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Abstract

We compute the Wiener-Poisson expansion of square-integrable functionals
of a finite number of Poisson jump times in series of multiple Poisson stochastic
integrals.
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1 Introduction

Any square-integrable functional on the Wiener, resp. Poisson space can be expanded
into a series of multiple stochastic integrals with respect to the Wiener, resp. Pois-
son process. This property is known as the Wiener chaos representation property.
On the Wiener space, the chaos expansion of a functional of d independent single
stochastic integrals can be computed using Wiener-Hermite orthogonal expansions.
More generally, the gradient operator on Fock space allows to compute the expansion
of certain square-integrable functionals, cf. [8]. However, on the Poisson space this
gradient is identified to a finite difference operator whose repeated application leads
to complicated expressions. In [7] an induction relation was obtained and used to
compute the expansion of the Poisson process jump times on R, , using the Clark-
Ocone and Stroock formulas associated to different Poisson gradient operators. A
direct calculation using only the formula of [8] and the Fock gradient can be found
in [3], concerning a Poisson process on a bounded interval.

In this paper, these results are extended to general square-integrable functions of
a finite number of Poisson jump times. This allows in particular to compute the

chaos expansions of solutions of adapted stochastic differential equations driven by a



standard Poisson process, since the value at time t of such solutions can be expressed
as functionals of finite numbers of jump times. Our proof is elementary in the sense
that is uses only Poisson-Charlier orthogonal expansions instead of the gradient on
Fock space. The results obtained on Poisson space are compared to their counterpart
on the Gaussian space and a class of exponential vectors on Fock space, which are

stable under multiplication on Poisson space, is constructed.

2 Notation

In this section we recall some facts concerning Charlier polynomials, Poisson mul-
tiple stochastic integrals and the Fock space, cf. [9]. Let (N¢)er, denote a (right-
continuous) standard Poisson process on the real line, with jump times (7},),>1. Let
(Ty)r>1 denote the increasing family of jump times of (N;)er,, with Ty = 0. Let
also (7,)n>1 denote the family of interjump times of the Poisson process, defined
as 7, = 1, — T,,_1, n > 1. The underlying probability space is denoted by 2, so
that L*(Q) is the space of square-integrable functionals of (N;)ier, . For n € Z and
te Ry, let

Pn=90,  ifn<o

For fixed n > 1, p,—1 : R — R, is the density function of the n-th jump time 7,
of (Ni)ier,. On the other hand, for fixed ¢t € Ry, p' : Z — Ry is the discrete

; { Be~t, ifn >0,

distribution of the random variable N;. The Charlier polynomial of order n € IN and
parameter ¢ € R, is defined as

_1)
Ct(z) = (PT)t"(AI)"ptx, x €,

where A7 is the finite difference operator A*f(x) = f(z) — f(x — 1). We have the
relation Opl, = —A*pt, where 0 denotes differentiation with respect to ¢, hence we

may also write

1
Clx) = 49"k, zER.. (1)

xT

For every ¢t € Ry, the family (C?), _ is orthogonal in {*(Z, p) and the square norm
of C! is nlt". We denote by L*(RZ") the space of square-integrable and symmetric
functions on R", with norm | - ||%2(R+)°": nl | - H%Q(Ri)’ and by f, o g, the
symmetric tensor product of f, € L*(Ry)°" and g,, € L*(Ry)°™. Let 0 < t; <
--- <tgand kq,...,ks € N. The multiple Poisson stochastic integral of the function
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[O,tl} © [tl,tz} 1 !

o1 ta] is defined as

QO-++0

(0,¢1] [t1,t2]

In (1%1 o1%2 o...06 1Ft’2d1 td]) - Clii(Nh)Cliz_tl(Ntz_Nh)"'Ctd - I(Ntd Ntd 1)
(2)

and this expression is extended to symmetric square-integrable functions as

o) tn to B R
I”(fn):n'/ / / fn(t17"'7tn)dNt1"'dNtn7
0 0 0

with Ny = N, —t, t € Ry, cf. [2], [9]. We have the isometry

([n(fn>7[m(gm))L2(Q) = 1{n:m}(fnagm)L2(R+)°"> fn € LZ(]R+)on’ Im € LZ(]R+)om7

which extends the norm properties of Charlier polynomials. If f, € L*(R"}) is not
symmetric we let I,(f,) = I,(f,), where f, is the symmetrization of f,, defined as

