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1 Introduction

Any square-integrable functional on the Wiener, resp. Poisson space can be expanded

into a series of multiple stochastic integrals with respect to the Wiener, resp. Pois-

son process. This property is known as the Wiener chaos representation property.

On the Wiener space, the chaos expansion of a functional of d independent single

stochastic integrals can be computed using Wiener-Hermite orthogonal expansions.

More generally, the gradient operator on Fock space allows to compute the expansion

of certain square-integrable functionals, cf. [8]. However, on the Poisson space this

gradient is identified to a finite difference operator whose repeated application leads

to complicated expressions. In [7] an induction relation was obtained and used to

compute the expansion of the Poisson process jump times on IR+, using the Clark-

Ocone and Stroock formulas associated to different Poisson gradient operators. A

direct calculation using only the formula of [8] and the Fock gradient can be found

in [3], concerning a Poisson process on a bounded interval.

In this paper, these results are extended to general square-integrable functions of

a finite number of Poisson jump times. This allows in particular to compute the

chaos expansions of solutions of adapted stochastic differential equations driven by a
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standard Poisson process, since the value at time t of such solutions can be expressed

as functionals of finite numbers of jump times. Our proof is elementary in the sense

that is uses only Poisson-Charlier orthogonal expansions instead of the gradient on

Fock space. The results obtained on Poisson space are compared to their counterpart

on the Gaussian space and a class of exponential vectors on Fock space, which are

stable under multiplication on Poisson space, is constructed.

2 Notation

In this section we recall some facts concerning Charlier polynomials, Poisson mul-

tiple stochastic integrals and the Fock space, cf. [9]. Let (Nt)t∈IR+ denote a (right-

continuous) standard Poisson process on the real line, with jump times (Tn)n≥1. Let

(Tk)k≥1 denote the increasing family of jump times of (Nt)t∈IR+ , with T0 = 0. Let

also (τn)n≥1 denote the family of interjump times of the Poisson process, defined

as τn = Tn − Tn−1, n ≥ 1. The underlying probability space is denoted by Ω, so

that L2(Ω) is the space of square-integrable functionals of (Nt)t∈IR+ . For n ∈ ZZ and

t ∈ IR+, let

ptn =

{
tn

n!
e−t, if n ≥ 0,

0, if n < 0.

For fixed n ≥ 1, pn−1 : IR → IR+ is the density function of the n-th jump time Tn

of (Nt)t∈IR+ . On the other hand, for fixed t ∈ IR+, pt : ZZ → IR+ is the discrete

distribution of the random variable Nt. The Charlier polynomial of order n ∈ IN and

parameter t ∈ IR+ is defined as

Ct
n(x) =

(−1)n

ptx
tn(∆x)nptx, x ∈ ZZ,

where ∆x is the finite difference operator ∆xf(x) = f(x) − f(x − 1). We have the

relation ∂ptx = −∆xptx, where ∂ denotes differentiation with respect to t, hence we

may also write

Ct
n(x) =

1

ptx
tn∂nptx, x ∈ IR+. (1)

For every t ∈ IR+, the family (Ct
n)n∈IN is orthogonal in l2(ZZ, pt) and the square norm

of Ct
n is n!tn. We denote by L2(IR◦n+ ) the space of square-integrable and symmetric

functions on IRn, with norm ‖ · ‖2
L2(IR+)◦n= n! ‖ · ‖2

L2(IRn+), and by fn ◦ gm the

symmetric tensor product of fn ∈ L2(IR+)◦n and gm ∈ L2(IR+)◦m. Let 0 ≤ t1 ≤
· · · ≤ td and k1, . . . , kd ∈ IN. The multiple Poisson stochastic integral of the function
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1◦k1[0,t1] ◦ 1◦k2[t1,t2] ◦ · · · ◦ 1◦kd[td−1,td] is defined as

In

(
1◦k1[0,t1] ◦ 1◦k2[t1,t2] ◦ · · · ◦ 1◦kd[td−1,,td]

)
= Ct1

k1
(Nt1)C

t2−t1
k2

(Nt2−Nt1) · · ·C
td−td−1

kd
(Ntd−Ntd−1

),

(2)

and this expression is extended to symmetric square-integrable functions as

In(fn) = n!

