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Abstract

Concentration and deviation inequalities are obtained for functionals on
Wiener space, Poisson space or more generally for normal martingales and bino-
mial processes. The method used here is based on covariance identities obtained
via the chaotic representation property, and provides an alternative to the use
of logarithmic Sobolev inequalities. It allows to recover known concentration
and deviation inequalities on the Wiener and Poisson space (including the ones
given by sharp logarithmic Sobolev inequalities), and extends results available
in the discrete case, i.e. on the infinite cube {—1,1}°°.
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1 Introduction

The purpose of the present paper is to further explore topics in concentration and
deviation inequalities, in particular in infinite dimensional settings. Deviation and
concentration have attracted a lot of attention in recent years well summarized in

[17, 18] where the reader will find up-to-date information, precise references and credit.
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Among the various methods used to obtain these results one that we would like to
emphasize is based on covariance representations. In particular, it was used in the
Gaussian or more generally infinitely divisible cases in [4], [13]. Here we tackle the in-
finite dimensional case with a similar method, recovering the results recently obtained
in [2], [6], using (modified) logarithmic Sobolev inequalities, and also the stronger re-
sults of [30] obtained from sharp logarithmic Sobolev inequalities, cf. Corollaries 4.3
and 5.1. We also show that our method covers the discrete case and carries the concen-
tration inequalities of [6] to infinite dimensions, cf. Proposition 7.8 and Corollary 7.7.
The content of this paper is as follows. In the next section, we briefly review the
notion of normal martingale and recall elements of its structure theory. Section 3 is
devoted to concentration inequalities for normal martingales having the chaos rep-
resentation property. This is then specialized to “deterministic” structure equations
that simultaneously cover the Poisson and Wiener cases in Section 4. The general
case of Poisson random measure on a metric space is treated in Section 5, and the
gradient of [8] is also used in Section 6 for the Poisson process on R,. Section 7 is
devoted to the case of the binomial process, and it includes functionals on the infinite

discrete cube under non-symmetric Bernoulli measures.

2 Preliminaries: normal martingales

Let (M;)ier, be a normal martingale, i.e. (M;)iecr, is a martingale with deterministic
angle bracket d(M;, M;) = dt. Let (F;)icr, be the filtration generated by (M;)er.

and let F = \/ F;. The multiple stochastic integral I,,(f,) is then defined as
teR+

0 tn to
]n(fn):n!/ / / fu(ty, ... tp)dM,, ---dM,,, f, € L*(R.)™, n > 1,
o Jo 0
where L?(R )" is the set of symmetric square integrable functions on R?, with

E[In(fn)fm(gm)] = n!]-{n:m} <fm gm>L2(R+)°"' (2'1)

We assume that (M;)cr, has the chaos representation property, i.e. every F €

L*(Q, F, P) has a decomposition as F' =Y I, (f,). Let D : Dom(D) — L*(2 x



R, ,dP x dt) denote the closable gradient operator defined as
D,F =Y nli(fu(+t), dPxdt—ae.,

with F' = 3 I,(f,). The Clark formula is a consequence of the chaos represen-
tation property for (M;)ier, , and states that any F' € Dom(D) C L*(2, F, P) has a
representation

F=E[F] + /Oo E[D,F | F)dM,. (2.2)

It admits a simple proof via the chaos expansion of F':

F = +Zn‘/ / / Falty, ... t))dMy, - - dM,,
:Mﬂ+z%/)Qﬂﬁ@%ﬂmeMM:Mﬂ+/wEWJLHML
0 0

Let (P)tcr, denote the Ornstein-Uhlenbeck semi-group, defined as
PtF = Z eint[n(fn),
n=0

with F =35> L,(fn).
Proposition 2.1 Let F,G € Dom(D). Then
Cov(F. Q) [ / DFE[DG | ]-'t]dt} (2.3)

and

Cov(F,G) { / / ¢ *D,FP,D Gduds} . (2.4)

Proof.  The first identity is a consequence of the Clark formula. By orthogonality
of multiple integrals of different orders and continuity of P, on L?*(f2), it suffices to

prove the second identity for F' = I,(f,) and G = I,,(g,). But

EIL(la] = mlfa gy = 18 | [ DuFDGl

= F [/ 6_5/ DuFPsDquudS}
0 0



Relation (2.4) implies the covariance inequality
|Cov(F, G)| < [DF |1 (0,12s) E[| DG 12 (2.5)