Falte, ..o tn 'Zf o(1) -ty ),

Uezn

where ¥, is the set of all permutations of {1,...,n}. For precision of notation we
will often write explicitly the variables ¢y, ..., t, in I,(fu(t1,...,t,)).
The Fock space

T(L*(Ry)) = P L (Ry)™"

n>0
is identified to L*(2) via multiple stochastic integrals of symmetric square-integrable
functions. On I'(L?(R.)) are defined the annihilation and creation operators D :
D(L2(R4)) = T(I2(Ry)) @ L2(R,) and 6 : T(I2(R,)) © I2(R,) — T(I(R,)) by
S(f"®g) =go f", f,g € L*(Ry) and Df°" = nf @ f°"=1. We note that D is
identified to a finite difference operator, cf. [5], [6]. The Wick exponential (u) is

defined as
1 on
e(u) = E e

n>0

Let S(R) denote the Schwartz space of rapidly decreasing C* functions.

3 Chaos expansions of jump times functionals
Let
An:{(tlvutn>E]Rﬁrt1§§tn}, n>1.

For f € C'(RY), 0,f represents the partial derivative of f with respect to its i-th

variable, 1 < i < d. We first state a result for smooth functions of a finite number



of jump times. As a convention, if k; > 0,...,ky > 0 satisfy k; + --- + kg = n, we

define (t{,...,t5 13, 15, .., t,... t{ ) as

(B tp Bty o bt = (B, ).

Theorem 1 Let ny,...,ng € N with 1 < ny < -+ < ng, and let f € CYAy). The

chaos expansion of f(T,,,...,Tn,) is given as

f(Tma LI 7Tnd) = (_1)d Z [n(lAnhn)7
n=0
where

ho(t, ..ty (3)

z+1 t%
g / / o Or---0af(s1,...,84) K¢l iddsy - - - dsq,
t
k1

ki+---+kg=mn
k1o, .. kg >0

with, for 0 < s <---<sgandk; >0,...,kg >0:

ki,...kq __ k1,.81—S0 .. kg, Sd—Sd—1 _ _
Ksl,...,sd - § 0 pml —mg 0 pmd —mg_1> mo = 07 S0 = 0.

We make the following remarks.

e The support of the function f can be taken in A, since almost surely, 7,,, <
Tooi=1,....d—1.

MNji419

e Th. 1 is stated for smooth functions, but by integration by parts it extends
easily to square-integrable functionals. For simplicity of notation it is easier in

the general case to understand the expression of Th. 1 in distribution sense.

e Th. 1 allows to compute the expansion of a square-integrable random variable
which is approximated in L?(2) by a sequence of functions of finite numbers

of Poisson jump times.

Before proving Th. 1 we show how it can be derived in the case d = 1. We have the

orthogonal expansion

LN-Ny=n} = Z e 1{n}7C Ne@p-—Cr (Ny = Ny), 0<s<t nel,
k>0



hence from (1):

LNy —Ny=n} = Z k'a Fpt= ka(l[st]) 0<s<t nel. (4)
k>0

From this we obtain for s = 0 and n > 1:

1 (o]
1z,,00() = Liny>n} = ZZgak (1) =D k'a B(OL(Fy), ()

k>0 I>n k>0

where P, ( fo p;_1ds is the distribution function of 7,,. We deduce
f(T) = - / F(6) 1 e (5)ds
— / f1(s)> .ak $)Ik(15 ) ds

k>0

— _Zm/ F'(8)0* Py () I (155 )ds

k>0

s tr to B B
= / f'(s)0*P, )// / dNy, -~ dN,, ds
k>0 0 JO 0
e’} tr to B B
= —Z/ f(s)0"P, )/ / / Log(t V -+ V )Ny, - - - dNy, ds
0 0 0

k>0

_ _Z/ / F()0" P, )dS/Otk---/Otsztl-“dNtk,

k>0
—-San ([ reenes),

k>0

hence

which can be rewritten after integration by parts on R as

:Z%Ik (f(tl\/---\/tk)akPn(tl\/---Vtk)+/

k>0 t1V--Vig

f(s)@k“Pn(s)ds) .

