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Abstract

We derive joint factorial moment identities for point processes with Papan-
gelou intensities. Our proof simplifies previous combinatorical approaches to
the computation of moments for point processes. We also obtain new explicit
sufficient conditions for the distributional invariance of point processes with
Papangelou intensities under random transformations.
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1 Introduction

Consider the compound Poisson random variable

B1 Zoy A+ BpZ, (1.1)
where f1,..., 3, € R are constant parameters and Z,,, ..., Zq, is a sequence of inde-
pendent Poisson random variables with respective parameters o, ...,a, € Ry. The

Lévy-Khintchine formula

E[et(BIZmJF'”JFﬁpZap)] = eal(eﬁlt*1)+“'+ap(eﬁpt*1)
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shows that the cumulant of order k£ > 1 of (1.1) is given by
1By + -+ oy

As a consequence, the moment of order n > 1 of (1.1) is given by the Faa di Bruno

formula as
z ! - z P, P
E Z BiZa; = Z Z Z 51‘1 1|Oé¢1 - 'ﬁzlmm‘aim7 (1.2)
i=1 m=1 PjU+UPm={1,...n} i1,ccim=1
where the above sum runs over all partitions Py, ..., P, of {1,...,n}.

Such cumulant-type moment identities have been extended in [8] to Poisson stochastic
integrals of random integrands through the use of the Skorohod integral on the Pois-
son space, cf. [6], [7]. The construction of the Skorohod integral has been extended to
point processes with Papangelou intensities in [9], and in [3], the moment identities of
[8] have been extended to point processes with Papangelou intensities via a simpler

combinatorial argument based on induction.

In this paper we deal with factorial moments, which are known to be easier to han-
dle than standard moments, cf. for example, the direct relation between factorial
moments and the correlation functions of point processes (2.3) below. See also [2]
for the use of factorial moments to light-traffic approximations in queueing processes.
In the case of random sets we obtain natural factorial moment identities by a direct
induction argument, see Proposition 2.1 and Proposition 2.2. The moment indentities
of [3] can then be recovered from standard relations between factorial moments and

classical moments.

On the other hand, our results allow us to derive new practicable sufficient conditions
for the distributional invariance of point processes, with Papangelou intensities, cf.
Condition (3.8) in Proposition 3.2. Such conditions are shown to be satisfied on typ-
ical examples including transformations acting within the convex hull generated by

the point process.



This paper is organized as follows. In Section 2, we derive factorial moment identities
for random point measure of random sets in Propositions 2.1 and 2.2, and in Sec-
tion 3 we apply those identities to point process transformations in Proposition 3.2.
In Section 4, we show that the corresponding moment identities can be recovered by
combinatorial arguments, cf. Proposition 4.2. In Section 5, we recover some recent
results on the invariance of Poisson random measures under interacting transforma-

tions, with simplified proofs.

Notation and preliminaries on Papangelou intensities

Let X be a Polish space equipped with a o-finite measure o(dz). Let Q¥ denote the
space of configurations whose elements w € Q¥ are identified with the Radon point

measures w = E €., where €, denotes the Dirac measure at x € X. A point process
TEW

is a probability measure P on Q¥ equipped with the o-algebra F generated by the

topology of vague convergence.

Point processes can be characterized by their Campbell measure C' defined on B(X) ®
F by

C(Ax B):=E {/X 14(z)1p(w \ {z}) w(dm)} , AeB(X), BelF.

Recall the Georgii-Nguyen-Zessin identity

E{/Xu(x,w)wux)] :/QX/Xu(x,wUx)C’(dx,dw), (1.3)

for all measurable function u : X x QX — R such that both sides of (1.3) make
sense. In particular, a Poisson point process with intensity o is a point process with
Campbell measure C' = o @ P, and the Poisson measure with intensity o(dx) will be

denoted by 7.