If (My)ter, is in L*(Q2, F, P) then the chaos representation property implies that there

exists a square-integrable predictable process (¢;);cr, such that
d[Mt, Mt] — dt + ¢tht7 t 6 R+. (26)

This last equation is called a structure equation, cf. [11]. Let i, = 14,—0) and j; =
1—iy = 14,201, t € Ry, The continuous part of (M;)ser, is given by dM; = i, dM; and
the eventual jump of (M,)cr, at time ¢ € Ry is given by AM, = ¢, on {AM, # 0},
t € Ry, see [11], p. 70. The following are examples of normal martingales with the

chaos representation property, cf. [11].
a) (¢t)ier, is deterministic. Then (M;)er, can be represented as
dM, = i, dBy + ¢ (AN, — \dt), t € Ry, My=0, (2.7)

with Ay = (1—4,)/¢7, t € Ry, where (By);er, is a standard Brownian motion, and
(Ni)icr, a Poisson process independent of (By)scr, , with intensity v, = fg Asds,

t € R,.
b) Azéma martingales where ¢, = SM;, 5 € [—2,0).

If (¢¢t)ier, is a deterministic function, then ¢, D; is still a derivation operator, and we

have the product rule
Dt<FG> - FDtG + GDtF + ¢tDtFDtG, t S R+, (28)

cf. Proposition 1.3 of [25]. In fact D, can be written as
_i

o
where A? is the finite difference operator defined on random functionals by addition

at time ¢ of a jump of height ¢; to (M;)icr, . If ¢; # 0, this implies

D, A? +i,Dy, (2.9)

D F_ i ot Dy F
el = 5 (e 1), (2.10)

t



and at the limit ¢, — 0, D; becomes a derivation: D,ef” = e D,F.
In the deterministic case, an Ornstein-Uhlenbeck process (X;)icr, can be associated

with the semi-group (P;)ser, , and this implies the continuity of P;.

Lemma 2.2 Assume that (¢;)icr, is a deterministic function. For F € Dom(D) we

have

’|R§DFHL°°(Q,L2(R+)) < HDF||L°°(Q,L2(R+))7 teR,. (211)

Proof. Let (M;)icr, be defined as in (2.7) on the product space 2 = €; x € of in-
dependent Brownian motion (B;)cr, and Poisson process (N;)er, . The exponential

vector
o0

()= D),

f € LY(R,) N L*(R,), has the probabilistic interpretation

£(f) = exp ( / i f(s)dB(s) + / " julog(1+ 6(s) () AN (s)

= /0 i (s)ds — /0 ) yg%ds) |

Let (X{)ier, and (X3)er, be respectively the classical Ornstein-Uhlenbeck process

on Wiener space, and the Ornstein-Uhlenbeck process on Poisson space [29]. We have
Ele(f)(X1, X3) | (X7, X3)]
= £ low ([T foaxie) [ s + o)) dxss)
0 0

_%/OOO isf(s)ds — /Ooojs%ds) | (X1(0),X2(0))]

= exp (/OOO ise”" f(s)dX7(s) + /OOO Jslog(1 +e~"¢(s) f(5))d X (s)
—% /OOO ise ' f(s)ds — /000 jsetﬁck) :
= e(e " f)(X], Xy) = Pe(f).

This identity extends to linear combinations of exponential vectors by linearity, and

to L?(Q) by density and continuity of P,. This implies that
|PDF||zo,r2@®.)) < |PIDF 2@l < [|1DF | r2®,y), t € Ry,

for all ' € Dom(D). O



Before proceeding to general concentration inequalities for normal martingales with
the chaos representation property, we note that some infinite dimensional inequalities
can be obtained from their finite dimensional analogues. For example if (M;)icr,
is a standard Brownian motion, then D is a derivation operator whose action on
cylindrical functionals of the form F = f(Ii(e1),...,Ii(e,)), e1,...,e, € L2(Ry), f
bounded and C! on R, is given by

i=n

DF = Zei<t)aif(ll(61)a o Dien)), teER,.

i=1

We also have the relations

||DF||L2(R+) =|VfI(Ii(er), ..., Li(en)), a.s.,
and
I DF||~@,z2®y)) = I1flLip-

Applying the Gaussian isoperimetric inequality of Borell, Sudakov and Tsirel’son ([7],
28]) to F' = f(Ii(e1),...,Li(en)) with || DF || r2r,)) < 1, leads to concentration
inequalities. By density of the cylindrical functionals this result extends to Wiener
functionals F' in the domain of D and satisfying the condition || DF||peq 2,y < 1.
In a similar way, the Gaussian concentration inequalities obtained in [22], [18] or [4],

extend to infinite dimensions.