(6)
Proof of Th. 1. We deal with the case d > 2. Let 0 = 55 < 51 < -+ < 54, and
ni,...,ng € N. We have from (4) and (2):

i=d
H 1{Nsi_N3i—1:ni}
=1

- 1 k1,.81—8 kg, .Sqa—S ok
=2 2 g P 0P (W) T ()

n=0 ki+--+kg=n
k1 >0,..., kg >0

- 1 k1,.81—8 kg, .Sqa—S ok ok
- Z Z kll...kd]a 1pn11 ’ adpd O (1[50181}O.“Ol[sdcihsd})’

n=0 ki+ --+kg=n
k1 >0,...,kqg >0



where the last equality used the assumption s; < --- < s4. Now, with 0 < m; <

: S mgq,
LTy Ty al(81) 2 1 1 [(80) = LNy =i+ LV, =ma)

- 1{ 53 —Nsg=m1—mo} 1{ Nsy_,=mq—mqg_1} (mO = O)

1 k1,.51—s k ok ok
Z Z gl ]{;dla Pras—mo -0 dpmd md— 1] (1[501751] oo 1[de 1,8d])

n=0 ki+ - -+kg=n

kp > o, kg >0
Given that s; < --- < 4, for any ¢ < j the conditions s; € [T}, Ty, [ and s; €
[T Ty, [ imply m; < my, hence
H L, eol(8i) = § Ly Ty 411(81) * L, T 41 ((S0)
1= mi > Mni,..., mg > ng
my < < mgy
= E 1{N51:m1}"'1{Nsd:md}
miy > ni,..., mgq > ng
myp < - < mg
= E 1{Nsl—Ns0=m1—m0} T 1{Nsd_Nsd71:md_md71}
my >Ny, ..., mq > ng
myp <o <mg
(o]
> 2 1
B Fyl e e kgl
n=0 ki+ - -+kg=n 1 d
k1 >0,...,kg>0
k}l S1—S80 . k’d Okl . Okd
: : 8 pml —mo a pmd md II (1[30,81] © © 1[5d—175d]>
mi1 > ni,..., mg > ng
my < < mgy

1 ki,....k ok ok
=2 2 o e (T 0o Tl o)

Using the identity

f(Tnl, .
e / / 1[Tn1 OO[ Sl 1[Tnd>00[(8d> adf(Sl, S 7Sd)d81 e de

= (-1 / Uz, ool(51) - - L, ool (80)O1 -+~ Daf (51, -, sa)dsy - - dsa, [ € CL(Ag),
Ay

we get

1
F(Tee s Toy) = Z 2 R

= ki+---+kqg=mn
k1>0 ,,,,, kg >0

/A a1 e aclf(sla s S )Kfl’ 7kd[ (1([3312131] 00 1[312 1,sd])d81 T de'
d



From (2), we have for sy <--- < sgand k;y >0,...,kq > 0:

(2
ok ok
( fsovsa] © 77 © Lisg 1,Sd1)

= kll---kd!/ / / 172 gt b)) - 1[Sdlsd](t‘f,tgd)djift%---dNtid,
0 0

hence exchanging the stochastic integrals and the integrals with respect to dsy - - - dsq,
we obtain

(T, ... Ty,) = Z >

= ki+: - +kg=mn
k1>0 ,,,,, kg > 0

<1A// //al 0af(s1,. .. sa)Kbids, - dd>. O
a1 2 Ji

Th. 1 can be compared to its Gaussian counterpart in the following way. For u €
L*(R4), let Ji(u) denote the Ito-Wiener integral Ji(u) = [~ u(s)dB, with respect
to the Brownian motion (B;)scr, defined on the Wiener space. The multiple Wiener
integral

Tn(u o0 uZ’“d) Hy, (J1(w)) - - - Hiy (J1(ua)), (7)

n = ki+---+kq, is defined with help of the Hermite polynomials (Hy)x>o that satisfy

(_1>k1+'“+kd

Hy, (s1) -+ Hyy(sa) = Ot Opy(si,. .., sa),

Pa(s1,---S4q)
where {u,...,uq} is an orthonormal family in L?(R;) and py(si,...,sq) is the
standard Gaussian density function of the vector (Ji(uy),...,Ji(ug)). From the
orthonormality of the sequence (Hy/VkDiso in L*(R, py(z)dz) it follows that
f(Ji(w ) - J1(ua)) (8)

