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Abstract

We derive Edgeworth-type expansions for Skorohod and Itô integrals with
respect to Brownian motion, based on cumulant operators defined by the Malli-
avin calculus. As a consequence we obtain Stein approximation bounds for
stochastic integrals, which apply to SDE solutions and to multiple stochastic
integrals.
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1 Introduction

Classical Edgeworth series around the Gaussian cumulative distribution function Φ(x)

take the form

Φ(x) + c1φ(x)H1(x) + · · ·+ cmφ(x)Hm(x) + · · · ,

where φ(x), x ∈ R, is the standard Gaussian density, Hk(x) is the Hermite polyno-

mial of degree k ≥ 1, and ck is a coefficient depending on the sequence of cumulants
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(κn)n≥1 of a random variable F , cf. Chapter 5 of [6] and § A.4 of [11]. Edgeworth

expansions are used in particular as asymptotic expansions for the cumulative distri-

bution function P (F ≤ x) (or, in more general forms, as asymptotic expansions for

expectations of the type E[h(F )], where h is some test function - see [6]), when F is

centered with unit variance E[F 2] = 1, for example when F is a renormalized sum of

independent random variables that can be approximated by the central limit theorem,

cf. Chapter 2 of [5].

In [1], Edgeworth type expansions of the form

E[Ff(F )− f ′(F )] =
∞∑
l=2

κl+1

l!
E[f (l)(F )], f ∈ C∞(R),

have been derived and connected to classical Edgeworth series for E[h(F )] by the

Stein equation

h(F ) = E[h(N )] + Ff(F )− f ′(F ),

where h is some adequate test function and N ' N (0, 1) is a standard Gaussian

random variable. Recently, Edgeworth type expansions with exact remainder term of

the form

E[Ff(F )− f ′(F )] =
n∑
l=2

κl+1

l!
E[f (l)(F )] + E[f (n+1)(F )Γn+1F ], (1.1)

have been obtained by the Malliavin calculus in [8], [2], [3], written here for F a

centered random variable with unit variance, where Γn+1 is a cumulant type operator

on the Wiener space satisfying the relation n!E[ΓnF ] = κn+1, n ∈ N, cf. [10]. This

approach refines and extends the application of the Malliavin calculus to Stein ap-

proximation, Berry-Esseen bounds and the fourth moment theorem initiated in [9],

see also [12], and [7] for a review.

The approaches of [2], [8], [9] and the cumulant operators of [10] rely on covariance

identities based on the number (or Ornstein-Uhlenbeck) operator L and its inverse

on the Wiener space, and they are particularly well suited to the study of multiple
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stochastic integrals.

In this paper we derive a Edgeworth type expansions for random variables represented

as the Itô or Skorohod integral F = δ(u) of a process u on the Wiener space. Our

expansions rely on properties of the operator δ, which coincides with the Itô stochas-

tic integral with respect to d-dimensional Brownian motion on the square-integrable

adapted processes, and are applied to Stein approximation bounds. Although this ap-

proach does not rely on the operator L, it nevertheless also covers the case of multiple

stochastic integrals.

In Section 2 we derive expansions of the form (1.1) for E[δ(u)f(δ(u)) − f ′(δ(u))],

based on a family of cumulant operators that are associated to the process u and

specially defined for the Skorohod integral operator δ. In Section 3 we derive Stein type

approximation bounds for stochastic integrals, and we apply them to the solutions of

stochastic differential equations. In Section 4 we also provide an alternative approach

to the results of [9] on multiple stochastic integrals.

