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Abstract

A time reversible probabilistic representation of solutions of the (Euclidean)
Schrodinger equation in momentum representation is constructed using Lévy
processes and bridges. Each diffusion in the position representation is associated
with a jump diffusion in the momentum space. Our method can be looked upon
as a rigorous version of Feynman’s path integral approach. Several examples
are studied.
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1 Introduction and notation

Feynman’s path integral approach to quantum mechanics can be regarded as an in-
formal reinterpretation of this theory in intrinsically stochastic terms. More than 50
years after its creation [9], this approach has proved to be deep enough to provide
basic insights into an amazing list of physical models, far beyond what could be an-
ticipated originally. However, it is only “informal” because the probability measures
on the various path spaces underlying Feynman’s approach do not make any math-

ematical sense. Of course, a number of mathematical counterparts of such informal



probability measures have been known, and used with profit, for a very long time.
The basic one, for configuration representation, is as old as quantum theory itself: it
is Wiener measure, induced by Brownian motion. Its original (sample) path space,

also named after Wiener, is of the form:
Qo ={w e C(Ry;RY @ w(0) =0},

and its relation with quantum theory appears in the famous Feynman-Kac formula
[18]
0@ = [ X O + e HEVEO i apy o) (1)
Qo

where H = —%A +V is a lower bounded Hamiltonian observable on L?(R%), V(q) a
scalar potential, x* belongs to the dense domain D(H) of H in L?*(R), # is the Planck
constant, and Py, is the Wiener measure.

It is often more appropriate to consider path spaces on a compact time interval

[0, ] instead of R, for instance
0¥ = {w e O([0,4;R?) : w(t) =g}
Then the Feynman-Kac formula becomes

€)@ = [ e Ve apy o), (12)

Denoting by n; = e 7 y* the Lh.s. of (1.2), its r.h.s. is a legitimate path integral
representation of the solution of the Cauchy problem in L?(R%):
—h%E = Hy;
(1.3)
5 (q) = x*(q),
regarded as counterpart of Feynman’s one for Schréodinger equation [10], resulting in-
formally from the “Wick rotation” ¢t — —it in (1.3). The representation (1.2) is the
Euclidean (or imaginary time) viewpoint of Feynman’s formula for the wave function
1, too often considered as the only rigorous one. In relation with the physicists stan-
dard manipulations of paths integrals [26], however, the representation (1.2) is not

so convincing. Indeed, in Feynman’s framework, the configuration representation is
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only one of those where the path integral approach should apply successfully. What
are the associated probabilistic counterparts of path integrals in momentum or energy
representation, for example 7 We will really be able to claim that the mathematical
content of Feynman’s approach is under control when a general probabilistic construc-
tion valid in any representation, and providing at once the existence of all underlying
probability measures, will be available. This is, of course, still far from being the case.

Such a general construction would, presumably, also be a great advance to
Stochastic Analysis itself [22] since it would provide as well new relations (Euclidean
counterparts of quantum unitary transformations) between stochastic processes, or
measures, usually regarded as unrelated in probability theory.

A probabilistic counterpart of Feynman’s formula in configuration represen-
tation, distinct from (1.2), has been introduced in the mid-eighties (cf. [34], [6] and
references therein). It is founded on the elementary observation that the Feynman-
Kac formula is just a conditional expectation, a concept never defined in quantum
mechanics where only absolute expectations appear, and in a very specific manner.

Precisely, for the quantum system with the same Hamiltonian as before,

/A Yi(9),(q)dg, (1.4)

is interpreted as the (unconditional or absolute) probability measure, for this system,
to be in the Borelian A at time ¢, where 1) denotes the complex conjugate of the wave
function 1. Of course, the product form of the density in (1.4) is in fact independent
on the representation.

Since various probabilistic interpretations of the solutions of (1.3) as condi-
tional expectations are available, (1.4) suggests to look, among those, for a special
class of diffusion processes whose absolute probability density is the product of posi-
tive solutions n; of (1.3) and of positive solutions 7, of the equation

ﬁ% = Hny
(1.5)

adjoint to (1.3) with respect to the time parameter on a compact time interval, say

t € I = [r,v]. Such diffusions are indeed well defined and it can be shown that their
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qualitative properties are much closer to what is needed to understand Feynman’s
approach than those of (1.2), cf. [6], [7]. In particular, they are time-inhomogeneous
but still time-reversible. The above mentioned product form of their probability at the
time ¢ becomes a mathematical expression of their reversibility (and their Markovian
character, actually) since (1.5) can be interpreted as the time reversal of (1.3). In
fact, the qualitative properties of these processes are so close to the quantum ones
that they allow to understand, for example, fresh aspects of quantum symmetries in
Hilbert space, generally ignored [20], [6].

The purpose of this paper is to show that the structure of this probabilistic
construction® is preserved in momentum representation, suggesting that this structure
is, somehow, independent of the representation. If this is indeed the case, a global
mathematical picture of Feynman’s path integral approach should be accessible, with
a number of exciting consequences, both at the conceptual level of quantum physics
and in the infinite dimensional analysis context of (Euclidean) Quantum Field Theory.
In this infinite dimensional context, the need for such a unification has been known
for a long time in physics and in mathematics (cf., for instance, [26], [13]).

As observed by Feynman [10], § 5.1, it is expected that in momentum represen-
tation, the underlying stochastic processes belong to a special class of jump processes.
In other words, and in contrast with the configuration representation, the elements
w of the momentum path space cannot be made continuous, in general, but at best
continuous on the right.

The organization of our paper is as follows. Section 2 is devoted to a summary
of the relations between the Lévy-Khintchine representations, Lévy processes and
pseudo-differential operators. Then we shall see how to construct the two adjoint
equations corresponding, in momentum representation, to (1.3) and (1.5). What
plays the role of the Hamiltonian operator H in (1.3) and (1.5), is now a pseudo-
differential operator, denoted by H , whose explicit form depends, of course, on the
scalar potential V in (1.1).

