

(
−1

2

∫ tθ

0

|ξu|2 du
)
− 1

)2 ∣∣∣ ξ0 = x

]
dθ = o(t).

Step 2: We show that T̃tg(·) ∈ S(R) for all g ∈ S(R) and t > 0. From the indepen-

dence and stationarity of increments of ξt we have

T̃tg(x) = E
[
g(ξt) exp

(
−1

2

∫ t

0

|ξs|2 ds
) ∣∣∣ ξ0 = x

]
= E

[
g(ξt + x) exp

(
−1

2

∫ t

0

|ξs + x|2 ds
)]

,

hence by the bound E[|ξt|k] < ∞, k ≥ 1, the n-th partial derivatives ∂nT̃tg(x)/∂xn

can be bounded as(
∂nT̃tg(x)

∂xn

)2

≤ c(n)(1 + x2k(n))E
[
exp

(
−1

2

∫ t

0

|ξs + x|2 ds
)]

(2.9)

for some positive constant c(n) depending on n and an integer k(n) depending on n.

For any positive integer m, we analyze the part with expectation in (2.9) as follows

E
[
exp

(
−1

2

∫ t

0

|ξs + x|2 ds
)]
≤ E

[
exp

(
− t

2

(
x+

1

t

∫ t

0

ξs ds

)2
)]

= E

[
1{ω:|∫ t

0 ξs ds|≤t|x|1/2} exp

(
− t

2

(
x+

1

t

∫ t

0

ξs ds

)2
)]

+ E

[
1{ω:|∫ t

0 ξs ds|>t|x|1/2} exp

(
− t

2

(
x+

1

t

∫ t

0

ξs ds

)2
)]

=: `1 + `2.

(2.10)

For `2, it follows from Tchebychev type estimates that

`2 ≤ P
({

ω :

∣∣∣∣1t
∫ t

0

ξs ds

∣∣∣∣ > |x|1/2}) ≤ 1

|x|mt2m
E

[(∫ t

0

ξs ds

)2m
]
.
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Thus supx |x|m`2 <∞ holds since E[(ξt)
k] <∞. It is easy to see that for large enough

|x| we have `1 ≤ e−t|x|/2, which yields

sup
x

∣∣∣∣∣xm∂nT̃tg(x)

∂xn

∣∣∣∣∣ <∞.
Step 3: In this step, we replace g(x) in (2.5) by T̃tg(x) to get

∂+T̃tg(x)

∂t
= ÃT̃tg(x), T̃0g(x) = g(x).

In this step, we show that the right-hand derivative can be replaced by the two-sided

derivative ∂T̃tg(x)/∂t. To this end, we just need to show that the right-hand derivative

ÃT̃tg(x) is continuous in t. Let us recall

ÃT̃tg(x) = AT̃tg(x)− 1

2
x2T̃tg(x).

The continuity in t is then easily from the definitions of A and T̃t with the help of

(2.6) repeatedly.

Note that in Theorem 2.1 the condition (2.3) (i.e. U(p) ≥ c|p|a for some a ≥ 1)

is necessary in general since in the first inequality of (2.10) we need the convexity

of c|p|a in p. However, condition (2.3) can be weakened to any a > 0 by assuming

in addition that the process (ξt)t≥0 is a subordinator, i.e. a one-dimensional a.s.

non-decreasing Lévy process, cf. Section 1.3.2 in [1], which will remain a.s. positive

provided ξ0 ≥ a∗ > 0. For instance, Theorem 2.2 applies in case U(p) = p1/2.