In the sequel we will deal with point processes whose Campbell measure C(dz, dw) is

absolutely continuous with respect to o ® P, i.e.
C(dz, dw) = c(z,w)o(dz)P(dw),
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where the density c(z,w) is called the Papangelou density. In this case the identity
(1.3) reads

E [/ u(:v,w)w(dx)] =E [/ u(z,wUx)c(z,w)o(dr)| , (1.4)
b's b's
and c(x,w) = 1 for Poisson point process with intensity o.
Denoting by QF the set of finite configurations in Q% we will use the compound

Campbell density

e x O — Ry

which is defined inductively by

c{z, .o, ) w) = cly,w)e({xy, .. xn b w U {y}), n > 0. (1.5)
Given ¢, = (71,...,7,) € X", we will use the notation £ for the operator

(65 F)(w) = FlwU{xy,...,2,}), w e Q,
where F' is any random variable on Q. With this notation we also have
¢(tn,w) = c(zy,w)c(r, w U {z1})e(zs, w U {xy, 20}) - - c(xp,wU{x1, ..., 2pn1}).
In addition, we define the random measure ¢"(dx,) on X™ by
" (dr,) = ¢(tn,w)o"™(dr,) = é(xp, w)o(dzy) - - - o(dxy,),

with ¢"(dg,) = o(dxy) - - o(dxy,).
Finally, given a (possibly random) set A we let N(A)(w) = [, 1a(z) w(dz) denote
the cardinality of w N A(w). Recall that for a Poisson point process with intensity o,

w(A) has the Poisson distribution with parameter o(A) for any (non random) A € F,
and N(A) is independent of N(B) whenever A, B € F are disjoint.



2 Factorial moments

In this section we deal with the factorial moment defined by
ph(N(A)) = E[N(A)w),

where

rmy=r(@—1)---(r-n+1), xe€R, neN,
is the falling factorial product and A is a (possibly random) measurable subset of X.

Proposition 2.1 Let A = A(w) be a random set. For all n > 1 and sufficiently

integrable random variable F, we have

E [F N(A)w] = E M e (Flun(or, ..., 0))(w) 6"(dra, .. ,d:z:n)} |

Proof. 'We show by induction on n > 1 that

B [F M) =2 [ [ ) L)) @] e

Clearly the formula
E[FN(A)] = E [ /X S F1La() () o(z,w) a(dx)]

holds at the rank n = 1 due to (1.4) applied to u(z,w) = F(w)law)(x). Next,
assuming that (2.1) holds at the rank n, we apply it with F' replaced by F(N(A) —n)
and get

n

B[P () (V) = )] = | [ 0 (V) = n)Laton) -+ Lalo) ) 67(de)
= 5[/ SN L) )]
[ [ e (P a7

n

- ]E[ . N(f (A) (W)ef (FLa(z1) - - 1a(z,)) () &n(d;n)} : (2.2)

where in (2.2) we used the relation



= N(%EZ(A))(W)+Z€;Z(1A(l’i))(w)‘
Next, with 41 = (@1,...,2n, &n41), recalling that N(A) = [, 1a(z) w(dr) and
applying (1.4) to
u(z,w) = e (Fla(zy) - 1a(zn)la(2))(w) é(ty, w)

= FlwUu{z,. . ., 20}l awufer,ead) (1) - - La@uger,..an ) (Tn)

: : + o+ +
for fixed x4, ..., %, with the relation €7 , =& oe’ we find

E[F N(4)- (N(4) - n)]
= E |:/Xn+1 gz;ﬂ (F1A<x1) te 1A($n+1)) (W) é(}:n, wJ {xn+1}) C($n+1,w)

o(dar) - -J(dxn+1)]

= B[ [ PLn) L)) ()]

where on the last line we used (1.5). O

By induction, in the next Proposition 2.2 we also obtain a joint factorial moment

identity for a.s. disjoint (random) sets Ay,..., A,. It extends the classical identity
E [N(Al)(n1)N(Ap)(np)] - /n pn(xla-‘-uxn) O-(dxl)"'o-(dxn>’ (23)
AT x-x ApP

for deterministic disjoint sets Ay, ..., A,, where p,(x1,...,z,) is the correlation func-

tion of the point process and n =ny + - - + n,.

Proposition 2.2 Let n = ny; + --- + n, and Ay(w),..., Ay(w) be measurable and

disjoint for almost all w € €2, then
E[F Ny -+ Vo] =B | [ (P 000 1gr)(0) 67(a)
(2.4)

Proof. We proceed by induction on p > 1. For p = 1, the identity reduces to that of
Proposition 2.1. We assume that the identity holds true for p and show it for p 4 1.

