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Abstract—Ambient radio frequency (RF) energy harvesting
methods have drawn significant interests due to their ability to
provide energy to wireless devices from ambient RF sources. This
paper considers ambient RF energy harvesting wireless sensor
networks where a sensor node transmits data to a data sink using
the energy harvested from the signals transmitted by the ambient
RF sources. We analyze the performance of the network, i.e., the
mean of the harvested energy, the power outage probability and
the transmission outage probability. In many practical networks,
the locations of the ambient RF sources are spatially correlated
and the ambient sources exhibit repulsive behaviors. Therefore,
we model the spatial distribution of the ambient sources as an α-
Ginibre point process (α-GPP) which reflects the repulsion among
the RF sources and includes the Poisson point process as a special
case. We also assume that the fading channel is Nakagami-m
distributed, which also includes Rayleigh fading as a particular
case. In this paper, by exploiting the Laplace transform of
the α-GPP, we introduce semi-closed-form expressions for the
considered performance metrics and provide an upper bound
of the power outage probability. The derived expressions are
expressed in terms of the Fredholm determinant which can
be computed numerically. In order to reduce the complexity
in computing the Fredholm determinant, we provide a simple
closed-form expression for the Fredholm determinant which
allows us to evaluate the Fredholm determinant much more
efficiently. The accuracy of our analytical results is validated
through simulation results.

Index Terms—Energy harvesting, green communications, re-
pulsive point process, Ginibre point process, stochastic geometry.

I. INTRODUCTION

Recently, there has been a lot of research interest on the
topic of radio frequency (RF) energy harvesting techniques
which convert energy of RF signals into direct current (DC)
power for device operation [1], [2]. Since it enables energy-
constrained wireless devices to replenish energy from the RF
signals and prolongs the life time of the devices, various RF
energy harvesting wireless networks were investigated in [3]–
[6]. There are mainly two types of RF energy sources consid-
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ered in the RF energy harvesting networks, i.e., dedicated RF
sources and ambient RF sources.

When dedicated RF sources are employed, energy harvest-
ing devices scavenge power from the RF signals radiated by its
dedicated RF energy transmitters. Lately, several transmission
strategies which aim at optimizing the performance of net-
works with dedicated RF sources were developed in [7]–[11].
The authors in [7] studied a simultaneous wireless informa-
tion and power transfer (SWIPT) technique which transmits
both data and energy at the same time for a multiple-input
multiple-output (MIMO) wireless broadcast system. A power
splitting technique for an RF energy harvesting interference
channel was proposed in [8]. Also, the works in [9] and
[10] characterized tradeoff between the information rate and
the harvested energy for two-user and K-user interference
channels, respectively. Under the protocol of harvest-then-
transmit, reference [11] provided the optimal beamforming
and time allocation algorithm which maximizes the sum-
throughput of multi-user systems.

Unlike the dedicated RF energy sources, ambient RF
sources are nearby RF transmitters which do not intend to
transmit RF power to energy harvesting devices. The ambi-
ent RF sources contain static sources such as cellular base
stations, TV and radio towers, and dynamic sources such as
WiFi routers and mobile devices [1]. Many experiments in
[12]–[15] presented implementations of ambient RF energy
harvesting techniques which charge wireless devices’ batteries
by harvesting the RF signals from WiFi, GSM, DTV bands and
mobile devices. Based on these experimental results, several
researchers examined the performance of ambient RF energy
harvesting systems by leveraging stochastic geometry tools
[16]–[24].

For uplink cellular systems where ambient energy sources
are distributed according to a Poisson point process (PPP), the
study in [16] investigated a tradeoff among transmit power,
density of base stations, and density of energy sources, and
the work in [17] analyzed the transmission success probability
of the systems. The outage probability of relaying systems
with a random relay selection policy was derived in [18]
when both source and relay nodes are assumed to follow
PPP distributions. In addition, the authors in [19] and [20]
considered several relay selection schemes and examined
the outage probability and diversity order of the relaying
systems. In [21], the probability of successful data exchange
and the network lifetime gain in two-way network coded
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relaying networks were studied. Moreover, the performance of
ambient RF energy harvesting cognitive radio networks was
characterized in [22] and [23], and the outage probability of
ad hoc networks where the locations of power beacons and
information transmitters are modeled as independent PPPs was
analyzed in [24].

Most previous works on ambient RF energy harvesting
networks have assumed that the ambient RF sources follow
a PPP due to its analytical tractability. However, in practical
networks, as shown in [25]–[27], the ambient RF sources,
such as mobile sensor networks, cellular base stations, exhibit
repulsion behaviors, and thus there exists a form of correla-
tion among the RF sources. Therefore, modeling the spatial
distribution of RF sources as a PPP may not be sufficient
for characterizing the performance of the practical networks.
Although, point processes like the Matérn hard-core process
[28] or Gibbs point process [29] can reflect this repulsion,
these processes do not yield analytical expressions for the
performance of the networks as their correlation functions
and the corresponding Laplace transforms are unknown. To
this end, recently, several researchers investigated wireless
networks with determinantal point processes (DPPs) which
can capture the repulsiveness and have attractive mathematical
properties [30]–[34].

In this paper, we model the spatial distribution of ambient
RF sources as a Ginibre point process (GPP) which is one of
the most practical examples of two-dimensional DPPs [35],
[36]. The authors in [31]–[33] studied cellular networks where
base stations are deployed according to a β-GPP. Also, the
worst-case performance of ambient RF harvesting networks
was analyzed in [34] when the distribution of the ambient RF
sources follows an α-GPP. The β-GPP (0 < β ≤ 1) is a
thinned and re-scaled GPP which is obtained by deleting each
point of the GPP independently and with probability 1 − β,
and then applying the homothety of ratio

√
β to the remaining

points in order to maintain the original intensity of the GPP
[31]. The β-GPP becomes the GPP when β = 1 and converges
weakly to the PPP as β → 0. On the other hand, the α-GPP
(−1 ≤ α < 0) is a superposition of −1/α independent copies
of a GPP with an intensity rescaled by a factor of

√
−α. The

α-GPP corresponds to the GPP when α is set to α = −1 and
converges weakly to the PPP when α → 0. Therefore, both
the α-GPP and the β-GPP generalize the GPP and contain
the PPP as a special case. In this paper, we focus on the α-
GPP since its construction by superposition of independent
repulsive point processes is more suitable, as we interpret the
repulsion as happening on distinct independent layers. Also,
we note that our computations on the α-GPP are represented in
terms of the Fredholm determinant [36], and identical results
may be applied to the β-GPP setting with no major technical
difficulties.

Lately, ambient RF energy harvesting sensor networks
where a sensor node sends data to a data sink using the energy
harvested from the signals radiated by the α-GPP distributed
ambient RF sources were studied in [34]. The authors in [34]
analyzed the worst-case performance of the networks under
the assumptions that channels among nodes experience a free-
space path loss, i.e., small-scale fading channels are constant,

and the received signals at the sensor node and the data sink
are the same. However, in practical networks, the power of
received signal at a node is determined by not only the path
loss but also channel fading characteristics. In addition, in [34]
it is assumed that the sensor node and the data sink are very
close to each other, since the distance from an RF source to
the data sink is assumed to be equal to the distance from the
RF source to the sensor node.

In this paper, we analyze the exact performance rather than
the worst-case performance of ambient RF energy harvesting
sensor networks where the spatial distribution of ambient RF
sources follows an α-GPP, and under a Nakagami-m channel
fading assumption. Our goal is to analyze the performance of
energy harvesting networks by capturing the combined effects
of randomness in both the locations of RF sources and the
attenuation occurring on the channels.