Theorem 2.2. Assume that (ξt)t≥0 is a subordinator and that in addition to (2.4) the

smooth rate function U(p) satisfies

U(p) ≥ c|p|a, |p| > C,

for some c > 0, a > 0 and C > 0. Then (1.4) is a solution to (1.3) provided ν has

moments of all orders and g ∈ S(R).
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Proof. We adjust (2.10) to make the arguments go through for the new (possibly not

convex) function cpa. Namely we write

E
[
exp

(
−
∫ t

0

U(ξs + x) ds

)]
≤ E

[
exp

(
−c
∫ t

0

(ξs + x)a ds

)]
= E

[
1{ω: sup0≤s≤t ξs≤x1/2} exp

(
−c
∫ t

0

(ξs + x)a ds

)]
+ E

[
1{ω: sup0≤s≤t ξs>x

1/2} exp

(
−c
∫ t

0

(ξs + x)a ds

)]
:= `1 + `2, x > 0,

(2.11)

with `1 ≤ exp
(
−ctxa/2

)
for large x as above. The second term is estimated as

`2 ≤ P
(
ω : sup0≤s≤t ξs > x1/2

)
= P

(
ω : ξt > x1/2

)
, then Tchebychev type estimates

complete the argument.

The condition g ∈ S(R) in Theorem 2.1 is somewhat restrictive and can also be

relaxed into assuming only continuity and boundedness of g if we restrict ourselves to

a special family (ζt)t≥0 of Lévy processes which are real-valued pure jump processes

with infinitesimal generator

Af(p) =

∫
R
(f(p+ k)− f(p))µ(dk)

for bounded f(·) : R → R, where µ(R) < ∞ and µ(dk) is symmetric under k → −k,

cf. e.g. Section 4.2 of [9]. In this setting we consider the partial integro-differential

equation
∂u∗
∂t

(t, p) = −U(p)u∗(t, p) +

∫
R
(u∗(t, p+ k)− u∗(t, p))µ(dk), (t, p) ∈ (0,∞)× R

u∗(0, p) = g(p), p ∈ R,

(2.12)

where U(p) is continuous and satisfies c1 ≤ U(p) ≤ c2(1+|p|M) for some c1 ∈ R, c2 > 0

and M > 0. This allows us in particular to work in the momentum representation of

(Euclidean) quantum mechanics with a general potential U(p) instead of only p2/2 as

in [21].
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Theorem 2.3. Suppose that µ(dk) is symmetric under k → −k, µ(R) < ∞, and

U(p) is continuous and satisfies

c1 ≤ U(p) ≤ c2(1 + |p|M)

for some c1 ∈ R, c2 > 0 and M > 0. If the initial condition g of (2.12) is continuous

and bounded, and
∫
R |k|

2Mµ(dk) <∞, then

u∗(t, p) = E
[
g(ζt) exp

(
−
∫ t

0

U(ζs) ds

) ∣∣∣ ζ0 = p

]
(2.13)

is a solution to (2.12).

Proof. The proof is quite similar to that of Theorem 2.1 by replacing S(R) with the

space of bounded measurable functions on R. Since µ(R) is finite the finiteness of the

moment supt∈[0,1] E[(ζt)
2M ] follows directly from the assumption

∫
R |k|

2Mµ(dk) < ∞
by e.g. [2] or Relations (1.1)-(1.2) in [19]. In Steps 2 and 3 we need the boundedness

and the continuity in x of the new semigroup

T̃tg(p) = E
[
g(ζt) exp

(
−
∫ t

0

U(ζs) ds

) ∣∣∣ ζ0 = p

]
which follow from the boundedness and the continuity of g(x).

There are a number of ways to prove that (2.13) is the unique (bounded) solution

to (2.12) under additional appropriate assumptions. For instance, if the rate U is

bounded, then the Gronwall’s lemma implies the uniqueness.

3 Limiting behaviors

This section is concerned with the limiting behavior of solutions and drift terms as ~
tends to 0. We start in Section 3.1 with an illustration of how large deviations (of in-

tegral forms) can be applied in the case of pure jump processes. Detailed formulations

are then presented together with some close connections with the semiclassical limits

discussed in [15]. Finally we provide precise asymptotics for the drift terms in both

configuration and momentum representations of Euclidean quantum physics. See also

[20] for recent large deviations results for continuous Bernstein processes, and [27] in

the case of jump processes.
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3.1 An illustration with pure jump processes

To illustrate the analysis of limiting behaviors of solutions defined through (1.4) and

(2.13) we consider the limit as ~ tends to 0 of the solution

u~(t, p) = E~
[
exp

(
−~−1

∫ t

0

U(ζ~s ) ds

) ∣∣∣ ζ~0 = p

]
.

to (2.12) when g ≡ 1 and (ζ~t )t≥0 is the pure jump processes with infinitesimal gener-

ator

Af(p) = ~−1

∫
R
(f(p+ ~k)− f(p))µ(dk).