Letting n = ny + -+ - +n, and m = n + n,4; we have:

E [F N(A1)(n1) T N(AP+1>(np+1)]



= E / 8;; (FN<AP+1>(7LP+1)(1A7;1 K- 1A;lp)(l’1, e >:Cn>) 6n(dxn):|

= E| [ NE A5 (Flg ® - 8 L) (@, 24) 6”(dzfn)] (2.5)

X”L
= E / / +1€\)+n +1(g;: (FlATl®"'®1AZ’”($17"'7$“)> c({xy, ...,z ) w)
L n np P

Lt ey W W) ) 60 U o) 0dg) - 0 {dy, )0 (da) -+ o(da) |
(2.6)

= E {/ e <F1A’;1 R ® 1Anp+1(a:1,...,xm)> o(dxy,. .. ,dmm)} : (2.7)

p+1

where in (2.5) we used

5;(N(AP+1)(TLP+I)> = (N(e;; (Apt1)) + Z Oz, (5;(Ap+1)))

(np+1)

and observe that the contribution of the sum is zero since, for all 1 < k < p and
1<i<n, 14, (2)1a,(2;)=0. In (2.6), we noted 9,,, ., = (Y1, --,¥n,,,) and used

Proposition 2.1 with, for a fixed ¢, = (z1,...,%,),
F(w) =¢] (F(lA{‘l ® @ Lym)(z, ... ,x,)) (W) ¢({zr,. ., 20}, w))
and the set & (Ap41). Finally in (2.7), we used the following consequence of (1.5)

é({:Bl, ce Tt w Uy, ,ynp}) é({yl, . ,ynp},w) = é({:pl, e T YL, ,ynp},w)

ith et + ot
together with e "oer =ey . - O]

3 Transformations of point processes

In this section we derive a sufficient condition for the distributional invariance of point

processes under random transformations. Consider the finite difference operator

D, F(w)=FwU{z}) — F(w)



where F is any random variable on Q2¥. Note that multiple finite difference operator

expresses

DoF = (=) hpw Uy (3.1)
nce
where the summation above holds over all (possibly empty) subset n of ©. Let ¢, =

{z1,...,2,}, from the relation

e (e @) (e w) = eh L (un(@n,w) (e, w)

.....

= Z De (ui(z1,w) -+ tn(z0,w)), (3.2)

@C{l’l 7777 x’ﬂ}

where Dg = D,, -+ D,, when © = {xy,...,2;} and from (2.4) we have

E [F N(AD)n) -+ N(Ap)ny)] = E [ /X e (Pl @ @ L) (1) &”(dxn>]

— Z E { Do(F(1ym @+ ® 14m)(t)) &"(d;n)l (3.3)
oc{z1,....xn} Xn
for ny +---+n, = n and a.s. disjoint sets A;(w), ..., A,(w). The next lemma will

be useful in Proposition 3.2 to characterize the invariance of transformations of point

processes from (3.3).

Lemma 3.1 Let m > 1 and assume that for all x1,...,x,, € X the processes u; :

X x QX — R, 1 <i<m satisfy the condition
Do, uy(z1,w) - -+ Do, U (T, w) = 0, (3.4)

for every family {©1,...,0.,} of (non empty) subsets such that ©1 U --- U O, =

{1, xm}, for all xy,... 2y € X and all w € QX. Then we have
Dy -+ D, (ul(xl,w) . -um(xm,w)) =0 (3.5)
for all z1,..., 2, € X and all w € QF.

Proof. Tt suffices to note that

le-~~Dzn(u1(x1,w)---ul(xl,w)) = Z Do, ui (21, w) - - - Do,uw (21, w),
91U-~~U911{I1 ..... a:n}

(3.6)
where the above sum is not restricted to partitions, but includes all (possibly empty)

sets ©1,...,0; whose union is {x1,...,z,}. O
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In the next result, we recover Theorem 5.1 of [3] in a more direct way due to the use of
factorial moments, but using a different cyclic type condition. Condition (3.8) below

is interpreted by saying that
De, hn(7(21,w)) -+ Do, i (T (£, w)) = 0, (3.7)

for any family hq,...,h,, of bounded real-valued Borel functions on Y. The merit
of our condition (3.8) is to be satisfied in a typical example based on convex hull

generated by a point process, see page 11.

