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Abstract

The gradient and divergence operators of stochastic analysis on Rieman-
nian manifolds are expressed using the gradient and divergence of the flat
Brownian motion. By this method we obtain the almost-sure version of sev-
eral useful identities that are usually stated under expectations. The manifold-
valued Brownian motion and random point measures on manifolds are treated
successively in the same framework, and stochastic analysis of the Brownian
motion on a Riemannian manifold turns out to be closely related to classical
stochastic calculus for jump processes. In the setting of point measures we
introduce a damped gradient that was lacking in the multidimensional case.
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1 Introduction

The IRd-valued Brownian motion on the Wiener space (W,FW , µ) gathers many

properties that are important in stochastic analysis. In particular, most definitions

of gradient and divergence operators on the Wiener space coincide with the gradient

and divergence on Fock space via the Wiener chaos isomorphism. In non-Gaussian

settings the situation is different since there exists several reasonable choices for a

gradient and divergence. Each family of operators carries a part of the interesting

properties of its Gaussian counterpart, so that a choice has to be made when dealing

with a specific problem. In the case of Brownian motion on a manifold it has been

established, cf. [5], [10], that at least three gradient coexist as unbounded operators

from L2(W ; IR) to L2(W × IR+; IRd):

- the classical gradient D defined from the flat IRd-valued Brownian motion, or from

chaos expansions,

∗jjprat@univ-lr.fr, nprivaul@univ-lr.fr
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- the gradient D̂ associated to the manifold-valued Brownian motion,

- the damped gradient D̃ of [10] which is defined from D̂.

The interest of the damped gradient D̃ is that it extends the interesting properties of

D to the setting of manifolds: for example its adjoint extends the stochastic integral

and D̃ allows to compute the kernel of the Clark formula. (These properties are not

satisfied by D̂). In the case of point measures on IRd or on Riemannian manifolds,

there is a gradient D defined from chaos expansions (which is identified to a finite

difference operator), and a gradient D̂, defined in [1], [3] by infinitesimal shifts of

configurations. The gradient D̃ which has been defined in the particular case of a

Poisson process on IR+, cf. [6], plays in fact the role of damped gradient and we will

extend its definition to the case of Riemannian manifolds.

We obtain explicit formulas linking the gradients D, D̂ and D̃, both in the contin-

uous and in the jump cases. Our calculations are explicit in the sense that they

exclusively use the Fock gradient and divergence of the flat case. The presentation

of those two different settings are made as similar as possible to each other, but they

present many important differences. Our method shows that several useful identities

in expectations are in fact the consequences of more precise identities that hold in the

almost-sure sense, cf. Remarks 1 and 2. Quantum stochastic differentials are used

to reformulate some expressions and show that the difficulties of stochastic calculus

on manifolds are similar to that of the Poisson case. We also treat the anticipating

integral on manifolds with an explicit definition that differs from that of [8], [9], but

leads to the same operators. In the one-dimensional case, the Wiener and Poisson

constructions are based on the same Fock space over L2(IR+; IR), and then they be-

come more similar to each other.

This paper is organized as follows. Sect. 2 recalls the algebraic tools of Fock space,

gradient and divergence that can be defined without referring to a probability mea-

sure, and will be in use in both the Wiener and Poisson cases. After stating some

notation relative to d-dimensional Brownian motion in Sect. 3 (see [13], [14], [16]) we

study in Sect. 4 the differentiation of Wiener functionals with respect to a general

class of not necessarily quasi-invariant transformations that include Euclidean mo-

tions as particular cases. These transformations are called morphisms because they

are compatible with the pointwise product of random variables. Sect. 5 is devoted to

the manifold-valued Wiener case. The differential calculus with respect to random
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morphisms is applied to obtain an explicit expression for the gradient on a Rieman-

nian manifold in terms of the flat gradient and divergence. The damped gradient of

[10] and its application to the Clark formula are treated by the same method. By

duality we obtain an explicit construction of Skorohod type anticipating integrals,

and certain results are translated in the language of quantum stochastic calculus.

The Poisson case is considered in Sections 6, 7 and 8. We proceed in the same way,

in particular in Sect. 7 we study the differential calculus with respect to shifts of

configurations without quasi-invariance assumptions, and we introduce a damped

gradient which was lacking in the case of Riemannian manifolds. We try to keep the

notation as close as possible to that of the Wiener case, but the constructions are in

fact significantly different.

2 Algebraic preliminaries

In this section we introduce the algebraic tools that are in use in both the Poisson

and Wiener cases. Let Γ(H) =
⊕
H◦n denote the completed symmetric Fock space

on a Hilbert space H, where “◦” denotes the completed symmetric tensor product.

Let “⊗” and “⊗̂” respectively denote the algebraic and completed tensor products.

Let S denote the algebraic Fock space over H, i.e. the vector space generated by

f1 ◦ · · · ◦ fn, f1, . . . , fn ∈ H, n ≥ 1, and let U denote the space generated by F ⊗ g,

F ∈ S, g ∈ H. Let D : Γ(H) −→ Γ(H)⊗̂H and δ : Γ(H)⊗̂H −→ Γ(H) denote

the classical unbounded gradient and divergence operators defined on S and U , that

satisfy Df ◦n = nf ◦(n−1) ⊗ f and δ(f ◦n ⊗ g) = f ◦n ◦ g, f, g ∈ H, n ≥ 0. Let Dom(D)

and Dom(δ) denote the respective domains of the closed extensions of D and δ.

If H = L2(X; IRd, λ), where (X,λ) is a measure space, the Hudson-Parthasarathy

quantum stochastic integrals of h ∈ L2(X; IRd, λ) are operators that act on S, cf. [2]

and references therein, and are defined as follows:∫
X
〈h(x), da−x 〉F =

∫
X
〈DxF, h(x)〉dλ(x),∫

X
〈h(x), da+x 〉F = δ(F ⊗ h), F ∈ S, h ∈ H,

where 〈·, ·〉 denotes the scalar product in IRd. Let q(x) : IRd −→ IRd, x ∈ X, denote a

family of bounded endomorphisms of IRd, such that q(·) : L2(X; IRd) −→ L2(X; IRd)

is bounded. The operator
∫
X q(x)da◦x is defined as∫

X
q(x)da◦xF = δ(q(·)D·F ), F ∈ S.

3



3 The flat Wiener case

Let W = C0(IR+; IRd) denote the space of continuous IRd-valued functions starting

at 0, with Wiener measure µ. Let H = L2(IR+; IRd) and let (B(t))t∈IR+ denote the

IRd-valued Brownian motion on W , generating the filtration (Ft)t∈IR+ . Adaptedness

conditions in the Wiener case will always refer to this filtration. We denote by In(fn)

the multiple stochastic integral with respect to (B(t))t∈IR+ of a symmetric function

of n variables fn ∈ L̂2(IRn
+; IRd) ' H◦n. We also denote the first order stochastic

integral of an adapted process h ∈ L2(W × IR+; IRd) by

I1(h) =
∫ ∞
0
〈h(t), dB(t)〉,

where 〈·, ·〉 denotes the inner product of IRd. Let S(IR+; IRd) denote an algebra which

is dense in L2(IR+; IRd), e.g. S(IR+; IRd) = C∞c (IR+; IRd).

Definition 3.1.1 Let

S(W ; IR) =
{
F = f(I1(u1), . . . , I1(un)) : u1, . . . , un ∈ S(IR+; IRd), f ∈ C∞b (IRn; IR), n ≥ 1

}
,

and

U(W×IR+; IRd) =

{
k=n∑
k=1

Fk

∫ ·
0
uk(s)ds : F1, . . . , Fn ∈ S(W ; IR), u1, . . . , un ∈ S(IR+; IRd)

}

In the Wiener interpretation of Γ(H), D satisfies∫ ∞
0
〈DtF, ḣ(t)〉dt = lim

ε→0

F (ω + εh)− F (ω)

ε
, F ∈ S(W ; IR),

for deterministic h ∈ U(W × IR+; IRd), and we have

DtF =
i=n∑
i=1

ui(t)∂if(I1(u1), . . . , I1(un)), F ∈ S(W ; IR).

In particular, D has the derivation property:

Dt(FG) = FDtG+GDtF, t ∈ IR+, (3.1.1)

for F,G ∈ Dom(D) such that FDG, GDF ∈ L2(W × IR+; IRd), and by duality this

implies the relation

Fδ(u) = δ(uF ) +
∫ ∞
0
〈DtF, u(t)〉dt, (3.1.2)

for F ∈ Dom(D) and u ∈ Dom(δ) such that Fδ(u) ∈ L2(W ; IR). We state explicitly

Relations (3.1.1) and (3.1.2) because they will be repeatedly used in the sequel.
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4 Differential calculus with respect to random mor-

phisms on Wiener space

In this section we remain in the flat Wiener case. The stochastic calculus of vari-

ations usually works by perturbations of Brownian motion by infinitesimal shifts

in directions of the Cameron-Martin space or by Euclidean motions, cf. [10]. We

consider a more general class of infinitesimal transformations of Brownian motion

and its associated differential calculus, cf. Prop. 4.1.2. Let U : S(IR+; IRd) −→
L2(W × IR+; IRd) be an operator such that Uf ∈ L2(W × IR+; IRd) is adapted for

all f ∈ S(IR+; IRd). The operator U will extended by linearity to the algebraic ten-

sor product S(IR+; IRd) ⊗ S(W ; IR), in this case Uf is not necessarily adapted if

f ∈ S(IR+; IRd)⊗S(W ; IR). Let (h(t))t∈IR+ ∈ L2(W × IR+; IRd) be a square-integrable

process.

Definition 4.1.1 We let the transformation

Λ(U, h) : S(W ; IR) −→ L2(W × IR+; IRd)

be defined as

Λ(U, h)F = f
(
I1(Uu1) +

∫ ∞
0
〈u1(t), h(t)〉dt, . . . , I1(Uun) +

∫ ∞
0
〈un(t), h(t)〉dt

)
,

for F ∈ S(W ; IR) of the form

F = f(I1(u1), . . . , I1(un)), u1, . . . , un ∈ S(IR+; IRd), f ∈ C∞b (IRn; IR).