Besides the time symmetry assumption and µ(R) <∞, we further impose the bounded

support condition

µ([−N,N ]c) = 0, µ([−N,−N + ε]) > 0, µ([N − ε,N ]) > 0, ∀ε > 0,

on the measure µ, for some N > 0. The trajectories of (ζ~s )0≤s≤t belong to the space

D([0, t]) of all right continuous functions with left limits (equipped with the uniform

norm). It has been shown in [25] (see Theorems 3.2.1, 3.2.2 and 4.1.1 therein) that

the family (ζ~s )0≤s≤t satisfies a large deviation principle over D([0, t]) with the action

functional S(φ) :=
∫ t

0
L0(φ′(s))ds for absolutely continuous function φ(t) where

L0(u) = sup
x∈R

(xu−H0(x)), H0(x) =

∫
R
(exk − 1)µ(dk).

More precisely, for any measurable set Γ ⊆ D([0, t]) we have

− inf
φ∈Γo

S(φ) ≤ lim inf
~→0

~ lnP~(ζ~ ∈ Γ) ≤ lim sup
~→0

~ lnP~(ζ~ ∈ Γ) ≤ − inf
φ∈Γ̄

S(φ) (3.1)

where Γo (resp. Γ̄) is the interior (resp. closure) of Γ.

It is proved from (3.1) through Varadhan’s integral lemma (see Section 4.3 [8]) that

lim
~→0

~ lnE~
[
exp

(
−~−1

∫ t

0

U(ζ~s ) ds

) ∣∣∣ ζ~0 = p

]
= sup

φ∈D0([0,t])

(
−
∫ t

0

U(φ(s) + p) ds− S(φ)

)
13



= sup
φ∈D0([0,t])

(
−
∫ t

0

L(φ′(s), φ(s))ds

)
,

where L(φ′(s), φ(s)) = L0(φ′(s))+U(φ(s)+p) and D0([0, t]) is the subspace of D([0, t])

with initial position 0. For general g satisfying suitable boundedness and smoothness

conditions, we may also deduce the asymptotic expansion

u~∗(t, p) = exp

(
h−1 sup

φ∈D0([0,t])

(
−
∫ t

0

L(φ′(s), φ(s)) ds

))( ∑
0≤i≤n

ki~i/2 + o(~n/2)

)

as ~ → 0, by means of precise asymptotics for large deviations which have been

established in [26] and Chapter 5 of [25].

3.2 Harmonic oscillator Hamiltonian

In this section we turn to (1.4) and take

U(p) = p2/2, b = ν = 0, and σ2 = 1

in the characteristic exponent (1.5), i.e. (ξ~t )t∈R+ =
√
~(Wt)t∈R+ , where (Wt)t∈R+ is a

one-dimensional Wiener process on the real line.

In order to show the connection between large deviations and semiclassical limit of

(Euclidean) quantum mechanics we consider ū~(t, p) := u~∗(1 − t, p) for t ∈ [0, 1]. It

follows from (1.3) with initial g(p) = exp (−p2/~) that the positive function ū~(t, x)

satisfies the final value problem
~
∂ū~

∂t
(t, p) = −~2

2
4ū~(t, p) +

1

2
p2ū~(t, p), (t, p) ∈ [0, 1)× R

ū~(1, p) = exp (−p2/~) , p ∈ R.
(3.2)

From Schilder’s large deviation formula (see [24]), ū~(t, x) admits the asymptotic

expansion

ū~(t, p) = exp

(
−1

~

(∫ 1

t

(
1

2
|q̄′(τ)|2 +

1

2
|q̄(τ) + p|2

)
dτ + |q̄(1) + p|2 + o(1)

))
(3.3)

14



as ~→ 0, where q̄(τ) := φ̄(τ − t) and φ̄ is a minimizer of

inf
φ∈A0([0,1−t])

(∫ 1−t

0

(
1

2
|φ′(s)|2 +

1

2
|φ(s) + p|2

)
ds+ |φ(1− t) + p|2

)
with A0([0, 1− t]) being the space of all absolutely continuous functions on [0, 1− t]
having initial value 0. In terms of q̄ itself, the variational problem can therefore be

rewritten as on [t, 1] :

inf
q∈A0([t,1])

(∫ 1

t

(
1

2
|q′(s)|2 +

1

2
|q(s) + p|2

)
ds+ |q(1) + p|2

)
.