Section 3 describes the construction of the new class of reversible diffusions

with jumps Z;, t € I (our “momentum process”) whose absolute probability density

*EQM, or Euclidean Quantum Mechanics.



at any time ¢ € I is a product 7);7); of positive solutions of the two adjoint equations
above. One way to describe them is to give the two stochastic integro-differential
equations solved by Z;, t € I, whose coefficients depend exclusively on the two positive
solutions 7} and 7 on I (Euclidean counterparts of the momentum wave function and
its complex conjugate). The dual aspect of this construction is fundamental. In
particular, two families of o-algebras (or “filtrations”) are necessary, here, for the
description of Z; in I = [r,v]|. Let us recall that traditional constructions of stochastic
processes require only one such filtration, the nondecreasing family (), generated by
Z, t € I, and describing its past (more precisely the set of all events whose occurrence
can result from the observation of Z;, » < s < t). The information about & is
contained in the solutions 7; of the Cauchy problem for H, given a positive initial
condition 7. But we will need as well a non-increasing filtration .%;, describing the
future of Z; on I. This will correspond to the information included in the solution 7
of the adjoint PDE, for a positive final condition 7),. Another aspect of this duality
can be expressed by saying that the resulting Markovian process 2, t € I = [r,v], is
built from the data of two positive probability densities at the boundary 07 of our
time interval, say m, and m,, instead of the traditional initial probability density and
a transition function. Our data of 7, is not contradictory, however, because Z; is
the Markovian representative of a wider class of processes built from {=,,m,}, called

Bernstein (or “local Markov”, or “reciprocal”, cf. [6], [7]) and satisfying the property
E[f(2) | PsV Z#, = E[f(2) | 25,24], s<t<u, (1.6)

for all f bounded measurable, where E[- | A] denotes the conditional expectation
given a o-algebra A. In other words, the knowledge of all the past &, and the
future %, of the process is irrelevant to compute the conditional expectations; only
the boundary values Z;, 2, matter. Property (1.6) is more general than the Markov
property but this one is sufficient for quantum physics, as shown by the product form
of the integrand of (1.4).

Sections 4 and 5 describe the dynamics of the momentum process 2;, t € I.
Here, again, we follow Feynman’s approach. His (unpublished) Princeton PhD thesis

was entitled “The least action principle in quantum mechanics” and this principle can



be regarded as a stationary phase method in infinite dimension [1]. In our probabilis-
tic context some methods of controlled Markov processes can be adapted to our pur-
pose. They provide a (stochastic) action functional, and in particular a Lagrangian,
whose critical points are precisely the diffusion process with jumps constructed in
Section 3. The method exploits the maximum principle for a class of PDEs which can
be interpreted as quantum deformations of the classical Hamilton-Jacobi equation in
momentum representation. The equations of motion of Section 5 are the ones solved
by the critical points of the action functional and provide the probabilistic version of
the quantum Heisenberg equations in momentum representation. In this sense, the
structure of the present construction is, indeed, the same as the one of our reinter-
pretation of Feynman’s approach in configuration representation. In particular, the
study of the symmetries of this framework (not done here) should have interesting
surprises in store as in the configuration representation [6], [32]. A number of explicit

examples illustrate our construction.

2 Lévy processes and pseudo-differential operators

We refer to the survey [15] and to the references therein for the notions summarized
in this section. Let V : R* — C with V(0) > 0 and such that e™*" is continuous
positive definite. The function V' admits the Lévy-Khintchine representation

Vi) =aticay+ gl = [ (€4 ila Bl - Dold),  (21)

R7\{0}

where k£ € R? is called the wave vector, a, ¢ € R, (-, -) denotes the scalar product in R
with norm ||-||, and v is a Lévy measure on R?\{0}, i.e. v satisfies [..(||k||*A1)v(dk) <
oo. See e.g. [3] and [28] for background on Lévy processes. A stochastic process &,
t > 0, defined on a probability space (€2, &2, P) is called a Lévy process if it has right
continuous paths starting from the origin and its increments are independent and

stationary:
a) P(é‘O:O):la

b) for all 0 < s < 't, & — &, is independent of &, C &2, the past filtration generated
by all &, r < s,



c) for all 0 < s <'t, & — & is equal in distribution to & _;.
The Lévy process & of characteristic exponent V'(q) is defined by
E [e_%<§t’q)} = e_%v(q), g € RY, (2.2)

so that, from now on, the Lévy process & will have the units of the momentum p = hik
and V', of course, the ones of a (potential) energy. Lévy processes form a large class of
Markov processes, including the two most commonly used in Mathematical Physics:
Brownian motion and the Poisson process.

The R%valued process &, t € R, admits the following canonical (“Lévy-It6”)

decomposition:
t t
& =ct+ W, +/ / ku(dk, ds) +/ / k(u(dk,ds) — v(dk)ds), (2.3)
0 J{k[>1} 0 J{lk|<1}

where W/ = #'/2W, is a Brownian motion with variance %, u(dk,ds) is a Poisson
random measure (or “canonical jump measure”) counting the jumps A&, = & — &,-

where &,- = lim, x4 &), namely
/

p(dk,ds) = Y Sag,s(dk, ds).
A& 0
Notice that the jump process in (2.3) is independent on W}/ The first Stieltjes integral
in the decomposition (2.3) describes the sum of all large jumps (of size bigger than
one) up to time ¢. It is called a “compound Poisson process” and is of bounded
variation, but may have no finite moments. The Poisson random measure p(dk, ds)

is determined by its compensator
v(dk)ds == E[u(dk,ds)]. (2.4)
As a function of ¢, the jump process
M, = / t / k(u(dk, ds) — v(dk)ds) (2.5)
0 J{[k|<1}

in (2.3) (the “compensated sum of small jumps”) is a Z;-martingale, i.e. it satisfies

E[|M;]] < o0, t >0, and

E[M; | Zs] = M, a.s., 0<s<t. (2.6)



Taking the (absolute) expectation, the martingale property (2.6) implies that t —
E[M,] is constant. A physically interesting example of martingale follows from the

definition (2.2) of the characteristic exponent of &;, indeed

exp (—%(iqgt + tV(q))) i, 27)

is a Z-martingale. It has been shown in Euclidean Quantum Mechanics that most
martingales play, in point of fact, the role of constant of the motion (cf. [6], [20] and

references therein).

Remarks

1) If A = 0 the only possible term of unbounded variation paths in (2.3) is the process

(2.5) of small jumps. A criterion for bounded variation paths is

/Rd(|k| A)w(dk) < oo, (2.8)

and, in this case, M; can be decomposed as

t
M, = / / ku(dk, ds) — ¢ / ku(dk),  t>0.
0 J{|k/<1} {lk|<1}

Condition (2.8) may be verified even when v(R?) = oo, i.e. when there are
infinitely many jumps in any compact time interval. It follows also clearly from

(2.1)-(2.3) that the paths t — & are continuous if and only v = 0.

2) A formal expression of the Lévy-It6 decomposition (2.3), used later on when v is

symmetric, is

t ¢
&=ct+ W+ / / ku(dk,ds) + / / ku(dk,ds), (2.9)
0 JRI\{0} 0 J{lk[<1}

but it should be stressed that although the integrals in (2.3) of large and small

jumps are convergent, the last term in (2.9) does not make sense in general.

3) From (2.1) and (2.3) it is clear that, in such a framework, the Brownian motion

W, (in the purely diffusive case) has the characteristic exponent V (¢) = 3||¢||*.

We could say as well that W} corresponds to V(g) = £||¢||? but the first version

is more natural for our purpose.



4) Compound Poisson process.

Let Z,, n € N, denote a sequence of independent identically distributed R%
valued random variables with common probability law pz on R%\ {0}, and let
N; be a Poisson process with intensity A > 0, independent of all the Z,,, n € N.
This means that Ny = 0 and

P(N;=n)= e, n e N.

