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Abstract

We develop an integration by parts technique for point processes, with ap-
plication to the computation of sensitivities via Monte Carlo simulations in
stochastic models with jumps. The method is applied to density estimation
with respect to the Lebesgue measure via a modified kernel estimator which is
less sensitive to variations of the bandwidth parameter than standard kernel es-
timators. This applies to random variables whose densities are not analytically
known and requires the knowledge of the point process jump times.
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1 Introduction

Kernel estimators for the density φF of a random variable F from a random sample

{F (k)}k=1,...,N of F have been introduced in [17], [14]. More precisely in [17], finite

difference estimators of the form

φF (y) ≃ 1

h
E[1[−h

2
, h
2
](F − y)] ≃ 1

2Nh

N
∑

k=1

1[−h,h](F (k) − y), y ∈ R+, (1.1)
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have been constructed, and extended in [14] to estimators of the form

φF (y) ≃ 1

Nh

N
∑

k=1

K

(

F (k) − y

h

)

, (1.2)

where K : R → R+ is a kernel satisfying

∫ ∞

−∞

K(x)dx = 1.

The performance of kernel estimators is dependent on the choice of the bandwidth pa-

rameter h, whose optimal value is function of the number N of samples, i.e. it should

decrease as N increases. It is known since [17] that the optimal rate of decrease of

h in the mean square sense is N−1/4 for the finite difference estimator, while in [14]

optimal values of h have been obtained for kernel estimators, in terms of N and K.

On the other hand, integration by parts and related Malliavin calculus techniques can

be used to represent the density φF of F with respect to the Lebesgue measure as

φF (y) =
∂

∂y
P (F ≤ y) = E[W1{F≤y}], (1.3)

under certain technical assumptions, cf. e.g. § 2.1 of [13] on the Wiener space, where

W is a random variable called a weight. This provides another way to estimate the

density of F with respect to the Lebesgue measure by Monte Carlo methods: denoting

by {F (k)}k=1,...,N a random sample distributed according to the law of F we have

φF (y) ≃ 1

N

N
∑

k=1

W (k)1{F (k)≤y}, (1.4)

where {W (k)}k=1,...,N denote independent random samples of W . The interest in (1.4),

compared to kernel estimators, is that it is independent on the value of a bandwidth

parameter. Note however that in addition to the samples of F , this estimator requires

the knowledge of the random path of the underlying stochastic process in order to

evaluate W . On the other hand, the integrability of the weight W in (1.3) entails the

existence of the density of F with respect to the Lebesgue measure, thus excluding

discrete random variables from this approach.

More generally, the Malliavin calculus has been applied to sensitivity analysis in

continuous and discontinuous financial markets, cf. [10], [9], [11], [7], [6], [2], [1]
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and in insurance, cf. [16], to express derivatives of the form
∂

∂ζ
E[f(Fζ)] as:

∂

∂ζ
E[f(Fζ)] = E[Wζf(Fζ)], (1.5)

where (Fζ) is a family of random variables in ST depending on a parameter ζ ∈ R.

Here, Wζ is a weight independent of the function f , which need not be differentiable: in

particular the estimation of density (1.4) corresponds to f = 1(−∞,0) and Fy = F − y,

with W independent of y. Note that in mathematical finance, each value of the

bandwidth parameter h in the finite difference

1

2h
E[f(Fζ+h) − f(Fζ−h)]

yields a different estimate of the corresponding sensitivity (also called “Greek”), see

e.g. [5], p. 40, whereas (1.5) is again independent of a bandwidth parameter.

In Proposition 3.3 below we derive a general integration by parts formula for point

processes, extending the results obtained in the Poisson case in [3], [8], [15], [11], [16],

with potential application to sensitivity analysis and density estimation for stochastic

models in finance, insurance, and engineering. Using this integration by parts formula

we obtain an expression of the form (1.3)-(1.4):

φF (y) = E[W1{F≤y}] ≃
1

N

N
∑

k=1

1{F (k)≤y}W (k), (1.6)

for the density of a random functional F of a point process with respect to the

Lebesgue measure. This expression requires the knowledge of the characteristics (the

Janossy densities) of the underlying point process in order to compute the weight

W , while the density of F may be unknown or not analytically computable and thus

requiring a numerical estimation.

It turns out that the performance of the corresponding estimator (1.6) decreases when

y is large, in which case the term W1{F≤y} has a large variance. This problem is

tackled by a localization procedure, mixing (1.6) with a standard kernel estimate:

φF (y) =
1

η
E

[

K

(

F − y

η

)]

− E

[

W × f

(

F − y

η

)]

(1.7)

≃ 1

Nη

N
∑

k=1

K

(

F (k) − y

η

)

− 1

N

N
∑

k=1

W (k)f

(

F (k) − y

η

)

,
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where K is a kernel supported in [0,∞) and

f(x) = 1[0,∞)(x)

(

1 −
∫ x

0

K(y)dy

)

, x ∈ R.