∫ ∞
0

∫ tn

0

· · ·
∫ t2

0

fn(t1, . . . , tn)dÑt1 · · · dÑtn ,

with Ñt = Nt − t, t ∈ IR+, cf. [2], [9]. We have the isometry

(In(fn), Im(gm))L2(Ω) = 1{n=m}(fn, gm)L2(IR+)◦n , fn ∈ L2(IR+)◦n, gm ∈ L2(IR+)◦m,

which extends the norm properties of Charlier polynomials. If fn ∈ L2(IRn
+) is not

symmetric we let In(fn) = In(f̃n), where f̃n is the symmetrization of fn, defined as

f̃n(t1, . . . , tn) =
1

n!

∑
σ∈Σn

f(tσ(1), . . . , tσn),

where Σn is the set of all permutations of {1, . . . , n}. For precision of notation we

will often write explicitly the variables t1, . . . , tn in In(fn(t1, . . . , tn)).

The Fock space

Γ(L2(IR+)) =
⊕
n≥0

L2(IR+)◦n

is identified to L2(Ω) via multiple stochastic integrals of symmetric square-integrable

functions. On Γ(L2(IR+)) are defined the annihilation and creation operators D :

Γ(L2(IR+)) → Γ(L2(IR+)) ⊗ L2(IR+) and δ : Γ(L2(IR+)) ⊗ L2(IR+) → Γ(L2(IR+)) by

δ(f ◦n ⊗ g) = g ◦ f ◦n, f, g ∈ L2(IR+) and Df ◦n = nf ⊗ f ◦(n−1). We note that D is

identified to a finite difference operator, cf. [5], [6]. The Wick exponential ε(u) is

defined as

ε(u) =
∑
n≥0

1

n!
u◦n.

Let S(IR) denote the Schwartz space of rapidly decreasing C∞ functions.

3 Chaos expansions of jump times functionals

Let

∆n = {(t1, . . . , tn) ∈ IRn
+ : t1 ≤ · · · ≤ tn}, n ≥ 1.

For f ∈ C1(IRd), ∂if represents the partial derivative of f with respect to its i-th

variable, 1 ≤ i ≤ d. We first state a result for smooth functions of a finite number
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of jump times. As a convention, if k1 ≥ 0, . . . , kd ≥ 0 satisfy k1 + · · · + kd = n, we

define (t11, . . . , t
1
k1
, t21, . . . , t

2
k2
, . . . , td1, . . . , t

d
kd

) as

(t11, . . . , t
1
k1
, t21, . . . , t

2
k2
, . . . , td1, . . . , t

d
kd

) = (t1, . . . , tn).

Theorem 1 Let n1, . . . , nd ∈ IN with 1 ≤ n1 < · · · < nd, and let f ∈ Cdc (∆d). The

chaos expansion of f(Tn1 , . . . , Tnd) is given as

f(Tn1 , . . . , Tnd) = (−1)d
∞∑
n=0

In(1∆nhn),

where

hn(t1, . . . , tn) = (3)∑
k1 + · · · + kd = n
k1 ≥ 0, . . . , kd ≥ 0

∫ ∞
tdkd

· · ·
∫ ti+1

1

tiki

· · ·
∫ t21

t1k1

∂1 · · · ∂df(s1, . . . , sd)K
k1,...,kd
s1,...,sd

ds1 · · · dsd,

with, for 0 ≤ s1 ≤ · · · ≤ sd and k1 ≥ 0, . . . , kd ≥ 0:

Kk1,...,kd
s1,...,sd

=
∑

m1 ≥ n1, . . . ,md ≥ nd
m1 ≤ · · · ≤ md

∂k1ps1−s0m1−m0
· · · ∂kdpsd−sd−1

md−md−1
, m0 = 0, s0 = 0.

We make the following remarks.

• The support of the function f can be taken in ∆d since almost surely, Tni ≤
Tni+1

, i = 1, . . . , d− 1.