Notation and cumulant operators for the Skorohod integral

Consider a standard d-dimensional Brownian motion (Bt)t∈R+ generating the filtration

(Ft)t∈R+ on the Wiener space Ω. Letting H = L2(R+;Rd), we consider the standard

Sobolev spaces of real-valued, resp. H-valued, functionals IDp,k, resp. IDp,k(H), p, k ≥
1, for the Malliavin gradient D on the Wiener space, cf. [13] for definitions. Recall

that the Skorohod operator δ is the adjoint of the gradient D through the duality

relation

E[Fδ(v)] = E[〈DF, v〉H ], F ∈ Dom(D), v ∈ Dom(δ), (1.2)

and we have the commutation relation

Dtδ(u) = u(t) + δ(Dtu), t ∈ R+, (1.3)

provided u ∈ ID2,1(H) and Dtu ∈ Dom(δ), dt-a.e., cf. Proposition 1.3.2 of [13].
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Next we define an operator composition (Du)k and its adjoint D∗ in the sense of

matrix powers with continuous indices. Namely, given u ∈ ID2,1(H) and k ≥ 1, we let

(Du)k denote the random operator on H almost surely defined by

(Du)khs =

∫ ∞
0

· · ·
∫ ∞

0

(DtkusDtk−1
utk · · ·Dt1ut2)ht1dt1 · · · dtk, s ∈ R+, h ∈ H,

(1.4)

cf. e.g. § 7 of [17], [16], [15] for details. In the sequel we will simply denote 〈·, ·〉 =

〈·, ·〉H . The adjoint D∗u of Du on H satisfies

〈(Du)v, h〉 = 〈v, (D∗u)h〉, h, v ∈ H,

and is given by

(D∗u)vs =

∫ ∞
0

(Dsut)vtdt, s ∈ R+, v ∈ L2(W ;H).

Given u ∈ IDk,2(H), our results will be based on a family of cumulant operators

Γuk : ID2,1 −→ L2(Ω), k ≥ 1,

defined by Γu1F := 〈u,DF 〉 and

ΓukF := F 〈(Du)k−2u, u〉+ F 〈D∗u,D((Du)k−2u)〉+ 〈(Du)k−1u,DF 〉, k ≥ 2.

Note that the operator Γu is directly relevant to the integrand u in the stochastic inte-

gral representation δ(u) and as such it differs from the Γ operator of [10] appearing in

(1.1), in addition, those operators are not directly related to the Bakry-Émery-Ledoux

Γ and Γ2 operators.

Recall that by the proof of Lemma 3.1 in [14] we have

〈D∗u,D((Du)kv)〉H⊗H = trace((Du)k+1Dv) +
k+1∑
i=2

1

i
〈(Du)k+1−iv,D trace(Du)i〉,

(1.5)

u ∈ ID2,2(H), v ∈ ID2,1(H), k ∈ N, hence by the relation

〈(Du)kh, u〉 = 〈(D∗u)ku, h〉 =
1

2
〈(D∗u)k−1D〈u, u〉, h〉 =

1

2
〈(Du)k−1h,D〈u, u〉〉,

(1.6)
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h ∈ H, k ≥ 1, u ∈ ID2,1(H), which follows from D〈u, u〉 = 2(D∗u)u, for any u ∈
ID2,2(H) we have

Γuk1 =
1

2
〈(Du)k−3u,D〈u, u〉〉+ trace(Du)k +

k−1∑
i=2

1

i
〈(Du)k−1−iu,D trace(Du)i〉,

(1.7)

for all k ≥ 3.

2 Edgeworth type expansions

The duality (1.2) and the commutation relation (1.3) show that

E
[
f ′(δ(u))〈u, u〉 − δ(u)f(δ(u))

]
= −E [f ′(δ(u))〈u, δ(Du)〉] , (2.1)

for u ∈ ID1,2(H), F ∈ ID2,1 and f ∈ C1
b (R). Applying the above relation (2.1) with

d = 1 to the solution fx of the Stein equation

1(−∞,x](z)− Φ(x) = f ′x(z)− zfx(z), z ∈ R, (2.2)

satisfying the bounds ‖fx‖∞ ≤
√

2π/4 and ‖f ′x‖∞ ≤ 1, cf. Lemma 2.2-(v) of [4], yields

the expansion

P (δ(u) ≤ x)− Φ(x) = E [(1− 〈u, u〉)f ′x(δ(u))]− E [〈u, δ(Du)〉f ′x(δ(u))] , x ∈ R,

around the Gaussian cumulative distribution function Φ(x), with u ∈ ID1,2(H). In the

next proposition we extend (2.1) into an expansion of all orders that will be applied

to Stein approximation in the next section. By comparison with Proposition 3.11 of

[2], the last term in the expansion (2.3) below is not given by a cumulant operator.