Notice that the compensated Poisson process is N, = N, — \t, so that E[Nt] =0

and E[N?] = At. The compound Poisson process is defined as
gt:Z1+"'+XN“ tER_|_

It is a Lévy process with Lévy measure v = A\uz. The Lévy-Khintchine repre-

sentation reduces here to
Vi) =A [, (= Du(ah).
R4\ {0}

The paths of & are piecewise constant, and discontinuities occur only at random

(“waiting”) times
T,=inf{t >0 : & =n}, n>1,

with Ty = 0, and the jump sizes are random within the range of the Z,. For
example, reducing pz(dk), in the above Lévy-Khintchine formula, to d; (dk), we
recover the above elementary Poisson process & = N;, with jumps of size +1 at
each T,,. Those T,, are gamma distributed (see e.g. [19]), i.e. their probability

density has the form
—As ()\S)nil

(n—1)!

Ae 1 [0,00) (S) .

5) One of the main difficulties in handling Lévy processes is that they can easily be

of unbounded variation, i.e.

Z |AE,| = o0, a.s. (2.10)

0<s<t



However it is always true that

Z |A€S‘2 < 0,

0<s<t

a.s., and this second property allows to control the problems due to (2.10), see

e.g. [2].

Let now F and F~! denote the Fourier transform

1 i
Ful) = g [, (s, w e SR,
and its inverse
_ 1 i
F0la) = (g [ 000, v e SRY,

Given any (measurable) classical observable f : R x R? — R such that ¢ — f(p, q)

is continuous with polynomial growth, the pseudo-differential operator with symbol
f(p, q) is defined as

f(p,iiV)u(p) = W/}w ™59 f(p, q) F'u(q)dg

= F(f.,)F u(-))(p), peR’ ueSR.
In particular, the pseudo-differential operator V (iAV), for V' as in (2.1), satisfies

V(ikV)u(p) =

au(p) e, V) — - = [ (ulp+ k) = u(p) = {ik, V(o)L o).

Let (P;)cr, denote the Markov semi-group associated with the Lévy process (&)¢cr., -

This means that

Pu(p) = Efulp+&)] = E[(H-'—lg)(p n @)].
N (27rf12)d/2 /RdE [GXP (-%(Et,cﬁ - %(p, Q))] F~u(q)dq
1

= R /Rd exp (—%V(q) - %@, q)) F~lu(q)dg

10




= exp (—%V(iﬁV)) u(p), u € SRY, teRy,

hence the infinitesimal generator of the Markovian semigroup of (&)er, is —3V (V).

We are only interested in real-valued scalar potentials V' (g), i.e. the following condi-

tions are assumed to be satisfied from now on:
H1) ¢ =0, and

H2) v is symmetric with respect to k — —k.

According to (2.1)-(2.3), H1 says that our basic Lévy process has no constant drift

and from H2 its measure v is invariant under time reversal, as it should be for any

Hamiltonian observable in the class considered now. We shall also assume that the

parameter a is zero, i.e. V(0) = 0, without loss of generality from the physical point

of view, since the energy is defined up to an additive constant. Hence, we shall restrict

ourselves to V' compatible with the Lévy-Khintchine representation

1 —i
Vi) =gl = [ (e = 1u(a),
RH\{0}

and therefore for all u € S(R),

Vn9)ulp) =~ 2ulp) — [ (wlp 1) — u(p)(ah)

Notice that the conditions H1 and H2 imply that we could write as well
1 (o]
Vo) = glall = [ (cos a) = 1) w(at)

Then we would have

i? 1

V(ihV)u(p) = ——Au(p) — 5 /OOO(U(p + fik) — 2u(p) + u(p — fik))v (dk).

2 2

Consider any Hamiltonian H of the form

2
and the associated Schrodinger equation in the position representation

0P 1
ili—(a,t) = HO(q,1) = =S I*A®(g,1) + V(g) (g, ).

11

(2.11)

(2.12)

(2.13)



The Euclidean version of this equation results from the substitution ¢ + #t:

ﬁ%(q) = Hmy(q) = —%hQAnt(q) +Vi(gmlg),  telrv] (2.14)

The equation adjoint to (2.14) is given by the substitution ¢ — —it:

on;
ot

—h—"=(q) = Hn;(q) = —%ﬁQAnI(CI) +V(gni(e),  telrv] (2.15)

Let us define the Hamiltonian H = FHF ! in momentum representation, i.e.

Hip(p) = F(HF 'in)(p)
= S IplPip) + FVF 7))
= S IBla) + VEEv)a)
1, 9. n R .
= W) = 5 A0) = [ o+ k) = p)vldb). - (216

Using this, the momentum representation of the Euclidean system described by (2.14)

becomes )
Ok (p) = Hilp) = L1pl*(0) + V (19 )i, .
and 7, 7 are linked by the relation 7, = Fmn;. Similarly for equation (2.15):
12 (5) = i p) = L1157 0) + V659 o). (218

We call (somewhat improperly) integral kernel the kernel /A'L(t, p,u,dl),0 <s<t<u,
p,l € R%, associated with:

e O f(p) = [ f(Oh(t,p,u, dl).
Rd

In particular, for r < ¢t < v, we have

it (p) = e # D H i (p) = / iy (i)h(r,i, t, p)A(di),
R

and
i(e) = KOO p) = [ )iy, m)A ().
R

The following proposition shows how to compute the kernel ﬁ(t, D, u, dl) starting from

the law p; of the Lévy process &; at time t.
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Proposition 2.1 For any 0 <t <wv and p,l € R we have
h(t, p,u,dl) = a(u —t,p, 1) pu—t(—p + dl), (2.19)

where
a(u—t,pl)=FE [e—% =t e |12dr

gu—t = l - p] )
and p,—t(—p + dl) denotes the image measure of p,— under ! — l + p.

Proof. Since —3V (ifiV) is the generator of (&)c[o,.], We have from the Feynman-Kac

formula for Markov processes (see e.g. § II1.19 of [27]):

MV () = B [f(e,)e I I

& = p}
- E [f(p + &) fo"_t”p*&”%] , t<u,

where we used the stationarity of the increments of &. So, by definition of the integral

kernel A(t, p,u,dl) and the Feynman-Kac formula,
/ At p,u, dl) f (1) = e ¥ f(p)

Rd

= B (G +p)e s i e er]

= / E [f(gu—t +p)e Jo Tt o+ |Pdr | et = l] Pu—t(dl)
Rd

= / fle+1D)E [efﬁfﬂu_t”pﬁrn% | §ut = l] fu—¢(dl)
Rd

_ FOE [e—;—h I IperlPar | ¢ g p} fus(—p + dl).
Rd

Consequently we obtain (2.19).

We now consider various one-dimensional examples.