Proposition 3.2 Let X,Y be Polish spaces equipped respectively with o-finite mea-
sures o and p and let 7 1 X x QX — Y be a random transformation such that

7(-,w) : X =Y maps bijectively o to p for all w € Q¥ i.e.
cor(-,w) =y, w e ¥,
and satisfying the condition
De,1(x1,w) -+ De, T(2m,w) =0, (3.8)

for every family {©1,...,0,,} of (non empty) subsets such that ©1 U --- U O, =
{21, xm}, for all xy,..., 2y € X and all w € X, m > 1. Then 7, : Q% — QY
defined by

Tl = Z €r(ew) = woT(Hw) ", w e ¥,

TEW

transforms a point process & with Papangelou intensity c(x,w) with respect to 0 @ P

into a point process on Y with correlation function

pr(Yi, - Yn) = E[é({Tﬁl(th), . ,T’l(yn,w)},w)],
Yi,-..,Yn €Y, with respect to p.

Proof. Consider By, ..., B, disjoint deterministic subsets of Y such that p(By), ..., u(B,)
are finite. From interpretation (3.7), Condition (3.8) ensures (3.4) for uy(z,w) =

1p, (T(z,w)) and, in turn, Lemma 3.1 shows that
Dxl Dfﬂk(lel (T(I’l,&)))'"1Bik(7'<xk,W))) = 07 T1,..., Tk € X7 (39)

9



for all 4;,...,1, € {1,...,p} and w € Q. Fori =1,...,p, let A;(w) = 7(-,w) (B;)
and 7, N (DB;) be the cardinal of 7.w N By, i.e.

TN(B) = eriwuy(Bi) = Y ex(A;) = N(4y).

TEW TEW

Then applying (3.3) with F/ = 1 and the disjoint random sets A;(w), ¢ = 1,...,p,
yields

E[nN(B1)o) - TeN(Bp) )] = E [N (A1) ) - N(Ap) ny)]
_ E Do((1ym @+ @1 ,m)(xa)) 6" (drn)
> e[f, |

= B[ [ Due D @ 0 L )r(sn) )|

+ ) E[ D@((le”®"‘®1ng)(7(rn,w)))6"(%)}
} X

ny+---+n, =n > 1, where 7(r,,w) stands for (T(xl,w), ooy (g, w)) and where we
used (3.9). Next, without loss of generality the generic term of (3.10) can be reduced
to the term with © = {z1,..., 2,1} and using (3.6), we have

E { Day e+ Doy (g © - ® 1) (70 w)))&“(dxnﬂ

xXn
= E {/ l)m1 ce Dxn—l((]'B;ll X ]-BZP)(T(xnfl)a ynaw)
X Jxn-1
e, o wn, T (o)) 0" (el |

with the change of variable y,, = 7(z,,w). Finally, by applying the above argument

recursively we obtain that

E [7.N(B1)m) 7N (By)my)]

— /"(13?1 Q- ® 1B;p)(0n) E[é({T‘l(yl,w), . ,T_l(yn,w)},w)} " (dyy),

ni,...,n, = n > 1, which recovers the definition of the correlation function of 7.

(see (2.3)). O
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The proof of Proposition 3.2 also shows that if A,..., A, are disjoint random subsets

of X such that
De,14,(w)(71) -+ Do, 1a,,w)(Tm) =0,

for every family {©;,...,0,,} of (non empty) subsets such that ©; U---U 0, =
{z1,...,xp}, for all z1,... 2, € X and all w € QX, m > 1, then we have

E [N(A) @y -+ N(Ap)n,)] = E [/ Ly @ -+ @1y ) (10) 0" (dn) |

n

ng+---+n, =n.

Example

Here we take X = R? with norm || - || and we consider an example of transformation
satisfying Condition (3.8), defined conditionally on the extremal vertices w, C w of
the convex hull of w N B(0,1).