Proposition 2.1 Let n ≥ 1 and assume that u ∈ IDk,2(H) for all k = 1, . . . , n + 2.

Then for all f ∈ Cn+1
b (R) and F ∈ ID2,1 we have

E [Fδ(u)f(δ(u))] =
n∑
k=0

E
[
f (k)(δ(u))Γuk+1F

]
(2.3)

+
1

2
E
[
Ff (n+1)(δ(u))〈(Du)n−1u,D〈u, u〉〉

]
+ E

[
Ff (n+1)(δ(u))〈(Du)nu, δ(Du)〉

]
.
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Proof. By the duality (1.2) between D and δ, the chain rule of derivation for D and

the commutation relation (1.3), for F ∈ ID2,1, u ∈ IDn+1,2(H), and all k ∈ N we have

E[Ff(δ(u))〈(Du)ku, δ(D∗u)〉]− E[Ff ′(δ(u))〈(D∗u)k+1u, δ(D∗u)〉]

= E[〈D∗u,D(Ff(δ(u))(Du)ku)〉]− E[Ff ′(δ(u))〈(D∗u)k+1u, δ(D∗u)〉]

= E[Ff ′(δ(u))〈(Du)k+1u,Dδ(u)〉]

−E[Ff ′(δ(u))〈(D∗u)k+1u, δ(D∗u)〉] + E[f(δ(u))〈D∗u,D(F (Du)ku)〉]

= E[Ff ′(δ(u))〈(Du)k+1u, u〉] + E[Ff ′(δ(u))〈(Du)k+1u, δ(D∗u)〉]

−E[Ff ′(δ(u))〈(D∗u)k+1u, δ(D∗u)〉] + E[f(δ(u))〈D∗u,D(F (Du)ku)〉]

= E[Ff ′(δ(u))〈(Du)k+1u, u〉] + E[f(δ(u))〈D∗u,D(F (Du)ku)〉]

= E[Ff ′(δ(u))〈(Du)k+1u, u〉] + E[f(δ(u))〈(Du)k+1u,DF 〉]

+E[Ff(δ(u))〈D∗u,D((Du)ku)〉],

which shows that

E[Ff(δ(u))〈(Du)ku, δ(D∗u)〉]− E[Ff ′(δ(u))〈(D∗u)k+1u, δ(D∗u)〉] (2.4)

= E[Ff ′(δ(u))〈(Du)k+1u, u〉] + E[Ff(δ(u))〈D∗u,D((Du)ku)〉]

+E[f(δ(u))〈(Du)k+1u,DF 〉].

Consequently, since (Du)k−1u ∈ ID(n+1)/k,1(H) we have δ(u) ∈ ID(n+1)/(n−k+1),1, and

by (2.4) we get

E
[
Ff(δ(u))〈(Du)ku,Dδ(u)〉

]
− E

[
Ff ′(δ(u))〈(Du)k+1u,Dδ(u)〉

]
= E

[
Ff(δ(u))〈(Du)ku, u〉

]
+ E

[
Ff(δ(u))〈(Du)ku, δ(D∗u)〉

]
−E

[
Ff ′(δ(u))〈(Du)k+1u, u〉

]
− E

[
Ff ′(δ(u))〈(Du)k+1u, δ(D∗u)〉

]
= E

[
Ff(δ(u))〈(Du)ku, u〉

]
+ E[Ff(δ(u))〈D∗u,D((Du)ku)〉] + E[f(δ(u))〈(Du)k+1u,DF 〉]

= E
[
f(δ(u))Γuk+2F

]
,

and therefore

E [Fδ(u)f(δ(u))] = E [Ff ′(δ(u))〈u,Dδ(u)〉] + E [f(δ(u))〈u,DF 〉]