As shown in Section 6, this estimator combines the advantages of Malliavin type es-

timators (1.6) and kernel estimators (1.2), in that it is little sensitive to values of

the bandwidth parameter h, while at the same time it does not present the above

mentioned variance problem. Actually, (1.7) recovers with a simple proof an analog

of Theorem 2.1 proved in [12] on the Wiener space. The optimization results of [12]

in terms of kernel K and bandwidth parameter h also apply here and are used in

numerical simulations, cf. Figure 6.3.

We proceed as follows. In Section 2 we review some properties of point processes, and

in Section 3 we establish the integration by parts formula (Proposition 3.3) which will

be our main tool for density estimation. In Section 4 we present an application of

the integration by parts formula to the computation of sensitivities, in particular for

functionals of the form

F =

∫ T

0

h(t)dXt, (1.8)

where h is a C1 function and

Xt =
Nt
∑

k=1

Yk, t ∈ R+,

is a compound log-normal renewal process with random marks (Yk)k≥1 independent

of (Nt)t∈R+
. These results are used in Section 5 to construct a modified kernel density

estimator. Simulations and comparisons of different methods for density estimation

are presented in Section 6 for functionals of the form (1.8) with h(t) = e−rt, t ∈ [0, T ].

Such functionals can be used to express risk reserve processes for insurance portfolios

in which the accumulated amount of claims occurring in the time interval (0, t] is

given by Xt, cf. e.g. [16].

2 Point processes

Let

Nt =

∞
∑

k=1

1[Tk,∞)(t), t ∈ R+, (2.1)

4



be a point process with increasing sequence of jump times (Tk)k≥1, generating the

filtration (Ft)t∈R+
on a probability space (Ω,F , P ). Set T0 = 0 and let the inter-jump

times of (Nt)t∈R+
be denoted by τk := Tk − Tk−1, k ≥ 1.

Definition 2.1. Let T > 0. We denote by ST the subspace of L2(Ω,FT ) made of

functionals of the form

F = f01{NT =0} +
∞
∑

n=1

1{NT =n}fn(T1, . . . , Tn), (2.2)

where f0 ∈ R and fn is C2 and symmetric in n variables on [0, T ]n, n ≥ 1, T > 0.

The set of F ∈ ST for which the expansion (2.2) is finite is denoted by Sf
T and is dense

in Lp(Ω,FT ), p ≥ 1. The expectation of F equals

E[F ] = jT,0f0 +
∞
∑

n=1

1

n!

∫ T

0

· · ·
∫ T

0

fn(t1, . . . , tn)jT,n(t1, . . . , tn)dt1 · · · dtn, (2.3)

where jT,n : R
n
+ → R+, n ≥ 1, are nonnegative symmetric functions on [0, T ]n called

the Janossy densities, and jT,0 ∈ R+, cf. [18], §5.3 of [4], and references therein. In

other terms we have

P (T1 ∈ dt1, . . . , Tn ∈ dtn, NT = n) = jT,n(t1, . . . , tn)dt1 · · · dtn,

0 ≤ t1 < t2 < · · · < tn ≤ T . We turn to some examples of point processes and their

Janossy densities.

Poisson processes

In the case of Poisson processes with arbitrary deterministic intensity λ(t) we have

jT,n(t1, . . . , tn) = λ(t1) · · ·λ(tn) exp

(

−
∫ T

0

λ(t)dt

)

,

i.e. for the standard Poisson process with intensity λ > 0 we have

jT,n(t1, . . . , tn) = λne−λT , t1, . . . , tn ∈ [0, T ].

Renewal processes

A point process (Nt)t∈R+
as in (2.1) is called a renewal process with inter-occurrence

time distribution function Z(x) and density z(x) if the random variables τk = Tk −
Tk−1, k ≥ 1, are independent and identically distributed with

Z(x) = P (τk ≤ x) =

∫ x

0

z(y)dy, x ∈ R+, k ≥ 1.
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Since the sequence (τk)k≥1 is i.i.d., for 0 ≤ t1 < t2 < · · · < tn ≤ T we have

P (T1 ∈ dt1, . . . , Tn ∈ dtn, NT = n)

= P (τ1 ∈ dt1, t1 + τ2 ∈ dt2, . . . , tn−1 + τn ∈ dtn, τn+1 > T − tn)

= z(t1)z(t2 − t1) · · · z(tn − tn−1)(1 − Z(T − tn))dt1 · · · dtn,

hence the Janossy densities jT,n(t1, . . . , tn) are given by

jT,n(t1, . . . , tn) = z(t1)z(t2 − t1) · · · z(tn − tn−1)

∫ ∞

T−tn

z(s)ds, (2.4)

for 0 ≤ t1 < · · · < tn ≤ T . The value of jT,n(t1, . . . , tn) on (t1, . . . , tn) ∈ [0, T ]n is

obtained by symmetrization:

jT,n(t1, . . . , tn) = jT,n(t(1), . . . , t(n)), t1, . . . , tn ∈ [0, T ],

where (t(1), . . . , t(n)) denotes the sequence (t1, . . . , tn) in ascending order, see §5.3 of

[4].