Denote by C(w) the convex hull of w, and by é(w) its interior, we consider a mapping
7: X xQ% — X such that forallw € Q, 7(-,w) : X — X leaves X\é(we) invariant
(thus including the extremal vertices w, of C(w.)) while the points inside ¢ (we) are

shifted depending on the data of w,, i.e. we have

o

T(z,we), x € C(we),
(W) = (3.11)
x, r e X\ Clwe).
As shown in Proposition 3.3 below, such a transformation 7 satisfies Condition (3.8).
The next figure shows an example of behaviour such a transformation, with a finite

set of points for simplicity of illustration.

11



Proposition 3.3 The mapping 7 : X x Q% — X given in (3.11) satisfies Condi-
tion (3.8).
Proof. Let x1,...,x, € X. Clearly, we can assume that some z; lies outside of
C(w) = C(we), otherwise
D, 1(zj,w) = 7(r;,wU{x;}) —71(xjw) =7(x) (wU{z:})e) — T(7), We)
= 7(zj,we) — T(xj,we) =0
for all i, 7 = 1,...,m. Similarly, we can assume that C(w U {x1,...,2,,}) has at least

one extremal point z; € {xl, e ,xm}.

Now we have
T(z5wUn) = 7(2;Ww) = 24
for all n C {z1,..., 2}, hence
Dert(2;,w) =0,
for all © C {x1,..., 2}, due to the following consequence of (3.1)

Dor(z;,w) = Z(—l)leHl_'n'T(%,WUn)

nco

= 7(z;,w) Z(_l)\@lﬂ—lnl

nCcoO
= 7(z;,wUn)(l— 1)|®\+1

= 0,

where the summation above holds over all (possibly empty) subset n of ©. As a

consequence, one factor of (3.8) necessarily vanishes. O

12



4 Moment identities

As a consequence of the our factorial moment identities, we recover the moment
identities recently derived for random integrands in [8] for Poisson stochastic integrals

and extended in to point processes in [3]. Let

1 n!

I dy!---
di++dp=n

denote the Stirling number of the second kind, i.e. the number of partitions of a set of n
objects into k non-empty subsets, cf. also Relation (3) page 2 of [1]. As a consequence

we recover the following elementary moment identity from Proposition 2.1.
Lemma 4.1 Let A) = Ay(w),..., A, = Ay(w) be disjoint random sets. We have
]E[FN(A )”1 L N(Ap)™]

—Z anl,kl .S(np, kp)

k1=0 p_O
= |:/)‘(k1+4..+kp 6;1+"‘+kp (F(lAIf1 Q- 1A’;p)<}:k1+-..+kp)) Gl thp <d3k1+---+kp):| .

As a particular case, for a random set A = A(w), we have

E[F N(A)"] = ZS(n,k)]E {/X’C ef (Fla(ay) - La(zy)) &(d:):l,...,dxk)} .

Proof. Using the classical identity
2" =) S(nk)x(x—1)---(z—k+1),

cf. e.g. [5] or page 72 of [4], we have

E[FN(A)™ ... N(A,)™]

(Z S(ni, k1)N(A;) )k ) : Z S(np, k )(kp)

k1=0 kp=0

3 Zsmﬁ Sk )E[FN(Ar) sy - N(Ap )i, |

ki1=1

13



—Z anbkl (np,k)

kp=0

E |:/Xk1+m+kp 8;;1+m+kp (F(lA’fl R 1A§p>(;k1+"-+kp)) a.lﬂ-‘r...—l-kp (d;kl_;,_..._;,_kp)

where we use (2.4) in the last line. O

More generally, Lemma 4.1 allows us to recover the following moment identity, cf.

Theorem 3.1 of [3], and Proposition 3.1 of [8] for the Poisson case.

Proposition 4.2 Let u: X x Q¥ — R be a (measurable) process. We have

E K/X w(z,w) w(d:p))n] :;an E [/X e (w(ar, )P u(y, )P 6 (dry)
""" o (4.2)

where the sum runs over the partitions By, ..., By of {1,...,n}, for any n > 1 such

that all terms are integrable.