= E [f(δ(u))〈u,DF 〉] + E
[
Ff (n+1)(δ(u))〈(Du)nu,Dδ(u)〉

]
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+
n−1∑
k=0

(
E
[
Ff (k+1)(δ(u))〈(Du)ku,Dδ(u)〉

]
− E

[
Ff (k+2)(δ(u))〈(Du)k+1u,Dδ(u)〉

] )
= E [f(δ(u))〈u,DF 〉] +

n∑
k=1

E
[
f (k)(δ(u))Γuk+1F

]
+ E

[
Ff (n+1)(δ(u))〈(Du)nu,Dδ(u)〉

]
=

n∑
k=0

E
[
f (k)(δ(u))Γuk+1F

]
+ E

[
Ff (n+1)(δ(u))〈(Du)nu,Dδ(u)〉

]
= E [f(δ(u))〈u,DF 〉] +

n∑
k=1

E
[
f (k)(δ(u))Γuk+1F

]
+ E

[
Ff (n+1)(δ(u))〈(Du)nu,Dδ(u)〉

]
=

n∑
k=0

E
[
f (k)(δ(u))Γuk+1F

]
+ E

[
Ff (n+1)(δ(u))〈(Du)nu, u〉

]
+E

[
Ff (n+1)(δ(u))〈(Du)nu, δ(Du)〉

]
=

n∑
k=0

E
[
f (k)(δ(u))Γuk+1F

]
+

1

2
E
[
Ff (n+1)(δ(u))〈(Du)n−1u,D〈u, u〉〉

]
+E

[
Ff (n+1)(δ(u))〈(Du)nu, δ(Du)〉

]
,

where we used the relation (1.6). �

Based on Proposition 2.1 we make the following remarks for random isometries and

quasi-nilpotent processes satisfying trace(Du)k = 0, k ≥ 2. Recall that the setting of

quasi-nilpotent processes includes the particular case where (ut)t∈R+ is an (Ft)t∈R+-

adapted process, cf. e.g. Lemma 3.5 of [15] and references therein, in which case δ(u)

coincides with the Itô integral of u, cf. Proposition 1.3.11 of [13].

(i) Quasi-nilpotent processes. When trace(Du)k = 0 for all k = 2, . . . , n + 1 we

have

E [δ(u)f(δ(u))] = E [〈u, u〉f ′(δ(u))] +
1

2

n+1∑
k=2

E
[
〈(Du)k−2u,D〈u, u〉〉f (k)(δ(u))

]
+E

[
f (n+1)(δ(u))〈(Du)nu, δ(Du)〉

]
, n ≥ 0.

(ii) Random isometries. When 〈u, u〉 is deterministic we find

E [δ(u)f(δ(u))] = 〈u, u〉E [f ′(δ(u))] +
n∑
k=1

E
[
〈D∗u,D((Du)k−1u)〉H⊗Hf (k)(δ(u))

]
+E

[
f (n+1)(δ(u))〈(Du)nu, δ(Du)〉

]
, n ≥ 0.
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(iii) Multiple stochastic integral processes. Taking ut = In(fn+1(∗, t)) where n ∈ N
and fn+1 is a symmetric square-integrable function on Rn+1

+ , we have δ(u) =

In+1(fn+1) and

δ(Dtu) = nIn(fn+1(∗, t)) = nut, t ∈ R+. (2.5)

Hence, applying again Proposition 2.1 and (1.6) to ut = In−1(fn(∗, t)), n ≥ 1,

we get

E [FIn(fn)f(In(fn))]

=
n∑
k=0

E
[
f (k)(In(fn))Γuk+1F

]
+
n

2
E
[
Ff (n+1)(In(fn))〈(Du)n−1u,D〈u, u〉〉

]
.