If φ̄ is smooth, then it satisfies an ordinary differential equation

φ̄′′(s)− (φ̄(s) + p) = 0, s ∈ (0, 1− t), φ̄(0) = 0 and φ̄′(1− t) + 2(φ̄(1− t) + p) = 0.

It is again equivalent but more appropriate for us to rewrite this in terms of q̄ as

q̄′′(s)− (q̄(s) + p) = 0, s ∈ (t, 1), q̄(t) = 0 and q̄′(1) + 2(q̄(1) + p) = 0.

We note that (3.3) has a quite similar expression as the semiclassical limit (5.38) in

[15]. Actually, we can match exactly these two expressions by investigating the exact

order o(1) in (3.3). By applying precise large deviations of [24] to
√
~W, we get the

expansion

ū~(t, p) = (1 + o(1))K̄(t) (3.4)

× exp

(
−1

~

(∫ 1

t

(
1

2
|q̄′(τ)|2 +

1

2
|q̄(τ) + p|2

)
dτ + |(q̄(1) + p|2

))
as ~→ 0, where K̄(t) = E

[
exp

(
−1

2

∫ 1−t
0

W 2
s ds−W 2

1−t

)]
. In order to compare (3.4)

with (6.8)-(6.9) in [15], we note that K̄(t) = (2πF (t))−1/2 where

F (t) =
1

2π
(cosh(1− t) + 2 sinh(1− t))

solving the following ordinary differential equation on [t, 1] (cf. (1.9.3) page 168 in

[5])

F ′′(τ) = F (τ), τ ∈ [t, 1], F (1) = 1/(2π), F ′(1) = −1/π.

15



In particular, these final boundary conditions satisfy the condition (6.9) of [15]:

|F ′(1)| + |F (1)| > 0. This means that the associated (forward) semiclassical Bern-

stein diffusion Z of [15] is absolutely continuous with respect to our ξ~ =
√
~W and

with linear drift B(z, τ) = F ′(τ)F−1(τ)z (the constant δ, there, is zero). The semi-

classical analysis done here for (3.2) is valid for Gaussian final boundary condition

ū~(1, p).

Equation (3.2) is the forward description (involving the usual increasing filtration

representing the past information about the system) of the semiclassical expansion,

and we can similarly consider the following backward description
~
∂u~∗
∂t

(t, p) =
~2

2
4u~∗(t, p)−

1

2
p2u~∗(t, p), (t, p) ∈ (0, 1]× R

u~(0, p) = exp
(
−p2/~

)
, p ∈ R

(3.5)

associated with a decreasing filtration. For simplicity, the same Gaussian boundary

condition has been chosen. In this case, the solution u~∗(t, p) admits the expansion

u~∗(t, p) = K∗(t) · (1 + o(1)) (3.6)

× exp

(
−1

~

(∫ t

0

(
1

2
|q′∗(τ)|2 +

1

2
|q∗(τ) + p|2

)
dτ + |q∗(t) + p|2

))
where q∗ is the minimizer of

inf
q∈A0([0,t])