In the particular case where U : S(IR+; IRd) −→ L2(W×IR+; IRd) is given as [Uf ](t) =

V (t)f(t), t ∈ IR+, by an adapted family of random endomorphisms V (t) : IRd −→ IRd,

t ∈ IR+, this definition states that Λ(U, h)F is the evaluation of F on the perturbed

process of differential V (t)∗dB(t)+h(t)dt instead of dB(t), where V (t)∗ : IRd −→ IRd

denotes the dual of V (t) : IRd −→ IRd, t ∈ IR+. In [7], a class of transformations

called Euclidean motions, is considered. In this case, the operator V (t) : IRd −→
IRd is chosen to be an isometry and h is adapted, so that Λ(U, h) becomes well-

defined by quasi-invariance of the Wiener measure. We are going to show that this

hypothesis is not needed in order to define Λ(U, h) on the space S(W ; IR) of smooth

functionals. For this we need to show that the definition of Λ(U, h)F is independent

of the particular representation

F = f(I1(u1), . . . , I1(un)), u1, . . . , un ∈ H,

5



chosen for F ∈ S(W ; IR).

Proposition 4.1.1 Let F,G ∈ S(W ; IR) be written as

F = f (I1(u1), . . . , I1(un)) , u1, . . . , un ∈ S(IR+; IRd), f ∈ C1(IRn; IR),

and

G = g (I1(v1), . . . , I1(vm)), v1, . . . , vm ∈ S(IR+; IRd), g ∈ C1(IRm; IR).

If F = G µ-a.s. then Λ(U, h)F = Λ(U, h)G, µ-a.s.

Proof. Let e1, . . . , ek ∈ S(IR+; IRd) be orthonormal vectors that generate u1, . . . , un,

v1, . . . , vm. Let ui(·) =
∑j=k
j=1 α

j
iej(·) and vi(·) =

∑j=k
j=1 β

j
i ej(·) be the expressions of

u1, . . . , un, v1, . . . , vm in the basis e1, . . . , ek. Then F and G are also represented as

F = f̃ (I1(e1), . . . , I1(ek)), and G = g̃ (I1(e1), . . . , I1(ek)), where the functions f̃ and

g̃ are defined by

f̃(x1, . . . , xk) = f

j=k∑
j=1

αj1xj, . . . ,
j=k∑
j=1

αjnxj

 , x1, . . . , xk ∈ IR,

and

g̃(x1, . . . , xk) = f

j=k∑
j=1

βj1xj, . . . ,
j=k∑
j=1

βjnxj

 , x1, . . . , xk ∈ IR.

Since F = G and I1(e1), . . . , I1(ek) are independent, we have f̃ = g̃ a.e., hence

everywhere, and by linearity,

Λ(U, h)F = f̃
(
I1(Ue1) +

∫ ∞
0
〈e1(t), h(t)〉dt, . . . , I1(Uek) +

∫ ∞
0
〈ek(t), h(t)〉dt

)
,

and

Λ(U, h)G = g̃
(
I1(Ue1) +

∫ ∞
0
〈e1(t), h(t)〉dt, . . . , I1(Uek) +

∫ ∞
0
〈ek(t), h(t)〉dt

)
,

hence Λ(U, h)F = Λ(U, h)G.
2

Moreover, Λ(U, h) is linear and multiplicative:

Λ(U, h)f(F1, . . . , Fn) = f(Λ(U, h)F1, . . . ,Λ(U, h)Fn),

F1, . . . , Fn ∈ S(W ; IR), f ∈ C1b (IRn; IR), for this reason we use the term “morphism”

for Λ(U, h) : S(W ; IR) −→ L2(W ; IR).
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Definition 4.1.2 Let (Uε)ε∈[0,1] be a family of linear operators

Uε : S(IR+; IRd) −→ L2(W × IR+; IRd),

such that

- U0 : S(IR+; IRd) −→ L2(W × IR+; IRd) is the identity of S(IR+; IRd), i.e. we have

U0f = f , µ-a.s., f ∈ S(IR+; IRd).

- for any f ∈ S(IR+; IRd), Uεf ∈ L2(W × IR+; IRd) and is adapted, ∀ε ∈ IR,

- the family (Uε)ε∈[0,1] admits a derivative at ε = 0, i.e. there exists an operator

L : S(IR+; IRd) −→ L2(W × IR+; IRd),

such that ((Uεf − f)/ε)ε∈[0,1] converges in L2(W × IR+; IRd) to Lf = (Ltf)t∈IR+

as ε goes to zero, ∀f ∈ S(IR+; IRd).

Let (hε)ε∈[0,1] ⊂ L2(W × IR+; IRd) be a family of adapted processes, continuous in

L2(W × IR+; IRd) with respect to ε ∈ [0, 1].

The operator L is extended by linearity to S(IR+; IRd) ⊗ S(W ; IR). The family

(Uε)ε∈[0,1] needs not be a semigroup. The above assumptions imply that LDF ∈
Dom(δ), F ∈ S(W ; IR), since from (3.1.2):

δ(LDF ) =
i=n∑
i=1

∂if(I1(u1), . . . , I1(un))δ(Lui)−
n∑

i,j=1

(ui,Luj)L2(IR+;IRd)∂i∂jf(I1(u1), . . . , I1(un)),

for F = f(I1(u1), . . . , I1(un)). We now compute on S(W ; IR) the derivative at ε = 0

of one-parameter families

Λ(Uε, εhε) : S(W ; IR) −→ L2(W ; IR), ε ∈ IR,

of transformations of Brownian functionals. We define the linear operator trace :

H ⊗H −→ IR on the algebraic tensor product H ⊗H as

trace u⊗ v = (u, v)H , u, v ∈ H.

Proposition 4.1.2 For F ∈ S(W ; IR), we have in L2(W ; IR):

d

dε
Λ(Uε, εhε)F|ε=0 =

∫ ∞
0
〈h0(t), DtF 〉dt+ δ(LDF ) + trace (IdH ⊗ L)DDF. (4.1.1)
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Proof. Let A : S(W ; IR) −→ S(W ; IR) be defined by

AF = δ(LDF ) + trace (IdH ⊗ L)DDF +
∫ ∞
0
〈h0(t), DtF 〉dt, F ∈ S(W ; IR).

For F = I1(u), u ∈ S(IR+; IRd), we have

d

dε
Λ(Uε, εhε)F|ε=0 =

∫ ∞
0
〈h0(t), u(t)〉dt+ I1(Lu)

=
∫ ∞
0
〈h0(t), DtF 〉dt+ δ(LDF ) + trace (IdH ⊗ L)DDF

= AF

since DDF = 0. Using (3.1.1) and (3.1.2), we have for F1, . . . , Fn ∈ S(W ; IR) and

f ∈ C∞b (IRn; IR):

Af(F1, . . . , Fn) =

δ(LDf(F1, . . . , Fn)) + trace (IdH ⊗ L)DDf(F1, . . . , Fn) +
∫ ∞
0
〈h0(t), Dtf(F1, . . . , Fn)〉dt

=
i=n∑
i=1

δ (∂if(F1, . . . , Fn)LDFi)

+
i=n∑
i=1

∂if(F1, . . . , Fn)trace (IdH ⊗ L)DDFi

+
i=n∑
i,j=1

∂i∂jf(F1, , . . . , Fn)
∫ ∞
0
〈LsDFi, DsFj〉ds

+
i=n∑
i=1

∂if(F1, . . . , Fn)
∫ ∞
0
〈h0(t), DtFi〉dt

=
i=n∑
i=1

∂if(F1, . . . , Fn)δ(LDFi) +
i=n∑
i=1

∂if(F1, . . . , Fn)trace (IdH ⊗ L)DDFi

+
i=n∑
i=1

∂if(F1, . . . , Fn)
∫ ∞
0
〈h0(t), DtFi〉dt

=
i=n∑
i=1

∂if(F1, . . . , Fn)
(
δ(LDFi) + trace (IdH ⊗ L)DDFi +

∫ ∞
0
〈h0(t), DtFi〉dt

)

=
i=n∑
i=1

∂if(F1, . . . , Fn)AFi.

Hence for F1 = I1(u1), . . . , Fn = I1(un) ∈ S(W ; IR) and f ∈ C∞b (IRn; IR):

Af(F1, . . . , Fn) =
i=n∑
i=1

∂if(F1, . . . , Fn)AFi

=
i=n∑
i=1

∂if(F1, . . . , Fn)

(
d

dε
Λ(Uε, εhε)Fi

)
|ε=0

=

(
d

dε
Λ(Uε, εhε)f(F1, . . . , Fn)

)
|ε=0

.
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Consequently, (4.1.1) holds on S(W ; IR).
2

Corollary 4.1.1 If L : L2(IR+; IRd) −→ L2(W × IR+; IRd) is antisymmetric as an

endomorphism of L2(IR+; IRd), µ-a.s., we have in L2(W ; IR):

d

dε
Λ(Uε, εhε)F|ε=0 =

∫ ∞
0
〈h0(t), DtF 〉dt+ δ(LDF ), F ∈ S(W ; IR).

Proof. Since L is antisymmetric, we have for any symmetric tensor u⊗u ∈ S(IR+; IRd)⊗
S(IR+; IRd):

trace (IdH ⊗ L)u⊗ u = trace u⊗ Lu = 〈u,Lu〉H = −〈Lu, u〉H = 0.

Hence the term trace (IdH ⊗ L)DDF of Prop. 4.1.2 vanishes µ-a.s. since DDF is a

symmetric tensor.
2

This corollary is in particular valid if Uε is given as [Uεf ](t) = Vεf(t), from an adapted

process of isometries Vε(t) : IRd −→ IRd of the form Vε(t) = exp(εLt) ∈ O(d), where

Lt ∈ so(IRd), µ-a.s., t ∈ IR+. If hε = 0, the well-known statement

E

[
d

dε
Λ(Uε, 0)F|ε=0

]
=

d

dε
E [Λ(Uε, 0)F ]|ε=0 =

d

dε
E[F ]|ε=0 = 0,

which follows from the invariance of the Wiener measure under isometries, is given

here a more precise meaning since we have

E

[
d

dε
Λ(Uε, 0)F|ε=0

]
= E[δ(LDF )] = 0, F ∈ S(W ; IR).

Until the end of this paper we assume that S(IR+; IRd) = L2(IR+; IRd). Conversely

we can show the following.

Proposition 4.1.3 If F 7→ δ(LDF ) has the derivation property on S(W ; IR), and

if L : L2(IR+; IRd) −→ L2(IR+; IRd) is continuous, µ-a.s., then

L : L2(IR+; IRd) −→ L2(W × IR+; IRd)

is antisymmetric as an endomorphism of L2(IR+; IRd), µ-a.s.
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Proof. We have

Fδ(LDG) +Gδ(LDF )− δ(LD(FG))

= δ(FLDG) + δ(GLDF )− δ(LD(FG)) +
∫ ∞
0
〈DtF,LtDG〉dt

+
∫ ∞
0
〈DtG,LtDF 〉dt

=
∫ ∞
0
〈DtF,LtDG〉dt+

∫ ∞
0
〈DtG,LtDF 〉dt,

hence the derivation property implies∫ ∞
0
〈DtF,LtDG〉dt+

∫ ∞
0
〈DtG,LtDF 〉dt = 0, µ− a.s.