We consider a harvest-then-transmit protocol where a
battery-free sensor node transmits data to a data sink uti-
lizing the instantaneously scavenged power. We first derive
the Laplace transform of the harvested energy at the sensor
node and analyze three performance metrics, i.e., the mean
of the harvested energy, the power outage probability and the
transmission outage probability. Our main contributions are
summarized as follows:
• First, we derive a formula to compute the Laplace trans-

forms of the harvested energy at the sensor node and the
interference at the data sink where RF signals experience
both path loss and channel fading. The derived Laplace
transforms are given in terms of a Fredholm determinant,
which is a concept that generalizes the conventional deter-
minant of a matrix and can be numerically calculated. We
also introduce a closed-form expression for the Fredholm
determinant which enables us to evaluate the Fredholm
determinant with a reduced complexity.

• Next, we provide a closed-form expression for the mean
of the harvested energy at the sensor node which depends
on the network parameters, i.e., the density of the RF
sources, the transmit power at the RF sources, the RF-to-
DC power conversion efficiency, and so on.

• Assuming that the channel between the different RF
sources and the sensor node follows the Nakagami-m
distribution, we derive semi-closed-form expressions for
the power outage probability, i.e., the probability that
the harvested energy at the sensor node is less than
the minimum required power for base circuit operation.
When the power outage happens, the sensor node be-
comes inactive, and thus a data transmission cannot occur.
We additionally provide the probability density function
(PDF) of the harvested energy and an upper bound of the
power outage probability.

• Based on the derived PDF of the harvested energy, we
investigate the transmission outage probability, i.e., the
probability that the data transmission rate is less than
a certain transmission rate requirement. In addition, we
consider two transmission scenarios, i.e., in-band and
out-of-band transmissions. We provide semi-closed-form
expressions for the transmission outage probability for
networks with Nakagami-m distributed channel fading
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Fig. 1. Ambient RF energy haversting wireless sensor networks

and the constant channel fading.
It is confirmed that our analytical results are well matched

with the Monte Carlo simulation results. By using the derived
expressions, we are thus able to evaluate the performance of
the networks in short simulation times.

The remainder of this paper is organized as follows. The
system model is presented in Section II. In Section III, we
introduce the fundamental properties of the DPP and the α-
GPP, and provide a formula to compute the Laplace transform
as well as a closed-form expression for the Fredholm deter-
minant. Section IV analyzes the performance of the system
and provides semi-closed-form expressions for the exact per-
formance metrics and an upper bound of the power outage
probability. In Section V, numerical results are illustrated to
validate our analysis. Finally, the conclusions are drawn in
Section VI.

Throughout the paper, we will use the following notations.
The operators ‖·‖ and x are adopted to represent Euclidean 2-
norm and the conjugate of a complex scalar x, respectively. In
addition, P(A) and E[X] indicate the probability of an event
A and the expectation of a random variable X , respectively.

II. SYSTEM MODEL

In this paper, we consider ambient RF energy harvesting
wireless sensor networks where a sensor node harvests power
from the RF signals radiated by the ambient RF sources such
as cellular mobiles, WiFi routers and TV towers, and transmits
data to a data sink by using the harvested energy as shown
in Fig. 1. The sensor node operates in a harvest-then-transmit
protocol as described in Fig. 2, and in particular the sensor
node scavenges energy for a time slot (Phase I) and sends

Energy harvesting

Information transmission

Capacitor

Fig. 2. Block diagram of harvest-then-transmit protocol

information to the data sink in the other time slot (Phase II).
We assume that the locations of the ambient RF sources during
a time slot are modeled as an α-GPP with a density λ and in
an observation window Bo(R) where Bo(R) denotes a ball of
radius R centered at o ∈ R2, and the transmit power at the
ambient nodes is PA. We denote the spatial locations of the RF
sources in the energy harvesting and information transmission
phases by Φ and Φ̃, respectively, and we assume that the RF
signal transmitting sources in the two phases are independent,
i.e., Φ and Φ̃ are independent1. Since the α-GPP is stationary,
without loss of generality we assume that the sensor node
is located at the origin. Additionally, we assume that Φ is
supported on a disk centered at the origin with radius R, that
Φ̃ is supported on a disk centered at the data sink with the
same radius R. This latter assumption is also justified by the
stationarity of the α-GPP.

Then, the harvested energy at the sensor node can be written
as

PH = βPA
∑
k∈Φ

hkd
−l
k , (1)

where β presents the RF-to-DC power conversion efficiency,
hk is the fading gain of the channel between the sensor node
and RF source k, dk indicates the distance between the sensor
node and ambient RF node k, and l represents the path loss
exponent. Here, dk can be represented as dk = ‖xk‖+ε where
xk ∈ R2 and ε stand respectively for the coordinates of RF
source node k and a fixed positive scalar which ensures that the
harvested energy is finite in expectation (this can be checked
by letting ε go to zero in Theorem 1). Note that when ε = 0,
there is a singularity at the origin (‖xk‖ = 0). Also, assuming
ε = 0 is valid only for the far-field model and the effect of ε
was analyzed in [37].

In the information transmission phase, by exploiting the
harvested energy in (1), the sensor node transmits data to the
data sink which is located at xds ∈ R2. In practical systems, a
base circuit power is consumed at the device [38]. Therefore,
when we define Pth as the power required for the base circuit
operation, the transmit power at the sensor node PT can be
expressed as

PT =

{
0 if PH < Pth,

PH − Pth otherwise.
(2)

Let us define W and σ2 as the transmission bandwidth and
the power of an additive white Gaussian noise (AWGN) at the

1The case where Φ and Φ̃ are the same will be discussed in Appendix E.
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data sink. Then, the maximum transmission rate at the data
sink becomes

C = W log2

1 +
PTh0d

−l
0

ξ
(∑

k∈Φ̃ PAh̃kd̃
−l
k

)
+ σ2

 , (3)

where h0 and d0 = ‖xds‖ represent the fading power of the
channel and the distance between the data sink and the sensor
node, respectively. Also, h̃k and d̃k = ‖x̃k − xds‖ + ε are
the fading gain of the channel and the distance between RF
source k and the data sink, respectively, where x̃k indicates
the location of RF source k at the information transmission
phase. Here, ξ ∈ {0, 1} is introduced to allow us to con-
sider two different transmission scenarios, namely out-of-band
transmission and in-band transmission. More precisely, when
ξ = 0, the RF sources and the sensor node utilize different
bands for their signal transmissions while they use the same
band when ξ = 1. In other words, the signals transmitted by
the RF sources are treated as interference at the data sink if
ξ = 1.

The channel gains among the nodes in the networks are
assumed to follow i.i.d. Nakagami-m distribution. Therefore,
the distributions of fading gains can be expressed as hk ∼
G (m, θ/m), h̃k ∼ G (m, θ/m) and h0 ∼ G (m0, θ0/m0)
where G(a, b) denotes the gamma distribution with shape
parameter a and scale parameter b. Note that the Nakagami-m
distribution includes the Rayleigh distribution as a special case
(m = 1) and closely approximates the Rician distribution with
Rician factor κ when m is set to m = (1+κ)2

1+2κ . In addition, it is
assumed that the fading gains {hk}, {h̃k}, h0 and the α-GPPs
are mutually independent.

In this paper, we focus on three important performance
metrics, namely the mean of PH , the power outage probability
and the transmission outage probability. The power outage
probability is the probability that the sensor node cannot
scavenge power more than the base circuit power Pth, and
it can be computed as

Ppo = P (PH < Pth) . (4)

When the power outage occurs, the sensor node fails to send
data to the data sink as the harvested energy is not sufficient
to activate the circuit. Also, we define the transmission outage
probability as the probability that the data rate in (3) is less
than a certain threshold Cth, and it can be written as

Pto = P (C < Cth) . (5)

The transmission outage can happen if the power outage
occurs or the data rate at the sensor node is less than Cth.