(∫ t

0

(
1

2
|q′(s)|2 +

1

2
|q(s) + p|2

)
ds+ |q(t) + p|2

)
,

and the coefficient K∗(t) = E
[
exp

(
−1

2

∫ t
0
W 2
s ds−W 2

t

)]
. Then we have K∗(t) =

(2πF∗(t))
−1/2, where F∗ solves the same ODE as F before but with initial boundary

conditions on [0, t] : F∗(0) = 1/(2π) and F ′∗(0) = 1/π. Then F∗(τ) = 1
2π

(cosh τ +

2 sinh τ). The same semiclassical diffusion Z as before, now considered with respect

to a decreasing, or backward, filtration has a drift B∗(z, τ) = F ′∗(τ)F−1
∗ (τ)z. Again, the

whole manifold of semiclassical diffusions follow from the analysis of general Gaussian

initial condition (cf. [15]). The special Gaussian Z defined via (3.4) and (3.6) is of

zero mean and covariance c(τ) proportional to F∗(τ)F (τ), 0 ≤ τ ≤ 1.
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3.3 Pure jump Hamiltonian

The operator H = −~24/2 + p2/2 of equation (3.2) is called Harmonic oscillator

Hamiltonian expressed here, in this special case where configuration and momentum

play a completely symmetric role, in terms of the momentum variable. We can gen-

eralize (3.2) to include more general Hamiltonians and derive precise large deviations

as (3.4) having similar connections with the semiclassical limits of (Euclidean) quan-

tum physics, see [15], [25] and [26]. In particular, we illustrate below an example

with pure jump processes as mentioned in Section 3.1. Consider the following partial

integro-differential equation with final condition
~
∂v̄~

∂t
(t, p) = −

∫
R
(v̄~(t, p+ ~k)− v̄~(t, p))µ(dk) + U(p)v̄~(t, p), (t, p) ∈ [0, 1)× R

v̄~(1, p) = exp (−1/~) , p ∈ R.

(3.7)

If we consider a special potential V (x) = 1 − cos(αx) for some α > 0, this case

corresponds to µ(dk) = 1
2
(δα(dk) + δ−α(dk)). For a particular U(p) = p2 − p, it has

been proved in [26] that v̄~ has the asymptotics

v̄~(t, p) = P̄ (t) · (1 + o(1)) · exp

(
−1

~

(∫ 1

t

L(z̄′(s), z̄(s))ds+ 1

))
(3.8)

as ~→ 0, where L is defined in Section 3.1 with

S(z) =

∫ 1

t

(
(z′(s)/α) ln

(
z′(s)/α +

√
(z′(s)/α)2 + 1

)
+ 1−

√
(z′(s)/α)2 + 1

)
ds

(3.9)

for absolutely continuous z(s), the function z̄(τ) is the unique minimizer of∫ 1

t

L(z′(s), z(s))ds

over A0([t, 1]), and P̄ (t) = E
[
exp

(
−
∫ 1

t
ς̄2
s ds

)]
with

ς̄s = α

√
e%̄(s−t) + e−%̄(s−t)

2
Ws−t

17



and

%̄(τ) = ln
(
z̄′(τ)/α +

√
(z̄′(τ)/α)2 + 1

)
.

We further remark that the unique minimizer z̄ satisfies the following ordinary differ-

ential equation

z̄′′(s)− (2(z̄(s) + p)− 1) ·
√
|z̄′(s)|2 + α2 = 0, s ∈ (t, 1), z̄(t) = 0 and z̄′(1) = 0.

Again (3.8) is the forward description of the semiclassical expansion. Let us now

consider the backward description by using
~
∂v~∗
∂t

(t, p) =

∫
R
(v~∗(t, p+ ~k)− v~∗(t, p))µ(dk)− U(p)v~∗(t, p), (t, p) ∈ (0, 1]× R

v~∗(0, p) = exp (−1/~) , p ∈ R.

(3.10)

In this case, we have

v~∗(t, p) = P∗(t) · (1 + o(1)) · exp

(
−1

~

(∫ t

0

L(z′∗(s), z∗(s))ds+ 1

))
(3.11)

as ~ → 0, where z∗ is the unique minimizer of
∫ t

0
L(z′(s), z(s))ds over A0([0, t]) (of

course the action functional S defined by (3.9) now has the integral interval [0, t]),

and

P∗(t) = E
[
exp

(
−
∫ t

0

ς2
s ds

)]
with ςs = α

√
(e%∗(s) + e−%∗(s))/2Ws and

%∗(τ) = ln
(
z′∗(τ)/α +

√
|z′∗(τ)/α|2 + 1

)
.

