
DEVIATION INEQUALITIES FOR EXPONENTIAL

JUMP-DIFFUSION PROCESSES
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Abstract. In this note we obtain deviation inequalities for the law of exponential
jump-diffusion processes at a fixed time. Our method relies on convex concentration

inequalities obtained by forward/backward stochastic calculus. In the pure jump and

pure diffusion cases, it also improves on classical results obtained by direct application
of Gaussian and Poisson bounds.

1. Introduction

Deviation inequalities for random variables admitting a predictable representation have
been obtained by several authors. When (Wt)t∈R+

is a standard Brownian motion and
(ηt)t∈R+

an adapted process, using the time change

(1) t 7→ τ(t) :=

∫ t

0

|ηs|2ds

on Brownian motion yields the bound

(2) P
(∫ ∞

0

ηtdWt ≥ x
)
≤ exp

(
− x2

2Σ2

)
, x > 0,

provided

(3) Σ2 :=

∥∥∥∥∫ ∞
0

|ηt|2dt
∥∥∥∥
∞
<∞.

On the other hand, if (Zt)t∈R+
is a point process with random intensity (λt)t∈R+

and
(Ut)t∈R+

is an adapted process, we have the inequality

P
(∫ ∞

0

Ut−(dZt − λtdt) ≥ x
)
≤ exp

(
− x

2β
log

(
1 +

β

Λ
x

))
,(4)

x > 0, provided Ut ≤ β a.s. for some constant β > 0 and

Λ :=

∥∥∥∥∫ ∞
0

|Ut|2λtdt
∥∥∥∥
∞
<∞,

cf. [1], [5] when (Zt)t∈R+ is a Poisson process, and [4] for the mixed point process-diffusion
case. Note that although (Zt)t∈R+ becomes a standard Poisson process (Nt)t∈R+ under
the time change

t 7→
∫ t

0

λsds,

when (Ut)t∈R+
is non-constant the inequality (4) can not be recovered from a Poisson

deviation bound in the same way as (2) is obtained from a Gaussian deviation bound.
In this paper we consider linear stochastic differential equations of the form

(5)
dSt
St−

= σtdWt + Jt−(dZt − λtdt)
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where (Wt)t∈R+
is a standard Brownian motion, (Zt)t∈R+

is a point process of (stochastic)
intensity λt. Here the processes (Wt)t∈R+

and (Zt)t∈R+
may not be independent, but

they are adapted to a same filtration (Ft)t∈R+ , and (σt)t∈R+ , (Jt)t∈R+ are sufficiently
integrable Ft-adapted processes.

Clearly the above deviation inequalities (2) and (4) require some boundedness on
the integrand processes (ηt)t∈R+

and (Ut)t∈R+
, and for this reason they do not apply

directly to the solution (St)t∈R+
of (5), since the processes (ηt)t∈[0,T ] = (σtSt)t∈[0,T ] and

(Ut)t∈[0,T ] = (JtSt)t∈[0,T ] are not in L∞(Ω, L2([0, T ])). This is consistent with the fact
that when σt is a deterministic function, ST has a log-normal distribution which is not
compatible with a Gaussian tail.

In this paper we derive several deviation inequalities for exponential jump-diffusion
processes (St)t∈R+

of the form (5). Our results rely on the following proposition, cf. [2],
Corollary 5.2, and Theorem 1.1 below.

Let (S∗t )t∈R+
be the solution of

dS∗t
S∗t−

= σ∗(t)dŴt + J∗(t)(dN̂t − λ∗(t)dt)

where (Ŵt)t∈R+
is a standard Brownian motion, (N̂t)t∈R+

is a Poisson process of (de-
terministic) intensity λ∗(t), which are assumed to be mutually independent, while σ∗(t)
and J∗(t) are deterministic functions with J∗(t) ≥ 0, t ∈ R+.

Theorem 1.1. Assume that one of the following conditions is satisfied:
(i) −1 < Jt ≤ J∗(t), dPdt-a.e. and

|σt| ≤ |σ∗(t)|, J2
t λt ≤ |J∗(t)|2λ∗(t), dPdt− a.e.

(ii) −1 < Jt ≤ 0 ≤ J∗(t), dPdt-a.e. and

|σt|2 + J2
t λt ≤ |σ∗(t)|2 + |J∗(t)|2λ∗(t), dPdt− a.e.

(iii) 0 ≤ Jt ≤ J∗(t), dPdt-a.e., J2
t λt ≤ |J∗(t)|2λ∗(t), dPdt-a.e., and

|σt|2 + J2
t λt ≤ |σ∗(t)|2 + |J∗(t)|2λ∗(t), dPdt− a.e.