Proof. First we establish (4.2) for simple processes of the form u(z,w) = >"F_| F;(w)1a,w)(z)
with a.s. disjoint random sets A;(w), 1 <7 < p. Applying Lemma 4.1 inductively we

(z EN(A»)

= Z n—"E[ (FiN(Ay))™ - - (FPN(AP))M]

nil--ony

have

(ZF /X 14, (x) w(dw))n

=1

E

- Y Sty 3" Stouk) Stk
e T
E |:/Xlir o, 8;614“_*}“? <Fi’“ ce F;P]_Allcl R ® 1Af,p (.Z’l, e ,:Clir...Jrkp))
(s oo Thyor, by w) o(dan) - 0<d$k1+~--+kp)]

n |
- X X o X Stuk)Sik)

m=0 n1+-+np=n k1+-+kp=m
T yeens np>0 0<ki;<ni,....,0<kp<np

E [/Xm e (Ffl"‘nglA’fl Q- ® 1Az;p(x1,...,xm)> c({xy, .. o} w) J(d;m)]

14



n n! |- ]!
=3 Y o X SulnheStwlp) R

m=0 n1++np=n Y u-UIp={1,--,m}
ny,.mp20 [I1|<nq,..., [ Ip|<np

E / ee | Er [ ana) - [] 14, (a) | e, o} w) o(den)

Jjeh JElp

(4.3)

DD YD B [ e (AP G L o) o)

m=0 PyU---UPp,={1,...,n} i1,...,tm=1

(4.4)

where in (4.3) we made changes of variables in the integral and, in (4.4), we used the
combinatorial identity of Lemma 4.3 below with o; ; = 14,(z;), 1 <i<p,1 <j<m,
and B; = F;. The proof is concluded by using the fact that the A;’s in (4.5) are

disjoint, as follows:

(g )]

- s e[ g (S ) 3 (5 ) ) o)

m=0 P,U--UPn={1,..n} L i=1 i=1

n P | Py p | P |
- Z Z E /Xm E;n (Z ElAi(ml)) e (Z ElAi(xm)> &(d?m)

m=0 PU---UPp,={1,...,n}

(4.5)

The general case is obtained by approximating u(x,w) with simple processes. O
Using (3.2), we can also write

EK/Xu(x,w) ) ] Z Z Z E[  Delui- ) & (ds)

.....

I i g e

n!
Z nyl-ny! Z S(na, [L]) -+ S(np, [1]) x

ny+--+np=n ’ Iju--Ulp={1,....m}
N yeees np>0 [I11<nq,..., [ Ip|<np

15



L]t L)

o (T ews) (T o)

IS J€Ip

_ 3 zp: Py Bl (4.6)

P1U--~UPm:{1,...,n} i1,..tm=1

Proof. Observe that (4.1) ensures
Se s ([Tes) = X TT(s™)
jer Uwer Pa={1,....,n} j€I
for all a;, j € I, B € R, n € N. We have

Z n—' Z S(n, [L]) -+ S(ny, L))

l...n.!
ni+-+np=n ny: np. Iu---Ulp={1,...,m}

n1,enp20 [11|<nq 50| Ip|<np
L]t L)
"1 np .
| | o . | | o
m! 17]> p ( pu)

jel Jj€Elp

l TRl
D I eew D Dl

ny+-4np=n p* ILu---Ulp={1,...,m}

ny,...,np>0 [I11<nqy,. 0] Ip|<np
1P| P
1 ) Ip
(Y TMewd™)( X I end®
UaGIl P(%:{lv“vnl} jle[l Uaelp P,f:{l,...,np} jPEJP
> > 2 2
ni+-+np=n P* [ u-UIp={1,...,m} pPl={1... PP={1...
n1,...,npp20 \}1|§n1?4.,\1p\§::p Uae[l @ { ’ ’nl} U“’EIP a={1, ’np}
p 1
(L]l | d[! I11] (o ﬂ“?z')
m' Ll
=1 51€l;
> > > >
N nyl--eny!
ni+-+np=n P* nu-urp={1,...,m} Pl={1,..n PP={1,...,
Ry 20 \11|§n1§)~-»up\§"p UaEIl a { 1} UaEIp a { 7Lp}
p p !
]! - ]! 175
’ =1 j;€1; I=1jiel
> p
= o 2 >
ny+-tnp=n nl np' k1+-+kp=m ’L’l,.‘.,imzl
ny,...,np=>0 1<k <ny,...,1<kp<np