In the case of random and quasi-nilpotent isometries we get

E [δ(u)f(δ(u))] = 〈u, u〉E [f ′(δ(u))] + E
[
f (n+1)(δ(u))〈(Du)nu, δ(Du)〉

]
,

which shows that E
[
f (n+1)(δ(u))〈(Du)nu, δ(Du)〉

]
= 0, n ∈ N, and recovers the

standard Gaussian integration by parts E [δ(u)f(δ(u))] = 〈u, u〉E [f ′(δ(u))], cf. [18].

3 Stein approximation

From now on we work with d = 1 and a one-dimensional Brownian motion (Bt)t∈R+ ,

and we let N ' N (0, 1) denote a standard Gaussian random variable. In comparison

with the results of [2], our bounds apply to a different stochastic integral representa-

tion.

Given h : R → R an absolutely continuous function with bounded derivative, the

functional equation

h(z)− E[h(N )] = f ′(z)− zf(z), z ∈ R, (3.1)

has a solution fh ∈ C1
b (R) which is twice differentiable and satisfies the bounds

‖f ′h‖∞ ≤ ‖h′‖∞ and ‖f ′′h‖∞ ≤ 2‖h′‖∞, x ∈ R,
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cf. Lemma 1.2-(v) of [9] and references therein. Let

d(F,G) = sup
h∈L
|E[h(F )]− E[h(G)]|

denote the Wasserstein distance between the laws of F and G, where L denotes the

class of 1-Lipschitz functions. In the sequel we let ‖u‖2 = ‖u‖L2(Ω×R+).

Proposition 3.1 Let u ∈
3⋂

k=1

IDk,2(H). We have

d(δ(u),N ) ≤ E
[
|1− 〈u, u〉 − trace(Du)2|

]
+‖u‖2‖D〈u, u〉‖2 +2E [|〈(Du)u, δ(Du)〉|] .

(3.2)

Proof. For n = 1 and F = 1, Proposition 2.1 shows that

E[δ(u)f(δ(u))] = E[f ′(δ(u))Γu21]

+
1

2
E[f ′′(δ(u))〈u,D〈u, u〉〉] + E[f ′′(δ(u))〈(Du)u, δ(Du)〉],

hence for any continuous function h : R→ [0, 1], denoting by fh the solution to (3.1)

we have

E[h(δ(u))]− E[h(N )] = E[δ(u)fh(δ(u))− f ′h(δ(u))]

= E[f ′h(δ(u))(Γu21− 1)] +
1

2
E[f ′′h (δ(u))〈u,D〈u, u〉〉] + 2E[f ′′h (δ(u))〈(Du)u, δ(Du)〉],

hence

|E[h(δ(u))]− E[h(N )]|

≤ ‖h′‖∞E [|1− Γu21|] + ‖h′‖∞E [|〈u,D〈u, u〉〉|] + 2‖h′‖∞E [|〈(Du)u, δ(Du)〉|] ,

which yields (3.2) by the relation

Γu21 = 〈u, u〉+ 〈D∗u,Du〉H⊗H = 〈u, u〉+ trace(Du)2. (3.3)

�

By (3.2) and (3.3) we find

d(δ(u),N ) ≤ ‖1−〈u, u〉‖2 +‖trace(Du)2‖2 +‖u‖2‖D〈u, u〉‖2 +2E [|〈(Du)u, δ(Du)〉|] ,

which, as in Section 2, yields the following remarks.
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(i) Quasi-nilpotent processes. When trace(Du)2 = 0, and in particular when

(ut)t∈R+ is an (Ft)t∈R+-adapted process, we have

d(δ(u),N ) ≤ E [|1− 〈u, u〉|]+‖u‖2‖D〈u, u〉‖2 +2E [|〈(Du)u, δ(Du)〉|] . (3.4)

(ii) Random isometries. When 〈u, u〉 is deterministic we find

d(δ(u),N ) ≤ |1− 〈u, u〉|+ ‖trace(Du)2‖2 + 2E [|〈(Du)u, δ(Du)〉|] .