Note that, for the RF energy harvesting networks, upper
bounds of Ppo and Pto were introduced in [34] under the
assumption that the fading channels are deterministic. In the
next section, we will provide the fundamental properties of
the DPP and the α-GPP, and derive new results on the α-GPP
which allow us to derive exact expressions for the performance
metrics.

III. REPULSIVE POINT PROCESS

In this section, we first address basic characteristics of the
DPP and the α-GPP. Then, we introduce the Laplace transform
of the α-GPP and a closed-form expression for the Fredholm
determinant.

A. Determinantal point process

Let us consider a point process Φ on an observation window
O ⊂ R2 with 0 ≤ |O| <∞ where |O| indicates the Lebesgue
measure of O. In other words, Φ is a finite random collection
of points in O. In the theory of point processes [39] [40], the
correlation functions λ(n) of Φ verify

E

[
n∏
i=1

Φ (Bi)

]
=

∫
B1×···×Bn

λ(n)(x1, . . . ,xn) dx1 . . . dxn,

for any family of mutually disjoint bounded subsets Bi ⊂ R2

for i = 1, . . . , n. Here, λ , λ(1) denotes the spatial density of
the point process Φ, and λ(n)(x1, . . . ,xn) dx1 . . . dxn means
the probability of finding a point on Φ in the vicinity of each
xi ∈ R2 for i = 1, . . . , n.

We consider a map K : C2 7→ C, and we assume in the
following that K satisfies Condition A from [36], recalled
below.

Hypothesis 1. Denote by K the integral operator on L2(R2),
the space of square integrable functions on R2, defined by

Kf(x) =

∫
R2

K(x,y)f(y) dy. (6)

Assume that the map K is a Hilbert-Schmidt operator from
L2(R2) into L2(R2) which satisfies the following conditions:

1) the spectrum of K is included in [0, −1/α];
2) the map K is locally of trace-class (see e.g. [36] for a

proper definition).

The map K is called the kernel of the α-DPP. We let
α = −1/j for a positive integer j. Then, a locally finite
point process Φ on R2 is called an α-DPP with kernel K
if its correlation functions λ(n) with respect to the Lebesgue
measure exist and fulfill

λ(n)(x1, . . . ,xn) = detα (K(xi,xj))1≤i,j≤n , (7)

where detα(A) represents the α-determinant of a matrix A =
(Ai,j)1≤i,j≤n [36] which can be computed as

detα(A) =
∑
σ∈Sn

αn−ν(σ)
n∏
i=1

Ai,σ(i),

where Sn and ν(σ) indicate the n-th symmetric group and the
number of cycles in the permutation σ ∈ Sn, respectively.

In the following propositions, we introduce fundamental
properties of the α-DPP. We refer to [36] for mathematical
details on the propositions.

Proposition 1. For an α-DPP with kernel K, the covariance
of the α-DPP is expressed as

Cov (N(A), N(B)) = α

∫
A×B

|K(x,y)|2 dxdy,



5

where A ⊂ R2 and B ⊂ R2 are disjoint bounded sets, and
N(X) is the random number of point process points located
within a bounded set X ⊂ R2.

The Fredholm determinant is a generalization of the deter-
minant of a matrix and is defined for bounded operators on a
Hilbert space. When |α| ≤ 1, the Fredholm determinant with
a kernel K can be numerically evaluated as [36]

Det (I − αK)
−1/α (8)

=
∑
n≥0

1

n!

∫
detα (K(xi,xj))1≤i,j≤n dx1 . . . dxn.

Proposition 2. For an α-DPP Φ with kernel K and a bounded
set A, the empty space function, i.e., hole probability, can be
computed as

P (Φ ∩A = ∅) = Det (I + αKA)
−1/α

, (9)

where KA(x,y) = K(x,y)1A(x)1A(y) is the restriction of
K to A2, and 1A(·) stands for the indicator function of a set
A, i.e., 1A(x) = 1 for x ∈ A and 1A(x) = 0 for x /∈ A. Here,
Det (I + αKA)

−1/α has been defined in (8) (simply replace
K with −KA).

The α-DPPs have a closed-form Laplace transform which
is expressed in terms of the Fredholm determinant.

Lemma 1 ([36], Theorem 1.2). For an α-DPP Φ with kernel
K and a function f : R2 7→ [0,+∞), the Laplace transform
of
∑
k∈Φ f(xk) is given by

E

[
exp

(
−
∑
k∈Φ

f(xk)

)]
= Det (I + αKf )

−1/α
, (10)

where Kf is the kernel

Kf (x,y) =
√

1− exp (−f(x))K (x,y)
√

1− exp (−f(y)).

The Laplace transform of the received signal at a node plays
an important role in analyzing the performance of wireless
networks. Lemma 1 can be utilized to investigate networks
where signals only suffer path loss attenuation which depends
on the locations of the points in a point process. However, it is
not applicable to networks where the received signal strength
is determined by both the path loss and channel fading. In
order to overcome this issue, in the following lemma we
introduce a formula which provides the Laplace transform of
the received signals which experience not only the path loss
but also random channel fading.

Lemma 2. Let us consider independent and identically dis-
tributed (i.i.d.) random variables {hk}k∈N which are inde-
pendent from an α-DPP Φ. Then, for a function f : R2 7→
[0,+∞), the Laplace transform of

∑
k∈Φ hkf(xk) becomes

E

[
exp

(
−
∑
k∈Φ

hkf(xk)

)]
= Det (I + αKh,f )

−1/α
, (11)

where Kh,f is the kernel

Kh,f (x,y)=
√

1−Mh (−f(x))K (x,y)
√

1−Mh (−f(y)),

MX(t) , E [exp (tX)] represents the moment generating
function (MGF) of a random variable X , and K (x,y) is
the kernel of the α-DPP Φ. Note that both (10) and (11) are
expressed in terms of the Fredholm determinant, and therefore
the complexity orders for evaluating (10) and (11) are the
same.

Proof. Since {hk} and Φ are independent,

E

[
exp

(
−
∑
k∈Φ

hkf(xk)

)]

= E

[∏
k∈Φ

E [exp (−hkf(xk))]

]

= E

[∏
k∈Φ

Mh (−f(xk))

]

= E

[
exp

(∑
k∈Φ

ln (Mh (−f(xk)))

)]
(a)
= Det (I + αKh,f )

−1/α
,

where ln(x) is the natural logarithm function, and (a) follows
from Lemma 1.

B. α-Ginibre point process

Now, we focus on the α-GPP and set the observation
window O to O = Bo(R). The α-GPP is the α-DPP defined
by the Ginibre kernel which is given by

K (x,y) = λ exp

(
πλxȳ − πλ

2

(
‖x‖2 + ‖y‖2

))
, (12)

for x ∈ B0(R) and y ∈ B0(R), where λ is the spatial density
of the α-GPP. In the remainder of the paper, K shall denote the
Ginibre kernel (12). Note that the Ginibre kernel is identical
to the Ginibre kernel defined in [41], except for the fact
that we have introduced a spatial density parameter allowing
us to adjust the RF sources density. Also, the distribution
of the α-GPP is invariant under rotations and translations
since by property the α-GPP is stationary and isotropic. In
addition, as K is a Hermitian compact operator, from the
spectral theorem, K (x,y) can be represented as K (x,y) =∑
n≥0 ρnφn(x)φn(y) where {φn(x)} and {ρn} account for

basis of eigenvectors of L2(Bo(R)) and the corresponding
eigenvalues, respectively. Here, we can compute ρn and φn(x)
as [41]

ρn =
γ
(
n+ 1, πλR2

)
n!