Then we have

(6) E[φ(St) | S0 = x] ≤ E[φ(S∗t ) | S∗0 = x], x > 0, t ∈ R+,

for all convex function φ such that φ′ is convex.

Note that in the continuous case J = 0, Relation (6) can be recovered by the Doob
stopping time theorem and Jensen’s inequality applied to the time change (1) since

W̃t := t/2 + log(Sτ−1(t)/S0) is a standard Brownian motion with respect to a time-

changed filtration (F̃)t∈R+ , and letting Xt := S0e
W̃t−t/2, t ∈ R+, we have

E[φ(ST )] = E
[
φ
(
Xτ(T )

)]
= E

[
φ
(
E
[
X∫ T

0
|σ∗(s)|2ds

∣∣∣F̃∫ T
0
|σs|2ds

])]
≤ E

[
E
[
φ
(
X∫ T

0
|σ∗(s)|2ds

) ∣∣∣F̃∫ T
0
|σs|2ds

]]
= E

[
φ
(
X∫ T

0
|σ∗(s)|2ds

)]
= E[φ(S∗T )].(7)

However this time change argument does not apply to the jump-diffusion case, and in
addition in the pure jump case it cannot be used when (Jt)t∈R+ is non-constant.

We refer to [3] for deviation inequalities for exponential stable processes when the
number of jumps is a.s. infinite.
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2. Deviation bounds

We begin with a result in the pure jump case, i.e. when σt = 0, dPdt-a.e., and let

g(u) = 1 + u log u− u, u > 0.

Let (St)t∈R+
denote the solution of (5) with S0 = 1.

Theorem 2.1. Assume that σt = 0, dPdt-a.e., and that

−1 < Jt ≤ K, dPdt− a.e.,

for some K ≥ 0, and let

Λt =

∫ t

0

∥∥J2
sλs
∥∥
∞ ds, t ∈ R+.

Then for any T > 0 and all x ≥ ΛT
K

(
β

K
(1 +K)2 − 1

)
we have

P(logST ≥ x) ≤ exp

(
−ΛT
K2

g

(
K

β

(
1 +

Kx

ΛT

)))
≤ exp

(
−1

2

(
x

β
+

ΛT
K2

(
K

β
− 1

))
log

(
K

β

(
1 +

Kx

ΛT

)))
,(8)

where β = log(1 +K).

Proof. Let J∗(t) = K, t ∈ R+,

λ∗(t) =
1

K2

∥∥J2
t λt
∥∥
∞ , 0 ≤ t ≤ T,

and denote by S∗t = e−Λt/K(1 +K)N
∗
t , t ∈ R+, the solution of

(9)
dS∗t
S∗t−

= K(dN∗t − λ∗(t)dt),

with S∗0 = 1, where (N∗t )t∈R+
is a Poisson process with deterministic intensity (λ∗(t))t∈R+

.
Under the above hypotheses, Theorem 1.1−i) yields the inequality

yαP(ST ≥ y) ≤ E[(S∗T )α](10)

= e−αΛT /KE
[(

(1 +K)N
∗
T

)α]
= e−αΛT /KeΛT ((1+K)α−1)/K2

,

for the convex function y 7→ yα with convex derivative, α ≥ 2, hence

(11) P(logST ≥ x) ≤ exp

(
ΛT
K2

((1 +K)α − 1)− αΛT
K
− αx

)
.

The minimum in α ≥ 0 in the above bound is obtained at

α∗ =
1

β
log

(
K

β

(
1 +

Kx

ΛT

))
,

which is greater than 2 if and only if

(12) x ≥ ΛT
K

(
β

K
(1 +K)2 − 1

)
.

Hence for all x satisfying (12) we have

P(logST ≥ x) ≤ exp

(
ΛT
K2

((1 +K)α
∗
− 1)− α∗

(
x+

ΛT
K

))
= exp

(
−ΛT
K2

g

(
K

β

(
1 +

Kx

ΛT

)))
,
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and Relation (8) follows from the classical inequality

1

2
u log(1 + u) ≤ g(1 + u), u > 0.

�

Note that an application of the classical Poisson bound (4) only yields

P(logST ≥ x)

= P

(∫ T

0

log(1 + Jt−)dZt −
∫ T

0

Jt−λtdt ≥ x

)

= P

(∫ T

0

log(1 + Jt−)d(Zt − λtdt) ≥ x+

∫ T

0

Jt−λtdt−
∫ T

0

log(1 + Jt−)λtdt

)

≤ P

(∫ T

0

log(1 + Jt−)d(Zt − λtdt) ≥ x

)

≤ exp

(
− x

2β
log

(
1 + β

x

Λ̃T

))
, x > 0,

provided

Jt ≤ K and

∫ T

0

| log(1 + Jt)|2λtdt ≤ Λ̃T , a.s.,

which is worse than (8) even in the deterministic case since 1 < K/β → ∞ as K → ∞,

and Λ̃T ≤ ΛT .
Theorem 2.1 admits a generalization to the case of a continuous component when the

jumps Jt have constant sign.