As another consequence of Proposition 3.1 and of the Skorohod isometry

Var[δ(u)] = E[δ(u)2] = E[〈u, u〉] + E[trace(Du)2],

we also find the bound

d(δ(u),N ) ≤ |1− Var[δ(u)]|+
√

Var
[
‖u‖2

H + trace(Du)2
]

+‖u‖2‖D〈u, u〉‖2 + 2E [|〈(Du)u, δ(Du)〉|] , (3.5)

for u ∈
⋂3
k=1 IDk,2(H), which will be applied below to multiple stochastic integrals.

In particular we have the following.

(i) Quasi-nilpotent processes. When trace(Du)2 = 0 the bound (3.5) yields

d(δ(u),N ) ≤ |1−Var[δ(u)]|+
√

Var
[
‖u‖2

H

]
+‖u‖2‖D〈u, u〉‖2+2E [|〈(Du)u, δ(Du)〉|] .

(ii) Unit variance. In case Var[δ(u)] = 1, (3.5) shows that

d(δ(u),N ) ≤
√

IE
[(
‖u‖2

H + trace(Du)2
)2
]
− 1+‖u‖2‖D〈u, u〉‖2+2E [|〈(Du)u, δ(Du)〉|] .

(iii) Multiple stochastic integral processes. Taking ut = In−1(fn(∗, t)) where fn is a

symmetric square-integrable function on Rn
+, and applying again (1.6) and (2.5),

by (3.5) we get

d(In(fn),N ) ≤ |1− n!‖fn‖2
2|+

√
Var
[
‖u‖2

H + trace(Du)2
]

+ n‖u‖2‖D〈u, u〉‖2.

(3.6)
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The above bound (3.6) will be computed in terms of the kernel function fn in the

next section.

When δ(u) has unit variance and in addition trace(Du)2 = 0 or (ut)t∈R+ is an adapted

process, we find

d(δ(u),N ) ≤
√

IE
[
‖u‖4

H

]
− 1 + ‖u‖2‖D〈u, u〉‖2 + 2E [|〈(Du)u, δ(Du)〉|] .

4 Applications

a) Stochastic differential equations

Consider the stochastic differential equation

dXt = σ(Xt)dWt, X0 = x0,

where σ ∈ C1
b (R). From Theorem 2.2.1 and Exercise 2.2.1 of [13], we have Xt ∈

Dom(D), t ∈ [0, T ], and

DsXr = 1[0,r](s)σ(Xs)e
∫ r
s σ
′(Xu)dWu−

∫ r
s |σ

′(Xu)|2du/2, 0 ≤ s ≤ r. (4.1)

Since XT = δ(1[0,T ]σ(X)), and taking H = L2([0, T ]), from (3.4) we get

d(XT ,N ) ≤ E [|1− 〈σ(X), σ(X)〉|] + ‖σ(X)‖2‖D〈σ(X), σ(X)〉‖2

+2E [|〈(Dσ(X))σ(X), δ(Dσ(X))〉|] , (4.2)

where 〈(Dσ(X))σ(X), δ(Dσ(X))〉 is given by

Dr〈σ(X), σ(X)〉 = 2σ(Xr)

∫ T

r

σ(Xs)σ
′(Xs)e

∫ s
r σ
′(Xu)dWu−

∫ s
r |σ
′(Xu)|2du/2ds, r ∈ R+.

In order to bound the last term in (4.2) we note that

δ(Drσ(X.)) = σ(Xr)

∫ T

r

σ′(Xt)e
∫ t
r σ
′(Xu)dWu−

∫ t
r |σ
′(Xu)|2du/2dWt, 0 ≤ r ≤ T,

and by (4.1) we have

〈(Dσ(X))σ(X), δ(Dσ(X))〉
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=

∫ T

0

∫ T

0

σ(Xs)Dsσ(Xr)dsδ(Drσ(X·))dr

=

∫ T

0

σ′(Xt)

∫ t

0

|σ(Xs)|2
∫ t

s

σ(Xr)σ
′(Xr)e

∫ t
r σ
′(Xu)dWu−

∫ t
r |σ
′(Xu)|2du/2drdsdWt,

hence the last term in (4.2) can be bounded as

E[|〈(Dσ(X))σ(X), δ(Dσ(X))〉|]