3 Integration by parts

Definition 3.1. Given w ∈ C1([0, T ]), let Dw denote the gradient operator defined on

F ∈ ST of the form (2.2) by

DwF = −
∞
∑

n=1

1{NT =n}

n
∑

k=1

w(Tk)
∂fn

∂tk
(T1, . . . , Tn).

Let C1
0([0, T ]) denote the space of w ∈ C1([0, T ]) such that w(0) = w(T ) = 0. In the

sequel we assume that jT,n ∈ C1([0, T ]n), n ≥ 1. Next, we state the definition of the

divergence operator.

Definition 3.2. Given w ∈ C1
0([0, T ]) and G ∈ ST , let

D∗
wG = G

∫ T

0

w′(t)dNt − GDw log |GjT,NT
(T1, . . . , TNT

)|, (3.1)

with the convention 0/0 = 0.

Fix p, q > 1 satisfying 1/p + 1/q = 1 and let Domp(Dw), resp. Domq(D
∗
w), be defined

as the sets of functionals F ∈ Lp(Ω,FT ), resp. F ∈ Lq(Ω,FT ), for which there

exists (Fn)n∈N in Sf
T converging to F in Lp(Ω,FT ), resp. in Lq(Ω,FT ), and such that

(DwFn)n∈N , resp. (D∗
wFn)n∈N , converges in Lp(Ω,FT ), resp in Lq(Ω,FT ). In the next

proposition we extend the integration by parts formulas of [3], [16] to the setting of

point processes.
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Proposition 3.3. Let w ∈ C1
0([0, T ]). The operators Dw and D∗

w are closable and

can be extended to their closed domains Domp(Dw) and Domq(D
∗
w) with the duality

relation

E[GDwF ] = E[FD∗
wG], F ∈ Domp(Dw), G ∈ Domq(D

∗
w). (3.2)

Proof. For any F ∈ Sf
T we have

E[DwF ] = −
∞
∑

n=1

1

n!

∫ T

0

· · ·
∫ T

0

n
∑

k=1

w(tk)
∂fn

∂tk
(t1, . . . , tn)jT,n(t1, . . . , tn)dt1 · · · dtn

=
∞
∑

n=1

1

n!

∫ T

0

· · ·
∫ T

0

fn(t1, . . . , tn)
n
∑

k=1

∂

∂tk
(w(tk)jT,n(t1, . . . , tn)) dt1 · · · dtn

=
∞
∑

n=1

1

n!

∫ T

0

· · ·
∫ T

0

fn(t1, . . . , tn)jT,n(t1, . . . , tn)

×
(

n
∑

k=1

w′(tk) +
n
∑

k=1

w(tk)
∂ log jT,n

∂tk
(t1, . . . , tn)

)

dt1 · · ·dtn

= E

[(
∫ T

0

w′(t)dNt − Dw log jT,NT
(T1, . . . , TNT

)

)

F

]

,

hence for all F, G ∈ Sf
T we get

E[GDwF ] = E[Dw(FG) − FDwG]

= E

[

F

(

G

∫ T

0

w′(t)dNt − GDw log jT,NT
(T1, . . . , TNT

) − DwG

)]

= E[FD∗
wG].

Let now (Fn)n∈N , (F̃n)n∈N be two sequences in Sf
T converging to a same F in Lp(Ω,FT ),

and such that both (DwFn)n∈N and (DwF̃n)n∈N have limits denoted by U and V in

Lp(Ω,FT ). For all G ∈ Sf
T we have

|〈U − V, G〉L2| = lim
n→∞

|〈DwFn − DwF̃n, G〉L2|

= | lim
n→∞

〈Fn − F̃n, D∗
wG〉L2|

≤ ‖D∗
wG‖Lq lim

n→∞
‖Fn − F̃n‖Lp

= 0,

hence U = V , P -a.s. This shows that Dw can be extended to F ∈ Domp(Dw) by

letting

DwF = lim
n→∞

DwFn

7



for any sequence (Fn)n∈N in Domp(Dw) converging to F in Lp(Ω,FT ), and such that

(DwFn)n∈N converges in Lp(Ω,FT ). A similar argument applies to D∗
w and allows us

to extend the duality relation (3.2) to all F ∈ Domp(Dw) and G ∈ Domq(D
∗
w). �

We note the following:

Remark 3.4. Let F ∈ ST such that F ∈ Lp(Ω,FT ) and DwF ∈ Lp(Ω,FT ), resp.

D∗
wF ∈ Lq(Ω,FT ). Then F ∈ Domp(Dw), resp. F ∈ Domq(D

∗
w).

Proof. It suffices to approximate F written as in (2.2) by the truncated sequence

Fm = f01{NT =0} +
m
∑

n=1

1{NT =n}fn(T1, . . . , Tn), m ≥ 1

and to note that (DwFm)m≥1, resp. (D∗
wFm)m≥1, is convergent in Lp(Ω,FT ), resp. in

Lq(Ω,FT ). �

This remark allows us to prove the following lemma, whose hypotheses will apply in

the sequel.