Examples

1. V(q) = (1 — cos(agq)), a > 0.
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This case corresponds to
V(dk) = %(5a(dk) +6_o(dR)).
n (2.1). By (2.16),
5 1, 1
Hu(p) = 5 lpl[*u(p) = 5A4u(p),

where A, denotes the discretized Laplace operator

u(p + @) = 2u(p) +u(p — a)

Agu(p) =

The random jump measure is of the form

p(dk, ds) =Y " 8oy (dk, ds) + S(_a,r2)(dk, ds)

n=1
where (T}))k>1 and (7)7)x>1 are two independent sequences of Poissonian waiting
times, with the same intensity 1/(2a?). The Lévy-Ito decomposition reduces
here to the compensated sum of jumps. After introduction of v and y as above

we find
& = / / (dk,ds) — v(dk)ds) = a(N} — N?),

where (N})ier, and (N?)icr, are independent standard Poisson processes with
intensity 1/(2a?) since (2.5) reduces to a sum, for £ = +a, of all jumps at the
waiting times 7%, 7 = 1,2, up to the time ¢. As an illustration, let us check the
property (2.4) of the compensator, in this special case. For any integrable f, we

have, since 7}y and 772 have the same distribution (cf. Remark 2):

e
_ //f oz (dk, ds) + //f(k)a_m (dk, ds)]

k=1

= (f(@)+ f(=a)) Y P(T; <)

k=1

14
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hence E[u(dk,ds)] = v(dk)ds, as claimed.

Here we can compute

e " f(p)=E [f (p+ (N} = N7))e oo ||P+a(N%—N3)|I2dT}

=Y (é)lﬁ—lf(p-i-a(k—l))/Ot/otk.._/ob/ot/osz'”/osz

,1>0

e~ Jo Ip+a(Sin il () -isy il NPT g e dr .. dt,

It is generally hard to solve difference equations like (2.16) for H given before. As
an illustration, let us observe that the solution of its time independent version,

namely the stationary equation associated with (2.17):
2

2 ouip) -

. 1(u(p +1) +u(p—1) — 2u(p)) = Eu(p),

2

is given, for u(0) = uy and u(1) = uy, by:

(—2)P* " (au; — uiva? — 4+ a’ug — augvVa? — 4 — 2uy)
(@ — Va2 — 4)p2\/a2 — 4
(=2)P*(aus + u1va? — 4 + a*ug + augva? — 4 — 2ug)
(a++Va2 — 4)P+2\/a? — 4
(a++Va? — 4P + (a — Va? — 4)PH! L= (a+2)(p*+8p + 12)
(—=2)7(a + 2)? (a+2)? ’

with @« = E 4 2 (computation done using the command rsolve in Maple).

u(p) =

_|_

_|_

. V(g) = 3llql*-

This is the case v(dk) = 0 in (2.1), and

fu(p) = HlplPu(e) - & du(p).

15



Clearly, the Lévy-Itd6 decomposition reduces to & = W/, i.e. the underlying
Lévy process is a Brownian motion (with variance 7). Notice that this case can

be regarded as the limit o \, 0 of Example 1.

3. V(g) =cllql|*, ¢ >0, a € (0,2].

Then

o(dk) = { 0 o wEen « = 2 (this is the case in Example 2)
wFadk, when o #* 2,
where ¢, > 0 depends on the value of o. The associated Lévy process is called
a “stable process of order o” (and « its “index of stability”). Recall that by
(2.2), the existence of moments of order up to n > 1 for & implies the n-th
differentiability of V(¢q) at ¢ = 0, the converse being true for moments of even
order, see e.g. [31], Theorem 1, page 278. In particular, a-stable distributions

on R have finite mean if and only if o > 1.

Those processes are important because of their rotational invariance (in di-
mension d > 1) and also because they are self-similar. Recall that a stochastic
process Z; is self-similar with Hurst index H > 0 if, Va > 0, Z,; and a® Z,, t > 0,
have same finite-dimensional distributions. For example, since W, = a'/2W,,
a > 0, (a scaling property which can be traced back to one of the “isovectors” of
the symmetry group of the classical heat equation (1.5) for the free Hamiltonian
H, = —%A, cf. [20]), the Brownian motion in (2.3) is self-similar, with Hurst
index 1/2. We refer to [8] for more about self-similar processes. Coming back

to the stable Lévy process &; of order «, the Hamiltonian (2.16) becomes

A

1
Hu(p) = 5 |lpl*u(p) - ch* A ?u(p),

involving the fractional power of the Laplacian, a highly non-local operator,

often linked with relativistic Hamiltonians, cf. [14].

4. V(q) = Z logcoshag, a > 0.

16



The Lévy measure is of the form

1 dk
V(dk) = 5oz b snh (ke /(2a))”

see e.g. [5], [12]', [29]. Notice that in the limit ¢ \, 0 this measure reduces to 0,

and the potential V' becomes the harmonic one of Example 2. The associated
process &, is called Meixner process ([23]), and its Lévy-It6 decomposition has no
diffusive part. Its expectation and variance are respectively given by E[&] =0,

E[&?] =t, t > 0. The corresponding Hamiltonian is given by

dk

Hu(p) = %HPHZU(p) - 2%2 /Rd\{o}(“(p + k) — “(p))ksinh(kw/(m))'

5. V(g) = 2 log(1 + a?¢?), a > 0.

The Lévy measure
1

a”|k|
is the one of the (symmetric) variance gamma process (cf., for instance, [21]),

v(dk) = e~ k/agk,

whose expectation and variance are, respectively, F[¢] = 0, E[¢}] = 2t, t > 0.
Notice that when the parameter a is large the exponential decay of v(dk) is
lower around zero and so the probability of large jumps increases. According to
Remark 2, the paths of the variance gamma process are of bounded variation.
This process has no continuous martingale component but is a pure jump process
with infinite number of jumps in any compact time interval. Of course the

associated Hamiltonian operator is given by

. o Ikl/a
utp) = 5lolPu) ~ 3 [ o+ k) — o) e

As in Example 4, this case reduces to the harmonic one when a ™\, 0.

In the sequel we make the absolute continuity hypothesis, for ¢ < u, p,l € R?
h(t,p,u,dl) = h(t,p,u,)A(dl), A(dp) — a.e. (2.20)

This condition is satisfied, for example, if:

fNote that in Eq. (2) of [12] as well as in Eq. (4) of [5], cosh should be replaced by sinh.
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- the law of &, t > 0, has a density with respect to Lebesgue measure, e.g. in the
case of stable processes (see Example 3) and for Lévy processes with Brownian

component, or

- ti—s(—j + dp) has a density with respect to A(dp), A(dj)-a.e. In particular this will
follow from Proposition 2.1 if ) is absolutely continuous under the translation

p+— j+p, A(dj)-a.e., and p;—, is absolutely continuous with respect to A:

fi-5(dp) = s (P)M(dp).

This is the case in particular for the symmetric Poisson process of Example 1
with A(dp) =07 Saxn(dp).