3.4 Precise asymptotics for drift terms

In [7], Bernstein processes were studied as stochastic deformation related to Feynman

path integral. These processes were first introduced in [3], and now are also called

local Markov processes, two-sided Markov processes or reciprocal process in literature,

see [13]. In configuration representations, basically they are diffusion processes over a

finite time interval with prescribed initial and final distributions. In the momentum
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representation, the drift parts (terms) can be expressed as ~∇u~∗(t, p)/u~∗(t, p) with

u~∗(t, p) defined in (1.3). In the free case (that is, the potential is identically zero), the

drift has an explicit form which is independent of ~ (cf. Section 5.1 in [7]). Our goal

in this section is to derive precise asymptotics as ~ → 0 for the drift terms in both

configuration and momentum representations. In order to have explicit comparisons

with the results in [7], here we adopt some new notations which are slightly different

from those in previous sections. For instance, the solution u~∗(t, p) is now denoted as

η~∗(t, q) or η̃~∗(t, p), and the potential is still denoted by V (with different expressions)

which is fully explained each time when it is used.

3.4.1 Configuration representation Hamiltonian

We consider a Hamiltonian H = −~24/2+V in configuration representation, where V

is a potential in Kato’s class. The backward description of the semiclassical expansion

is 
~
∂η~∗
∂t

(t, q) =
~2

2
4η~∗(t, q)− V (q)η~∗(t, q), (t, q) ∈ (0,∞)× R

η~∗(0, q) =
1√
2π~

e−q
2/(2~), q ∈ R.

(3.12)

We aim at finding precise asymptotics for ~∇η~∗(t, q)/η~∗(t, q) as ~→ 0. To this end, we

introduce the space C0([0, t]) which consists of continuous functions with zero initial

value, C1
0([0, t]) whose elements are in C0([0, t]) and continuously differentiable, and

three functionals

F (φ) = −
(∫ t

0

V (φ(s) + q)ds+
|φ(t) + q|2

2

)
,

G(φ) =

∫ t

0

V ′(φ(s) + q)ds+ (φ(t) + q),

S(φ) =
1

2

∫ t

0

φ′(s)2ds,

for absolutely continuous φ ∈ C0([0, t]), and S(φ) = ∞ otherwise. Now we state the

main result of this section.

Proposition 3.1. Assume that
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(A.1) the potential V (·) : R → R is bounded below and has up to fourth order

continuous derivatives with V ′′(q) ≥ 0, and

(A.2) the supremum of F − S over C0([0, t]) is reached uniquely at φ∗ ∈ C1
0([0, t]).

Then we have the equivalence

~
∇η~∗(t, q)
η~∗(t, q)

∼ −
(
G(φ∗) +

K̄∗1
K∗0

~ + o(~)

)
,

as ~→ 0, where

K∗0 = E
[
exp

(
1

2
F ′′(φ∗)(W,W )

)]
K̄∗0 = G(φ∗) ·K∗0

K̄∗1 = E
[
exp

(
1

2
F ′′(φ∗)(W,W )

)(
1

2
G′′(φ∗)(W,W ) +

1

6
G′(φ∗)(W )F (3)(φ∗)(W

⊗3

)

+
1

24
G(φ∗)F

(4)(φ∗)(W
⊗4

) +
1

72
G(φ∗)

(
F (3)(φ∗)(W

⊗3

)
)2
)]

.

Remark 3.2. On the interval [0, t], the unique maximizer φ∗ satisfies the ordinary

differential equation

φ′′∗(τ)− V ′(φ∗(τ) + q) = 0, with φ∗(0) = 0, φ′∗(t) = −(φ∗(t) + q),

with in particular G(φ∗) = −φ′∗(0). In order to express the dependence of G(φ∗) on q

and the time t we can use the transform Φ∗(τ) = φ∗(t− τ) + τ · q and in this case

Φ′′∗(τ)− V ′(Φ∗(τ)− τ · q + q) = 0, with Φ∗(t) = qt,Φ′∗(0) = Φ∗(0) + q

from which G(φ∗) = −φ′∗(0) = Φ′∗(t)− q.