• Th. 1 is stated for smooth functions, but by integration by parts it extends

easily to square-integrable functionals. For simplicity of notation it is easier in

the general case to understand the expression of Th. 1 in distribution sense.

• Th. 1 allows to compute the expansion of a square-integrable random variable

which is approximated in L2(Ω) by a sequence of functions of finite numbers

of Poisson jump times.

Before proving Th. 1 we show how it can be derived in the case d = 1. We have the

orthogonal expansion

1{Nt−Ns=n} =
∑
k≥0

1

k!(t− s)k
(1{n}, C

t−s
k )l2(ZZ,pt−s)C

t−s
k (Nt −Ns), 0 ≤ s ≤ t, n ∈ IN,
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hence from (1):

1{Nt−Ns=n} =
∑
k≥0

1

k!
∂kpt−sn Ik(1

◦k
[s,t]), 0 ≤ s ≤ t, n ∈ IN. (4)

From this we obtain for s = 0 and n ≥ 1:

1[Tn,∞[(t) = 1{Nt≥n} =
∑
k≥0

∑
l≥n

1

k!
∂kptlIk(1

◦k
[0,t]) =

∑
k≥0

1

k!
∂kPn(t)Ik(1

◦k
[0,t]), (5)

where Pn(t) =
∫ t

0
psn−1ds is the distribution function of Tn. We deduce

f(Tn) = −
∫ ∞

0

f ′(s)1[Tn,∞[(s)ds

= −
∫ ∞

0

f ′(s)
∑
k≥0

1

k!
∂kPn(s)Ik(1

◦k
[0,s])ds

= −
∑
k≥0

1

k!

∫ ∞
0

f ′(s)∂kPn(s)Ik(1
◦k
[0,s])ds

= −
∑
k≥0

∫ ∞
0

f ′(s)∂kPn(s)

∫ s

0

∫ tk

0

· · ·
∫ t2

0

dÑt1 · · · dÑtkds

= −
∑
k≥0

∫ ∞
0

f ′(s)∂kPn(s)

∫ ∞
0

∫ tk

0

· · ·
∫ t2

0

1[0,s](t1 ∨ · · · ∨ tk)dÑt1 · · · dÑtkds

= −
∑
k≥0

∫ ∞
0

∫ ∞
tk

f ′(s)∂kPn(s)ds

∫ tk

0

· · ·
∫ t2

0

dÑt1 · · · dÑtk ,

hence

f(Tn) = −
∑
k≥0

1

k!
Ik

(∫ ∞
t1∨···∨tk

f ′(s)∂kPn(s)ds

)
,

which can be rewritten after integration by parts on IR+ as

f(Tn) =
∑
k≥0

1

k!
Ik

(
f(t1 ∨ · · · ∨ tk)∂kPn(t1 ∨ · · · ∨ tk) +

∫ ∞
t1∨···∨tk

f(s)∂k+1Pn(s)ds

)
.

(6)

Proof of Th. 1. We deal with the case d ≥ 2. Let 0 = s0 ≤ s1 ≤ · · · ≤ sd, and

n1, . . . , nd ∈ IN. We have from (4) and (2):

i=d∏
i=1

1{Nsi−Nsi−1=ni}

=
∞∑
n=0

∑
k1 + · · · + kd = n
k1 ≥ 0, . . . , kd ≥ 0

1

k1! · · · kd!
∂k1ps1−s0n1

· · · ∂kdpsd−sd−1
nd

Ik1(1
◦k1
[s0,s1]) · · · Ikd(1

◦kd
[sd−1,sd])

=
∞∑
n=0

∑
k1 + · · · + kd = n
k1 ≥ 0, . . . , kd ≥ 0

1

k1! · · · kd!
∂k1ps1−s0n1

· · · ∂kdpsd−sd−1
nd

In(1◦k1[s0,s1] ◦ · · · ◦ 1◦kd[sd−1,sd]),
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where the last equality used the assumption s1 ≤ · · · ≤ sd. Now, with 0 ≤ m1 ≤
· · · ≤ md,

1[Tm1 ,Tm1+1[(s1) · · · 1[Tmd ,Tmd+1[(sd) = 1{Ns1=m1} · · · 1{Nsd=md}

= 1{Ns1−Ns0=m1−m0} · · · 1{Nsd−Nsd−1
=md−md−1} (m0 = 0)

=
∞∑
n=0

∑
k1 + · · · + kd = n
k1 ≥ 0, . . . , kd ≥ 0

1

k1! · · · kd!
∂k1ps1−s0m1−m0

· · · ∂kdpsd−sd−1

md−md−1
In(1◦k1[s0,s1] ◦ · · · ◦ 1◦kd[sd−1,sd]).