,

and

φn(x) =

√
λ

n!ρn

(√
πλx

)n
exp

(
−πλ

2
‖x‖2

)
,

where γ(a, b) ,
∫ b

0
ta−1e−tdt is the lower incomplete gamma

function.
As can be seen in (9), (10) and (11), many important

characteristics of the α-DPP – and thus also the α-GPP –
are given in terms of the Fredholm determinant which can be
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computed by (8). However, the determinants in (8) may incur
a high computational complexity. In the following lemma, we
introduce a simple closed-form expression for the Fredholm
determinant when the kernel is related to the Ginibre kernel
by (13).

Lemma 3. Let us define Kq as

Kq(x,y) = q(‖x‖)K(x,y)q(‖y‖), (13)

where q : [0,∞) → R is a function such that Det(I + αKq)
is well defined and K is given by (12). Then, the Fredholm
determinant Det(I + αKq) can be expressed as

Det(I + αKq) =
∏
n≥0

(
1 +

2α (πλ)
n+1

n!
(14)

×
∫ R

0

q(r)2 exp
(
−πλr2

)
r2n+1 dr

)
.

Proof. See Appendix A.

The usual approach to evaluate the Fredholm determinant
follows the techniques from [42] and consists in approximating
(8) by the determinant of an Ndet × Ndet matrix. The com-
plexity of this approach is thus in O(N3

det). Defining instead
ΥNclosed

as the truncated product from (14), i.e.,

ΥNclosed
=

Nclosed∏
n=0

(
1 +

2α (πλ)
n+1

n!
(15)

×
∫ R

0

q(r)2 exp
(
−πλr2

)
r2n+1 dr

)
,

the complexity in computing ΥNclosed
is O(Nclosed). We note

that the usual method for the computation of (8) exhibits
a polynomial rate of convergence to the true value of the
Fredholm determinant, while the truncation (15) convergences
exponentially fast, see [42]. The exponential convergence rate
of (15) as Nclosed goes to infinity follows from the smoothness
of the kernel of the Ginibre point process. Hence, the closed-
form expression in (14) allows us to evaluate the Fredholm
determinant with a significantly reduced complexity.

We conclude this section by recalling a difference between
the α-GPP and the PPP. Letting A ⊂ R2 and B ⊂ R2 be two
disjoint bounded sets and plugging the Ginibre Kernel in (12)
into Proposition 1, we have

Cov(N(A), N(B)) = αλ2

∫
A×B

e−πλ‖x−y‖
2

dxdy ≤ 0,

which contrasts with the PPP for which the above covariance
is zero. Indeed, in a PPP, the location of a point does not
depend on the positions of the others. The interpretation of
the above equation is that, contrary to the PPP setting, the
numbers of points in two disjoint sets are negatively correlated
since α < 0. This leads to the α-GPP being more spread-out
and exhibiting less clustering than a PPP.

Until now, we have investigated the fundamental character-
istics of the α-DPP and the α-GPP. Also, we have introduced
the new Lemmas 2 and 3 on the α-DPP and α-GPP, respec-
tively. Next, we will analyze the performance of the ambient
RF energy harvesting wireless sensor networks, i.e., the mean
of PH , Ppo, Pto and an upper bound of Ppo.

IV. PERFORMANCE ANALYSIS

In this section, we provide semi-closed-form expressions for
the performance metrics. First, we concentrate on the mean of
the harvested energy, and then we move on to the power outage
and transmission outage probabilities.

A. Mean of the harvested energy

By exploiting Campbell’s theorem [43]2, we can derive the
mean of the harvested energy PH as illustrated in the following
theorem.

Theorem 1. The mean of PH in (1) is given by

E [PH ] =


2πβθλPA

(
ln
(
1 + R

ε

)
− R

R+ε

)
if l = 2,

2πβθλPA
(
R− ε ln

(
1 + R

ε

))
if l = 1,

2πβθλPA(ε2−l−(R+ε)1−l(ε+(l−1)R))
(l−2)(l−1) otherwise.

(16)

Proof. Due to the independence of the fading gains {hk} and
the α-GPP Φ, we have

E [PH ] = βPAE

[∑
k∈Φ

E [hk] d−lk

]
= βθPAE

[∑
k∈Φ

d−lk

]
(b)
= βθPA

∫
B0(R)

d−lk λ
(1)(x) dx

= βθλPA

∫
B0(R)

(‖x‖+ ε)
−l
dx

(c)
= 2πβθλPA

∫ R

0

r

(r + ε)l
dr,

where λ(1)(x) denotes the first correlation function (cf. (7)),
and (b) and (c) follow from Campbell’s theorem and a polar
change of variables, respectively. In addition, after some ma-
nipulations, the integral in the above equation can be computed
in a closed-form and (16) follows.

From (16), we note that the mean of PH linearly increases
as the parameters β, θ, λ and PA become larger. Note that R
determines the size of the observation window, and therefore
a growth of R results in an increase of the number of RF
sources. Hence, the mean of PH increases when R grows as
observed in (16). Also, as expected, E [PH ] is a decreasing
function of ε. It is important to remark that E [PH ] is not
influenced by the scattering parameter α. This is due to the
fact that α-GPP is a stationary point process. Therefore, the
means of PH for the cases of α-GPP and PPP are identical
when the point processes have the same spatial density.

B. Power outage probability

In this subsection, we introduce new semi-closed-form
expressions for the power outage probability defined in (4), as
well as some simpler upper-bounds. Before stating our results,
we recall Mellin’s formula for the computation of the inverse

2For a point process Ψ with density λ and a function f : R2 7→ R, the
mean of the random sum

∑
k∈Ψ f(k) is equal to

∫
R2 f(x)λ(x) dx.
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Laplace transform. Namely, for a fixed real-valued function
F , we define

L−1{F}(x) ,
1

2πi
lim
T→∞

∫ c+iT

c−iT
exp(sx)F (s) ds, x ∈ R,

where c is a fixed constant greater than the real parts of the
singularities of F and i ,

√
−1 represents the imaginary unit.

First, we focus on the exact power outage probability which
will be derived in the following theorem.

Theorem 2. When the harvested energy at the sensor node
is defined as in (1), we can express the exact power outage
probability as

Ppo = FPH (Pth), (17)

where FPH (x) is the cumulative distribution function (CDF)
of PH which is given by

FPH (x) = L−1

{
1

s
Det (I + αAs)

−1/α

}
(x). (18)

Here, As is the kernel given by

As(x,y) =

√
1−

(
1 +

sβθPA
m(||x||+ ε)l

)−m
(19)

×K(x,y)

√
1−

(
1 +

sβθPA
m(||y||+ ε)l

)−m
,

when hk ∼ G (m, θ/m), and

As(x,y) =

√
1− exp

(
− sβθPA

(||x||+ ε)l

)
(20)

×K(x,y)

√
1− exp

(
− sβθPA

(||y||+ ε)l

)
,

when there is no fading, i.e., hk is constant equal to θ for all k.
In both of the above equations, K is the Ginibre kernel defined
in (12). Additionally, the PDF of PH , denoted by fPH (x), is
computed as

fPH (x) = L−1
{

Det (I + αAs)
−1/α

}
(x). (21)

Proof. See Appendix B.

Note that the inverse Laplace transforms in (18) and (21)
can be easily evaluated by using modern tools such as the algo-
rithm presented in [44]. Moreover, we can easily compute the
Fredholm determinants in Theorem 2 by applying Lemma 3.