Z Z ﬁ (%,J [P |- +\P“"|)

1 1_ D P _ =
P} U“'UP}cl_{l""7n1} Pk1+4-<+kp_1+1U"'UPkl+-»-+kp_{17“"np} Jj=1
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3 Zp 7l |
— Py | m
- /611 Ay 1 /8 Qi ms

PiU--UPn={1,...,n} i1, im=1
by a reindexing of the summations and the fact that the reunions of the partitions
Pl Pﬁ, » 1 < j < p, of disjoint p subsets of {1,...,m} run the partition of
{1,...,m} when we take into account the choice of the p subsets and the possible

length k;, 1 < j < p, of the partitions. U

Note that the combinatorial result of Lemma 4.3 can also be shown in a probabilistic

way when «a; ; = a;, 1 <1 <p, 1 < j < m. Next we have

Sy L S Sk Sy ky)Bialt - prraks

| |
m=0 ni+-+np=n ni np ki4-+kp=m
N yeees np>0 k1<ng,..., kp<np
! el
n: & n
= § — E S(nl,kl )\Oél E S’n,’ Aa)Pﬁ ...ﬁp
nl' P n ' P P p
n1ttnp=n P’ k=0 kp=0
N seeey np>0
= n—' ML BR[ZY - 207
o n |... | 1 p Aag Aap
o 1- Nyp-
ny4-+np=n
T yeens np>0
D n
=1
n p

= ) A" 3 3 gl - gl (4.7)

m=0 PiU--UPp={1,...,n} 11,..,im=1

since by the relation (1.2) between standard and factorial moments the moment of
order n; of Z,,, is given by

ng

E[Zy] =Y S, k) ().

k=0

The above relation (4.7) being true for all A, this implies (4.6) for this choice of «; ;’s.

5 Poisson case

In the Poisson case, we have c¢(z,w) = 1 and the results of the previous sections

specialize immediately to new factorial moment identities for Poisson point processes
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with intensity o(dx). For any random set A = A(w) and sufficiently integrable random

variable F', we have

E[F NAw] - B[

n

e (Fla(x) - La(ea) o(dzs) - -o(dxn>] ,

n > 1. For all almost surely disjoint random sets A;(w), 1 < ¢ < p, and sufficiently

integrable random variable F', we have

E[F N(AD ) - N(Ap) n)]
= E {/X" 5;;(F(1A?1 R ® 1A;‘P)(3717 ey X)) o(dzy) - "U(dajn)] :

with n = ny 4+ -+ + n,. In addition, we have the following proposition whose proof
is similar to that of Proposition 3.2 although it cannot be obtained as a direct con-

sequence of Proposition 3.2 and is not available in the (non-Poisson) point process

setting.
Proposition 5.1 Consider A;(w),...,A,(w) a.s. disjoint random sets such that
o(A;(w)) is deterministic, it = 1,...,p, and

D91 1,41.(“,)(1’1) e D®m1Ai(w)(37m) = O, (51)

for every family {©1,...,0.,} of (non empty) subsets such that ©1 U --- U O, =
{1, xm}, allxy, .. 2, € X, allw € QF. Then the family

(N(A1),...,N(A))

is a vector of independent Poisson random variables with parameters o(Ay), ..., 0(4,).

Proof. Let n =mn;+---+mn,. Under Condition (5.1), Lemma 3.1 and (3.5) show that

Dy, -+ Day (1a, (w)(1) -+ 14, @) (1)) =0, T1,..., x5 € X, (5.2)

for all i1,...,7 € {1,...,n} and w € Q. Since in addition o(4;) is deterministic,

i=1,...,p, then by (3.3) with I = 1 we obtain

E[NAwy - NA)wy] = >, E {/nD@((lA?l ® @ 1ym)(ta)) 0" (drs)

oc{z1,....xn}
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= E { - Dy, -+ Dg;n((lA;u R ® 1A;Lp)(;n)) U”(dztn)]