Given that s1 ≤ · · · ≤ sd, for any i < j the conditions si ∈ [Tmi , Tmi+1
[ and sj ∈

[Tmj , Tmj+1
[ imply mi ≤ mj, hence

i=d∏
i=1

1[Tni ,∞[(si) =
∑

m1 ≥ n1, . . . ,md ≥ nd
m1 ≤ · · · ≤ md

1[Tm1 ,Tm1+1[(s1) · · · 1[Tmd ,Tmd+1[(sd)

=
∑

m1 ≥ n1, . . . ,md ≥ nd
m1 ≤ · · · ≤ md

1{Ns1=m1} · · · 1{Nsd=md}

=
∑

m1 ≥ n1, . . . ,md ≥ nd
m1 ≤ · · · ≤ md

1{Ns1−Ns0=m1−m0} · · · 1{Nsd−Nsd−1
=md−md−1}

=
∞∑
n=0

∑
k1 + · · · + kd = n
k1 ≥ 0, . . . , kd ≥ 0

1

k1! · · · kd!∑
m1 ≥ n1, . . . ,md ≥ nd

m1 ≤ · · · ≤ md

∂k1ps1−s0m1−m0
· · · ∂kdpsd−sd−1

md−md−1
In(1◦k1[s0,s1] ◦ · · · ◦ 1◦kd[sd−1,sd])

=
∞∑
n=0

∑
k1 + · · · + kd = n
k1 ≥ 0, . . . , kd ≥ 0

1

k1! · · · kd!
Kk1,...,kd
s1,...,sd

In(1◦k1[s0,s1] ◦ · · · ◦ 1◦kd[sd−1,sd]).

Using the identity

f(Tn1 , . . . , Tnd)

= (−1)d
∫ ∞

0

· · ·
∫ ∞

0

1[Tn1 ,∞[(s1) · · · 1[Tnd ,∞[(sd)∂1 · · · ∂df(s1, . . . , sd)ds1 · · · dsd

= (−1)d
∫

∆d

1[Tn1 ,∞[(s1) · · · 1[Tnd ,∞[(sd)∂1 · · · ∂df(s1, . . . , sd)ds1 · · · dsd, f ∈ Cdc (∆d),

we get

f(Tn1 , . . . , Tnd) = (−1)d
∞∑
n=0

∑
k1 + · · · + kd = n
k1 ≥ 0, . . . , kd ≥ 0

1

k1! · · · kd!∫
∆d

∂1 · · · ∂df(s1, . . . , sd)K
k1,...,kd
s1,...,sd

In(1◦k1[s0,s1] ◦ · · · ◦ 1◦kd[sd−1,sd])ds1 · · · dsd.
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From (2), we have for s1 ≤ · · · ≤ sd and k1 ≥ 0, . . . , kd ≥ 0:

In

(
1◦k1[s0,s1] ◦ · · · ◦ 1◦kd[sd−1,sd]

)
= k1! · · · kd!