3 Concentration inequalities in the general case

In this section we work in the general framework of normal martingales with the chaos

representation property, to do so we extend some arguments of [13].

Lemma 3.1 Let F € Dom(D) be such that E[e®Fl] < oo, and e’ € Dom(D),
0 < s <ty for somety > 0. Then

t
E[et(F—E[F])] S eXp </ h(S)dS) , O S t S t(), (31)
0

where h is defined as

hs) = / 1DuFllwle=F Due*Flldu, s € [0, 4], (3.2)
0

6



Proof. Let us first assume that E[F] = 0. We have
E[Fe’f] = FE { / E[D,F | FE[D,e*" | Fu]du}
0

= E { / D.e** E[D,F | fu]dul
0

< E[esF]/ IDuFllolle=F DueF |odu, 0 < s < o,
0

In the general case, letting L(s) = E[e*"FIFD] we have

H(F—E[F ' L(s) " E[(F — E[F])e’"H]
log( E[e!F—EFDT) _/0 () ds S/o Eles B ds,

0<t<t,.
Given F' € L?(2) we denote by np the process
ne(t) = E[DF | B, t Ry,
i.e. we have
F = E[F] —|—/ ne(t)dM;.
0
A modification of the above proof as
E[Fest] = [/ Dye*np(u du} < E [ e " De" || n2m 1nF | 2]
< E SF} ||t‘3_8]‘mDBSFHLoo a,..2@® ) 1Mrll L~ @,r2 @)

also shows that (3.1) holds with

h(s) = [InFll L@z @y lle ™" De*™ || Lo, 2, ) -

Various deviation inequalities can be obtained from this function, however it will not

be used any further since it does not directly involve the norm of DF'.

In the next lemma we apply the semi-group correlation identity (2.4). We refer to [19]

for other applications of semi-groups, in particular to logarithmic Sobolev inequalities.

Lemma 3.2 Let (P,)er, satisfy (2.11). Let F € Dom(D) be such that E[e®Fl] <

and e*f € Dom(D), 0 < s < to, for some ty > 0. Then
t
E[et(F_E[FD] < exp (/ h(s)ds) . 0 <t <ty,
0

7



where h is any of the functions

h(S) = ||DFHLoo(Q’L2(R+))HeiSFDQSFHLoo(Q’L2(R+)), S € [O,tg], (34)
6stl)esF )
h(s) = —Dr IDF(| 70 r2®. ), S € [0, o] (3.5)

Proof.  Again assume first that E[F] = 0. If the Ornstein-Uhlenbeck semi-group
satisfies (2.11), then

E[Fe’t] = E{ / e / DueSFPUDuqudv]
0 0

IN

5 [esFue-sFDesFum / e-”|erDFHL2<R+>dv}
0

IN

E [65F} HeisFDGSFHL‘”(Q,LQ(RH) H/ e*UPUHDFHL2(R+)dU
0

oo

IN

FE [€SF} H@SFDESFHLOO(Q7L2(R+))/O €7UHDFHL00(Q7L2(R+))dU

< E ] |le”*" De” || o r2®ay | DF || L (9,24 ))-

A similar argument shows that

E[Fe’f] = FE / e / DueSFPvDuqudv}
/o 0
r stD sF 00
S E GSF % /0' 6U||DFPUDF"L1(R+)dU]
e—sFDesF ] B
S E GSF T / e U||DF||L2(R+)||PDDF||L2(R+)CZU:|
0 J0
. estDesF S Y
< E[e"] —57 || 1PFli=@r2@ H/ ¢ B|| DF | 2ryydv
) 0 )
. €_$FD€$F o .
< F [e F} T DF ||DF||L°°(Q,L2(R+))/ € ||DF||L°°(Q7L2(R+))dU
0o 0
. 6stDesF
< E[e’] —Dr IDF (2o, 12(m, -
The remainder of the proof is as in Lemma 3.1. U

From these lemmas a general concentration inequality follows:

Proposition 3.3 Let F' € Dom(D) be such that E[e®!Fl] < 0o, and e*¥ € Dom(D),
0 < s < tg, for some ty > 0. Let h be the function defined either in (3.2), or (if