Remark 3.3. In the formulation of Proposition 3.1, all functional derivatives are in

the sense of Fréchet derivative. For instance,

F ′(φ∗)(W ) = −
(∫ t

0

V ′(φ∗(s) + q)Wsds+ (φ∗(t) + q)Wt

)
and F ′′(φ∗)(W,W ) = −

(∫ t
0
V ′′(φ∗(s) + q)W 2

s ds+W 2
t

)
.
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Proof of Proposition 3.1. The solution to (3.12) can be written by a Feynman-Kac

formula as

η~∗(t, q) =
1√
2π~

E
[
exp

(
1

~
F (
√
~W )

)]
, (3.13)

where the functional F is defined in Proposition 3.1. Then the derivative of η~∗(t, q)

with respect to q is written as

∇η~∗(t, q) = −1

~
· 1√

2π~
E
[
G(
√
~W ) · exp

(
1

~
F (
√
~W )

)]
(3.14)

with the functional G as above. From precise asymptotics for large deviations of

integral forms (cf. [25] and [26]), expansions for (3.13) and (3.14) can be proved as

follows, respectively,

η~∗(t, q) =
1√
2π~

E
[
exp

(
1

~
F (
√
~W )

)]
=

1√
2π~

exp

(
1

~
(F (φ∗)− S(φ∗))

)
· (K∗0 + o(1))

(3.15)

and

∇η~∗(t, q) = −1

~
· 1√

2π~
E
[
G(
√
~W ) · exp

(
1

~
F (
√
~W )

)]
= −1

~
· 1√

2π~
exp

(
1

~
(F (φ∗)− S(φ∗))

)
·
(
K̄∗0 + K̄∗1~ + o(~)

)
,

(3.16)

as ~→ 0. Combining (3.15) and (3.16), it follows that

~
∇η~∗(t, q)
η~∗(t, q)

∼
− exp ((F (φ∗)− S(φ∗)) /~) ·

(
K̄∗0 + K̄∗1~ + o(~)

)
exp

(
1
~ (F (φ∗)− S(φ∗))

)
· (K∗0 + o(1))

∼ −
(
G(φ∗) +

K̄∗1
K∗0

~ + o(~)

)
,

as ~→ 0.

3.4.2 Momentum representation Hamiltonian

Consider the complex-valued potential

V (q) = ibq +
σ2q2

2
+

∫
R\{0}

(
e−iqk − 1 + iqk1{|k|≤1}

)
ν(dk)
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which yields the pseudo-differential operator

V (i~∇)u(p) = −~bu′(p)− ~2σ
2

2
u′′(p)−

∫
R\{0}

(u(p+ ~k)− u(p)) ν(dk)

where the Lévy measure ν(dk) is assumed to be symmetric under the time reversal

k → −k.

The resulting Hamiltonian Ĥ = p2/2 + V (i~∇) is the momentum representation of

H = −~24/2 + V. Then the backward description is the following partial integro-

differential equation,
~
∂η̃~∗
∂t

(t, p) = −1

2
p2η̃~∗(t, p)− V (i~∇)η̃~∗(t, p), (t, p) ∈ (0,∞)× R

η̃~∗(0, p) = 1√
2π~e

−p2/(2~), p ∈ R.
(3.17)

Because of the jumps, in this section we consider the space D0([0, t]). In order to obtain

the precise asymptotics for ~∇η̃~∗(t, q)/η̃~∗(t, q) as ~ → 0, we define three functionals

over D0([0, t]) :

F̃ (φ) = −1

2

∫ t

0

|φ(s) + p|2ds− 1

2
|φ(t) + p|2,

G̃(φ) = φ(t) + p+

∫ t

0

(φ(s) + p)ds,

S̃(φ) =

∫ t

0

L0(φ′(s))ds,

for absolutely continuous φ, where L0(u) = supx∈R(xu−H0(x)) and

H0(x) = bx+
σ2x2

2
+

∫
R\{0}

(exk − 1)ν(dk),

and S(φ) =∞ otherwise.