∫ ∞
0

∫ tdkd

0

· · ·
∫ t12

0

1◦2[s0,s1](t
1
1, t

1
k1

) · · · 1◦2[sd−1,sd](t
d
1, t

d
kd

)dÑt11
· · · dÑtdkd

,

hence exchanging the stochastic integrals and the integrals with respect to ds1 · · · dsd,
we obtain

f(Tn1 , . . . , Tnd) = (−1)d
∞∑
n=0

∑
k1 + · · · + kd = n
k1 ≥ 0, . . . , kd ≥ 0

In

(
1∆n

∫ ∞
tdkd

∫ td1

td−1
kd−1

· · ·
∫ t31

t2k2

∫ t21

t1k1

∂1 · · · ∂df(s1, . . . , sd)K
k1,...,kd
s1,...,sd

ds1 · · · dsd

)
. 2

Th. 1 can be compared to its Gaussian counterpart in the following way. For u ∈
L2(IR+), let J1(u) denote the Itô-Wiener integral J1(u) =

∫∞
0
u(s)dBs with respect

to the Brownian motion (Bs)s∈IR+ defined on the Wiener space. The multiple Wiener

integral

Jn(u◦k11 ◦ · · · ◦ u◦kdd ) = Hk1(J1(u1)) · · ·Hkd(J1(ud)), (7)

n = k1 +· · ·+kd, is defined with help of the Hermite polynomials (Hk)k≥0 that satisfy

Hk1(s1) · · ·Hkd(sd) =
(−1)k1+···+kd

pd(s1, . . . sd)
∂k1s1 · · · ∂

kd
sd
pd(s1, . . . , sd),

where {u1, . . . , ud} is an orthonormal family in L2(IR+) and pd(s1, . . . , sd) is the

standard Gaussian density function of the vector (J1(u1), . . . , J1(ud)). From the

orthonormality of the sequence (Hk/
√
k!)k≥0 in L2(IR, p1(x)dx) it follows that

f(J1(u1), . . . , J1(ud)) (8)

=
∞∑
n=0

∑
k1 + · · · + kd = n
k1 ≥ 0, . . . , kd ≥ 0

(−1)n

k1! · · · kd!
(f, ∂k11 · · · ∂

kd
d pd)L2(IRd)Jn(u◦k11 ◦ · · · ◦ u◦kdd ).

Another type of orthogonal expansion for Poisson functionals has been considered

in [7], using the family of Laguerre polynomials (Lk)k≥0 which is orthonormal with

respect to the exponential density. The Laguerre orthogonal expansion of a functional

f(τ1, . . . , τd) of the interjump times of the Poisson process is

f(τ1, . . . , τd) =
∞∑
n=0

∑
k1 + · · · + kd = n
k1 ≥ 0, . . . , kd ≥ 0

αk1,...,kdLk1(τ1) · · ·Lkd(τd),

the coefficient αk1,...,kd being given as

αk1,...,kd =

∫ ∞
0

· · ·
∫ ∞

0

f(x1, . . . , xd)Lk1(x1) · · ·Lkd(xd)e−(x1+···+xd)dx1 · · · dxd.
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4 A multiplicative exponential on Poisson space

Given the role played by the iterated derivatives of the Poisson and Gaussian laws

in the chaos expansions of f(T1, . . . , Td) and f(I1(u1), . . . , Id(ud)), it is natural to

determine all random variables whose development is determined in such a way by

their density function. For this we will define exponential vectors on Fock space that

differ from Wick exponentials. For g ∈ S(IR) and t ∈ IR+ such that

∞∑
n=0

tn

n!
| ∂nG(t) |2<∞,

let Eg(t) be defined in L2(Ω) by

Eg(t) =
∑
n≥0

1

n!
∂nG(t)In(1◦n[0,t]),

where G(t) =
∫ t

0
g(s)ds, t ∈ IR+. From the expression of In(1◦n[0,t]) in terms of Charlier

polynomials, Eg(t) is of the form Eg(t) = h(Nt, t). For f ∈ S(IR), let

Eg(f) = −
∫ ∞

0

f ′(s)Eg(s)ds.

Since Epk(t) is identified to 1[Tk+1,∞[(t), from (5) this means that Epk(f) = f(Tk+1),

k ∈ IN. The following lemma gives the product rule for Eg(t). We note that DEg(t) =

1[0,t]E∂g(t). We use the convention ∂−1f(t) =
∫ t

0
f(s)ds.