We also note that the result proved in Theorem 2 recovers
the PPP setting by letting α tend to zero. Indeed, using the
expansion3 [36]

Det (I + αAs) = 1 + α

∫
Bo(R)

As(x,x) dx +Oα→0(α2),

it is readily proved that

Det (I + αAs)
−1/α −−−→

α→0
exp

(
−
∫
Bo(R)

As(x,x) dx

)
.

3Here, we say that f = Oα→0(g) if there exists a positive constant M
such that |f(α)| ≤M |g(α)| as α goes to zero.

Focusing on the Rayleigh-fading case (obtained by plugging
m = 1 into (19)), for PPPs, using Theorem 2 and a polar
change of variables recovers the formula

Ppo

=L−1

{
1

s
exp

(
−2πλ

∫ R

0

r

1+(r+ε)`(sβθPA)−1
dr

)}
(Pth),

obtained in [17] (cf. equation (6) therein). This expression has
been further simplified in [17], as shown in the next corollary
obtained when ε = 0, θ = 1 and R→∞.

Corollary 1 ([17]). When Φ is a PPP with a density λ, the
power outage probability becomes

Ppo = 1−
∫ ∞

0

1

πu
exp

(
−uPth −

2π2λ(βPAu)2/l

l tan(2π/l)

)
× sin

(
2π2λ(βPAu)2/l

l

)
du.

Furthermore, when l = 4, Ppo and the PDF of PH can be
respectively expressed as

Ppo = 1− erf

(
π2λ

4

√
βPA
Pth

)
, and

fPH (x) =
π2λ

4

√
βPA
πx3

exp

(
−π

4λ2βPA
16x

)
,

where erf(x) , 2√
π

∫ x
0

exp(−t2) dt denotes the error function.

Note that although the results in Theorem 2 accurately
predict the power outage probability and enable us to eval-
uate the power outage probability with substantially reduced
simulation time compared to the Monte Carlo simulations,
the computational complexity can be further reduced when
the inverse Laplace transforms is not employed. To that aim,
we focus on providing upper bounds on the power outage
probability Ppo which do not require the inverse Laplace
transform operation.

In [34], an upper bound of Ppo was derived under the
assumption that the fading gains are constant. In the following
theorem, we introduce a new expression for an upper bound
Ppo in networks with Nakagami-m distributed fading chan-
nels.

Theorem 3. When hk ∼ G (m, θ/m), an upper bound of Ppo

in (4) can be obtained as

Ppo ≤ Det (I + αB)
−1/α

, (22)

where B is the kernel

B(x,y) =

√√√√
1−

γ
(
m, mPth(||x||+ε)l

βθPA

)
Γ(m)

×K(x,y)

√√√√
1−

γ
(
m, mPth(||y||+ε)l

βθPA

)
Γ(m)

,

where K is defined in (12) and Γ(t) =
∫∞

0
xt−1 exp(−x)dx

is the gamma function.

Proof. See Appendix C.
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For networks with constant fading channels hk = θ,∀k, we
recall in the next corollary an upper bound of Ppo which has
been obtained in [34] by similar arguments.

Corollary 2 ([34]). When hk = θ, ∀k, an upper bound of
Pto is given by

Ppo ≤ Det
(
I + αKBo(min(R,c1))

)−1/α
,

where c1 ,
(
βθPA
Pth

)1/l

− ε.

We remark again that the Fredholm determinants in Theo-
rem 3 and Corollary 2 are evaluated by applying Lemma 3,
and thus the complexity orders of the results in Theorem 3
and Corollary 2 are the same. The advantage of the bounds in
Theorem 3 and Corollary 2 is that they can be computed faster
than the exact formula from Theorem 2 which involves the
inverse Laplace transform. In Section V, the tightness of the
bounds will be examined and it will be shown that the bounds
exhibit the same trend as the exact power outage probability.

Until now, we have derived semi-closed-form expressions
for the exact and upper bound of power outage probability.
Since the transmission rate C is directly related to PH via
(2) and (3), identifying the characteristics of PH is necessary
in order to investigate the transmission outage probability Pto

defined in (5). In the next subsection, we will examine Pto

based on the CDF and the PDF of PH derived in Theorem 2.

C. Transmission outage probability

In this subsection, we derive exact analytical expressions for
the transmission outage probability Pto defined in (5). First,
we can calculate Pto by

Pto = P (C < Cth)

= P (C < Cth, PH < Pth) + P (C < Cth, PH ≥ Pth)

(d)
= P (PH < Pth) + P (C < Cth, PH ≥ Pth)

= P (PH < Pth) + P̃to, (23)

where we define P̃to as

P̃to = P

(
PTh0d

−l
0

ξQ+ σ2
< η, PH ≥ Pth

)
, (24)

where η , 2Cth/W − 1, and Q ,
∑
k∈Φ̃ PAh̃kd̃

−l
k denotes

the interference at the data sink. Here, (d) follows from the
fact that C is always less than Cth when PH ≤ Pth since the
transmit power PT is equal to zero when PH ≤ Pth as seen
in (2). Note that, as shown in (23), Pto is the sum of two
probabilities, namely the power outage probability Ppo and
the probability that the data transmission rate with transmit
power PT is smaller than Cth when PT ≥ 0 (PH ≥ Pth),
respectively.

First, we consider the case where the fading channel be-
tween the sensor node and the data sink follows the Rayleigh
fading, i.e., m0 = 1. In this case, h0 follows the exponen-
tial distribution E(1/θ0) where E(a) denotes the exponential
distribution with parameter a. In the following theorem, by
using the obtained PDF of PH , we introduce a semi-closed-
form expression for transmission outage probability Pto.

Theorem 4. When hk ∼ G (m, θ/m), h̃k ∼ G (m, θ/m) and
h0 ∼ E(1/θ0), Pto is given by

Pto = 1−
∫ ∞
Pth

exp

(
− ηdl0σ

2

θ0 (x− Pth)

)
(25)

×Det (I + αCx)
−1/α

fPH (x) dx,

where fPH (x) is the PDF of the harvested energy at the sensor
node in (21) and Cx is the kernel

Cx(x,y) =

√
1−
(

1 +
θηdl0ξPA

mθ0(x− Pth)(||x||+ ε)l

)−m
(26)

×K(x,y)

√
1−
(

1 +
θηdl0ξPA

mθ0(x− Pth)(||y||+ ε)l

)−m
,

where K is the Ginibre kernel defined in (12). If the out-
of-band transmission is employed (ξ = 0), Pto in (25) is
simplified as

Pto = 1−
∫ ∞
Pth

exp

(
− ηdl0σ

2

θ0 (x− Pth)

)
fPH (x) dx.

Proof. See Appendix D.

In Theorem 4, we have assumed that the locations of the RF
sources in the energy harvesting and information transmission
phases by Φ and Φ̃ are independent. We remark that one can
also assume that they are the same point process, but this
comes at the cost of computational complexity. We provide
an explicit expression of Pto in this setting in Appendix E.

In the following theorem, we extend the result of Theorem 4
by assuming that the channel between the sensor node and
the data sink undergoes Nakagami fading instead of Rayleigh
fading. More specifically, we provide an explicit analytical
representation for the transmission outage probability when
h0 is modeled as the Gamma random variable with positive
integer parameter m0.

Theorem 5. When hk ∼ G (m, θ/m), h̃k ∼ G (m, θ/m) and
h0 ∼ G (m0, θ0/m0), Pto can be expressed as

Pto = 1− lim
τ→0

m0−1∑
i=0

i∑
j=0

1

i!