Note that we have h(s,j,t,p) = h(t,p, s, j), since H that is symmetric with respect
to A

3 Momentum representation and Bernstein-Lévy
processes

This section summarizes the existence results for Bernstein processes established in
[24]. Let 7,7, : R? — R, be two A-a.e. strictly positive initial and final conditions
of (1.3) and (1.5), respectively, such that for some ¢ € I = [r,v], and therefore for any

such ¢,
[ it @iop) = 1. (3.1)

As explained in the introduction, this relation will be interpreted as a Euclidean
version of Born’s probabilistic interpretation of the wave function in momentum rep-
resentation. More precisely, and since no specific relation between 7; and 7, is needed
for the last identity to make sense, (3.1) will be regarded as the Euclidean counterpart
of the time invariance of any transition amplitudes in Feynman’s approach. So the
following result shows, in particular, that (quite in contrast with the quantum case !)
this Euclidean (Born) probabilistic interpretation of the wave function in momentum

representation is mathematically justifiable:
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Theorem 3.1 ([24]) There ezists a R*-valued process (2;)icjr,o) whose probability den-
sity at time t with respect to X\ s precisely given by the product

This process (ét)te[v‘,v] 15 both forward and backward Markovian, with forward transition
probability kernel, forr < s <t <wu <wv and j,p,l € R?, given by

7 (1)
7¢(p)

and backward transition probability kernel

ﬁ(t’p7 u7 l) = il(t’p7 u’ l)’ (3'2)

p(s,4,t,p) = —<h(s, 4, t,p). 3.3
( ) ) ( ) (3:3)

In particular, the initial and final laws of (Z;):c[r are of the form
T (di) = 0:(9)77 (1)A(di) and 7, (dm) = 7 (m)7; (m)A(dm).

In fact, if h(s, j,t,p) is continuous in (j,p) and strictly positive for all 0 < s < ¢,
Theorem 1 of [4] (see also Theorem 3.2 of [17], and Theorem 3.4 of [34]) state that
given any two strictly positive probability densities (i) and m,(m), it is indeed

possible to find two strictly positive functions 7,7, : R¢ — R, such that
T (i) = (D) (@),  mo(m) = 0y (m)i;(m).

A posteriori, 7 and 7, can, therefore, be interpreted as (positive) initial and final
boundary conditions of the two underlying adjoint equations (1.3) and (1.5). The
resulting process (2:):c[r0] is a (Markovian) Bernstein process (cf. [7] for example).

As observed in (1.6) this means in particular that
PGiedp| P,V F.) = Pa €dpl i, ),

and that the joint law P(Z, € A, 2, € B), for A, B two Borelians of R¢, has the

special form

P(z, € A, 2, € B) = /AXB e (i)h(r, i, v, m)h,(m)A(di) A(dm).
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Conversely, we also have a uniqueness result, i.e. if (2;);c[,] is @ Markovian Bernstein
process with Bernstein kernel h(s, j,t,dp,u,l) = P(%, € dp | 25 = j,2, = 1) (cf. [7],
[24]) such that

h(s, j,t, dp, u, (s, j, u, 1) = h(s, j,t, p)h(t, p, u, ) A(dp),

s <t<wandj,p,l €RY then there exist positive density functions 77 (i) and 7, (m)
such that

P(z, € A, 2, € B) = / e () h(r, i, v, m)7, (M) A(di) A(dm),
AxB

see Theorem 7.1 in [24]. The processes (Z;)ic|ry resulting from the construction of
Theorem 3.1 can be regarded as generalizations of the usual concept of Markovian
bridges (cf., for example, [6] in the more familiar case of diffusion processes), which
corresponds to Dirac boundary conditions at the boundary of the time interval [r, v].
In contrast, here, we allow for any (A-a.e. strictly positive) probability densities
and m,. We shall give a description of Markovian bridges of Theorem 3.1 in terms
of forward and backward stochastic integro-differential equations driven by the Lévy
process (& )iefr,0) of § 2. We assume that the conditions given in page 434 of [16] are
fulfilled:

H3) the functions

(t,9) = fa (LA IRI%) 22EE w(dk),

7t(p)

(t:2) = Jw<n kmiﬁﬁp) v(dk),

(t,p) = Vlogn(p),

A*) as well as

(t,p) = [ra(1 A ||K|? )M (dk),
(oK) i
(8,0) = [y Ky P v (dR),

(t,p) = Vlogn;(p),

are bounded on compacts of R, x RY,
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Let us recall that, for stochastic equations, the analog of classical solutions of integro-
differential equations is called a strong solution (in this case the solution is a process).
It requires, indeed, strong regularity conditions on the coefficients of the equation,
for example Lipschitz conditions for stochastic differential equations. When more
general coefficients are needed, there is a concept of weak solution, where one looks
for a unique process with the proper set of finite-dimensional distributions (cf. [16]
for instance). Then the solution is a probability measure. Let z;,-, resp. z+, denote

the left, respectively the right, limit of z; at ¢ € [r, v].

Proposition 3.2 The process (2t)t€[m,] 1s solution, in the weak sense and with respect
to the forward filtration ()i, of
dz = dW]' + / ku(dk, dt) + hV log (2~ ) dt, (3.4)
Rd
under a probability P for which W} is a (forward) Brownian motion with variance f,

and p(dk,ds) is the canonical point measure with compensator m(:t(;ﬁk (dk)dt.

In terms of backward differentials, (2;):c}rv) solves weakly, with respect to the decreas-

ing filtration (%;)c[r):
d.5, = W + / ki (d, dt) — BV Tog i (301 )dt. (3.5)
Rd

where W/* denotes a backward Brownian motion with variance #, and . (dk, dt) is
the backward Poisson random measure with compensator mfft(% v(dk)dt. In (3.4)-
(3.5), (2t)tefr,v) represents the process (associated with our system in the momentum
representation) whose probability density is of the form p;(p), as in Theorem 3.1. Let

us define for f € S(R?) and g : R* — (0, 00) the integro differential operator L, by

g(p + hk)
9(p)

£f0) = 5500+ 5 [ (Fo+ k) = 1(2)

v(dk) + 1i(V log g(p), V f(p))-

(3.6)
The proof of Proposition 3.2 relies on the following lemma, (cf. [24]), which shows
that the process (2;)icr constructed in Theorem 3.1 has respectively L; and —Lj-
as forward and backward infinitesimal generators. The knowledge of the generators

of (%)iesr provides the forward and backward representations (3.4), (3.5) of (2¢)ies
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as weak solutions of stochastic integro-differential equations, using Theorem 13.58,
Theorem 14.80 of [16], p. 438 and p. 481, and references therein.