Lemma 1 Let t ∈ IR+. Let f, g ∈ S(IR) such that for any t ∈ IR+ there exists At ≥ 1,

with | ∂if(t) |≤ (At)
i+1 and | ∂ig(t) |≤ (At)

i+1, i ≥ −1. Then Ef (t)Eg(t) ∈ L2(Ω)

and its chaos expansion is given by

Ef (t)Eg(t) = Eh(t),

where the function h is defined as

h(s) =
d

ds
(Ef (s), Eg(s))L2(Ω), s ∈ IR+.

Proof. We use the formula F = E[F ] +
∑

n≥1
1
n!
In(E[DnF ]) of [8], cf. also [1], and

an induction argument on n to show that

E[Dn(Ef (t)Eg(t))] =
(
1[0,t]

)◦n
∂n

(∑
i∈IN

ti

i!
∂i−1f(t)∂i−1g(t)

)
, n ∈ IN, t ∈ IR+.
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The result is clear for n = 0. Since D is a finite difference operator, we have by

induction

E[Dn+1(Ef (t)Eg(t))]

= E[Dn(Ef (t)DEg(t) + Eg(t)DEf (t) +DEf (t)DEg(t))]

= 1[0,t]E[Dn(Ef (t)E∂g(t) + Eg(t)E∂f (t) + E∂f (t)E∂g(t))]

= 1
◦(n+1)
[0,t] ∂n

(∑
i≥0

ti

i!
∂i−1f(t)∂ig(t) +

∑
i≥0

ti

i!
∂i−1g(t)∂if(t) +

∑
i≥0

ti

i!
∂ig(t)∂if(t)

)

= 1
◦(n+1)
[0,t] ∂n+1

∑
i≥0

ti

i!
∂i−1g(t)∂i−1f(t), n ≥ 0.

Moreover, the growth conditions imposed on the derivatives of f et g imply that

| ∂nh(t) | ≤
∑
i≥0

ti

i!

j=n+1∑
j=0

(
n+ 1
j

)
| ∂i+j−1g(t)∂i+n−jf(t) |

≤ 2n+1
∑
i≥0

ti

i!
(At)

2i+n+1 ≤ 2n+1(At)
n+1et(At)

2

,

hence

E[Eh(t)2] =
∞∑
n=0

tn

n!
| ∂n−1h(t) |2≤ exp

(
6t(At)

2
)
<∞, t ∈ IR+. 2

Note that ptn satisfies the hypothesis of the above Lemma, with At = 2(t∨1), t ∈ IR+.

The following result shows that Epα(t) has a Bernoulli distribution with parameter

Pα(t), t ∈ IR+ only for integer values of α, and gives a probabilistic solution of a

differential equation.

Proposition 1 Let g ∈ S(IR), with G(t) =
∫ t

0
g(s)ds, t ∈ IR+, and such that for

any t ∈ IR+ there exists At > 1, with | ∂if(t) |≤ (At)
i+1, i ≥ −1. The following

statements are equivalent.

(i) The function g is written as

g = −
∑
k∈IN

αk∂pk = α0p0 +
∑
k≥1

αk(pk − pk−1), (αn)n∈IN ⊂ {0, 1},

(ii) The random variable Eg(t) is an indicator function, ∀t ∈ IR+,

(iii) G solves the nonlinear equation

G(t) =
∑
n≥0

tn

n!
(∂nG(t))2, t ∈ IR+,
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Proof. The implication (i)⇒ (ii) is follows from the identity

Eg(t) =
∑
k∈IN

αk1{Nt=k},

cf. (4). If (ii) is satisfied, then Eg(t)Eg(t) = Eg(t), hence from Lemma 1 (iii) holds.

Conversely, (iii) can be stated as G(t) = E[Eg(t)Eg(t)], which implies Eg(t)Eg(t) =

Eg(t) from Lemma 1, i.e. Eg(t) is an indicator function. This proves (ii) ⇔ (iii). If

(ii) is satisfied, then Eg(t) is of the form

Eg(t) =
∑
n∈IN

αn(t)1{Nt=n},

with αn(t) ∈ {0, 1}, n ∈ IN, t ∈ IR+, and

Eg(t) = α0(t)(1− Ep1(t)) +
∑
n≥1

αn(t)(Epn(t)− Epn−1(t)).