(
i

j

)(
m0

θ0τ

)i
(−1)j (27)

×
∫ ∞
Pth

(
ηdl0

x−Pth

)i
Det

(
I + αD(µx+τ(j−i/2))ξPA

)−1/α

× exp(−(µx + τ(j − i/2))σ2)fPH (x) dx,

where µx ,
m0ηd

l
0

θ0(x−Pth) and Ds is the kernel

Ds(x,y) =

√
1−

(
1 +

sθ

m(||x||+ ε)l

)−m
(28)

×K(x,y)

√
1−

(
1 +

sθ

m(||y||+ ε)l

)−m
,
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where K is the Ginibre kernel defined in (12). Also, when
ξ = 0, Pto in (27) can be simplified as

Pto =1−
m0−1∑
i=0

1

i!

(
m0ηd

l
0σ

2

θ0

)i
×
∫ ∞
Pth

(
1

x−Pth

)i
exp

(
− m0ηd

l
0σ

2

θ0 (x− Pth)

)
fPH (x) dx.

Proof. See Appendix F.

In addition, we derive an expression for the transmission
outage probability in networks with constant fading in the
following theorem.

Theorem 6. When the fading channels are constant as hk =
h̃k = θ, ∀k and h0 = θ0, the transmission outage probability
Pto becomes

Pto = 1−
∫ ∞
c2

FQ

(
θ0 (x− Pth)

ηdl0
− σ2

)
fPH (x) dx, (29)

where c2 = Pth +
ηdl0σ

2

θ0
, FQ(x) is the CDF of Q which is

computed as

FQ(x) = L−1
{

Det (I + αEs)
−1/α

}
,

and Es is the kernel

Es(x,y) =

√
1− exp

(
− sθPA

(||x||+ ε)l

)
(30)

×K(x,y)

√
1− exp

(
− sθPA

(||y||+ ε)l

)
,

where K is the Ginibre kernel defined in (12). Additionally,
when ξ = 0, Pto is expressed as

Pto = FPH

(
Pth +

ησ2dl0
θ0

)
. (31)

Proof. See Appendix G.

In equation (29), we see that the term
θ0 (x− Pth) (ηdl0)−1 − σ2 is an increasing (respectively
a decreasing) function of θ0 (respectively Pth, Cth, d0

and σ2) since η = 2Cth/W − 1. Also, c2 decreases as
θ0 (respectively Pth, Cth, d0 and σ2) becomes larger
(respectively smaller). Therefore, it is expected that Pto in
(29) grows as θ0 (respectively Pth, Cth, d0 and σ2) decreases
(respectively increases). The same observation can be made
for the out-of-band transmission case in (31). Lastly, we
mention that the Fredholm determinants in Theorems 4 to 6
can be computed by Lemma 3.

V. SIMULATION RESULTS

In this section, we present numerical results to validate our
analytical results, under the assumption that h0, {hk} and
{h̃k} follow Nakagami-m distribution. We assume θ = θ0 = 1
and l = 4. The transmit power of ambient RF sources PA
is set to PA = 0.1 W which is within the normal transmit
power of cellular mobiles. Also, the base circuit power Pth

is Pth = −18 dBm (i.e., 15.8 µW) [6], the bandwidth of the
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Fig. 3. Mean of harvested energy E[PH ] as a function of λ
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Fig. 4. Power outage probability Ppo as a function of λ

transmitted signal W is W = 20 MHz, and noise power at the
data sink is white Gaussian with power spectral density −120
dBm/Hz [45]. The RF-to-DC power conversion efficiency is
assumed to be β = 0.25, ε = 0.05, R = 30, and the centers
of the GPPs Φ and Φ̃ are the origin and xds, respectively. In
addition, we evaluate the Fredholm determinant by using (15)
and set Nclosed as Nclosed = 100.4 Unless otherwise stated,
we set the simulation parameters as listed in Table I .

In the sequel, we use the lines and symbols to indicate
the analytical and simulated results, respectively. In Fig. 3,
the mean of harvested energy is presented as a function of
λ with various values of β and ε. We see that the analytical
result in (16) is accurate and matches the simulated results. As
expected, the mean of the harvested energy increases as the
density of RF sources and the RF-to-DC power conversion
efficiency β become larger. Also, as the minimum distance
between the sensor node and the RF sources ε decreases, the
mean of the harvested energy grows, since the smaller distance
between the sensor node and the ambient RF sources leads to
the larger received power.

4We have confirmed from computer simulations that ΥNclosed
in (15) with

Nclosed larger than 100 has a negligible impact.
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TABLE I
SYSTEM PARAMETERS

Symbol θ θ0 m m0 l PA Pth W σ2 β ε α R
Value 1 1 1 1 4 0.1 W 15.8 µW 20 MHz −120 dBm/Hz 25 % 0.05m -1 30m
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Fig. 6. Power outage probability Ppo as functions of λ and Pth

Fig. 4 demonstrates the exact and upper bounds of power
outage probability Ppo in networks with α-GPP and PPP
distributed ambient RF sources. Here, we obtain the analytical
results for the upper bound using (22), and the simulation
results for the upper bound by evaluating the probability
P(∀k ∈ Φ, hkd

−l
k < Pth

βPA
) in (34) by Monte-Carlo simulation.

It is observed that Ppo is a monotonically decreasing function
of the density λ, and the impact of λ is more pronounced
when λ is small. Also, we see that the exact and the upper
bounds of Ppo exhibit the same trend.

In Fig. 5, we illustrate the power outage probability as a
function of Pth in the cases of λ = 0.003 and 0.006. As can
be seen from Fig. 5, Ppo tends to grow almost logarithmically
with the increase of Pth. In other words, when Pth is small,
Ppo varies more dynamically with a change of Pth than when
Pth is large. If m < 1 (respectively m > 1), the fading
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Fig. 7. Transmission outage probability Pto as a function of λ (d0 =
10, Cth = 0.05 and ξ = 0)

is more (respectively less) severe than the Rayleigh fading
(m = 1), and the fading channel becomes constant (no fading)
when m → ∞. Hence, Ppo grows as m decreases since
the harvested energy is directly related to the power of the
fading channel. In addition, we can observe that Ppo is more
susceptible to m when λ is large.

Fig. 6 presents the influence of λ and Pth on the power
outage probability. It is seen that Ppo is a monotonically
decreasing (respectively increasing) function of λ (respectively
Pth) regardless of Pth (respectively λ). Also, we observe that
λ has more impact on Ppo when Pth is small. That is to
say, when Pth is relatively large, Ppo slowly (almost linearly)
degrades as λ becomes larger while Ppo rapidly decreases as
λ increases when Pth is small. Moreover, we see that Ppo is
significantly affected by λ and Pth if λ and Pth are close to
0.

In Figs. 7, 8 and 9, we show the transmission outage proba-
bilities Pto as a function of λ for both scenarios of out-of-band
(ξ = 0) and in-band (ξ = 1) transmissions. For all cases, Pto

decreases as β increases. The reason is straightforward as the
higher β makes the transmit power at the sensor larger. In
addition, as expected, Pto is a non-increasing function of the
density λ. However, unlike the out-of-band transmission case
(ξ = 0), for the in-band transmission (ξ = 1), Pto is saturated
as λ grows. This is due to the fact that a growth of λ increases
not only the harvested energy at the sensor node but also the
interference at the data sink. From the observation that Pto

decreases as λ increases when λ is small, we can infer that
the transmission outage is mainly caused by the power outage
at the sensor node when λ is low. Also, from Fig. 9, we can
see that Pto decays as the Nakagami parameters m0 and m
become larger.