Choosing F = I1(f) and G = I1(g) in the first Wiener chaos, which obtain∫ ∞
0
〈f(t),Ltg〉dt+

∫ ∞
0
〈g(t),Ltf〉dt = 0, µ− a.s., ∀f, g ∈ L2(IR+; IRd).

If {ek}k∈IN denotes a complete orthonormal subset of L2(IR+; IRd), we have∫ ∞
0
〈ek(t),Ltel〉dt+

∫ ∞
0
〈el(t),Ltek〉dt = 0, ∀k, l ∈ IN, µ− a.s.,

hence from the continuity assumption on L:∫ ∞
0
〈f(t),Ltg〉dt+

∫ ∞
0
〈g(t),Ltf〉dt = 0, ∀f, g ∈ L2(IR+; IRd), µ− a.s. 2

5 Stochastic analysis on a Riemannian manifold:

the Wiener case

5.1 Gradient D̂ : L2(W ; IR) −→ L2(W × IR+; IR) on a Rieman-
nian manifold

We refer to [8], [9], [10], [12] for the notation and results recalled in this subsection.

Let M be a Riemannian manifold of dimension d, and let O(M) denote the bundle

of orthonormal frames over M . Let (m0, r0) ∈ O(M), i.e. m0 ∈ M and r0 : IRd −→
Tm0M is an isometry onto Tm0M . We identify Tm0M to IRd, i.e. given u ∈ Tm0M and

v ∈ IRd we write u = v if and only if u = r0v. We denote by 〈·, ·〉 the scalar product in

Tm0M , or equivalently the canonical scalar product on IRd. The Levi-Civita parallel

transport defines d canonical horizontal vector fields A1, . . . , Ad on O(M), and the

Stratonovich stochastic differential equation{
dr(t) =

∑i=d
i=1Ai(r(t)) ◦ dBi(t), t ∈ IR+,

r(0) = (m0, r0),
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defines a O(M)-valued process (r(t))t∈IR+ . Let π : O(M) −→M denote the canonical

projection, and let γ(t) = π(r(t)), t ∈ IR+. Then (γ(t))t∈IR+ is a Brownian motion

on M and the Itô parallel transport along (γ(t))t∈IR+ is defined as

tt←0 = r(t)r−10 : Tγ(0)M −→ Tγ(t)M, t ∈ IR+.

Let IP(M) = Cm0(IR+;M) denote the set of continuous paths on M starting at m0,

let

I : C0(IR+; IRd) −→ Cm0(IR+;M)

(ω(t))t∈IR+ 7→ I(ω) = (γ(t))t∈IR+

denote the Itô map, and let ν denote the image measure of the Wiener measure µ

by I. In the sequel we will endow IP(M) with the following σ-algebra.

Definition 5.1.1 Let FP denote the σ-algebra on IP(M) generated by subsets of the

form

{γ ∈ IP(M) : (γ(t1), . . . , γ(tn)) ∈ B1 × · · · ×Bn} ,

where 0 ≤ t1 < · · · < tn, B1, . . . , Bn ∈ B(M), n ≥ 1.

The σ-algebra FP is smaller than the σ-algebra defined by I on IP(M).

Definition 5.1.2 Let

S(IP(M); IR)

= {F = f(γ(t1), . . . , γ(tn)) : f ∈ C∞b (Mn; IR), 0 ≤ t1 ≤ · · · ≤ tn ≤ 1, n ≥ 1} ,

and

U(IP(M)× IR+; IRd)

=

{
k=n∑
k=1

Fk

∫ ·
0
uk(s)ds : F1, . . . , Fn ∈ S(IP(M); IR), u1, . . . , un ∈ L2(IR+; IRd), n ≥ 1

}

Every element of S(IP(M); IR) is a functional on IP(M), and defines a functional

F ◦ I on W . In order to simplify the notation we will often write F instead of

F ◦ I, for random variables and stochastic processes. In the following, the space

L2(IP(M),FP , ν) will be simply denoted by L2(IP(M)).

Proposition 5.1.1 The spaces S(IP(M); IR) and U(IP(M) × IR+; IRd) are dense in

L2(IP(M); IR) and in L2(IP(M)× IR+; IRd) respectively.
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Proof. Let D denote the algebra generated by the sets

{γ ∈ IP(M) : (γ(t1), . . . , γ(tn)) ∈ E1 × · · · × En} ,

where 0 ≤ t1 < · · · < tn, E1, . . . , En ∈ B(M), n ≥ 1, and let W denote the set of

A ∈ FP for which there exists a sequence (An)n∈IN ⊂ D such that (1An)n∈IN converges

in L2(IP(M), ν) to 1A. ThenW is a monotone class hence it is equal to FP . Moreover,

for any Borel subset A of M there exists a uniformly bounded sequence in C∞c (M)

converging a.e. on M to 1A, hence S(IP(M); IR) is dense in L2(IP(M); IR). The

density of U(IP(M)× IR+; IRd) in L2(IP(M)× IR+; IRd) follows similarly.
2

The following definition can be found in [10].

Definition 5.1.3 Let D̂ : L2(IP(M); IR) −→ L2(IP(M) × IR+; IRd) be the gradient

operator defined as

D̂tF =
i=n∑
i=1

t0←ti∇M
i f(γ(t1), . . . , γ(tn))1[0,ti](t), t ∈ IR+,

for F ∈ S(IP(M); IR) of the form F = f(γ(t1), . . . , γ(tn)), where ∇M
i denotes the

gradient on M applied to the i-th variable of f .

5.2 Explicit expression of the gradient D̂

In this section we put together the definition 5.1.3 of D̂ : L2(IP(M); IR) −→ L2(IP(M)×
IR+; IRd) by variational calculus, cf. [10], and the result of Sect. 4 in order to obtain

an explicit relation between the gradient D̂ and the operators D and δ.

Corollary 4.1.1 is stated for F ∈ S(W ; IR), i.e. for polynomial functionals in single

stochastic integrals on the flat Wiener space. In order to work on IP(M) we need

to be able to consider smooth functionals of (γ(t))t∈IR+ , which are no longer given

by functions of single stochastic integrals. Therefore, before proceeding further we

need to extend Corollary 4.1.1 from F ∈ S(W ; IR) to F ∈ S(IP(M); IR). In the

following proposition we assume that Uε is given by Vε(t) : IRd −→ IRd, t ∈ IR+, as

[Uεf ] (t) = Vε [f(t)], t ∈ IR+.

Proposition 5.2.1 Let Vε(·) : W × IR+ −→ O(d) and L(·) : W × IR+ −→ so(d) be

adapted processes satisfying Def. 4.1.2, with Vε(t) = exp(εLt), t ∈ IR+, ε ∈ IR. Let

h ∈ L2(IR+;L∞(W ; IRd)) be adapted and such that ε 7→ Λ(U−1ε , 0)h is continuous in

L2(W × IR+; IRd). Then we have in L2(W ; IR):

d

dε
Λ(Uε, εh)F|ε=0 =

∫ ∞
0
〈h(t), DtF 〉dt+ δ(LDF ), F ∈ S(IP(M); IR). (5.2.1)
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Proof. Since Vε(t) : IRd −→ IRd is isometric, t ∈ IR+, Λ(Uε, εh)F and Λ(U−1ε , 0)h are

well-defined by quasi-invariance of the Wiener measure. Moreover, the definition of

Λ(Uε, εh) extends to G = g(I1(u1), . . . , I1(un)), with adapted u1, . . . , un ∈ L2(W ×
IR+; IRd), as

Λ(Uε, εh)G = g
(
I1(Uεu1) + ε

∫ ∞
0
〈u1(t), h(t)〉dt, . . . , I1(Uεun) + ε

∫ ∞
0
〈un(t), h(t)〉dt

)
.

By invariance of the Wiener measure under Euclidean transformations we have for

G ∈ S(W ; IR):

E [GΛ(Uε, εh)F ] = E
[
(Λ(U−1ε , 0)G)Λ(IdH , εΛ(U−1ε , 0)h)F

]
,

since [Λ(Uε, 0)]−1 = Λ(U−1ε , 0) and

Λ(U−1ε , 0)Λ(Uε, εh) = Λ(IdH , εΛ(U−1ε , 0)h).

From the Girsanov theorem applied to the shift εΛ(U−1ε , 0)h, we obtain

E [GΛ(Uε, εh)F ] = E
[
F exp

(
ε
∫ ∞
0

Λ(U−1ε , 0)h(t)dB(t)− 1

2
ε2‖Λ(U−1ε , 0)h‖2L2(IR+;IRd)

)
×Λ(IdH ,−εΛ(U−1ε , 0)h)Λ(U−1ε , 0)G

]
= E

[
F exp

(
ε
∫ ∞
0

Λ(U−1ε , 0)h(t)dB(t)− 1

2
ε2‖Λ(U−1ε , 0)h‖2L2(IR+;IRd)

)
×Λ(U−1ε ,−εVεΛ(U−1ε , 0)h)G

]
. (5.2.2)

Th. 2.2.1 of [10] and Prop. 3.5.3 of [10] show that for F ∈ S(IP(M); IR),

ε 7→ Λ(Uε, εh)F

is differentiable in L2(W ; IR) at ε = 0. We have

exp
(
ε
∫∞
0 Λ(U−1ε , 0)h(t)dB(t)− 1

2
ε2‖Λ(U−1ε , 0)h‖2

L2(IR+;IRd)

)
− 1

ε

= exp
(
ε
∫ ∞
0

Λ(U−1ε , 0)h(t)dB(t)
) exp

(
−1

2
ε2‖Λ(U−1ε , 0)h‖2

L2(IR+;IRd)

)
− 1

ε

+
exp (ε

∫∞
0 Λ(U−1ε , 0)h(t)dB(t))− 1

ε
,

which is bounded in L2(W ; IR), uniformly in ε ∈ [0, 1], since ‖h‖L2(IR+;L∞(W ;IRd)) <∞.