Identifying the first chaos terms we have

g(t) = α0(t)p0(t) +
∑
n≥1

αn(t)(pn(t)− pn−1(t)).

Since g is continuous, αn is continuous in t, hence constant, which implies (i).
2

5 The Gaussian case

In this section we compare the notions introduced above with their analogs on the

Wiener space. For u ∈ L2(IR+) with ‖ u ‖L2(IR+)= 1, and g ∈ S(IR) such that

∞∑
k=0

1

k!
| ∂kG(t) |2<∞,

let

Eg(t) =
∑
k≥0

∂kG(t)

k!
Jk(u

◦k),

where Jk(u) is the multiple Wiener integral defined in (7). If g is a Gaussian density

function with variance 1 and mean a, then from (8),

Eg(t) = 1]−∞,t−a](J1(u)).

The product rule for Eg(t) on the Wiener space is the same as on the Poisson space.
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Lemma 2 Let t ∈ IR+ and f, g ∈ S(IR) such that for any t ∈ IR+ there exists At ≥ 1,

with | ∂if(t) |≤ (At)
i+1 and | ∂ig(t) |≤ (At)

i+1, i ≥ −1. Then Ef (t)Eg(t) ∈ L2(Ω)

and its chaos expansion is given by

Ef (t)Eg(t) = Eh(t),

where the function h is defined as

h(s) =
d

ds
(Ef (s), Eg(s))L2(W ), s ∈ IR+.

Proof. The the formula F = E[F ] +
∑

n≥1
1
n!
Jn(E[DnF ]) is still valid on Wiener

space and as in Lemma. 1 we show by induction that

E[Dn(Ef (t)Eg(t))] =
(
1[0,t]

)◦n
∂n

(∑
i∈IN

1

i!
∂i−1f(t)∂i−1g(t)

)
, n ∈ IN.

Since D is identified to a derivation operator, cf. [4], we have

E[Dn+1(Ef (t)Eg(t))] = E[Dn(Ef (t)DEg(t) + Eg(t)DEf (t))]

= 1[0,t]E[Dn(Ef (t)E∂g(t) + Eg(t)E∂f (t))]

= 1
◦(n+1)
[0,t] ∂n

(∑
i≥0

1

i!
∂i−1f(t)∂ig(t) +

∑
i≥0

1

i!
∂i−1g(t)∂if(t)

)

= 1
◦(n+1)
[0,t] ∂n+1

∑
i≥0

1

i!
∂i−1g(t)∂i−1f(t), n ≥ 0.

It follows as in the proof of Lemma 1 that Ef (t)Eg(t) belongs to L2(Ω).
2

Proposition 2 Let g ∈ S(IR) , with G(t) =
∫ t

0
g(s)ds, t ∈ IR+, such that for any

t ∈ IR+ there exists At ≥ 1, with | ∂if(t) |≤ (At)
i+1 and | ∂ig(t) |≤ (At)

i+1, i ≥ −1.

The following statements are equivalent.

(i) The random variable Eg(t) is an indicator function, ∀t ∈ IR+,

(ii) G solves the nonlinear equation

G(t) =
∑
n≥0

1

n!
(∂nG(t))2, t ∈ IR+.

Moreover, these statements hold if

(iii) the function g is a Gaussian density function with variance one.

Proof. The implication (iii)⇒ (i) holds because in this case, Eg(t) = 1]−∞,a(t)](J1(u))

for some a(t) ∈ IR, and (i)⇔ (ii) follows from Lemma 2.
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2

The exponential vector e
1
2
‖u‖2ε(u) on Wiener space is obtained as

e
1
2
‖u‖2ε(u) = −

∫ ∞
0

esEp(s)ds = eJ1(u),

and satisfies the product identity

ε(u)ε(v) = ε(u+ v) exp((u, v)L2(IR+)).

On the Poisson space, however, this multiplicative property disappears because the

Wick exponential is interpreted as a discrete product given as a solution of a stochas-

tic differential equation. A family of exponential vectors with multiplicative property

can be defined on Poisson space as

ε̃k(u) = −
∫ ∞

0

u′(s)eu(s)Epk(s)ds = eu(Tk), k ≥ 1.
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