The operator V (i~∇) is associated with a family of Lévy processes which satisfies a

large deviation principle under suitable assumptions on H0, cf. Conditions (A)-(E) in

Sections 3.1 and 3.2 of [25], which are assumed to hold in the following proposition.
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Proposition 3.4. If the supremum of F̃ − S̃ over D0([0, t]) is reached uniquely at

φ̃∗ ∈ C1
0([0, t]), then following precise asymptotics holds:

~
∇η̃~∗(t, p)
η̃~∗(t, p)

∼ −G̃(φ̃∗) + o(~),

as ~→ 0.

Remark 3.5. The unique maximizer φ̃∗ satisfies an ordinary differential equation on

[0, t] :

d

dτ

(
L′0(u)|u=φ̃′∗(τ)

)
= φ̃∗(τ) + p, with φ̃∗(0) = 0, L′0(u)|u=φ̃′∗(t)

= −(φ̃∗(t) + p),

from which it follows G̃(φ̃∗) = −L′0(u)|u=φ̃′∗(0).

Proof of Proposition 3.4. The solution to (3.17) is written as a Feynman-Kac formula

η̃~∗(t, p) =
1√
2π~

E~
[
exp

(
1

~
F̃ (ξ~)

)]
, (3.18)

where (ξ~t )t∈R+ defined on (Ω,F,P~) is a real-valued Lévy process for each fixed ~
whose characteristic function is given by the Lévy-Khintchine formula

E~
[
exp

(
− i
~
· x · ξ~t

)]
= exp

(
− t
~
V (x)

)
with V (x) = ibx + σ2

2
x2 −

∫
R\{0}

(
e−ixk − 1

)
ν(dk). The derivative of η̃~∗(t, p) with

respect to p is

∇η̃~∗(t, p) = −1

~
· 1√

2π~
E~
[
G̃(ξ~) · exp

(
1

~
F̃ (ξ~)

)]
. (3.19)

It is again from [25] and [26] that expansions for (3.18) and (3.19) are

η̃~∗(t, p) =
1√
2π~

E~
[
exp

(
1

~
F̃ (ξ~)

)]
=

1√
2π~

exp

(
1

~

(
F̃ (φ̃∗)− S̃(φ̃∗)

))
· (K0 + o(1))

(3.20)

and

∇η̃~∗(t, p) = −1

~
· 1√

2π~
E~
[
G̃(ξ~) · exp

(
1

~
F̃ (ξ~)

)]
= −1

~
· 1√

2π~
exp

(
1

~

(
F̃ (φ̃∗)− S̃(φ̃∗)

))
·
(
K̄0 + K̄1~ + o(~)

)
,

(3.21)
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where K0 = E
[
exp

(
1
2
F̃ ′′(φ̃∗)(ζ, ζ)

)]
, K̄0 = G̃(φ̃∗) ·K0,

K̄1 = E
[
exp

(
1

2
F̃ ′′(φ̃∗)(ζ, ζ)

)(
1

2
G̃′′(φ̃∗)(ζ, ζ) +

1

6
G̃′(φ̃∗)(ζ)F̃ (3)(φ̃∗)(ζ

⊗3

)

+
1

24
G̃(φ̃∗)F̃

(4)(φ̃∗)(ζ
⊗4

) +
1

72
G̃(φ̃∗)

(
F̃ (3)(φ̃∗)(ζ

⊗3

)
)2
)]

= 0

for ζ being a diffusion process with diffusion coefficient σ2 +
∫
R\{0} e

z∗(t)kk2ν(dk) and

z∗(t) = L′0(u)|u=φ̃∗(t)
. It follows from combining (3.20) and (3.21) that

~
∇η̃~∗(t, q)
η̃~∗(t, q)

∼
− exp

(
1
~

(
F̃ (φ̃∗)− S̃(φ̃∗)

))
·
(
K̄0 + K̄1~ + o(~)

)
exp

(
1
~

(
F̃ (φ̃∗)− S̃(φ̃∗)

))
· (K0 + o(1))

∼ −
(
G̃(φ̃∗) + o(~)

)
as ~→ 0, which completes the proof.
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