Proposition 3.3 The kernels p(t,p,u,l) and p*(s,j,t,p) defined in (3.2) and (3.3)
satisfy the partial integro-differential (Kolmogorov forward or Fokker-Planck) equa-

tions
op .
ot p.u 1) = (La)]D(t,p,u 1) (3.7)
where 1 denotes the adjoint, L;, is the forward generator given by
h 1 e (p + Rk .
Ly f=-Af(p)+ —/ (f(p+ tik) — f(p))MV(dk) + 1i(V log i (p), V£ (p)),
2 A Jga 7 (p)

(3.8)

and

Ak

p . N .
g(sajutup) = _(Eﬁ;);p(87jatap)a

where — Ly is the backward generator given by

~Lyf ==5AF0) -y [ (k) 1) TEE ) -1V 0g ), VS 0),

(3.9)

Let the forward and backward derivative operators D, and D} be defined informally,
on two appropriate domains of real-valued functions f, in terms of the Hamiltonian
H and two positive solutions 7, 7 of (2.17) and (2.18) by
1 /0 1.
Dif=—|=——-=H)(n
tf e <8t % >(77tf)
and
1 /0 1.
Dif=—|=4+=H| @Y.
Proposition 3.3 is proved using the following decompositions of D, and D;, which are
straightforward to verify:
0 0

Dt:a-i_[’ﬁt and D:ZE—E,};

Let us observe that for constant f, in particular, these two derivative operators are

(3.10)

zero by definition. But many non trivial functions f : R? x I — R in these domains
have the same property. For instance let (7};):c[r) denote a positive solution of (2.17)

on I, distinct from (7);)¢cfrv)- Then clearly we have D,f = 0 as well when f = /7.
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4 Variational characterization and Lagrangian

In this section we use the approach to stochastic control for jump processes of [30],
[11], to obtain a variational characterization of the Markovian Bernstein processes
(or reversible diffusions with jumps) considered before. We consider the stochastic

control problem infg J (¢, p; S) with action functional

10,8 = B | [ 206060, 805 = miogan(e(0) (41)

where E(;p) denotes the conditional expectation given {2; = p}, the infimum is taken

on the set of control variables made of all measurable scalar functions S. : R? x R, —
R, and the integrand Z(p, S’s) is defined as

LB,5) = Lo, mSep) + e OISO/

I TRV TRV
= SlolP+5 |[vS.0)|
L (e (=) i)
Rd h
1 1oa, |2 Sy(p + tik) — S, :
= §||p||2+§HVSS(p)H +/Rd ( h) () ¢ e(Se (k) =Ss@)/hyy (g ;)
_ / (e<és<p+nk)—és<p))/h_1) v(dFk).
Rd

In particular, when S, = hlogns,

L(p,liloghy) = Ly, logi(p) + —— Hi(p)
7 (p)
h O
= #L; log,(p) + ~ 5
Y gnt(p) nt(p)at (p)
. 0 .
= HhL;, logi(p) + h& log 7:(p)
= fD;log7(p).
In other terms we have
~ 1 2 ﬁ’Q ~ 2
ZL(p, hlogn) = §||p|| +3IIV10gm(p)||
X aw(p + fik
+ [ oo+ )~ 10g (o) M
Re nt(p)
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_ ne(p + hk) — 7 (p) y
/Rd 7 (p) ().

Now let us observe that

R i (p + hk
Dyp = Ly,p = hV log:(p) + / kw
Rt M(p)

From now on, we will denote by L(p, D;p) and call Lagrangian, the integrand £ (p, #ilog 7;)

v(dk).

of the action functional, when re-expressed in terms of the variables p, D;p. We have,

using (2.12) and the expression of Dyp:

1 \47 VGRV)h, B2 AD, B2 ||V
L.Dp) = o+ (S Dp) 4 L PSR TE V0
. . n.(p + hk

+ / (log 7 (p + Bik) — log 7,(p)) MV(dk)

R4 nt(p)

. ne(p + hk

-1 [k Viogin) WO LR iy,

R4 ﬂt(p)

By Taylor’s formula applied inside the integral term we obtain the Lagrangian

1 Vn V(ihV)nh
Lo, D) = Sz +5{ % Dy + YAV
2 77 e

h2 R
+2 A login(r) / (LRI + o)
R

i (p + hk)
Mt (p)

Let us observe that the action functional for S, = hlogm, can be expressed in various

v(dk).  (4.2)

equivalent ways:
16.5:8) = B | [ DS - niogi(a(0)]

= Eup /.,2’ (25), ds] — Eqp) [R1ogy(2y)]
~ Su(p) — ilogu(2(v) |

0dS,(2,) — Tilog (2 }

= Eup /t s(25) o dZs + //Rd 4 hk) — S,(2,- ) pldk, ds)

Il
IS
5

C/Q)
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+/ 2S’s(éjs)ds—f’zlogﬁv(é(v)) ’
; Os

where we have used the extension of It6’s calculus to our diffusions with jumps. The
symbol o denotes the Fisk-Stratonovich differential (cf. e.g. [25]). Let us show that
the diffusion processes with jumps constructed before can also be regarded as minima
of a stochastic action functional associated with the starting H. The infima are taken

on all measurable functions S’t ‘R4 > R.

Proposition 4.1 The dynamic programming equation with final boundary condition

0A ) A .
a—tt(P) + min (ﬁexp(g/n)At(p) + L(p, St)) =0, A, =—filog, (4.3)

associated with the action functional (4.1) is equivalent to the Hamilton-Jacobi-Bellman

equation
0A,; 1, o R 1 9
— = —= — —-AA —||VA 4.4
5 (P) 5 lIPl" = 5AA(P) + 5 VAP)] (4.4)
—h= N (Au(p+hk)—Au(p)) _ { A = —FKlogh
+/Rd(e Ydv(k), v hlog,,
with solution Ay = —hlogm, r <t < wv. Moreover, in (4.3), the minimum in S, is

attained on S; = hlog ;.

Proof. Given S; and A, two suitable functions, let us define

F(p,k) = Ailp + hli? - At(p)e(gt(p—f-ﬁk)—ét(p))/h + Si(p + ﬁl;) — Si(p) (St (p+1ik)=5e(p)) /1
— (St t1k)=54(p))/h | o~ (Aelp+hk)=As(p))/h

We have

LD, 5)) + Loyp(s,m Ar(p) — @M@/
= Lopsym(Ap) + Si(p)) + eSO/ SN _ M@/ fre=A)/n
t

exp

_ ﬁA/ﬂnMWﬂ0+;W%Mﬂ+V$@W2

zﬁA}@$Mﬁx

Now, for all a > 0,

min(za +aloga —a+¢e %) =0,
T€R
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hence taking z = (4,(p+#k)—A,(p))/hand a = eS:@HR=5E)/A we have F(p, k) > 0,
and

L0, 50) + Loy, mAi(p) — MO/ e 4@/ > g,

the minimum (zero) being attained for S, = —A4,, i.e.:

Hé’in (L(p7 gt) + Eexp(ét/ﬁ)At> = eAt(p)/ﬁﬁe_At(p)/ﬁ-
t

The dynamic programming equation (4.3) can be formulated as

0A -
8—tt + eM/Me=Adh —
and its solution is A; = —fhlog ;. Finally, from the relation