In Figs. 10 and 11, the transmission outage probabilities Pto
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and ξ = 0)

0 0.02 0.04 0.06 0.08 0.1

Transmission rate requirement Cth (Mbps)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ra
n
sm

is
si
o
n
o
u
ta
g
e
p
ro
b
a
b
il
it
y

Nakagami-m (m = 0.5), Analysis
Nakagami-m (m = 1), Analysis
Nakagami-m (m = 2), Analysis
No Fading, Analysis
Nakagami-m (m = 0.5), Simulation
Nakagami-m (m = 1), Simulation
Nakagami-m (m = 2), Simulation
No Fading, Simulation

λ = 0.003

λ = 0.008
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Fig. 12. Transmission outage probability Pto as functions of λ and Cth

(d0 = 20 and ξ = 0)

are demonstrated as a function of Cth with various values of
λ. It is shown that the analytical results are very accurate for
different m and λ. The transmission outage probability grows
almost logarithmically as the threshold Cth increases. Thus,
Pto is very sensitive to Cth when Cth is small, and Pto varies
slowly when Cth is high. Also, as observed in Figs. 7 to 9,
a larger λ results in a lower outage probability. Moreover, we
can see that a smaller m leads to a higher transmission outage
probability, and the impact of m is more pronounced when λ
is large.

Figs. 12 and 13 examine the influence of λ and Cth on
the transmission outage probability Pto. For the out-of-band
transmission (ξ = 0), as there is no interference at the data
sink from the ambient RF sources, Pto quickly decreases as λ
grows in all Cth region. However, for the in-band transmission
(ξ = 1), due to the existence of interference, Pto is saturated
except for networks with a small Cth. In contrast to Ppo in
Fig. 6, the transmission outage probability does not converge
to 0 when the threshold value goes to 0, and it converges
to a certain probability. This converged probability can be
interpreted as the probability that the sensor node fails to
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Fig. 13. Transmission outage probability Pto as functions of λ and Cth

(d0 = 5 and ξ = 1)

harvest enough power to transmit data to the data sink, i.e., the
power outage probability. In addition, for both transmission
cases, we can observe that Pto is more susceptible to λ
(respectively Cth) when Cth is small (respectively λ is large).

VI. CONCLUSION

In this paper, we have analyzed the performance of ambient
RF energy harvesting sensor networks where the distribution
of ambient RF sources is modeled as an α-GPP which reflects
the repulsion among the sources and includes a PPP as a
special case. We have first derived the Laplace transform of
the α-GPP which is represented in terms of the Fredholm
determinant. Since a conventional method to compute the
Fredholm determinant may have a high computational cost,
we have introduced a new closed-form expression for the
Fredholm determinant. Then, based on the derived Laplace
transform of the α-GPP, we have provided semi-closed-form
expressions for the mean of the harvested energy, the exact
power outage probability and the PDF of the harvested energy.
Also, we have derived a computationally-efficient closed-form
expression for an upper bound of the power outage probability.
Additionally, by utilizing the obtained PDF, we have analyzed
the exact transmission outage probability in the networks. By
extensive numerical simulations, we have verified that our de-
rived analytical results can predict accurately the performance
of the networks.

APPENDIX A
PROOF OF LEMMA 3

We set

ρn =
2 (πλ)

n+1

n!

∫ R

0

q(r)2 exp(−πλr2)r2n+1 dr,

and

φn(x) :=

√
λ

ρnn!
q(‖x‖)

(√
πλx

)n
exp

(
−πλ

2
‖x‖2

)
,

for x ∈ R2 and n ≥ 0. Then, it is readily checked that

Kq(x,y) =
∑
n≥0

ρnφn(x)φn(y), x,y ∈ R2,

and {φn} is an orthonormal set, in the sense that∫
R2 |φn(x)|2 dx = 1 for all n ≥ 0 and

∫
R2 φn(x)φm(x) dx =

0 for n 6= m. For any n ≥ 0, it follows that∫
R2

Kq(x,y)φn(y) dy =
∑
m≥0

ρmφm(x)

∫
R2

φm(y)φn(y) dy

= ρnφn(x),

which means by definition that ρn is an eigenvalue of the
integral operator defined in (6), and φn is the corresponding
eigenvector. The result follows since in that case, it is known
that

Det(I + αKq) =
∏
n≥0

(1 + αρn) . �

APPENDIX B
PROOF OF THEOREM 2

The MGF of a gamma random variable X ∼ G (a, b)
is equal to MX(t) = (1− bt)−a. Therefore, when hk ∼
G (m, θ/m), from Lemma 2, the Laplace transform of the
harvested energy PH = βPA

∑
k∈Φ hkd

−l
k becomes

LPH (s) =E
[

exp
(
− sβPA

∑
k∈Φ

hkd
−l
k

)]
= Det (I + αAs)

−1/α
, (32)

where As is the kernel defined in (19). In addition, when hk
is a constant as hk = θ, Lemma 1 shows that the kernel of
As is given by (20).

Given the Laplace transforms in (32), we identify the PDF
of PH by employing the inverse Laplace method [46] as

fPH (x) = L−1 {LPH (s)} (x). (33)

Combining (32) and (33), we derive the result in (21). Also,
by integrating the PDF, we obtain the CDF of PH as

FPH (x)=

∫ x

−∞
L−1 {LPH (s)}(t)dt= L−1

{
1

s
LPH (s)

}
(x).

From the definition of Ppo in (4), Ppo is equal to FPH (Pth),
which yields (17). This concludes the proof. �

APPENDIX C
PROOF OF THEOREM 3

Since {hk} and Φ are independent, we derive an upper
bound of Pto as

Pto = P

(∑
k∈Φ

hkd
−l
k <

Pth

βPA

)

≤ P
(
∀k ∈ Φ, hkd

−l
k <

Pth

βPA

)
(34)

= E
[
P
(
∀k ∈ Φ, hkd

−l
k <

Pth

βPA
|Φ
)]

= E

[∏
k∈Φ

P
(
hk <

Pthd
l
k

βPA

)]
.
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Note that the CDF of a gamma distributed random variable

X ∼ G (a, b) is P(X < x) =
γ(a, xb )

Γ(a) . Thus, the above upper
bound becomes

Pto ≤ E

∏
k∈Φ

γ
(
m,

mPthd
l
k

βθPA

)
Γ(m)


= E

exp

∑
k∈Φ

ln

γ
(
m,

mPthd
l
k

βθPA

)
Γ(m)

 .
From (11), we find that the above upper bound is equal to
(22). �

APPENDIX D
PROOF OF THEOREM 4

As h0 ∼ E(1/θ0), the CDF of h0 is P (h0 < x) = 1 −
exp(−x/θ0). Thus, we compute P̃to in (24) as

P̃to =P

(
PTh0d

−l
0

ξQ+ σ2
< η, PH ≥ Pth

)

=E

[
P

(
PTh0d

−l
0

ξQ+ σ2
< η

∣∣PH)1{PH≥Pth}

]

=E

[
P

(
h0 <

ηdl0
(
ξQ+ σ2

)
PT

∣∣PH)1{PH≥Pth}

]

=E

[(
1− exp

(
−
ηdl0

(
ξQ+ σ2

)
θ0PT

))
1{PH≥Pth}

]
=P (PH ≥ Pth)

− E

[
exp

(
−
ηdl0

(
ξQ+ σ2

)
θ0PT

)
1{PH≥Pth}

]
, (35)

where 1{·} denotes the indicator function. Combining (23) and
(35), we have

Pto

=1−E

[
exp

(
−
ηdl0

(
ξQ+ σ2

)
θ0PT

)
1{PH≥Pth}

]
(36)

=1−E

[
exp

(
−ηd

l
0σ

2

θ0PT

)