Lemma 3.5. Let p ≥ 1 and assume that there exists c0 > 0 such that

j1−p
T,n (t1, . . . , tn)

∣

∣

∣

∣

∂jT,n

∂tk
(t1, . . . , tn)

∣

∣

∣

∣

≤ cn
0 , (3.3)

k = 1, . . . , n, t1, . . . , tn ∈ [0, T ]n, n ≥ 1. Then Dw log jT,NT
(T1, . . . , TNT

) ∈ Lp(Ω,FT ).

Proof. From (2.3) we have

‖Dw log jT,NT
(T1, . . . , TNT

)‖p
Lp

=

∞
∑

n=1

1

n!

∫ T

0

· · ·
∫ T

0

∣

∣

∣

∣

∣

n
∑

k=1

w(tk)
∂jT,n

∂tk
(t1, . . . , tn)

∣

∣

∣

∣

∣

p

|jT,n(t1, . . . , tn)|1−pdt1 · · · dtn

≤ ‖w‖p
∞c0Tec0T ,

hence Dw log jT,NT
(T1, . . . , TNT

) ∈ Lp(Ω,FT ), and log jT,NT
(T1, . . . , TNT

) ∈ Lp(Ω,FT )

follows in the same way. �

We now turn to the calculation of Dw log jT,NT
(T1, . . . , TNT

) for examples of point

processes satisfying (3.3) for all p ≥ 1.

Poisson processes

In the case of a Poisson process with arbitrary deterministic intensity λ ∈ C1
b (R+) we

have

log jT,NT
(T1, . . . , TNT

) =

∫ T

0

log λ(t)dNt −
∫ T

0

λ(t)dt,
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and

Dw log jT,NT
(T1, . . . , TNT

) = −
∫ T

0

w(t)
λ′(t)

λ(t)
dNt.

Renewal processes

In this case, (2.4) yields:

Dw log jT,NT
(T1, . . . , TNT

)

= −w(TNT
)z(T − TNT

)

1 − Z(T − TNT
)

−
NT
∑

k=1

w(Tk)
z′(Tk − Tk−1)

z(Tk − Tk−1)
+

NT−1
∑

k=1

w(Tk)
z′(Tk+1 − Tk)

z(Tk+1 − Tk)

=

∫ T

0

w(t)

(

z′(TNt+1 − TNt
)

z(TNt+1 − TNt
)
− z′(TNt

− TNt−1)

z(TNt
− TNt−1)

)

dNt

−w(TNT
)
z′(TNT +1 − TNT

)

z(TNT +1 − TNT
)
− w(TNT

)z(T − TNT
)

1 − Z(T − TNT
)

=

∫ T

0

(w(t − τNt
) − w(t))

z′(TNt
− TNt−1)

z(TNt
− TNt−1)

dNt −
w(TNT

)z(T − TNT
)

1 − Z(T − TNT
)

.

Log-normal renewal process

In this example the inter-arrival times are independent and identically distributed

according to the log-normal distribution with parameter σ > 0, i.e.

z(x) =
e−(log x)2/(2σ2)

σx
√

2π
, x > 0.

In other terms Tk − Tk−1 = eσξk , where (ξk)k≥1 is an i.i.d. sequence of standard

Gaussian random variables, and

Dw log jT,NT
(T1, . . . , TNT

) =

NT
∑

k=1

w(Tk)

Tk − Tk−1

(

1 +
log(Tk − Tk−1)

σ2

)

−
NT−1
∑

k=1

w(Tk)

Tk+1 − Tk

(

1 +
log(Tk+1 − Tk)

σ2

)

− w(TNT
)e−(log(T−TNT

))
2
/(2σ2)

σ
√

2π(T − TNT
)(1 − Z(T − TNT

))

=

NT
∑

k=1

w(Tk)

Tk − Tk−1

(1 + σ−1ξk) −
NT−1
∑

k=1

w(Tk)

Tk+1 − Tk

(1 + σ−1ξk+1)

− w(TNT
)e−(log(T−TNT

))
2
/(2σ2)

σ
√

2π(T − TNT
)(1 − Z(T − TNT

))

= − w(TNT
)e−(log(T−TNT

))
2
/(2σ2)

σ
√

2π(T − TNT
)(1 − Z(T − TNT

))
+

NT
∑

k=1

(w(Tk) − w(Tk−1))
1 + σ−1ξk

Tk − Tk−1

= − w(TNT
)e−(log(T−TNT

))
2
/(2σ2)

σ
√

2π(T − TNT
)(1 − Z(T − TNT

))
+

∫ TNT

0

w′(s)
1 + σ−1ξ1+Ns

τ1+Ns

ds.

9



In the simulations of Section 5 we will take w(t) = t(T − t), t ∈ [0, T ]. In this case

we have
∫ T

0

w′(t)dNt − Dw log jT,NT
(T1, . . . , TNT

)

=
TNT

e−(log(T−TNT
))

2
/(2σ2)

(1 − Z(T − TNT
))σ

√
2π

+

NT
∑

k=1

(T − 2Tk) −
NT
∑

k=1

(T − Tk − Tk−1)(1 + σ−1ξk)

=

(

e−(log(T−TNT
))

2
/(2σ2)

(1 − Z(T − TNT
))σ

√
2π

− 1

)

TNT
− σ−1

NT
∑

k=1

(T − Tk − Tk−1)ξk.