Theorem 2.2. Assume that

−1 < Jt ≤ 0, dPdt− a.e., or 0 ≤ Jt ≤ K, dPdt− a.e.,

for some K > 0, and assume that

ΛT :=

∫ T

0

∥∥|σt|2 + J2
t λt
∥∥
∞ dt <∞.

Then for all x ≥ ΛT
K

(
β

K
(1 +K)2 − 1

)
we have

P(logST ≥ x) ≤ exp

(
−ΛT
K2

g

(
K

β

(
1 +

Kx

ΛT

)))
(13)

≤ exp

(
−1

2

(
x

β
+

ΛT
K2

(
K

β
− 1

))
log

(
K

β

(
1 +

Kx

ΛT

)))
,(14)

where β = log(1 +K).

Proof. We repeat the proof of Theorem 2.1, replacing the use of Theorem 1.1−i) by
Theorem 1.1−ii) and Theorem 1.1−iii), and by defining λ∗(t) as

λ∗(t) =
1

K2

∥∥|σt|2 + J2
t λt
∥∥
∞ , 0 ≤ t ≤ T.

�

Letting K → 0 in (13) or (14) we obtain the following Gaussian deviation inequality
in the negative jump case with a continuous component.
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Theorem 2.3. Assume that −1 < Jt ≤ 0, dPdt-a.e., and let

Σ2
T =

∫ T

0

∥∥|σt|2 + J2
t λt
∥∥
∞ dt <∞, T > 0.

Then we have

(15) P(logST ≥ x) ≤ exp

(
− (x+ Σ2

T /2)2

2Σ2
T

)
, x ≥ 3Σ2

T /2.

Proof. Although this result follows from Theorem 2.2 by taking K → 0, we show that it
can also be obtained from Theorem 1.1. Let

|σ∗(t)|2 =
∥∥|σt|2 + J2

t λt
∥∥
∞ , 0 ≤ t ≤ T,

and denote by S∗t = exp

(∫ t

0

σ∗(s)dWs −
1

2

∫ t

0

|σ∗(s)|2ds
)

, t ∈ R+, the solution of

(16)
dS∗t
S∗t

= σ∗(t)dWt,

with initial condition S∗0 = 1. By the Tchebychev inequality and Theorem 1.1−ii)
applied for K = 0, for all positive nondecreasing convex functions φ : R → R with
convex derivative we have

(17) φ(y)P(ST ≥ y) ≤ E[φ(S∗T )].

Applying this inequality to the convex function t 7→ yα for fixed α ≥ 2, we obtain

yαP(ST ≥ y) ≤ E[(S∗T )α]

= exp
(
α(α− 1)Σ2

T /2
)
,

hence

(18) P(ST ≥ ex) ≤ exp
(
−αx+ α(α− 1)Σ2

T /2
)
, x ≥ 0, α ≥ 2.

The function
α 7→ −αx+ α(α− 1)Σ2

T /2

attains its minimum over α ≥ 2 at

α∗ =
1

2
+

x

Σ2
T

, x ≥ 3Σ2
T /2,

which yields (15). �

In the pure diffusion case with J = 0 and (σt)t∈R+
deterministic, the bound (15) can

be directly obtained from

P (logST ≥ x) = P

(
exp

(∫ T

0

σtdWt −
1

2

∫ T

0

|σt|2dt

)
≥ ex

)

= P
(

exp

(
WΣ2

T
− 1

2
Σ2
T

)
≥ ex

)
≤ exp

(
− (x+ Σ2

T /2)2

2Σ2
T

)
, x > 0.(19)

On the other hand, when J = 0 and (σt)t∈R+ is an adapted process, the bound (2) only
yields

P(logST ≥ x) = P

(∫ T

0

σtdWt −
1

2

∫ T

0

|σt|2dt ≥ x

)

≤ P

(∫ T

0

σtdWt ≥ x

)
≤ e−x

2/(2Σ2
T ), x > 0,(20)
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which is worse than (15) and (19) by a factor exp(x/2+Σ2
T /8). In this case the argument

of Theorem 2.3 can be based on (7) instead of using Theorem 1.1.
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Laboratoire de Mathématiques, Université de La Rochelle, Avenue Michel Crépeau, 17042

La Rochelle Cedex, France.
E-mail address: benjamin.laquerriere@univ-lr.fr

Department of Mathematics, City University of Hong Kong, Tat Chee Avenue, Kowloon
Tong, Hong Kong.

E-mail address: nprivaul@cityu.edu.hk