Moreover,
Λ(U−1ε ,−εVεΛ(U−1ε , 0)h)G−G

ε
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is bounded in L2(W ; IR), uniformly in ε ∈ [−1, 1] \ {0} (from Taylor’s formula it

is sufficient to check this fact for G = I1(u), u ∈ L2(IR+; IRd)). Hence we can

differentiate at ε = 0 under the expectations in (5.2.2) and apply Cor. 4.1.1 to

G ∈ S(W ; IR) and Λ(U−1ε ,−εΛ(Uε, 0)h):

E

[
G
d

dε
Λ(Uε, εh)F|ε=0

]
= −E

[
F
(∫ ∞

0
〈h(t), DtG〉dt+ δ(LDG)

)]
+E

[
FG

∫ ∞
0

h(t)dB(t)
]

= E [Gδ(LDF )]− E
[
F
∫ ∞
0
〈h(t), DtG〉dt

]
+ E [FGδ(h)]

= E [Gδ(LDF )] + E [Fδ(hG)]

= E
[
G
∫ ∞
0
〈h(t), DtF 〉dt+Gδ(LDF )

]
, G ∈ S(W ; IR),

which implies (5.2.1) by density of S(W ; IR) in L2(W ; IR).
2

Given an adapted vector field (Z(t))t∈IR+ on M with Z(t) ∈ Tγ(t)M , t ∈ IR+, we let

z(t) = t0←tZ(t), t ∈ IR+, and assume that ż(t) exists, ∀t ∈ IR+. Let

∇Z(t) = lim
ε→0

tt←t+εZ(t+ ε)− Z(t)

ε
.

Then

ż(t) = t0←t∇Z(t), t ∈ IR+.

let Ωr denote the curvature tensor of M and let ricr : IRd −→ IRd denote the Ricci

tensor, at the frame r ∈ O(M), and let the process (ẑ(t))t∈IR+ be defined by
˙̂z(t) = ż(t) + 1

2
ricr(t)z(t), t ∈ IR+,

ẑ(0) = 0.
(5.2.3)

As a consequence of Prop. 5.2.1 we obtain the following expression of D̂, which has

some similarity with Th. 2.3.8 and Th. 2.6 of [7], and a simpler proof.

Corollary 5.2.1 Assume that the Ricci curvature of M is uniformly bounded, and

let z ∈ U(IP(M)× IR+; IRd) be adapted. We have∫ ∞
0
〈D̂tF, ż(t)〉dt =

∫ ∞
0
〈DtF, ˙̂z(t)〉dt+ δ(q(·, z)D·F ), (5.2.4)

F ∈ S(IP(M); IR), where q(t, z) : IRd −→ IRd is defined as

q(t, z) = −
∫ t

0
Ωr(s)(◦dB(s), z(s)), t ∈ IR+.
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Proof. We let Vε(t) = exp(εq(t, z)), t ∈ IR+, ε ∈ IR. Then from Prop. 3.5.3 of [10] we

have ∫ ∞
0
〈D̂F, ż(t)〉dt =

d

dε
Λ(Uε, ε ˙̂z)F|ε=0.

Since the Ricci curvature of M is bounded, we have ˙̂z ∈ L2(IR+;L∞(W ; IR)) from

(5.2.3). Moreover, from Th. 2.2.1 of [10], ε 7→ Λ(Uε, 0)r(t) is differentiable in

L2(W ; IR), hence continuous, ∀t ∈ IR+. Consequently, from (5.2.3) and by con-

struction of U(IP(M) × IR+; IRd), ε 7→ Λ(Uε, 0) ˙̂z is continuous in L2(W × IR+; IRd)

and we can apply Prop. 5.2.1 to obtain (5.2.4).
2

Remark 1 Since E[δ(LDF )] = 0, Th. 2.3.2 of [10] (which follows from the invari-

ance of the Wiener measure under Euclidean transformations) is also explained from

Prop. 5.2.1 by taking expectations in the identity (5.2.4) that holds in the almost-sure

sense.

If u ∈ U(IP(M) × IR+; IRd) is written as u =
∑i=n
i=1 Gizi, zi deterministic, Gi ∈

S(IP(M); IR), i = 1, . . . , n, we define trace q(t,Dtu) ∈ IRd as

trace q(t,Dtu) =
i=n∑
i=1

q(t, zi)DtGi.

Given u ∈ U(IP(M) × IR+; IRd) written as u =
∑i=n
i=1 Gizi, zi deterministic, Gi ∈

S(IP(M); IR), i = 1, . . . , n, we let

û =
i=n∑
i=1

Giẑi.

The following proposition extends Cor. 5.2.1 to non-adapted processes u ∈ U(IP(M)×
IR+; IRd).

Theorem 5.2.1 We have for u ∈ U(IP(M)× IR+; IRd) and F ∈ S(IP(M); IR):∫ ∞
0
〈D̂tF, u̇(t)〉dt =

∫ ∞
0
〈DtF, ˙̂u(t)〉dt+ δ(q(·, u)D·F )−

∫ ∞
0
〈DtF, trace q(t,Dtu)〉dt.

Proof. For u = zG, G ∈ S(IP(M); IR) and deterministic z ∈ U(W × IR+; IRd), we

have ∫ ∞
0
〈D̂tF,Gż(t)〉dt =

∫ ∞
0
〈D̂t(FG), ż(t)〉dt− F

∫ ∞
0
〈D̂tG, ż(t)〉dt

=
∫ ∞
0
〈Dt(FG), ˙̂z(t)〉dt+ δ(q(·, z)D·(FG))
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−F
∫ ∞
0
〈DtG, ˙̂z(t)〉dt− Fδ(q(·, z)D·G)

=
∫ ∞
0
〈Dt(FG), ˙̂z(t)〉dt+ δ(Fq(·, z)D·G)

+δ(Gq(·, z)D·F )− F
∫ ∞
0
〈DtG, ˙̂z(t)〉dt− Fδ(q(·, z)D·G)

=
∫ ∞
0
〈DtF,G ˙̂z(t)〉dt+ δ(Gq(·, z)D·F )−

∫ ∞
0
〈DtF, q(t, z)DtG〉dt

=
∫ ∞
0
〈DtF, ˙̂u(t)〉dt+ δ(q(·, u)D·F )−

∫ ∞
0
〈DtF, trace q(t,Dtu)〉dt. 2

In [10], r(t)D̂tF ∈ Tγ(t)M is considered instead of D̂tF ∈ Tγ(0)M , with the relation

〈tt←0D̂tF,∇Z(t)〉Tγ(t)M = 〈D̂tF, ż(t)〉,

where (Z(t))t∈IR+ denotes an adapted vector field on M with Z(t) ∈ Tγ(t)M , t ∈ IR+.

5.3 Inversion of z 7→ ẑ

This subsection recalls the inversion of z 7→ ẑ by the method of variation of constants

described in Sect. 3.7 of [10]. Let Idγ(t) denote the identity of Tγ(t)M . We have

ż(t) = ˙̃z(t) +
1

2
ricr(t)z̃(t), t ∈ IR+,

where (z̃(t))t∈IR+ is defined as

z̃(t) =
∫ t

0
Qt,sż(s)ds, t ∈ IR+,

and Qt,s : IRd −→ IRd satisfies

dQt,s

dt
= −1

2
ricr(t)Qt,s, Qs,s = Idγ(0), 0 ≤ s ≤ t.

Also, let the process (Ẑ(t))t∈IR+ be defined by{
∇Ẑ(t) = ∇Z(t) + 1

2
Ricγ(t)Z(t), t ∈ IR+,

Ẑ(0) = 0,

with ẑ(t) = τ0←tẐ(t), t ∈ IR+. In order to invert Z 7→ Ẑ, let

Z̃(t) =
∫ t

0
Rt,s∇Z(s)ds, t ∈ IR+,

where Rt,s : Tγ(s)M −→ Tγ(t)M is defined by the equation

∇tRt,s = −1

2
Ricγ(t)Rt,s, Rs,s = Idγ(s), 0 ≤ s ≤ t,
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∇t denotes the covariant derivative along (γ(t))t∈IR+ , and Ricm : TmM −→ TmM

denotes the Ricci tensor at m ∈M , with the relation

ricr(t) = t0←t ◦ Ricγ(t) ◦ tt←0.

Then we have {
∇Z(t) = ∇Z̃(t) + 1

2
Ricγ(t)Z̃(t), t ∈ IR+,

Z(0) = 0.

5.4 Expression of the damped gradient D̃

The damped gradient D̃ : L2(IP(M); IR) −→ L2(IP(M) × IR+; IRd) has been defined

in [10].

Definition 5.4.1 The damped gradient D̃ is defined as

D̃tF =
i=n∑
i=1

1[0,ti](t)Q
∗
ti,t
t0←ti∇M

i f(γ(t1), . . . , γ(tn)), t ∈ IR+,

for F ∈ S(IP(M); IR) of the form F = f(γ(t1), . . . , γ(tn)), where Q∗t,s : IRd −→ IRd

denotes the adjoint of Qt,s : IRd −→ IRd, 0 ≤ s < t.

We also have

D̃tF =
i=n∑
i=1

1[0,ti](t)t0←tR
∗
ti,t
∇M
i f(γ(t1), . . . , γ(tn)), t ∈ IR+,

where R∗ti,t : Tγ(ti) −→ Tγ(t) is the adjoint of Rti,t : Tγ(t) −→ Tγ(ti). For completeness

we state the following proposition.

Proposition 5.4.1 We have for z ∈ U(IP(M)× IR+; IRd):∫ ∞
0
〈D̃tF, ż(t)〉dt =

∫ ∞
0
〈D̂tF, ˙̃z(t)〉dt, F ∈ S(IP(M); IR). (5.4.1)

Proof. We compute∫ ∞
0
〈D̃tF, ż(t)〉dt =

i=n∑
i=1

∫ ti

0
〈Q∗ti,st0←ti∇

M
i f(γ(t1), . . . , γ(tn)), ż(s)〉ds

=
i=n∑
i=1

∫ ti

0
〈t0←ti∇M

i f(γ(t1), . . . , γ(tn)), Qti,sż(s)〉dt

=
∫ ∞
0
〈D̂tF, ˙̃z(t)〉dt, F ∈ S(IP(M); IR). 2

We also have∫ ∞
0
〈D̃tF, ˙̂z(t)〉dt =

∫ ∞
0
〈D̂tF, ż(t)〉dt, F ∈ S(IP(M); IR).

We now give an explicit expression of the damped gradient D̃ in terms of D and δ.
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Corollary 5.4.1 If z ∈ U(IP(M)× IR+; IRd) is deterministic,∫ ∞
0
〈D̃tF, ż(t)〉dt =

∫ ∞
0
〈DtF, ż(t)〉dt+ δ(q(·, z̃)D·F ), F ∈ S(IP(M); IR).