4 Sensitivity analysis

Let I = (a, b) be an open interval of R and consider the derivative

∂

∂ζ
E[f(Fζ)] = E

[

∂Fζ

∂ζ
f ′(Fζ)

]

, ζ ∈ (a, b), (4.1)

where (Fζ)ζ∈(a,b) a family of random variables differentiable in a parameter ζ and f is

a C1 function on R. This expression can be approximated by finite differences as

1

2h
E[f(Fζ+h) − f(Fζ−h)], (4.2)

while (4.1) fails when f is not differentiable, e.g. when f = 1[0,∞).

Proposition 4.1 below provides an expression for this derivative without using finite

differences or requiring the differentiability of f . This formula will be applied in Sec-

tion 5 to numerical simulations which will be compared to the results given by kernel

estimates.

In the sequel and in Propositions 4.1, 4.2 and 4.3 we consider a family (Fζ)ζ∈(a,b) of

random functionals, continuously differentiable in Domp(Dw) in the parameter ζ ∈
(a, b), such that for some n0 ∈ N,

DwFζ 6= 0, a.s. on {NT ≥ n0},

where w is a given element of C1
0([0, T ]) and the function f : R → R is assumed to

satisfy f(Fζ) ∈ Lp(Ω,FT ), for all ζ ∈ (a, b).

Proposition 4.1. Assume that

1{NT ≥n0}
∂ζFζ

DwFζ
∈ Domq(D

∗
w), ζ ∈ (a, b). (4.3)

10



Then we have

∂

∂ζ
E[f(Fζ) | NT ≥ n0] = E[Wζf(Fζ) | NT ≥ n0], ζ ∈ (a, b), (4.4)

where the weight Wζ is given by

Wζ = D∗
w

(

1{NT ≥n0}
∂ζFζ

DwFζ

)

, ζ ∈ (a, b).

Proof. Assuming first that f ∈ C∞
b (R) we have from Proposition 3.3:

∂

∂ζ
E[1{NT ≥n0}f(Fζ)] = E

[

1{NT ≥n0}f
′(Fζ)

∂Fζ

∂ζ

]

= E

[

1{NT ≥n0}
∂ζFζ

DwFζ
Dw(f(Fζ))

]

= E

[

f(Fζ)D
∗
w

(

1{NT ≥n0}
∂ζFζ

DwFζ

)]

.

The extension to the general case is obtained from the bound
∣

∣

∣

∣

∂

∂ζ
E[fn(Fζ)1{NT ≥n0}] − E[Wζf(Fζ)]

∣

∣

∣

∣

≤ ‖f(Fζ) − fn(Fζ)‖Lp‖Wζ1{NT ≥n0}‖Lq ,

and an approximating sequence (fn)n∈N of smooth functions. �

In the next proposition we focus on a sufficient condition for (4.3) to hold. These

conditions can be checked using (2.2).

Proposition 4.2. Assume that Fζ ∈ ST , ζ ∈ (a, b), and let 1/q′ +1/p′ = 1/q, p′ < q′,

such that ∂ζFζ ∈ Dom2q′(Dw), DwFζ ∈ Dom2q′(Dw), and (DwFζ)
−1 ∈ L2q′({NT ≥

n0}). Then (4.3) holds and we have

∂

∂ζ
E[f(Fζ) | NT ≥ n0] = E[Wζf(Fζ) | NT ≥ n0], ζ ∈ (a, b),

where the weight Wζ is given by

Wζ =
1{NT ≥n0}

DwFζ

(

∂ζFζ

(
∫ T

0

w′(t)dNt − Dw log |∂ζFζjT,NT
(T1, . . . , TNT

)| + DwDwFζ

DwFζ

)

−Dw∂ζFζ) , (4.5)

and belongs to Lq(Ω,FT ).

Proof. Since Fζ ∈ ST we have from (3.1):

D∗
w

(

1{NT ≥n0}
∂ζFζ

DwFζ

)

11



= 1{NT ≥n0}
∂ζFζ

DwFζ

(
∫ T

0

w′(t)dNt − Dw log jT,NT
(T1, . . . , TNT

)

)

− Dw

(

1{NT ≥n0}
∂ζFζ

DwFζ

)

=
1{NT ≥n0}

DwFζ

(

∂ζFζ

(
∫ T

0

w′(t)dNt − Dw log |∂ζFζjT,NT
(T1, . . . , TNT

)| + DwDwFζ

DwFζ

)

−Dw∂ζFζ) .