( 1) k ok ok
Z Z ]ﬁ!_—@f?a L0y pd)L?(Rd)J (up™ o oug ).
= ki+---+kg=n
k1 >0,..., kg >0
Another type of orthogonal expansion for Poisson functionals has been considered
in [7], using the family of Laguerre polynomials (Lj)g>o which is orthonormal with
respect to the exponential density. The Laguerre orthogonal expansion of a functional

f(r1,...,7q) of the interjump times of the Poisson process is

flm,. o ma Z Yoo kb (m) - Ly (Ta),

ki+---+kg=n
Ic120 ,,,,, kg >0

the coefficient ay, . 1, being given as

Aky,yekg = / T / (@, .. 2q) Ly (21) - - Ly, ($d)e—(w1+~~~+xd)dx1 - dxy.
0 0



4 A multiplicative exponential on Poisson space

Given the role played by the iterated derivatives of the Poisson and Gaussian laws
in the chaos expansions of f(Ti,...,Ty) and f(I1(uq),..., Is(ug)), it is natural to
determine all random variables whose development is determined in such a way by
their density function. For this we will define exponential vectors on Fock space that

differ from Wick exponentials. For g € S(R) and ¢ € R such that

oo

tn
S 10°G () P< oo,

n=0
let &,(t) be defined in L*(Q2) by

1 on
gg(t) = Z H@”G(t)]n(l[oﬂ),

n>0

where G(t) = fot g(s)ds, t € Ry. From the expression of I, (15';) in terms of Charlier
polynomials, £,(t) is of the form &,(t) = h(Ny, t). For f € S(R), let

&) == [ 1o

Since &, (t) is identified to 17, [(f), from (5) this means that &, (f) = f(Tk+1),
k € N. The following lemma gives the product rule for £,(¢). We note that DE,(t) =
1j0,9€a4(t). We use the convention 9~ f(t) = [5 f(s)ds.

Lemma 1 Lett € Ry. Let f,g € S(R) such that for anyt € Ry there exists Ay > 1,
with | O'f(t) |< (A)™ and | d'g(t) |< (A, i > —1. Then E;()E,(t) € L*(Q)

and its chaos expansion is given by
Er(t)Ey(t) = En(t),

where the function h is defined as

A(s) = S (E5(5), £z, 5 € R

Proof. We use the formula F' = E[F] + Y -, & I,(E[D"F]) of [8], cf. also [1], and

an induction argument on n to show that

E[D"(E4(0E,(1)] = (1) 0" (Z j.—?ai-lfa)ai-lg(t)) . meN, teR,.

ieEN



The result is clear for n = 0. Since D is a finite difference operator, we have by

induction

E[D"H(Er(1)&,(t))]
= [D"(5f( JDEy(t) + E (1) DEf(t) + DEf(t) DE(t))]
= g EID™(Er()Eag(t) + &g ()€ (t) +5af(t)fag(t))]

— 1‘[30(:?1)871 (Z az 1f + Z az 1 + Z 81 1 )

>0 i>0 i>0

_ n+1 an—f—l Z az 1 az 1f( ) n>0.

>0

Moreover, the growth conditions imposed on the derivatives of f et g imply that

n tl oy n+ 1 i+j— i+n—j
| O"h(t) | < Zg > ( ) ) | 9L g(£)9TH I f(4) |
i>0  j=0
< gn+1 Z ?(At)%—f—n-ﬁ—l < 2n+1(At)n+let(At)2
2!
i>0

Y

hence

[ee] tn
EE ()] =) | " h(t) P< exp (6t(A)?) < o0, tER4. O

n=0
Note that pf, satisfies the hypothesis of the above Lemma, with A, = 2(tV1), ¢ € Ry.
The following result shows that &, (¢) has a Bernoulli distribution with parameter

P,(t), t € Ry only for integer values of «, and gives a probabilistic solution of a

differential equation.

Proposition 1 Let g € S(R), with G(t fo s)ds, t € Ry, and such that for
any t € Ry there exists Ay > 1, with | 8Z ft) |€ (A)™Y, i > —1. The following
statements are equivalent.