8



(¢1)ter, is deterministic) in (3.4) or in (3.5). Then

P(F — E[F] > x) <exp (— /I hl(s)ds) , 0 <x<h(ty),
0
where h™! is the inverse of h.
Proof. From Lemma 3.1 we have for all v € R:
e®P(F — E[F] > z) < E[e!-EED] < HO 0 <t < t,,

with .
H(t):/ h(s)ds, 0<t<to
0

For any 0 < t < to we have 4£(H(t) — tz) = h(t) — x, hence

0<t<tg

= /0:D sdh™(s) —azh ™ (z) = — /Ox h~t(s)ds.

h=!(z)
min (H(t) —tr) = H(h '(2)) —ah(z) = /0 h(s)ds — zh™*(z)

4 Concentration and deviation inequalities for de-

terministic structure

In this section we work with (¢;);cr, a deterministic function, i.e. (M;)er, is written

as in (2.7). This covers the Gaussian case for ¢ = 0, and also the general Poisson

case, as shown in Sect. 5.

Proposition 4.1 Let ' € Dom(D) be such that Ele®Fl] < oo, for some ty > 0.

Then
P(F — E[F] > z) < exp (— /Oz h—l(s)ds> . 0<x<h(ty),

where h™! is the inverse of any of the following functions:

ht) :/ I Dy P (941D —1)du+t/ il D F |2 du,
0 0

|Pul
h(t) = [|DF || 0,2l (€177 = 1) oo (L2
1
0 = || 555 = 1| 1P <D0l



Proof. 1In the deterministic case, e ¥ De!f' € L%(Q) x R,), with

e D et = :b_“ (e<PeF 1) 4 i, tD,F, ueR,, (4.4)
which can also be written as
1
e Dyt = — (et —1), (4.5)

by replacing ¢! (et¢“DuF — 1) with its limit as ¢, — 0, i.e. tD,F, if ¢, = 0. It
remains to apply Proposition 3.3. O
Note that the inequalities given by (4.1), (4.2) and (4.3) are not comparable. Using
the bound

|¢—1(et¢uDuF . 1)| < t|DuF|6t|¢“DuF|,

u

for all values of ¢, € R, Proposition 4.1 also holds for the functions

h(t) =t / | Dy F |12, |19 o du,
0
and

h(t) = t| DF | r~ 2@, | DF ||t r2m, ), t € [0,t0).

We will show in the rest of the paper many instances where we can estimate h and

ht.

Proposition 4.2 Let F' € Dom(D) be such that E[eFl] < oo, for some ty > 0, and
Gu D F < K(u) a.s., u € Ry, for some function K : R, — R. Then

P(F — E[F] > ) <exp (- /Ox h—l(s)ds> . 0<x<h(ty),

where h™! is the inverse of

1 .
0 = | 75 - 0| 10F B t€ 00
Proof. Since the function x — (e” — 1)/z is positive and increasing on R, we have
e ' Dyett 1 1
0 < u — tpy Dy F o 1 < tK(u) _ 1 R
7 e ol & )< & ) uERy,
and tF 1y tF
e ""Dye 1
vl < () _ 1 R,.

It remains to apply Proposition 3.3 and Lemma 3.2. 0

10



The following corollary is the main result of this section. It unifies the Poisson and
Brownian case, and allows in particular to recover the classical inequality (4.7) in the
case ¢ = 0, i.e. on Wiener space cf. [22], and Proposition 3.1 of [30] which is proved

from the sharp logarithmic Sobolev inequalities on Poisson space [6].

Corollary 4.3 Let F € Dom(D) be such that pDF < K a.s. for some K > 0 and
| DF || oo (o,2r,)) < 00. Then for x>0,

o - ||DF||%°°(Q,L2(R+))9 K
K? IDF 7 e 200

x zK
< exp | —5zlog {1+ ’ (46)
( 2K ( ||DF||%M(Q,L2(R+))>>

with g(u) = (1 +u)log(l +u) —u, u> 0. If K =0 (decreasing functionals) we have

P(F — E[F] > )

IA

22
P(F—FE[F)>z)<exp|— : (4.7)
2| DF | F 0 2wy
Proof.  We first assume that F' € Dom(D) is a bounded random variable. The

function h defined in Proposition 4.2 satisfies

1

h(t) < E(etK - 1)HDFH%°°(Q,L2(]R+))7

hence

x _ 1 xr B
1 1 _
= ((:‘c + I DF I @2z, ) o8 (1 + :rKHDFHLi(Q’LQ(R”)) . x) ,

and (4.6) holds for all > 0 since F' is bounded. If K = 0, the above proof is still
valid by replacing all terms by their limits as K — 0. If ' € Dom(D) is not bounded
the conclusion holds for F,, = max(—n, min(F,n)) € Dom(D), n > 1, and (F},)nen;,
(DF,)nen, converge respectively to F' and DF in L?(Q), resp. L*(Q x R,), with
IDFu 7.2,y < I1DF 2o .r2(m,)): O
The bounds (4.6) and (4.7) respectively imply E[e®F°¢+IF] < oo, for some a > 0
and E[e*"] < oo, for all a < (2| DF |1 12z,y) "