+ Y E|:/nD@((1AT1®"'®1AZT’)QH)) 0"(%)}

_ S E [/nDe((lA;u ® - @1,m)(tn)) o”(dzcn)} (5.3)

using (5.2). Next, without loss of generality the generic, term of (5.3) can be reduced

to the term with © = {z1,..., 2,1} and using (3.5), we have

E [ . D,, - "Dxn_l((lA’fl QR ® 1A;p)(zcn)) a”(d;n)l

Pk

— n

= E / Z HHD@n1+"‘+nk,1+j1Ak(xn1+'“+nk71+j) o (dxn>
X 91U UBn={z1,0sn_1} k=1 j=1

p—l ngk
= E / ) Z HHDenﬁ.‘.ﬂkfﬁj1Ak(xn1+...+nk71+j) (5.4)
Xn—

©1U-UBn={x1,....2n—1} k=1 j=1

np—l

X H D@n1+-~+np_1+j1Ap(xn1+-"+np1+j)/XD@n1Ap(xn> O'(dl’n) O-nl(dxnﬁ]

p—1 ny

-k /)‘(nl Z HHD@n1+-~+nk_1+j1Ak(-77n1+~--+nk,1+j)

01U U0, _1={1,....8n_1} k=1 j=1

np—1

X H D@n1+.<,+np_l+j1Ap(xn1+---+np_1+j)a(Ap> O_n]-(dxnl)] (55)

= o(4,)E [ Dy Dy, (1ym @+ @ 1A;Lp—1)(gn_1)) 0”_1(dxn_1)}

Xn—1
where (5.5) comes from the fact that in (5.4) only the term with ©,, = () is not zero

e / Dely, (z) o(dx) = De (/X 1Ap(:v)a(dx)) = Dg(0(4,)) =0

using o(A,) is deterministic. Finally, by applying the above argument recursively we

obtain

E[N(A) ) N(A)wy] = E{/n(lfﬂ“@ +® 1m0 ) (xn)o" (din)
= o(A)" o (A,)",
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ni,...,n, > 1, which characterizes the Poisson distribution with parameters

(0(A1),...,0(Ap)).
O

As a consequence of Proposition 5.1 we recover Theorem 3.3 in [7] on the invariance
for Poisson measures when (X,0) = (Y, u). Note that Condition (5.6), which is
interpreted as in (3.7) above, is actually a stregthening of Condition (3.8) in [7] and
fills a gap in the proof of Theorem 3.3 therein, based on the fact that D,u(w) = 0
does not imply Dgu(w) = 0 when = € ©y.

Theorem 5.2 Let 7 : X x QX — Y be a random transformation such that 7(-,w) :

X =Y maps o to pu for all w € Q¥ i.e.
cor(-,w) =y, w e 0¥,
and satisfying the condition
Do, 7(x1,w) - De,, T(Tm,w) =0, (5.6)

for every family {©1,...,0,} of (non empty) subsets such that ©1 U --- U ©,, =
{z1,...,xm}, all zy, ..., 2, € X, allw € QX and alli =1,...,p. Then 7, : Q% —
QY defined by

Te = Zef(x,w) =wor(-,w) w e Q¥

TrEW

maps T, to m,, i.e. T, 7, is the Poisson measure m, with intensity p(dy) on Y.

Proof.  For any family Bi,..., B, of disjoint measurable subsets of ¥ with finite
measure, we let A;(w) = 771(B;,w) C X, i.e. 14,(-) = 1p,07(-,w), i =1,...,p, and

by Proposition 5.1, we find that
wr— (nw(B1), ..., w(By)) = (w(A4),...,w(A4,))

is a vector of independent Poisson random variables with parameters p(A4;), ..., u(A4,)
since 0(A;(w)) = o(771(B;,w)) = p(B;) is deterministic, i = 1, ..., p, and (5.1) comes

from the following consequence of (5.6):
D@11Ai1 (w)<$1) -+ De,, 1Aim(w)(xm)

20



= De,1p, (7(z1,w)) -+ De, 1B, (T(7m,w))

O

The example of random transformation given on page 11 at the end of Section 3 also

satisfies Condition (5.6) in Theorem 5.2.
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