In order to apply Proposition 4.1 we need to check the domain condition

1{NT ≥n0}
∂ζFζ

DwFζ

∈ Domq(D
∗
w),

which is satisfied from Remark 3.4, provided Wζ as in (4.5) belongs to Lq(Ω,FT ). By

Hölder’s inequality we have

‖Wζ‖Lq ≤
∥

∥(DwFζ)
−1
∥

∥

2

L2q′ ({NT ≥n0})
‖∂ζFζDwDwFζ‖Lq′

+
∥

∥(DwFζ)
−1
∥

∥

Lq′ ({NT ≥n0})

∥

∥

∥

∥

∂ζFζ

∫ T

0

w′(t)dNt + ∂ζFζDw log jT,NT
(T1, . . . , TNT

) + Dw∂ζFζ

∥

∥

∥

∥

Lp′

≤
∥

∥(DwFζ)
−1
∥

∥

L2q′ ({NT ≥n0})
‖∂ζFζ‖L2q′ × (4.6)

(∥

∥

∥

∥

∫ T

0

w′(t)dNt

∥

∥

∥

∥

L2p′

+ ‖Dw log jT,NT
(T1, . . . , TNT

)‖L2p′ + ‖Dw∂ζFζ‖L2p′ + ‖DwDwFζ‖L2q′

)

,

which allows us to conclude by Lemma 3.5. �

In the case of a Poisson process with deterministic intensity λ ∈ C1(R+) we have

Wζ = 1{NT ≥n0}

(

∂ζFζ

DwFζ

(
∫ T

0

w′(t)dNt −
∫ T

0

w(t)
λ′(t)

λ(t)
dNt +

DwDwFζ

DwFζ

)

− Dw∂ζFζ

DwFζ

)

.

In general we assume that the Janossy densities jT,n are known in order to compute

the weight Wζ while the density of F may not be analytically computable, or unknown

as in the following example.

Consider now a compound point process of the form

Xt =

Nt
∑

k=1

Yk, t ∈ R+,

where (Yk)k≥1 is a sequence of random marks independent of (Nt)t∈R+
and such that

there exists c2 > 0 such that Yk ≥ c2 > 0 a.s., k ≥ 1. We make the additional

assumption

jT,n(t1, . . . , tn) ≤ cn
0 , t1, . . . , tn ∈ [0, T ]n,

k = 1, . . . , n, n ≥ 1.

12



Proposition 4.3. Consider g : (a, b) → R and h : [a, b]× [0, T ] → R two C1 functions

such that
∂h

∂t
does not vanish on [a, b] × [0, T ], and let

Fζ = g(ζ) +

∫ T

0

h(ζ, t)dXt = g(ζ) +
Nt
∑

k=1

Ykh(ζ, Tk), ζ ∈ (a, b).

Let α > 0 and

w(t) = tα(T − t)α, t ∈ [0, T ].

Then (4.3) holds whenever n0 ≥ 2α and we have

∂

∂ζ
E[f(Fζ) | NT ≥ n0] = E[Wζf(Fζ) | NT ≥ n0], ζ ∈ (a, b).

where the weight Wζ belongs to Lq(Ω), ζ ∈ (a, b).

Proof. We have

∂ζFζ = g′(ζ) +

∫ T

0

∂h

∂ζ
(ζ, t)dXt,

which belongs to Lp(Ω) for all p ≥ 1. Since the gradient Dw does not act on Yk,

k ∈ N, these random variables can be considered as constants in the integration by

parts formula (3.2) and we have

DwFζ = −
∫ T

0

w(t)
∂h

∂t
(ζ, t)dXt.

Moreover there exists c1 > 0 such that
∣

∣

∣

∣

∂h

∂t
(ζ, t)

∣

∣

∣

∣

≥ c1 > 0, (ζ, t) ∈ [a, b] × [0, T ],

hence for any p′, q′ such that 1/q′ + 1/p′ = 1/q we have

∥

∥(DwFζ)
−1
∥

∥

2q′

L2q′ ({NT ≥n0})
= E

[

1{NT ≥n0}

∣

∣

∣

∣

∫ T

0

w(t)
∂h

∂t
(ζ, t)dXt

∣

∣

∣

∣

−2q′
]

= E

[

∞
∑

n=n0

1

n!

∫ T

0

· · ·
∫ T

0

jT,n(t1, . . . , tn)

|∑n
k=1 Yktαk (T − tk)α ∂h

∂t
(ζ, tk)|2q′

dt1 · · · dtn

]

≤ 22αq′

(c1c2)2q′

∞
∑

n=n0

2ncn
0

n!

∫ 1/2

0

· · ·
∫ 1/2

0

(

n
∑

k=1

tαk

)−2q′

dt1 · · ·dtn

≤ 22αq′

(c1c2)2q′

∞
∑

n=n0

cn
0

n!





1

4αq′
+ 2n

∫

{
Pn

k=1
t2
k
≤1/4}

(

n
∑

k=1

t2k

)−αq′

dt1 · · · dtn





=
22αq′

(c1c2)2q′

∞
∑

n=n0

cn
0

n!

(

1

4αq′
+

2n+1πn/2

Γ(n/2)

∫ 1/2

0

rn−1−2αq′dr

)
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= (c1c2)
−2q′

∞
∑

n=n0

cn
0

n!