Proof. We use Relation (5.4.1) and Cor. 5.2.1.
2

In the anticipating case we have:

Corollary 5.4.2 We have for u ∈ U(IP(M)× IR+; IRd):∫ ∞
0
〈D̃tF, u̇(t)〉dt =

∫ ∞
0
〈DtF, u̇(t)〉dt+ δ(q(·, u)D·F )−

∫ ∞
0
〈DtF, trace q(t,Dtũ)〉dt.

Proof. We use Relation (5.4.1) and Th. 5.2.1.
2

In [10], the damped gradient is chosen as tt←0D̃F : L2(IP(M); IR) −→ L2(IP(M) ×
IR+;TM) instead of D̃F : L2(IP(M); IR) −→ L2(IP(M)× IR+; IRd), and it satisfies

〈tt←0D̃tF,∇Z(t)〉Tγ(t)M = 〈D̃tF, ż(t)〉, t ∈ IR+.

5.5 Anticipating stochastic integration

The stochastic integral of the adapted vector field (Z(s))s∈IR+ : IR+ −→ TM is

defined as ∫ ∞
0
〈∇Z(s), dγ̂(s)〉Tγ(s)M =

∫ ∞
0
〈 ˙̂z(s), dB(s)〉,

cf. (3.3.1) of [10]. The following is an explicit formulation for the operator defined

in [9].

Definition 5.5.1 We define the operator δ̂ : L2(IP(M)× IR+; IRd) −→ L2(IP(M); IR)

as

δ̂(u̇) = δ( ˙̂u)− δ(trace q(·, D·u)), u ∈ U(IP(M)× IR+; IRd).

According to the definition of trace q(·, D·u) we have for any deterministic z ∈
U(IP(M)× IR+; IRd):

δ̂(F ż) = δ(F ˙̂z)− δ(q(·, z)D·F ), F ∈ S(IP(M); IR). (5.5.1)

Moreover, if ż ∈ L2(W × IR+; IRd) is adapted, then

δ̂(ż) = δ( ˙̂z) =
∫ ∞
0
〈 ˙̂z(s), dB(s)〉. (5.5.2)
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Proposition 5.5.1 The operators δ̂ : L2(IP(M) × IR+; IRd) −→ L2(IP(M); IR) and

D̂ : L2(IP(M); IR) −→ L2(IP(M)× IR+; IRd) are closable and mutually adjoint:

E
[∫ ∞

0
〈D̂tF, u̇(t)〉dt

]
= E[F δ̂(u̇)], (5.5.3)

u ∈ U(IP(M)× IR+; IRd), F ∈ S(IP(M); IR), and δ̂ satisfies

δ̂(Fu̇) = F δ̂(u̇)−
∫ ∞
0
〈D̂tF, u̇(t)〉dt. (5.5.4)

Proof. We have from Def. 5.5.1 and Th. 5.2.1:

E[F δ̂(u̇)] = E[Fδ( ˙̂u)]− E[Fδ(trace q(·, D·u))]

= E
[∫ ∞

0
〈DtF, ˙̂u(t)〉dt

]
− E

[∫ ∞
0
〈DtF, trace q(t,Dtu))〉dt

]
= E

[∫ ∞
0
〈D̂tF, u̇(t)〉dt

]
,

hence (5.5.3). On the other hand, (5.5.4) follows by duality and the derivation

property of D̂, or by direct computation from

δ̂(Fu̇) = δ(F ˙̂u)− δ(trace q(·, D·(Fu)))

= Fδ( ˙̂u)−
∫ ∞
0
〈DtF, ˙̂u(t)〉dt− δ(F trace q(·, D·u))− δ(trace q(·, uD·F ))

= Fδ( ˙̂u)−
∫ ∞
0
〈DtF, ˙̂u(t)〉dt+

∫ ∞
0
〈DtF, trace q(t,Dtu)〉dt

−Fδ(trace q(·, D·u))− δ(trace q(·, uD·F ))

= F δ̂(u̇)−
∫ ∞
0
〈D̂tF, u̇(t)〉dt.

The closability follows from the density property Prop. 5.1.1.
2

We denote by Dom(D̂) and Dom(δ̂) the closed domains of D̂ : L2(IP(M); IR) −→
L2(IP(M)× IR+; IRd) and δ̂ : L2(IP(M)× IR+; IRd) −→ L2(IP(M); IR). Relation (5.5.4)

is in fact the definition chosen for δ̂ in [9] in the absence of chaos expansions. We

now turn to the definition of the damped Skorohod type anticipating integral.

Definition 5.5.2 We define the operator δ̃ : L2(IP(M)× IR+; IRd) −→ L2(IP(M); IR)

as

δ̃(u̇) = δ(u̇)− δ(trace q(·, D·ũ)), u ∈ U(IP(M)× IR+; IRd). (5.5.5)

We have for deterministic z ∈ U(IP(M)× IR+; IRd):

δ̃(F ż) = δ(F ż)− δ(q(·, z̃)D·F ), F ∈ S(IP(M)× IR+; IR). (5.5.6)
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Proposition 5.5.2 The operators δ̃ : L2(IP(M) × IR+; IRd) −→ L2(IP(M); IR) and

D̃ : L2(IP(M); IR) −→ L2(IP(M)× IR+; IRd) are closable and mutually adjoint:

E
[∫ ∞

0
〈D̃tF, u̇(t)〉dt

]
= E[F δ̃(u̇)], (5.5.7)

u ∈ U(IP(M)× IR+; IRd), F ∈ S(IP(M); IR), with

δ̃(Fu̇) = F δ̃(u̇)−
∫ ∞
0
〈D̃tF, u̇(t)〉dt. (5.5.8)

Proof. We use the relations δ̃(u̇) = δ̂( ˙̃u) and∫ ∞
0
〈D̃tF, u̇(t)〉dt =

∫ ∞
0
〈D̂tF, ˙̃u(t)〉dt, u ∈ U(IP(M)×IR+; IRd), F ∈ S(IP(M); IR). 2

We denote by Dom(D̃) and Dom(δ̃) the closed domains of D̃ : L2(IP(M); IR) −→
L2(IP(M)× IR+; IRd) and δ̃ : L2(IP(M)× IR+; IRd) −→ L2(IP(M); IR).

Proposition 5.5.3 The operators δ and δ̃ both coincide with the stochastic integral

with respect to (B(t))t∈IR+ on the adapted processes in L2(IP(M)× IR+; IRd):

δ̃(u) = δ(u) =
∫ ∞
0
〈u(s), dB(s)〉.

Proof. The relation δ(u) =
∫∞
0 〈u(s), dB(s)〉, for adapted u ∈ L2(W × IR+; IRd), is

well-known, cf. [11]. Given an adapted process u ∈ U(IP(M) × IR+; IRd) written as

u = Fz, where F ∈ S(IP(M); IR) is an Ft-measurable functional and ż = x1[t,t+a],

t, a ∈ IR+, x ∈ IRd, we have trace q(s,Dsu) = q(s, z)DsF = 0, s ∈ IR+, from the

chaos expansion of F , hence δ(q(trace (·, D·u))) = 0 and δ(u) = δ̃(u). This relation

extends to square-integrable adapted processes by linearity and density.
2

5.6 Clark formula for D and D̃

It has been shown in [10] in the continuous case and in [15] in the Poisson case

that the Clark formula can be expressed with a damped gradient as well as with the

flat gradient D. In this subsection we show that this result is also obtained by our

method.

Proposition 5.6.1 For F ∈ S(IP(M); IR), the processes DF, D̃F ∈ L2(IP(M) ×
IR+; IRd) have the same adapted projections, i.e.

E[DtF | Ft] = E[D̃tF | Ft], t ∈ IR+, F ∈ S(IP(M); IR). (5.6.1)
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Proof. Let F ∈ S(IP(M); IR). From Prop. 5.5.3, given any square-integrable adapted

process u ∈ L2(IP(M)× IR+; IRd) we have δ̃(u) = δ(u), hence by duality,

E
[∫ ∞

0
〈u(t), DtF 〉dt

]
= E

[∫ ∞
0
〈u(t), D̃tF 〉dt

]
, F ∈ S(IP(M); IR),

which proves (5.6.1).
2

This implies that the Clark formula has two expressions, since the adapted projec-

tions of D and D̃ coincide.

Proposition 5.6.2 Let F ∈ Dom(D) ∩Dom(D̃). We have

F = E[F ] +
∫ ∞
0
〈E[DtF | Ft], dB(t)〉 = E[F ] +

∫ ∞
0
〈E[D̃tF | Ft], dB(t)〉.

Proof. This is a consequence of the classical Clark-Ocone formula for Brownian

motion on W and of Prop. 5.6.1.
2

The interest in the damped gradient is also that from (5.5.7) it gives a more natural

expression to the formula the integration by parts formula of [5]:

E
[∫ ∞

0
〈D̂tF, u̇(t)〉dt

]
= E

[
F
∫ ∞
0
〈 ˙̂u(t), dB(t)〉

]
, (5.6.2)

where F ∈ S(IP(M); IR) and u ∈ U(IP(M)× IR+; IRd) is adapted, i.e. (5.5.3) can be

written as

E
[∫ ∞

0
〈D̃tF, u̇(t)〉dt

]
= E

[
F
∫ ∞
0
〈u̇(t), dB(t)〉

]
, (5.6.3)

u ∈ U(IP(M)× IR+; IRd), F ∈ S(IP(M); IR).

5.7 Quantum stochastic differentials

By analogy we define quantum stochastic integrals on the Riemannian manifold M

to be the operators ∫ ∞
0
〈h(s), dâ−s 〉F =

∫ ∞
0
〈D̂sF, h(s)〉ds,∫ ∞

0
〈h(s), dâ+s 〉F = δ̂(hF ), F ∈ S(IP(M); IR),

where h ∈ L2(IP(M)×IR+; IRd) is adapted. The following relations are reformulations

of Cor. 5.2.1 and (5.5.1).
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Proposition 5.7.1 We have the following relations between quantum stochastic dif-

ferentials:

〈ż(t), dâ−t 〉 = 〈 ˙̂z(t), da−t 〉+ q(t, z)da◦t , (5.7.1)

and

〈ż(t), dâ+t 〉 = 〈 ˙̂z(t), da+t 〉+ q∗(t, z)da◦t . (5.7.2)

Using the antisymmetry of q(t, z) : IRd −→ IRd, (5.7.2) is rewritten as

〈ż(t), dâ+t 〉 = 〈 ˙̂z(t), da+t 〉 − q(t, z)da◦t .