(i) The function g is written as
- Z axOpy, = aopo + Z ap(Pe — Pr-1);  (n)nen C {0, 1},
keN k>1

(1t) The random variable E,(t) is an indicator function, Vt € R4,

(iii) G solves the nonlinear equation

G =Y L@ ey, teR,,

n>0



Proof. The implication (i) = (i) is follows from the identity
gg(t) = Zakl{Nt:k},
keN

cf. (4). If (ii) is satisfied, then &,(t)&,(t) = &,(t), hence from Lemma 1 (iii) holds.
Conversely, (iii) can be stated as G(t) = E[£,(t)&E,(t)], which implies £,(t)&,(t) =
&, (t) from Lemma 1, i.e. &,(t) is an indicator function. This proves (ii) < (¢ii). If

(i) is satisfied, then &£,(¢) is of the form

Et) = an(t)Lin—n},

neN

with «a,(t) € {0,1}, n € N, t € R,, and

Ey(t) = ao(t)(1 = & (1) + D an(t)(&p, (1) = &, (1)).

n>1

Identifying the first chaos terms we have

9(t) = ao()po(t) + D an(t)(Pa(t) = pas(1)):

n>1

Since ¢ is continuous, «, is continuous in ¢, hence constant, which implies (i).

5 The Gaussian case

In this section we compare the notions introduced above with their analogs on the

Wiener space. For u € L*(Ry) with || u ||;2r,)=1, and g € S(R) such that

=1
> 10" P<oo,
k=0

let

£,t) = 3 T g e,

k>0
where Ji(u) is the multiple Wiener integral defined in (7). If ¢ is a Gaussian density

function with variance 1 and mean a, then from (8),

Eo(1) = Voo t—a)(J1(u)).

The product rule for £(¢) on the Wiener space is the same as on the Poisson space.

10



Lemma 2 Lett € R, and f,g € S(R) such that for anyt € R, there exists Ay > 1,
with | 9" f(t) |< (A)"™ and | 8'g(t) |< (A, i > —1. Then E;()E,(t) € L*(Q)

and its chaos expansion is given by

Er(t)Ey(t) = En(t),

where the function h is defined as

d

%(gf(S),gg(S))L2(W), S € R+.

Proof. The the formula F = E[F] + Y -, &J,(E[D"F]) is still valid on Wiener

space and as in Lemma. 1 we show by induction that

h(s) =

ED™E(0)E,(1))] = (L) ™ (Zjﬁl éw1m),new

€N

Since D is identified to a derivation operator, cf. [4], we have

E[D" (& ()€, (1)) = B[D"(&,(t)D <)+5()fo( )]
= LpgB[D"(Er(1)Ea(t) + £, (t)Eor (1))
1o <Z —0 f(1)dg( +Z S0 )>

= 1Y 0 g0 (), n> 0

1>0

It follows as in the proof of Lemma 1 that £;(t)&,(t) belongs to L*().

Proposition 2 Let g € S(R) , with G(t) = f(f (s)ds, t € Ry, such that for any
t € Ry there exists Ay > 1, with | 0" f(t) |< (A)"™™ and | dg(t) |< (A", @ > —1.
The following statements are equivalent.
(1) The random variable E,(t) is an indicator function, Vt € Ry,
(i) G solves the nonlinear equation

Gt =" %(8"G(t))2, teR..

n>0

Moreover, these statements hold if

(71) the function g is a Gaussian density function with variance one.

Proof. The implication (iii) = (i) holds because in this case, £;(t) = 1)_c0.a(t)) (J1(1))

for some a(t) € R, and (i) < (i7) follows from Lemma 2.

11



The exponential vector e%”“”25(u) on Wiener space is obtained as
1 2 o
ezl e (y) = —/ e*E,y(s)ds = e
0
and satisfies the product identity

e(u)e(v) = e(u+ v) exp((u,0) 2,

On the Poisson space, however, this multiplicative property disappears because the
Wick exponential is interpreted as a discrete product given as a solution of a stochas-
tic differential equation. A family of exponential vectors with multiplicative property

can be defined on Poisson space as

Er(u) = —/ u'(5)e"E,, (s)ds = M) k> 1.
0
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