(

1 +
21+4αq′πn/2

Γ(n/2)(n − 2αq′)

)

,

which is finite whenever n0 > 2αq′ > 2α, hence we can apply Proposition 4.2. �

In practice one can choose n0 = 1 provided α ∈ (0, 1/2). Note that at least four jumps

can be required in other situations, see e.g. Proposition 3.2 of [1] in the Poisson case.

For example, taking h(ζ, t) = e−ζt, the weight Wζ corresponding to the sensitivity

∂

∂ζ
E[1{NT ≥n0}f(Fζ)] = E[1{NT ≥n0}Wζf(Fζ)] (4.7)

with respect to the parameter ζ > 0 is given on {NT ≥ n0} by

Wζ = −1

ζ
+

∫ T

0
w(t)te−ζtdXt

∫ T

0
w(t)e−ζtdXt

−
∫ T

0
te−ζtdXt

ζ
∫ T

0
w(t)e−ζtdXt

(

∫ T

0
w(t)(ζw(t)− w′(t))e−ζtdXt

∫ T

0
w(t)e−ζtdXt

−
∫ T

0

w′(t)dNt + Dw log jT,NT
(T1, . . . , TNT

)

)

.

5 Density estimation

In this section we apply the above results to the computation of the conditional density

φF (· | NT ≥ n0) of a random variable F with respect to the Lebesgue measure, written

as the derivative

φF (y | NT ≥ n0) = − d

dy
E[f(F − y) | NT ≥ n0], y ∈ R,

with f = 1(0,∞), i.e. we take F ζ = F − ζ , ζ ∈ R.

Kernel estimators

The standard kernel estimator of the density φF with respect to the Lebesgue measure

is given by

φF (y) ≃ 1

h
E

[

K

(

F − y

h

)]

≃ 1

Nh

N
∑

k=1

K

(

F (k) − y

h

)

, (5.1)

where K is a continuous positive function such that

∫ ∞

−∞

K(x)dx = 1.
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Malliavin estimators

Taking Fy = F − y, Proposition 4.2 yields the following corollary.

Corollary 5.1. Assume that F ∈ ST and let 1/q′ + 1/p′ = 1/q, p′ < q′, such that

DwF ∈ Dom2q′(Dw), and (DwF )−1 ∈ L2q′({NT ≥ n0}). Then we have

∂

∂y
E[1{NT ≥n0}f(F − y)] = E

[

W1{NT≥n0}f(F − y)
]

,

for f bounded and measurable on R, where

W =
1{NT ≥n0}

DwF

(
∫ T

0

w′(t)dNt − Dw log jT,NT
(T1, . . . , TNT

) +
DwDwF

DwF

)

(5.2)

belongs to Lq(Ω).

In particular, taking f = −1[0,∞) we get

φF (y | NT ≥ n0) = − d

dy
E[1[0,∞)(F − y) | NT ≥ n0] = −E[W1[0,∞)(F − y) | NT ≥ n0],

(5.3)

y ∈ R, where the weight W is independent of y and of any bandwidth parameter.

Here the condition {F > y} in (5.3) with y > 0 actually ensures the integrability of

W1[0,∞)(F − y) on {NT ≥ 1}. This yields the estimate

φF (y | NT ≥ n0) ≃ − 1{NT ≥n0}

NP (NT ≥ n0)

N
∑

i=1

W (i)1[0,∞)(F (i) − y). (5.4)

In case F =
∫ T

0
h(t)dXt the relation

DwDwF =

∫ T

0

w(t)

(

∂h

∂t
(ζ, t)w′(t) +

∂2h

∂t2
(ζ, t)w(t)

)

dXt

yields

W =
1{NT ≥n0}

∫ T

0
w(t)∂h

∂t
(ζ, t)dXt

(
∫ T

0

w′(t)dNt − Dw log jT,NT
(T1, . . . , TNT

)

−
∫ T

0
w(t)(∂h

∂t
(ζ, t)w′(t) + ∂2h

∂t2
(ζ, t)w(t))dXt

∫ T

0
w(t)∂h

∂t
(ζ, t)dXt

)

. (5.5)

Modified kernel estimators

When DwF is close to 0, the value of W becomes large, due to the division by DwF

in (5.5), hence when y is small the term W1[0,∞)(F − y) is allowed to be non-zero for
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small values of F , and it has a large variance. A variance reduction technique called

localization had been introduced in [9] to deal with related problems on the Wiener

space. Here we apply a similar procedure to construct a modified kernel estimator

using Malliavin weights. For this we will consider a decomposition of the form

1[0,∞) = f + g,

where g is a C1 function. In the following proposition we obtain an analog of Theo-

rem 2.1 in [12], via a somewhat simpler argument, under the hypotheses of Proposi-

tion 4.1.

Proposition 5.2. Assume that F ∈ ST and let 1/q′ + 1/p′ = 1/q, p′ < q′, such that

DwF ∈ Dom2q′(Dw), and (DwF )−1 ∈ L2q′({NT ≥ n0}) and let f a function on R such

that f(0) = 1, f(x) = 0, x < 0, and 1(0,∞)f
′ ∈ L2((0,∞)). We have for all η > 0:

φF (y | NT ≥ n0) (5.6)

= −E

[

Wf

(

F − y

η

)

∣

∣

∣
NT ≥ n0

]

− 1

η
E

[

1{F>y}f
′

(

F − y

η

)

∣

∣

∣
NT ≥ n0

]

, y ∈ R,

where W is given by (5.2).