11



In particular, if F'is Fp-measurable with DF < K for some K > 0, and if morevoer

¢y = ¢ € R, is constant in t € R, then

sz 2en(a 5))<on e )

since || DF || (q,z2(r,)) < KT. This improves (as in [30]) the inequality

P(F — E[F] > ) < exp (—4 " log (1 + %)) . (4.8)

obtained from Proposition 6.1 in [2] which relies on modified (and not sharp) loga-

rithmic Sobolev inequalities on Poisson space.

Corollary 4.4 Let ¢, = ¢ € Ry, t € Ry, be constant. Let F' € Dom(D) be such that
|DF|le < K and [|[DF|| 11w, 10o)) < 00. Then

IDF|p @, ) v

P(F—-FE[F]>z) < exp(— s g
| =0 ¢ K IDF| 2 2= (@)
x xo
< exp (——log (1—1— >),

20K IDF| 11, pe )
with g(u) = (14 u)log(1l +u) —u, u > 0, and we have E[e)F1o#+1F1] < oo for some
A>0. If¢, =0, t € Ry, and F € Dom(D) is such that | DF||%(R., L>®(2)) < oo,
then

I’Q
e B . 4.9
( H—x)—exp( 2HDF||L2<R+,Lw<m>> "

Proof. The function defined in (4.1) of Proposition 4.1 satisfies

ht) < ¢~ (e = DI DF| piry roo@)),

which allows to follow the proof of Corollary 4.3. In the limiting case ¢ = 0, Re-
lation (4.1) gives h(t) = t|DF||r2w, 1), hence —h~(t) = —t||DFH222(

Again we may first obtain (4.9) when F' is bounded and treat the general case via an

Ri,L>(Q))

approximation argument. U

Corollary 4.4 is weaker than Corollary 4.3, however it relies only on the Clark formula
(i.e. on (4.1) and Lemma 3.1), not on the use of semi-groups. For this reason it
can be stated for any derivation operator D which can be used in the Clark formula.
In particular it transfers immediately to the Poisson space for the operator D, see

Sect. 6.

12



5 Difference operator on Poisson space

Let X be a o-compact metric space and let QX denote the set of Radon measures

=1

i=N
0¥ = {w:Zeti L ()EN C Xt £ty Vi, NeNu{oo}},

where ¢, denotes the Dirac measure at ¢t € X. Given A € B(X), let F4 = o(w(B) :
B € B(X), B C A). Let o be a diffuse Radon measure on X, let P denote the
Poisson measure with intensity o on Q% and let also L2(X) = L*(X, o). The multiple

Poisson stochastic integral I,,(f,,) is then defined as

Ln(fn)(w) = / Falty, - ta)(w(dty) — o(dty)) - (w(dtn) — o(dtn)),  fu € Lo(X)™",
Ap

with A, = {(t1,...,t,) € X" : t; #;, Vi # j}, and the isometry formula

E[[n(fn)lm(gm)] = nll{n:m}<fna gm>L§(X)°”a

holds true (see [21]). Moreover every square-integrable random variable F' € L?(Q%, P)

admits the Wiener-Poisson decomposition

F =2 L(f,
n=0
in series of multiple stochastic integrals. The linear closable operator
D:L*(Q%,P) = L x X,P®o)

is defined via

DL, (fn)(w) = nl 1 (fu(x,t)(w), P(dw)® o(dt) —a.e., neN.
It is known, cf. [15] or Proposition 1 of [21], that

DiF(w) = FwU{t}) — F(w), dP x dt —a.e., F € Dom(D),

where as a convention we identify w € QX with its support. Since there exists a
measurable map 7 : X — R, , a.e. bijective, such that the Lebesgue measure is the
image of o by 7 (see e.g. [9], p. 192), Corollary 4.3 and Corollary 4.4 can be restated.
Again we recover Proposition 3.1 of [30] in the setting of Poisson random measures

on a metric space, without using (sharp) logarithmic Sobolev inequalities:

13



Corollary 5.1 Let F' € Dom(D) be such that DF < K, a.s., for some K > 0, and
| DF || oo (0,2(xy) < 00. Then