× E

[
exp

(
− ηdl0ξPA

θ0PT

∑
k∈Φ̃

h̃kd̃
−l
k

)
| PH

]
1{PH≥Pth}

]
(e)
= 1−E

[
exp

(
−ηd

l
0σ

2

θ0PT

)
Det (I + αCPH )

−1/α
1{PH≥Pth}

]
(37)

=1−
∫ ∞
Pth

exp

(
− ηdl0σ

2

θ0 (x−Pth)

)
Det (I+αCx)

−1/α
fPH (x) dx,

where Cx is the kernel defined in (26). Here, (e) comes from
Lemma 2 and the stationarity of the α-GPP Φ̃ (cf. Section
III-B). �

APPENDIX E
COMPUTATION OF Pto WHEN Φ AND Φ̃ ARE THE SAME

POINT PROCESSES

Now, we briefly investigate the case where the locations of
the ambient RF sources in two phases (Φ and Φ̃) are the same.
In this case, as PH in (1) and Q in (24) are correlated, deriving
an analytical representation of Pto is much more challenging.
First, from (36), we have

Pto = 1− E [Ω(PH , Q)] ,

where Ω(x, y) , exp

(
−ηd

l
0(ξy+σ2)
θ0(x−Pth)

)
1{x≥Pth}. Note that,

for s, t ≥ 0, the bi-dimensional Laplace transform of (PH , Q)
can be derived as

E [exp (−sPH − tQ)]

= E

[
exp

(
−
∑
k∈Φ

(
sβPAhkd

−l
k + tPAh̃kd̃

−l
k

))]

= E

[∏
k∈Φ

E
[
exp

(
−sβPAhkd−lk

)]
E
[
exp

(
−tPAh̃kd̃−lk

)]]

= E

[ ∏
k∈Φ

(
1 +

sβθPA
m(||xk||+ ε)l

)−m
×
(

1 +
tθPA

m(||xk − xds||+ ε)l

)−m ]
= Det (I + αGs,t)

− 1
α ,

where Gs,t is the kernel defined as

Gs,t(x,y)

=

√
1−
(

1+
sβθPA

m(||x||+ε)l

)−m(
1+

tθPA
m(||x−xds||+ ε)l

)−m
×K (x,y)

×

√
1−
(

1+
sβθPA

m(||y||+ε)l

)−m(
1+

tθPA
m(||y−xds||+ ε)l

)−m
,

for x,y ∈ R2. Then, the joint PDF of (PH , Q) can be obtained
by inverting the bi-dimensional Laplace transform according
to

f(PH ,Q)(x, y) = L−1
(PH ,Q)(x, y)

=

(
1

2πi

)2 ∫ c+i∞

c−i∞

∫ c′+i∞

c′−i∞
exp (sx+ ty)

×Det (I + αGs,t)
− 1
α dsdt,

x, y ∈ [0,∞), see [47]. Finally, we have

Pto = 1−
∫ ∞

0

∫ ∞
0

Ω(x, y)f(PH ,Q)(x, y) dxdy

= 1−
∫ ∞

0

∫ ∞
Pth

exp

(
−
ηdl0

(
ξy + σ2

)
θ0(x− Pth)

)
× f(PH ,Q)(x, y) dx dy.
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Note that the above expression is too complicated, i.e., it
contains the double integral operation and the integrand con-
sists of the bi-dimensional inverse Lapalce transform of the
Fredholm determinant. Therefore, identifiying an efficient way
to compute Pto for networks where Φ and Φ̃ are the same is
a challenging issue which is left for future work. �

APPENDIX F
PROOF OF THEOREM 5

Note that the CDF of h0 is given by P (h0 < x) = 1 −∑m0−1
i=0

1
i! (

m0x
θ0

)i exp(−m0x
θ0

). Then, in a similar way to (37),
the transmission outage probability is expressed as

Pto = 1−
m0−1∑
i=0

1

i!

(
m0

θ0

)i
E

[(
ηdl0
PT

)i
ΨQ,i1{PH≥Pth}

]
,

(38)

where

ΨQ,i = E

[(
ξQ+ σ2

)i
exp

(
−
m0ηd

l
0

(
ξQ+ σ2

)
θ0PT

)]
. (39)

Denoting by LX(s) the Laplace transform of a random
variable X , we have E

[
Xiexp (−sX)

]
= (−1)iL(i)

X (s) where
L(i)
X (s) stands for the i-th derivative of LX(s). Hence, by

Lemma 2, ΨQ,i in (39) becomes

ΨQ,i = (−1)i
∂i{E[exp(−µξQ)]exp(−µσ2)}

∂µi

(f)
= (−1)i

∂i{Det (I + αDµξPA)
−1/α exp(−µσ2)}

∂µi
,

(40)

where µ , m0ηd
l
0

θ0PT
and Ds is the kernel defined in (28).

Here, (f) follows from (11) and the fact that the α-GPP Φ̃
is stationary.

Then, combining (38) and (40), we have

Pto = 1−
m0−1∑
i=0

1

i!

(
−m0

θ0

)i∫ ∞
Pth

(
ηdl0

x− Pth

)i
(41)

× ∂
i{Det (I + αDµxξPA)

−1/αexp(−µxσ2)}
∂µix

fPH (x) dx,

where µx ,
m0ηd

l
0

θ0(x−Pth) . Unfortunately, it is difficult to iden-
tify a closed-form expression for the i-th derivative of the
Fredholm determinant. Therefore, as a method to evaluate the
i-th derivative of the Fredholm determinant, we employ the
i-th order central difference operator which computes the i-th
derivative of a function ϕ(x) as [48]

∂i{ϕ(x)}
∂xi

= lim
τ→0

1

τ i

i∑
j=0

(−1)i−j
(
i

j

)
ϕ

(
x+ τ

(
j − i

2

))
.

(42)

By substituting (42) into (41), we obtain (27). �

APPENDIX G
PROOF OF THEOREM 6

We first focus on the in-band transmission case (ξ = 1).
When the fading channels are constant, Q is equal to Q =
PAθ

∑
k∈Φ̃ d̃

−l
k and P̃to in (24) becomes

P̃to = P

(
PT θ0d

−l
0

Q+ σ2
< η, PH ≥ Pth

)

= P
(
Q >

θ0PT
ηdl0

− σ2, PH ≥ Pth

)
= E

[
P
(
Q >

θ0PT
ηdl0

− σ2
∣∣PH)1{PH≥Pth}

]
= E

[(
1− FQ

(
θ0PT
ηdl0

− σ2

))
1{PH≥Pth}

]
= P (PH ≥ Pth)

−
∫ ∞
c2

FQ

(
θ0 (x− Pth)

ηdl0
− σ2

)
fPH (x) dx, (43)

where FQ(x) is the CDF of Q which is calculated as

FQ(x) = L−1

{
1

s
LQ(s)

}
(x).

Here, LQ(s) stands for the Laplace transform of Q. From the
result in Lemma 1 and the stationarity of the α-GPP Φ̃, LQ(s)
can be written as

LQ(s) = E
[

exp
(
− sθPA

∑
k∈Φ̃

d̃−lk

)]
= Det (I + αEs)

−1/α
,

where Es is the kernel defined in (30). Combining the results
in (23) and (43), we obtain (29).

When ξ = 0, P̃to in (24) becomes

P̃to = P
(
PT <

ησ2dl0
θ0

, PH ≥ Pth

)
= P

(
PH < Pth +

ησ2dl0
θ0

, PH ≥ Pth

)
= P

(
Pth ≤ PH < Pth +

ησ2dl0
θ0

)
= FPH

(
Pth +

ησ2dl0
θ0

)
− P (PH ≤ Pth) . (44)

Plugging (44) into (23), we obtain (31), which concludes the
proof. �
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