≤

√√√√E

[∫ T

0

|σ′(Xt)|2
(∫ t

0

|σ(Xs)|2
∫ t

s

σ(Xr)σ′(Xr)e
∫ t
r σ
′(Xu)dWu−

∫ t
r |σ′(Xu)|2du/2drds

)2

dt

]

≤

√
E

[∫ s

0

t|σ′(Xt)|2
∫ t

0

|σ(Xs)|4(t− s)
∫ t

s

|σ(Xr)σ′(Xr)|2e2
∫ t
r σ
′(Xu)dWu−

∫ t
r |σ′(Xu)|2dudrdsdt

]
≤ T 5/2

√
15
‖σ‖3

∞‖σ′‖2
∞e

T‖σ′‖∞/2,

hence (4.2) provides an asymptotic bound on the distance d(XT ,N ) as ‖σ′‖∞ tends

to 0.

b) Multiple stochastic integrals

We now show that (3.5) can be used to recover the results [9] on multiple stochastic

integrals. The bound (3.6) reads

d(In(fn),N ) ≤ |1− n!‖fn‖2
2|+

√
Var
[
‖u‖2

H + trace(Du)2
]

+ n‖u‖2‖D〈u, u〉‖2.

By the multiplication formula for multiple stochastic integrals, cf. e.g. Relation (2.29)

in [9] we have

〈u, u〉 =

∫ ∞
0

(In−1(fn(∗, t)))2dt =
n∑
k=1

(k − 1)!

(
n− 1
k − 1

)2

I2n−2k(fn ⊗k fn),

and, since Dsu(t) = (n− 1)In−2(fn(∗, s, t)),

trace(Du)2 = (n− 1)2

∫ ∞
0

∫ ∞
0

In−2(fn(∗, s, t))In−2(fn(∗, t, s))dsdt

= (n− 1)2

n−2∑
k=0

k!

(
n− 2
k

)2 ∫ ∞
0

∫ ∞
0

I2n−4−2k(fn(∗, s, t)⊗k fn(∗, s, t))dsdt

= (n− 1)2

n∑
k=2

(k − 2)!

(
n− 2
k − 2

)2

I2n−2k(fn ⊗k fn),

12



hence

Γu21 = I2n−2(fn ⊗1 fn)

+
n∑
k=2

(
(n− 1)2(k − 2)!

(
n− 2
k − 2

)2

+ (k − 1)!

(
n− 1
k − 1

)2
)
I2n−2k(fn ⊗k fn)

=
n∑
k=1

k!

(
n− 1
k − 1

)2

I2n−2k(fn ⊗k fn),

and

Var
[
Γu21

]
=

n−1∑
k=1

k!2
(
n− 1
k − 1

)4

‖fn ⊗k fn‖2
2.

We also have

Dr〈u, u〉 = 2
n−1∑
k=1

(n− k)(k − 1)!

(
n− 1
k − 1

)2

I2n−2k−1((fn ⊗k fn)(∗, r)),

hence

E

[∫ ∞
0

|Dr〈u, u〉|2dr
]

= 4
n−1∑
k=1

((n− k)(k − 1)!)2

(
n− 1
k − 1

)4 ∫ ∞
0

‖(fn ⊗k fn)(∗, r)‖2
2dr

= 4
n−1∑
k=1

((n− k)(k − 1)!)2

(
n− 1
k − 1

)4

‖(fn ⊗k fn)‖2
2.

Finally we get

d(In(fn),N ) ≤ |1− n!‖fn‖2
2|+

√√√√n−1∑
k=1

k!2
(
n− 1
k − 1

)4

‖fn ⊗k fn‖2
2

+2(n− 1)
√

(n− 1)!‖fn‖2

√√√√n−1∑
k=1

((n− k)(k − 1)!)2

(
n− 1
k − 1

)4

‖fn ⊗k fn‖2
2,

which recovers Proposition 3.2 of [9], with different constants.
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