These relations imply

〈ż(t), dâ−t + dâ+t 〉 = 〈 ˙̂z(t), da−t + da+t 〉 = 〈 ˙̂z(t), dBt〉,

which are reformulations of (5.5.4) and (3.1.2). Similarly, the following proposition

reformulates Cor. 5.4.1 and (5.5.6) respectively.

Proposition 5.7.2 The “damped” quantum stochastic differentials satisfy

〈ż(t), dã−t 〉 = 〈ż(t), da−t 〉+ q(t, z̃)da◦t ,

and

〈ż(t), dã+t 〉 = 〈ż(t), da+t 〉 − q(t, z̃)da◦t .

We have

〈ż(t), dã−t + dã+t 〉 = 〈ż(t), da−t + da+t 〉 = 〈ż(t), dBt〉,

i.e.

dã−t + dã+t = da−t + da+t = dBt

which is a reformulation of (5.5.8) and (3.1.2).

6 The flat Poisson case

In what follows we will deal with the counterpart of the above construction, when the

M -valued Brownian motion (γ(t))t≥0 is replaced by random point measures γ on the

Riemannian manifold M . Let Ω denote the configuration space on the Riemannian

manifold M , that is the set of Radon measures on M of the form
∑i=n
i=1 εxi with

(xi)
i=n
i=1 ⊂ M , xi 6= xj ∀i 6= j, n ∈ IN ∪ {∞}, where εx denotes the Dirac measure

at x ∈ M . The configuration space Ω is endowed with the vague topology and its
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associated σ-algebra, cf. [1]. Let σ be a diffuse Radon measure on M , let P denote

the Poisson measure with intensity σ on Ω, and let ∇M and divM denote the gradient

and divergence on M . We assume that σ is the volume element of M , under which

divM and ∇M are adjoint, and that
∫
M divMZ(x)σ(dx) = 0, ∀Z ∈ C∞c (M ;TM).

We denote by TxM the tangent space at x ∈ M (in this setting there is no parallel

transport). Let H = L2(M ; IR, σ), and let In(fn) denote the multiple stochastic

integral with respect to (γ(dx)− σ(dx)) of a symmetric function of n variables fn ∈
L̂2(Mn) ' H◦n. The identification of fn ∈ L̂2(Mn) ' H◦n to In(fn) provides an

isometric isomorphism between Γ(H) and L2(Ω; IR). We have in particular δ(u) =∫
M u(x)(γ(dx)−σ(dx)), u ∈ L2(M ; IR). Let S(M ; IR) denote an algebra of compactly

supported functions which is dense in L2(M ; IR), e.g. S(M ; IR) = C∞c (M ; IR), and let

S0(M ; IR) =
{
u ∈ S(M ; IR) :

∫
M
u(x)σ(dx) = 0

}
.

Definition 6.1.1 Let

S(Ω; IR) = {f(I1(u1), . . . , I1(un)) : u1, . . . , un ∈ S0(M ; IR), f ∈ C∞b (IRn; IR), n ≥ 1} ,

U(Ω×M ; IR)

=

{
k=n∑
k=1

Fkuk : F1, . . . , Fn ∈ S(Ω; IR), u1, . . . , un ∈ S0(M ; IR), i = 1, . . . , n, n ≥ 1

}
,

and

U(Ω×M ;TM) =

{
k=n∑
k=1

Fkuk : F1, . . . , Fn ∈ S(Ω; IR), u1, . . . , uk ∈ C∞c (M ;TM)

}
.

In the Poisson interpretation of Γ(H), D is a finite difference operator:

DxF (γ) = F (γ + (1− γ({x}))δx)− F (γ), (6.1.1)

hence

Dx(FG) = FDxG+GDxF +DxFDxG, x ∈M, (6.1.2)

and by duality this shows that

Fδ(u) = δ(uF ) +
∫
M
u(x)DxFσ(dx) + δ(uDF ), (6.1.3)

F ∈ S(Ω; IR), u ∈ U(Ω×M ; IR), which are the analogs of (3.1.1) and (3.1.2).
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7 Differential calculus and morphisms on config-

uration spaces

Let U : S(M ; IR) −→ S(M ; IR) denote a deterministic mapping.

Definition 7.1.1 We let the transformation Λ(U) be defined as

Λ(U)F (γ) = f
(∫

M
Uu1(x)γ(dx), . . . ,

∫
M
Uun(x)γ(dx)

)
for F ∈ S(Ω; IR) of the form F (γ) = f (

∫
M u1(x)γ(dx), . . . ,

∫
M un(x)γ(dx)).

We have

Λ(U)F = f
(
I1(Uu1) +

∫
M
Uu1dσ, . . . , I1(Uun) +

∫
M
Uundσ

)
.

Due to the smoothness of F ∈ S(W ; IR), no additional hypothesis is required on U .

If U is given by a measurable mapping V : M −→M , as [Uf ](x) = f(V (x)), x ∈M ,

then (Λ(U)F )(γ) is the evaluation of F at the configuration γ whose points have

been shifted by V , i.e. Λ(U)F (γ) = F (V ∗γ), where V ∗γ denotes the image measure

of γ by V : M −→M .

Definition 7.1.2 Let (Uε)ε∈IR be a family of linear operators

Uε : S(M ; IR) −→ L2(M ; IR),

preserving compact sets, and such that

- U0 : S(M ; IR) −→ S(M ; IR) is the identity of S(M ; IR).

- the family (Uε)ε∈[0,1] admits a derivative at ε = 0, i.e. there exists a linear operator

L : S(M ; IR) −→ L2(M ; IR),

such that ((Uεf − f)/ε)ε∈[0,1] converges in L2(M ; IR) to Lf = (Ltf)t∈IR+ as ε

goes to zero, f ∈ S(M ; IR).

Examples of such operators can be constructed by shifts of configurations points

via a flow of diffeomorphisms on M . (The operator L is naturally extended to

S(Ω×M ; IR)).

Proposition 7.1.1 For F ∈ S(Ω; IR), we have in L2(Ω; IR):

d

dε
Λ(Uε)F|ε=0 =

∫
M
LDxFσ(dx) + δ(LDF ). (7.1.1)
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Proof. The steps of the proof are the same as in Prop. 4.1.2. Let A : S(Ω; IR) −→
S(Ω; IR) be defined as

AF = δ(LDF ) +
∫
M
LDxFσ(dx), F ∈ S(Ω; IR).

For F =
∫
M u(x)γ(dx), u ∈ C∞c (M ; IR), we have Λ(Uε)F =

∫
M Uεu(x)γ(dx) and

d

dε
Λ(Uε)F|ε=0 =

∫
M
Lu(x)γ(x) = δ(Lu) +

∫
M
LDxFσ(dx) = AF.

We show that A is a derivation operator. Using (6.1.2), (6.1.3) and the fact that L
is a derivation operator on S(M ; IR), we have:

δ(LD(FG)) = δ(LD(FG))

= δ(FLDG+GLDF + L(DFDG))

= Fδ(LDG) +Gδ(LDF ) + δ(DFLDG) + δ(DGLDF )

−
∫
M
DxFLDxGσ(dx)−

∫
M
DxGLDxFσ(dx)− δ(LDGDF )− δ(LDFDG)

= Fδ(LDG) +Gδ(LDF )−
∫
M
DxFLDxGσ(dx)−

∫
M
DxGLDxFσ(dx).

On the other hand,∫
M
LDx(FG)σ(dx) = G

∫
M
LDxFσ(dx) + F

∫
M
LDxGσ(dx)

+
∫
M
L(DxFDxG)σ(dx)

= G
∫
M
LDxFσ(dx) + F

∫
M
LDxGσ(dx)

+
∫
M
DxGLDxFσ(dx) +

∫
M
DxFLDxGσ(dx).

Hence

A(FG) = δ(LD(FG)) +
∫
M
LDx(FG)σ(dx)

= F
(
δ(LDG) +

∫
M
LDxGσ(dx)

)
+G

(
δ(LDF ) +

∫
M
LDxFσ(dx)

)
= FAG+GAF,

which extends as

Af(F1, . . . , Fn) =
i=n∑
i=1

∂if(F1, . . . , Fn)AFi

to polynomial f and successively to f ∈ C∞c (IRn; IR) and f ∈ C∞b (IRn; IR). Hence if

F1 =
∫
M u1(x)γ(dx), . . . , Fn =

∫
M un(x)γ(dx), we have

Af(F1, . . . , Fn) =
i=n∑
i=1

∂if(F1, . . . , Fn)AFi =
i=n∑
i=1

∂if(F1, . . . , Fn)

(
d

dε
Λ(Uε)Fi

)
|ε=0
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=

(
d

dε
Λ(Uε)f(F1, . . . , Fn)

)
|ε=0

,

which implies that (7.1.1) holds on S(Ω; IR).
2

If (Uε)ε∈[0,1] is given as [Uεf ](x) = f(Vε(x)), x ∈ M , by a family of measurable

mappings Vε : M −→M , then L is the vector field on M defined as

Lf(x) = lim
ε→0

f(Vε(x))− f(x)

ε
, x ∈M, f ∈ C∞c (M ; IR).

If Vε : M −→M preserves the measure σ, then

E

[
d

dε
Λ(Uε)F|ε=0

]
=

d

dε
E [Λ(Uε)F ]|ε=0 =

d

dε
E[F ]|ε=0 = 0,

since the Poisson measure is invariant under the shift Vε : M −→ M . Here this

identity is interpreted as

E

[
d

dε
Λ(Uε, 0)F|ε=0

]
= E[δ(LDF )] = 0, F ∈ S(Ω; IR).

8 Stochastic analysis of point measures on a Rie-

mannian manifold

8.1 Gradient D̂ : L2(Ω) −→ L2(Ω×M ;TM)

The study of variational calculus for jump processes has been started in [4]. The

gradient D̂ is defined in [1] and [3]. It is TM -valued and defined for F ∈ S(Ω; IR) as

D̂xF =
i=n∑
i=1

∂if
(∫

M
u1(y)γ(dy), . . . ,

∫
M
un(y)γ(dy)

)
∇Mui(x), x ∈M,

with F = f (
∫
M u1(x)γ(dx), . . . ,

∫
M un(x)γ(dx)) , f ∈ C∞b (IRn; IR). The vector field

Z ∈ C∞c (M ;TM) defines a flow (φZε )ε∈[0,1] : M −→M on M and we have from [1]∫
M
〈D̂xF,Z(x)〉TxMγ(dx) = lim

ε→0

F (φZε γ)− F (γ)

ε
.