1 1
F0A, = —eAt/R A A/ | = VA,
we have

Ai(p)/h FT o —At(P) /R

_ A/ (%”p”zem(m/n B A /

5 Rd
1L, o h 1 2 —h1( Ay (p+hk)— A (p))
= Slpll"+ 584 — S[[VA" = [ (e w W —1Dv(dk),
2 2 2 e

( —(As(p+hk)—At(p)) /h) (dk))

which yields (4.4). O

In the backward case we consider the action functional time reversed of (4.1):
J(t,p; S*) = (t.p) [/ Z(3(s),5%)ds — hlog i (2(r))| - (4.5)
Similarly when S, = hlogn: we verify that
Z (p, hlogi);) = —hD; log 1 (p),
where we have used (3.10) and the backward generator (3.9). Then
J*(t,p; S*)
= B | [ D830 + hlog2(0)
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— B [S1(5) — 5i(2) - filog i ()]

= —Eup) [ /T t odSy (%) + ﬁlogﬁ:(i(f))]

— _Euy, [/ VS (5,) 0 d.2" +/ /Rd (3¢ + Fik) — 8 (24+)) pa (dk, ds)
/ 9 8 (27)ds + ilog i (5(r ))]

= —Euyp) [ / VS*(2,) o d,2* + / t /R ) S*(24+ + Bk)v(dk)ds

/ —8*(5)ds + hlogdr (3(r ))}

With respect to the underlying filtration .%,;, the Lagrangian now takes the form

1 \V4 V (ihV)nF
L, Dip) — —||p||2—ﬁ< fZﬂD*} | Vnv)ag
Tt T
K2 nt(p + hk
Ny 1+ K2 + o) EL TR iy, (a6)
R4 m(p)

and the following backward version of Proposition 4.1 holds true:

Proposition 4.2 The backward dynamic programming equation with initial boundary

condition
814* . * O * Ak
at ( ) + I%}(n (‘Cexp(s‘*/ﬁ,)At (p) + L(pa St)) = 0’ Ar = _hlogn'r’ (47)
t

associated with (4.5), is equivalent to the backward Hamilton-Jacobi-Bellman equation

047 Ly s Lo
L) = Sl + 5A4 ) - SIVA)] (43)

_/ (e,ﬁ—l(A’t*(p—Fﬁk)*Az(p)) —1)dv(k), Ay =—hlogny;,
Rd

with solution AF = —hlogi;, r <t < v. Moreover, in (4.7), the minimum in S} is

attained at S¥(p) = hlog# (p).

Proof. Of course, Propositions 4.1 and 4.2 will not be formally used. The key point
is that 2;, t € I, can be regarded as critical point of a stochastic variational principle.
Proposition 4.1 is sufficient since Z;, ¢t € I, is time reversible in the above mentioned

sense. But it is illustrative to show that its critical property takes two slightly different
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forms with respect to the filtrations &; and .%;. So we summarize the .%; proof only

for completeness. We first show that

min (,c* A5 (p) + L(p, 5*;)) — A Ai I, (4.9)

5,: exp(.SA't* /h

and the minimum is attained for S = A?. Let

Fp k) = eSio-to-somAp+ ﬁ’;i) — AP i o-no-s;onm L@+ ﬁ’;i) — fi(®)
_ oSt R -S; @/ (45 (o) AT D)/

We have

L(p, 8) + Ll 0y Ak (p) — O e 410/

1 ~
= i [ PRl + 5V A ) + VS )
R4

> h | F(p,k)v(dk),

Rd
Proceeding as in the forward case we obtain (4.9) and the dynamic programming

equation (4.3) becomes
04
ot
with solution Af = —filogn;. Finally we have

AL O)/h T o—4i o)/

Lo azwn (72 A —az)/m
= Ll - esionm (T p-siom
2 2 Rd
K

]. * 1 % _s—1 * _A*
= §||p||2 + §AAt (p) — §||VAt > - /Rd(e AHALHR=AL @) _ 1)y (dk),

(e~ AipHhk)/h _ =47 (”)/ﬁ)l/(dk))

which yields (4.8). O

5 Equations of motion

We now derive a.s. equations of motion associated with (2;);c;. Here, (2)scpr0) rep-
resents the process associated to our system in momentum representation, and the
expectations of the almost sure equations of motion can be interpreted as the proba-

bilistic counterpart of the Ehrenfest Theorem in quantum dynamics. The forward and
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backward derivatives defined before as the generators D, = 2 + Ly, and D = 2 — ;.

have natural probabilistic interpretations as the following limits of conditional expec-

t

tations, for f regular enough

Dy fi(2) = hg(l)E {fHAt(ZHztt) fil2) yt:| [dt—+ft( ) } (5.1)
and
Difle) =t b | MO ealesd | ] g | Ll z]. 62

where df+ f, +& f denote the right hand side and left hand side derivatives correspond-

e
ing to the formal limits of (5.1) and (5.2) when Planck’s constant 7 is equal to 0. Of
course, the expectation E denotes, here, the one with respect to the process z; solving
Equations 3.4 and 3.5. The definitions (5.1) and (5.2) provide a probabilistic inter-
pretation of M;, M; such that D;M; = 0 and D;M; = 0. Indeed, when this happens

we have clearly for all At > 0,
E[Myynt(Zera) | Pi] = My(%), and  M[(2) = E[M_5;(Ze-at) | F]-

As indicated after (2.6), the first condition means that M;(Z;) is a &;-martingale and

the second that M} (Z]) is a #;-martingale. For instance, fi(%) = Zzgg, as defined

above, is a &;-martingale.

The relation with quantum dynamics is clearer when expressed in terms of (absolute,
in contrast with conditional) expectations. For this purpose it is sufficient to observe

that

Corollary 5.1 Under (absolute) expectations and when f;, Dyf, D} f are integrable

we have
E[ft( )] = E[D.fi(2)] = E[D; fu(2)], f € SR™).

Proof. 'This follows from the Ito formula, written as

dfi(2) = Dyfe(2)dt + (Vfi(%), AW

n /R (il + k) = fy(2)) ( (dk, dt) — G £ Tk)

A (dk)dt) ’
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and

d.f(z) = Difi()dt+(Vf(&),dW/")

+/Rd(f(2t+) — f (3 — FK)) <u*(dk,dt) - %u(dk)dt) .

g

In the next proposition we make the assumption:
/ Ikl (dk) < oo, (5.3)
Rd
and let Dypj,—;, be denoted by D, z;.

Proposition 5.2 The process (2:)ic[ro], critical point of the action functional intro-

duced before Proposition 4.1, solves the almost sure equations of motion

L/ AWA R
Dy (ﬁ Aﬁt) (2) = &, (5.4)
Ur
where V denotes V, except if otherwise specified, and
. 1 . . . a

Proof. By (2.11),

1 ;
—iVyV(g) = —ig + - / ke  #4R)y(dk).
h Rd
Therefore
(=iVaV )R i) = RVi(p) + [ il -+ k) k).
R

On the other hand we have
A e (p + hk)
Dip = Lpp=hV1 hk————
tD mp Ognt(p) + /Rd ﬁt(ﬁk) v
which proves the first relation (5.5). Concerning (5.4) we have:
Vi 1 /0 1- . 1 0 )\ .
Dy (h =—|=—-—=-H) = —V\|h=——-H =p.
t( ﬁt)(p) ﬁt<8t % )(Vm) p+ﬁtV<at )m p

This relation can also be obtained by differentiation with respect to p of the heat

(dk)

equation for 7:
OV
at

o 1. 1.
%(p) = _VHiy(p) = #Wm(p) + p.