Proof. Letting g = 1[0,∞) − f we have

φF (y | NT ≥ n0) = − d

dy
E[1[0,∞)(F − y) | NT ≥ n0]

= − d

dy
E

[

f

(

F − y

η

)

∣

∣

∣
NT ≥ n0

]

− d

dy
E

[

g

(

F − y

η

)

∣

∣

∣
NT ≥ n0

]

= −E

[

Wf

(

F − y

η

)

∣

∣

∣
NT ≥ n0

]

− 1

η
E

[

1{F>y}f
′

(

F − y

η

)

∣

∣

∣
NT ≥ n0

]

, y ∈ R,

where W is given by (5.5). �

Letting K(x) = −1(0,∞)(x)f ′(x), this leads by Monte Carlo approximation to a family

of corrected kernel estimators:

φF (y | NT ≥ n0) ≃
1{NT ≥n0}

NP (NT ≥ n0)

N
∑

i=1

(

1

η
K

(

F (i) − y

η

)

− W (i)f

(

F (i) − y

η

))

,

(5.7)

depending on η > 0. Note that (5.6) is an equality, whereas the standard kernel

estimate

φF (y | NT ≥ n0) ≃
1

η
E

[

K

(

F − y

η

)

∣

∣

∣
NT ≥ n0

]

, y ∈ R,
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is only an approximation.

The method for the determination of an optimal kernel f : R → R and bandwidth

parameter η > 0 by minimization of

E

[

1{NT ≥n0}∩{F>y}

(

Wf

(

F − y

η

)

− 1

η
1{F>y}f

′

(

F − y

η

))2
]

, y ∈ R,

of [12], page 446, also applies here and yields

f(x) = 1[0,∞)(x)e−λx, x ∈ R,

and ηopt = ‖W‖−1
L2({NT ≥n0})

, for any λ > 0. Note that the criterion of optimality for η

is not linked to the number of samples N , as is the case for the optimal decrease in

N−1/4 of the kernel estimator bandwidth parameter h.

6 Numerical results

Our results are illustrated by Monte Carlo density estimations with 10000 samples for

the random variable

Fr := α(r)

∫ T

0

e−rtdNt,

where (Nt)t∈R+
is a log-normal renewal process and T = 5, σ = 0.3, and α(r) =

exp((1 + r)2 − 1) is a parameter chosen to enhance the readability of the simulation

graphs. Clearly the law of Fr has a Dirac mass at y = 0, and we are interested in the

values of the density on R \ {0} with respect to the Lebesgue measure.

Kernel estimators

We start by comparing several kernel estimators in Figure 6.1, with

K(x) =
π

2
1[−1/2,1/2](x) cos (πx) ,

and η = 1, 0.1, 0.01.
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Figure 6.1: Kernel estimations of φFr with 10000 samples and r = 0.2.

Malliavin estimator

For the Malliavin method we use the expression (5.3) where the weight W is given by

W = − 1{NT ≥n0}

rα(r)
∫ T

0
w(t)e−rtdNt

(
∫ T

0

w′(t)dNt − Dw log jT,NT
(T1, . . . , TNT

)

+

∫ T

0
w(t)(rw(t) − w′(t))e−rtdNt

∫ T

0
w(t)e−rtdNt

)

, (6.1)

is independent of y and of any bandwidth parameter. The result of this estimation is

shown in Figure 6.2 below.
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Figure 6.2: Probability density of Fr for r = 0.2 (Malliavin method with 10000 samples).
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The graph labeled “exact value” has been obtained by finite differences with 107 sam-

ples. One can check in Figure 6.2 that although the Malliavin estimator (5.3) yields

more precise values than the kernel estimator (5.1) when y is large, it behaves badly

for small values of y due to a higher variance of W1[0,∞)(F −y) in this situation. This

phenomenon is dealt with by the modified kernel estimator introduced in Section 5

by localization.

Modified kernel estimators

Figure 6.3 shows the result of this modified kernel estimation for η = 1, 0.2, 0.01,

for comparison with the standard kernel estimate of Figure 6.1. The modified kernel

estimator does depend on a parameter called η, but it appears more stable and less

sensitive to variations of η than standard kernel estimators are sensitive to the value

of the bandwidth parameter h. In our setting we found ηopt = 0.1963 by Monte Carlo

simulation and we used the optimal kernel K(x) = 1(0,∞)(x)e−x.
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Figure 6.3: Modified kernel estimates of φFr with 10000 samples and r = 0.2.

7 Conclusion

Both Malliavin and modified kernel estimators are consistent. The performances of

kernel estimators are dependent on the choice of a bandwidth parameter η. The

results of the Malliavin method are independent of η but may be degraded as the

19



weight variance increases. In the examples considered in the paper, the latter performs

better than the other estimators.
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