8.2 Explicit expression of the gradient D̂

In the following we assume that S(M ; IR) = C∞c (M ; IR). From the result of Sect. 7

we obtain the expression of D̂ in terms of D and δ. If Z ∈ C∞c (M ;TM) denotes a

smooth vector field on M , we let Ẑ : M −→ IR be defined as

Ẑ(x) = divMZ(x), x ∈M.
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Theorem 8.2.1 We have for F ∈ S(Ω; IR) and Z ∈ C∞c (M ;TM):∫
M
〈D̂xF,Z(x)〉TxMγ(dx) =

∫
M
Ẑ(x)DxFσ(dx) + δ(q(·, Z)DF ), (8.2.1)

where q(x, Z) is the derivation operator associated to Z ∈ C∞c (M ;TM), i.e.

q(x, Z)Φ = 〈∇MΦ(x), Z(x)〉TxM , x ∈M, Φ ∈ C∞c (M ; IR).

Proof. We define Uε : C∞c (M) −→ C∞c (M) by Uεf = f ◦ φZε , f ∈ C∞c (M ; IR),

with S(M ; IR) = C∞c (M ; IR). Then Lu(x) = q(x, Z)u, u ∈ C∞c (M ; IR) and from

Prop. 7.1.1, ∫
M
〈D̂xF,Z(x)〉TxMγ(dx) =

∫
M
LDxFσ(dx) + δ(LDF ),

where L is the derivative at ε = 0 of (φZt )t∈IR, i.e. LDxF = 〈∇MDxF,Z(x)〉TxM ,

x ∈M . Hence∫
M
〈D̂xF,Z(x)〉TxMγ(dx) =

∫
M
DxFdivMZ(x)σ(dx) + δ(q(·, Z)DF ). 2

The following remark is the Poisson analog of Remark 1.

Remark 2 Taking expectations in the almost sure identity (8.2.1) we obtain the

equality of Th. 5.2 in [1], since E[δ(LDF )] = 0.

The adjoint q∗(x, Z) of q(x, Z) is given as

q∗(x, Z)u = divM(Z(x)u(x)) = u(x)divM(Z(x))− 〈∇Mu(x), Z(x)〉TxM

= u(x)Ẑ(x)− q(x, Z)u, u ∈ C∞c (M ; IR), Z ∈ C∞c (M ;TM),

and the duality relation between q(x, Z) and q∗(x, Z) is∫
M
〈u(x), q∗(x, Z)v〉TxMσ(dx) =

∫
M
〈v(x), q(x, Z)u〉TxMσ(dx), u, v ∈ C∞c (M ; IR).

For u ∈ U(Ω ×M ;TM), the processes (q(x,D·u(·)))x∈M and (q∗(x,D·u(·)))x∈M are

naturally defined by linearity, and will be denoted by q(·, D·u(·)) and q∗(·, D·u(·)).
Given u ∈ U(Ω×M ;TM) written as u =

∑i=n
i=1 GiZi, Gi ∈ S(Ω; IR), Zi ∈ C∞c (M ;TM),

i = 1, . . . , n, we let û =
∑i=n
i=1 GidivMZi. The following result extends Th. 8.2.1 to

random processes.

Theorem 8.2.2 We have for u ∈ U(Ω×M ;TM):∫
M
〈D̂xF, u(x)〉TxMγ(dx) =

∫
M
DxFû(x)σ(dx) + δ(q(·, u)DF )

+
∫
M
q(x,D·u(·))DFσ(dx) + δ(q(·, D·u)DF ).
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Proof. Let u = GZ, with Z ∈ C∞c (M ;TM) and G ∈ S(Ω; IR). We have∫
M
〈D̂xF,GZ(x)〉TxMγ(dx) = G

∫
M
DxFẐ(x)σ(dx) +Gδ(q(·, Z)DF )

=
∫
M
DxFû(x)σ(dx) + δ(Gq(·, Z)DF )

+
∫
M
DxGq(x, Z)DFσ(dx) + δ(D·Gq(·, Z)DF )

=
∫
M
DxFû(x)σ(dx) + δ(q(·, u)DF )

+
∫
M
q(x,D·u(·))DFσ(dx) + δ(q(·, D·u(·))DF ). 2

8.3 Inversion of Z 7→ Ẑ

Given Φ ∈ S0(M ; IR) (such that
∫
M Φ(x)σ(dx) = 0), the inversion of Z 7→ Ẑ consists

in the determination of a vector field Φ̃ : M −→ TM such that

divM Φ̃ = Φ.

This is possible in particular if M is a compact manifold, since the Laplacian L =

divM∇M is negative and symmetric on C∞c (M ; IR). In this case, L : C∞c (M ; IR) −→
C∞c (M ; IR) is invertible, so that we can let

Φ̃ = ∇ML−1Φ.

Let G : M ×M −→ IR denote the Green function associated to L−1, such that

L−1u(x) =
∫
M
G(x, y)u(y)σ(dy), x ∈M, u ∈ C∞c (M ; IR).

Let ε : M ×M −→ TM be defined as

ε(x, y) = ∇M
x G(x, y), σ(dx)− a.e., σ(dy)− a.e.

Then Φ̃ can be defined as

Φ̃(x) = ∇ML−1Φ(x) =
∫
M
ε(x, y)Φ(y)σ(dy), x ∈M, Φ ∈ S0(M ; IR).

In the case where M = IR+ and σ is the Lebesgue measure, then G(x, y) = x ∧ y
and ε(x, y) = 1[0,y](x), or indifferently ε(x, y) = −1[x,∞[(y), x, y ∈ IR+, since we are

working on S0(IR+; IR).
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8.4 Expression of the damped gradient D̃

In this subsection we complete the operators D, D̂ with a damped gradient D̃ which

is linked to the Clark formula and stochastic integration.

Definition 8.4.1 We define the damped gradient D̃ : L2(Ω; IR) −→ L2(Ω ×M ; IR)

on S(Ω; IR) as

D̃xF =
i=n∑
i=1

∫
M
〈∇Mui(y), ε(x, y)〉TyMγ(dy)∂if

(∫
M
u1dγ, . . . ,

∫
M
undγ

)
, (8.4.1)

with F = f (
∫
M u1(x)γ(dx), . . . ,

∫
M un(x)γ(dx)), f ∈ C∞b (IRn; IR).

In other terms,

D̃yF =
∫
M
〈D̂xF, ε(x, y)〉TxMγ(dx), y ∈M.

Proposition 8.4.1 The damped gradient satisfies∫
M

Φ(x)D̃xFσ(dx) =
∫
M
〈D̂xF, Φ̃(x)〉TxMγ(dx), Φ ∈ S0(M ; IR).

Proof. We have∫
M
D̃yFΦ(y)σ(dy) =

∫
M

∫
M
〈D̂xF, ε(x, y)〉TxMγ(dx)Φ(y)σ(dy)

=
∫
M
〈D̂xF,

∫
M

Φ(y)ε(x, y)σ(dy)〉TxMγ(dx)

=
∫
M
〈D̂xF, Φ̃(x)〉TxMγ(dx). 2

Corollary 8.4.1 For Φ ∈ S0(M ; IR) we have∫
M
D̃xFΦ(x)σ(dx) =

∫
M
DxFΦ(x)σ(dx) + δ(q(·, Φ̃)DF ), F ∈ S(Ω; IR).

Proof. We apply Prop. 8.2.1 and the relation∫
M
D̃xFΦ(x)σ(dx) =

∫
M
〈D̂xF, Φ̃(x)〉TxMγ(dx). 2

The following corollary is the extension of Cor. 8.4.1 to the random case.

Corollary 8.4.2 The damped gradient satisfies for Φ ∈ U(Ω×M ; IR):∫
M
D̃xFΦ(x)σ(dx) =

∫
M

Φ(x)DxFσ(dx) + δ(q(·, Φ̃)DF )

+
∫
M
q(x,D·Φ̃(·))DFσ(dx) + δ(q(·, D·Φ̃(·))DF ), F ∈ S(Ω; IR).
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Proof. Similarly to the above, we apply Th. 8.2.2 with the relation∫
M

Φ(x)D̃xFσ(dx) =
∫
M
〈D̂xF, Φ̃(x)〉TxMγ(dx). 2

In the particular case M = IR+, we have from (8.4.1)

D̃xF = −
i=n∑
i=1

∫ ∞
0

u′i(y)1[0,x](y)γ(dy)∂if
(∫ ∞

0
u1(s)γ(ds), . . . ,

∫ ∞
0

un(s)γ(ds)
)
,

for F = f (
∫∞
0 u1(s)γ(ds), . . . ,

∫∞
0 un(s)γ(ds)). If (Tn)n≥1 denotes the jump times of

the point measure γ(dx) on IR+, i.e.

γ(dx) =
∞∑
k=1

εTk(dx),

then

D̃tF = −
i=n∑
i=1

∞∑
k=1

u′i(Tk)1[0,Tk](t)∂if
(∫ ∞

0
u1(s)γ(ds), . . . ,

∫ ∞
0

un(s)γ(ds)
)
,

i.e.

D̃tf(T1, . . . , Tn) = −
i=n∑
i=1

1[0,Ti](t)∂if(T1, . . . , Tn), t ∈ IR+,

and D̃ becomes the gradient of [6]:

∫ ∞
0

D̃tFΦ(t)dt = lim
ε→0

f
(
T1 − ε

∫ T1
0 Φ(s)ds, . . . , Tn − ε

∫ Tn
0 Φ(s)ds

)
− f(T1, . . . , Tn)

ε
,

for F = f(T1, . . . , Tn), since Φ̃(t) = −
∫ t
0 Φ(s)ds, t ∈ IR+.

8.5 Anticipating stochastic integration

In this subsection we study successively two different Skorohod type anticipating

integrals δ̂ : L2(Ω×M ;TM) −→ L2(Ω; IR) and δ̃ : L2(Ω×M ; IR) −→ L2(Ω; IR) that

are the respective adjoints of the gradient D̂ and of the damped gradient D̃.

Definition 8.5.1 We define the operator δ̂ : L2(Ω×M ;TM) −→ L2(Ω; IR) as

δ̂(u) = δ(û) + δ(q∗(·, D·u(·))), u ∈ U(Ω×M ;TM), (8.5.1)

where q∗(x,D·u(·)) = divM(Dxu(x)), x ∈M .