(p)=V
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In the backward case, similar calculations yield
B ]' . I7\(: Ak (A * v i 2 2
Diti= S (VTN )i, DF () () = .
M (2) U
Since D, — —Dj and p — —p under time reversal, it is clear that these equations are

time reversed of (5.5). The (forward) analog of the Newton equation in momentum
representation becomes
Vﬁt) 5 1 . o A [
DiD; | — ) (2) = ——(—tV V) (ihV)n(2;).
D0 (S () = - S (T (2
If V(q) = ¢*/2 we obtain D;z, = hV log7, and D;D;%; = 2,. This is the purely diffu-

sive case, already known [6].

Let us come back on the interpretation of what we found and, in particular, on its
associated classical limit. In position representation the classical action functional
S should be regarded as the integral of the (“reduced”) Poincaré-Cartan differential
form:
Gq = p(g, t)dt — h(q, p(q, t))dt

where p = p(g,t) denotes the momentum expressed as a function of the position and
time and h = h(q, p(q,t)) the Hamiltonian observable. This means that the underlying
flow is the one associated with the first equation of Hamilton, for our elementary class
of h(q,p) = @ + V(q), reduced to the g-variable:

do _

dt
The second Hamilton equation follows from the integrability condition of @,. For

Lipschitz p, let s — ¢(s) be the solution of (5.6) such that ¢(¢) = ¢. Let us denote by

p(g;1). (5.6)

il ot W, the associated line integral. When it is locally univocal, this integral defines

the action functional, say S(g,t). Then S solves the Hamilton-Jacobi equation:

oS
[ h pr—
5t + h(q, V4S) =0,

whose V, coincides with the above second Hamilton equation. For the momentum
representation, the construction is symmetric. Instead of @, we have to consider the

reduced form

@p = q(p, t)dp + h(q(p,t), p)dt
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whose underlying flow is the one associated with the second equation of Hamilton
reduced to its p-variable:
dp

i ~VV(q(p,1)).

~ p,t
S(p,t) = / @p

makes sense, so does the Hamilton-Jacobi equation:

When

oS

o Th(=V,5,p) =0 (5.7)

whose gradient V,, coincides with the integrability condition of w,.

Let us specialize this to our class of elementary Hamiltonians which are classical limits

of (2.13). Then the action function becomes

A

56.0) = [(alpl).5)F + alp(s),5).p)ds

_ / (%pZ —V,8.5(s) + V(—Vﬁ)) ds
= [ L), pl)ds, (5.8)

whose integrand defines the Lagrangian L of our system. So, for the elementary class

of Hamiltonians H considered here, the equations of motion reduce to

d ~

S(-V,8) = (59
dp _ N

prie VV(-V,5S).

Now let us compare this with the Lagrangian and a.s. equation of motion obtained
for our class of time-reversible processes Z; with jumps. First notice that, in the above
classical summary, the parameter is the usual (“real”) time. In order to obtain the
Euclidean counterpart we have to introduce the “Wick rotation” t — —it seen in

Section 1. It is easy to check that (5.9) can be transformed into

d,.o o .
a(zvpﬁﬂ) =ip (5.10)
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d .
id—’t’ = —V,V(iV,%)

where . = & (p, t) solves the Euclidean counterpart of the Hamilton-Jacobi equa-
tion (5.7). Comparing with (5.5), those equations can be regarded as the quantum
deformation of (5.10) when the smooth trajectories ¢ — ip(t) are replaced by the very
irregular ones of our diffusion process with jumps Z;. Since the classical (strong) time
derivative does not make sense anymore, it is natural to replace it by its probabilistic
counterpart D; (5.1) or, regarded as an operator, by (3.10). The role of the classical ac-
tion function S(p, t) is manifestly played, in (5.5), by A;(p) = —#hlog#(p) solving the
Hamilton-Jacobi-Bellman equation (4.4). In particular, it is clear from our first equa-
tion (5.5) that the position observable is now proportional to AV log 7j;(p) = —V A;(p).
So the Hamilton-Jacobi-Bellman equation (4.4) is a quantum deformation of the Eu-
clidean version of the classical equation (5.7). The integrand of the action functional,
i.e. our Lagrangian L(p, D;p) defined in (4.2) of Section 4, is also a (Euclidean) defor-
mation of the classical integrand of (5.8). The main deformation term, of order o(#?),
involves an integral with respect to the Lévy measure v(dk). This “small” term is,
however, necessary to validate the variational characterization of the process z; given
in Section 4. Notice that, because of the relation between the action function and the
positive solution 7 of (2.17) (cf. Proposition 4.1) A;(p) = —hlogn:(p), and also the
fact that the underlying Lévy measure v(dk) does not depend on the Planck constant
h, the limit 7 — 0 of the probabilistic construction is not trivial. In particular, the

first term under the integral of the Hamilton-Jacobi-Bellman equation (4.4), which

it (p+hk)

coincides with the factor “*:
7it(p)

in the integral term of the forward generator Lj;, of

2, reduces to
/e_ﬁ<’77zt(p)’k>u(dk) — /e<v‘§(”)’k>l/(dk) E/e_@’k)z/(dk),

namely the Laplace transform of v (or Fourier transform in imaginary time). Indeed,
both quantically and classically, the position ¢ is proportional to the gradient of the
action. Using this and the representation (2.11) of the classical potential V', one can
reinterpret our first order classical equation of motion (5.10) for p as the solution of a

deterministic variational principle, limit of the one given in Section 4, whose “control”
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u(k) becomes optimal precisely when u*(k) = e~{@*). Of course, then, the associated
classical Lagrangian reduces to the Euclidean version of the one in (5.8) or, equiva-
lently, to the classical limit of L(p, Dyp) as given in Section 4, for the semiclassical
state 7;(p) = exp—%&%(p). However, since this deterministic variational principle
does not seem to have an obvious physical interpretation it will not be given here (cf.

[30]).

A number of the properties of these processes remains to be investigated. Many
of those known to hold for pure diffusions should survive for the much richer class
of diffusions with jumps considered here. In particular, a systematic study of their
symmetries, in term of a Noether Theorem, on the model of [32], [33], is possible and
should provide further informations on the general structure of the construction. A
more geometrical approach to these symmetries [20] can probably be extended as well
to this class. Moreover, the almost sure equations of motion could be more elegantly
deduced from an appropriate generalization of the stochastic calculus of variations

used in [7].
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