We have for F ∈ S(Ω; IR) and Z ∈ C∞c (M ;TM):

δ̂(FZ) = δ(FẐ) + δ(q∗(·, ZDF )) = δ(FẐ) + δ(ẐDF )− δ(q(·, Z)DF ), (8.5.2)

since

q∗(x, ZDF ) = DxFẐ(x)− q(x, Z)DF, Z ∈ C∞c (M ; IR). (8.5.3)
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Proposition 8.5.1 The operators δ̂ and D̂ are mutually adjoint:

E
[∫
M
〈D̂xF, u(x)〉TxMγ(dx)

]
= E[F δ̂(u)], (8.5.4)

u ∈ U(Ω×M ;TM), F ∈ S(Ω; IR), and δ̂ satisfies

δ̂(Fu) = F δ̂(u)−
∫
M
〈D̂xF, u(x)〉TxMγ(dx), (8.5.5)

u ∈ U(Ω×M ;TM), F ∈ S(Ω; IR).

Proof. We have

E[F δ̂(u)] = E[Fδ(û)] + E[Fδ(q∗(·, D·u(·)))]

= E[Fδ(û)] + E
[∫
M
q(x,Dxu(x))DFσ(dx)

]
= E

[∫
M
〈DxF, û(x)〉TxMσ(dx)

]
+ E

[∫
M
q(x,Dxu(x))DFσ(dx)

]
= E

[∫
M
〈D̂xF, u(x)〉TxMγ(dx)

]
,

from Th. 8.2.2. On the other hand, (8.5.5) follows from the fact that D̂ is a derivation

operator, or from (8.5.3) and the following calculation:

δ̂(Fu̇) = δ(F ˙̂u) + δ(q∗(·, D·(Fu(·))))

= Fδ( ˙̂u)−
∫
M
DxFû(x)σ(dx)− δ(û(·)D·F )

+δ(Fq∗(·, Z(·)D·G)) + δ(q∗(·, D·FZ(·)D·G)) + δ(q∗(·, u(·)D·F ))

= Fδ( ˙̂u)−
∫
M
DxFû(x)σ(dx)− δ(ûDF )

+Fδ(q∗(·, D·u(·)))−
∫
M
DxFq

∗(x,D·u(·))σ(dx)− δ(D·Fq∗(·, D·u(·)))

+δ(D·Fq
∗(·, D·u(·)))− δ(q(·, D·u)DF )

+δ(D·Fû(·))− δ(q(·, u)DF )

= F δ̂(u̇)− δ(q(·, D·GZ(·))DF )− δ(q(·, u)DF )

−
∫
M
DxFû(x)σ(dx)−

∫
M
DxGq(x, Z)DFσ(dx).

= F δ̂(u̇)− δ(q(·, D·u)DF )− δ(q(·, u)DF )

−
∫
M
DxFû(x)σ(dx)−

∫
M
q(x,Dxu)DFσ(dx). 2

If u ∈ C∞c (M ;TM) then (8.5.4) can be written as

E
[∫
M
〈D̂xF, u(x)〉TxMγ(dx)

]
= E

[
F
∫
M
û(x)(γ(dx)− σ(dx))

]
, (8.5.6)

u ∈ C(M ;TM), F ∈ S(Ω; IR), which becomes the Poisson analog of the integration

by parts formula (5.6.2) of [5].
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Definition 8.5.2 We define the operator δ̃ : L2(Ω×M ; IR) −→ L2(Ω; IR) as

δ̃(Φ) = δ(Φ) + δ(q∗(·, D·Φ̃(·))), Φ ∈ U(Ω×M ; IR).

We have

δ̃(FΦ) = δ(FΦ) + δ(Φ(·)D·F )− δ(q(·, Φ̃)DF ), F ∈ S(Ω; IR),

for deterministic Φ ∈ S0(M ; IR).

Proposition 8.5.2 The operators δ̃ and D̃ are mutually adjoint:

E
[∫
M

Φ(x)D̃xFσ(dx)
]

= E[F δ̃(Φ)],

Φ ∈ U(Ω×M ; IR), F ∈ S(Ω; IR), and δ̃ satisfies

δ̃(FΦ) = Fδ(Φ)−
∫
M
D̃xFΦ(x)σ(dx). (8.5.7)

Proof. We use Prop. 8.5.1 and the relation δ̃(Φ) = δ̂(Φ̃), Φ ∈ U(Ω×M ; IR).
2

Due to the above duality relations and to the density of S(Ω; IR) in L2(Ω; IR) of U(Ω×
M ; IR) in L2(Ω×M ; IR) and of U(Ω×M ;TM) in L2(Ω×M ;TM), the operators D̂, D̃,

δ̂ and δ̃ are closable. Their domains are denoted by Dom(D̂), Dom(D̃), Dom(δ̂) and

Dom(δ̃). In order to deal with stochastic integration we choose M of the form IR+×X
with volume element dt × dσ, and take H = L2(IR+ × X; IR) ' L2(IR+;L2(X; IR)).

The filtration (Ft)t∈IR+ is generated by γ 7→ γ([0, s]× A), 0 ≤ s ≤ t, A ∈ B(X), and

the stochastic integral of Ft-adapted processes in L2(Ω× IR+ ×X; IR) is defined by

the isometry formula

E

[(∫ ∞
0

∫
X
u(s, x)(γ(ds, dx)− dsσ(dx))

)2
]

= E
[∫ ∞

0

∫
X
u2(s, x)dsσ(dx)

]
. (8.5.8)

Proposition 8.5.3 The operators δ and δ̃ coincide with the stochastic integral with

respect to γ(ds, dx)− dsσ(dx) on the adapted processes in L2(Ω×M ; IRd).

Proof. Given an adapted process Φ ∈ U(Ω ×M ; IRd) written as Φ = Fz, with F ∈
S(Ω; IR) an Ft-measurable functional and z ∈ C∞c ([t,∞[×X), we have z(s, x)Ds,xF =

0, (s, x) ∈ M , and q∗(s, x,D·Φ̃(·)) = divM(z(s, x)Ds,xF ) = 0, (s, x) ∈ M . Hence

δ(Φ) = δ̃(Φ) =
∫∞
0

∫
X Φ(s, x)(γ(ds, dx)− dsσ(dx)) from Def. 8.5.2 and (6.1.3). This

relation extends to the adapted processes in L2(Ω × M ; IRd) by linearity, density,

closability and from the isometry formula (8.5.8).
2
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8.6 Clark formula

In this subsection we show that as a consequence of Prop. 8.5.3, the Clark formula

has two expressions, depending on the type of gradient used.

Proposition 8.6.1 For F ∈ S(Ω; IR), the processes DF and D̃F have the same

adapted projections, i.e.

E [Ds,xF | Ft] = E
[
D̃s,xF | Ft

]
, ds× σ(dx)− a.e., t ∈ IR+. (8.6.1)

Proof. This proof is similar to its counterpart in the continuous case (Prop. 8.6.1).

Let F ∈ S(Ω; IR). Given any square-integrable adapted process u we have δ̃(u) =

δ(u) from Prop. 8.5.3 and by duality,

E
[∫ ∞

0

∫
X
u(s, x)Ds,xFdsσ(dx)

]
= E

[∫ ∞
0

∫
X
u(s, x)D̃s,xFdsσ(dx)

]
,

F ∈ S(IP(M); IR), hence (8.6.1).
2

The Clark formula has two expressions.

Proposition 8.6.2 Let F ∈ Dom(D) ∩Dom(D̃). We have

F = E[F ] +
∫ ∞
0

∫
X
E[Dt,xF | Ft](γ(dt, dx)− dtσ(dx))

= E[F ] +
∫ ∞
0

∫
X
E[D̃t,xF | Ft](γ(dt, dx)− dtσ(dx)).

Proof. We write the chaos expansion of F :

F = E[F ] +
∞∑
n=1

n!
∫
IR+×X

∫
[0,sn]×X

· · ·
∫
[0,s2]×X

fn(s1, x1, . . . , sn, xn)(γ(ds1, dx1)− ds1σ(dx1)) · · · (γ(dsn, dxn)− dsnσ(dxn))

= E[F ] +
∞∑
n=1

n
∫ ∞
0

∫
X
In−1(fn(∗; s, x)1{∗∈([0,t]×X)n−1})(γ(ds, dx)− dsσ(dx))

= E[F ] +
∫ ∞
0

∫
X
E[Dt,xF | Ft](γ(dt, dx)− dtσ(dx)),

and apply Prop. 8.6.1 and Prop. 8.5.3.
2
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8.7 Quantum stochastic differentials

In the Poisson case we define quantum stochastic integrals on the Riemannian man-

ifold M as ∫
M
〈Z(x), dâ−x 〉F =

∫
M
〈D̂xF,Z(x)〉γ(dx),∫

M
〈Z(x), dâ+x 〉F = δ̂(ZF ), Z ∈ L2(M ;TM), F ∈ S(Ω; IR).

The following proposition reformulates (8.2.1) and (8.5.1).

Proposition 8.7.1 We have the following relations between quantum stochastic dif-

ferentials:

Z(x)dâ−x = Ẑ(x)da−x + q(x, Z)da◦x,

and

Z(x)dâ+x = Ẑ(x)da+x + q∗(x, Z)da◦x.

The last relation can be written as

Z(x)dâ+x = Ẑ(x)da+x + Ẑ(x)da◦x − q(x, Z)da◦x

since q∗(x, Z) = Ẑ(x)− q(x, Z), x ∈M . The following result reformulates Cor. 8.4.1

and Def. 8.5.2.

Proposition 8.7.2 The “damped” quantum stochastic differentials satisfy

Φ(x)dã−x = Φ(x)da−x + q(x, Φ̃)da◦x,

and

Φ(x)dã+x = Φ(x)da+x + q∗(x, Φ̃)da◦x,

x ∈M .

From the expression of q∗(x, u) we obtain

Φ(x)dã+x = Φ(x)da+x + Φ(x)da◦x − q(x, Φ̃)da◦x

and

Φ(x)(dã−x + dã+x ) = Φ(x)(da−x + da+x + da◦x) = Φ(x)(γ(dx)− σ(dx)),

which is a reformulation of (8.5.7) and (6.1.3). In particular,

γ(dx)− σ(dx) = dã−x + dã+x ,
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whereas

Z(x)(dâ−x + dâ+x ) = Ẑ(x)(da−x + da+x + da◦x) = Ẑ(x)(γ(dx)− σ(dx)),

which is a reformulation of (8.5.5).
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