”DFHLOO(Q L2(X)) K
P(F - E[F]>1) < exp g
K? IDF || o 0. L2(x)

< 2 rK
S exp 0og s
2K T IDFIES 00

with g(u) = (1 +u)log(l +u) —u, u> 0. If K =0 (decreasing functionals) we have

22
P(F — E[F]) > x) <exp (— 5 > . (5.1)
2 DFL 0,12 (x))

In particular if F' = [, f(z)w(dz), then ||DF||reor2x) = |[fllr2x) and if f < K,

a.s., then

(/ (@) (w(dz) — o(dz)) zx) < exp (—fX fQ(;gla(dm)g (fx foga(dx))),

which covers Proposition 2 of [27]. If f <0, a.s., then

If F fX (dZE) then ||DF||L1(X,L°°(Q)) = ||f||L1(X)7 and we obtain

P(/Xf(x)“"(dx)“’(dx”zx) < oo (- fX|f||f||: - (fx|f )

In case f > 0 a.s., this can be written as

P( / f(w)(w(dx)—a(dw))2x> < exp <_||£;’[ﬂg(EfF])>

As an application we consider as in [27] a family (V,).eny C L?(X) of functions with

values in [0, K], with (X)) < oo, and the functional

F = sup /X , (2)w(dz).

a€eN

Then

aeN aeN J X

0 < D,F = sup ( /X W, ()w(dz) + \I/a(:(:)) ~ sup / U, ()w(dz),

14



hence

0 < D, F <supV¥,(r) <K,

a€eN

and
x
P(F—-—E[F|>x) < —o(X - )
(7~ BIF 2 ) < e (~o)s (50557 ))
Moreover,
X e—o(X)
E[F] = Z ; / sup(Uu(z1) + -+ 4+ Volxy,))o(dxy) - - - o(dxy,)
_ v Xn a€N
S [ et oldr)
> su JT1)oldxy) - -o(adx,
X p—o(X)
> D [P Flloin) - olar)
o0 e—O'(X) -
> |IDF|prx.pe) (X))
n=1 :
1 —o(X)
Z m”DFHLl(XLOO(Q))(l_e )
Hence
o(X)
||DF||L1(X,L°°(Q)) S WE[F],
and

o(X) z(1 — e )
P(F — E[F] > z) < exp <_K(1 — e—ete CLElg (WE[F]» '

6 Local gradient on Poisson space

In the Poisson case, if X =R, and o is the Lebesgue measure, then a local gradient
can be introduced, cf. [8], [10], [23]. Let (T%)r>1 denote the jump times of the canonical
Poisson process (N;)icr, , and let 7, = Ty, — Tj,—1, k > 1, denote its interjump times,

with 7y = 0. Let S denote the set of smooth random functionals F' of the form

F=f(r,...,m), n>1,
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where f is of class C' on R" and has compact support. Let D denote the closable

gradient defined as

k=n

DiF ==Y Vg ((00cf(r1,....7), teER,, FEeES.

k=1

Then the relation E[DyF | F] = E[D,F | F;] holds, t € Ry, and the Clark formula

can be written for /' € Dom(D) as:
F = E[F] +/ E[D,F | F]d(N; —t), (6.1)
0
cf. Theorem 1 of [23].

Corollary 6.1 Let F' € Dom(D). We have

x?
P(F — E[F] >x) <exp (— = > : (6.2)
20 DF Il . 1o ()
and
(F— E[F] > 1) < v (6.3)
P(F — >x)<exp| ———= . )
HDF o124

Proof.  For (6.2) we note that the Wiener space proof of Corollary 4.4 is valid on
Poisson space since D satisfies the chain rule of derivation and the Clark formula
(6.1). Concerning (6.3), we construct the exponential random variables (7j)x>1 as
half sums of squared independent Gaussian random variables. Let F' = f(7y,...,7,),

and consider the Wiener functional ©F given as

@F:f<fv%+yf wi+yi>7

5 T g
where z1,...,%,, Y1,...,Yn, denote two independent collections of normal random

variables that may be constructed as Brownian single stochastic integrals. Using the

fact that F' and ©F have same law, and the relation
2@|DF|%2(R+) - |D@F|%2(R+), (64)

see Lemma 1 of [24], the application on Wiener space of Corollary 4.3 to OF yields
(6.3). O
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The bounds (6.2) and (6.3) imply the exponential integrability E[e*"”] < oo for all
a< (2||DFH%2(R+,L00(Q)))_17 resp. a < (4||DF|’200(Q,L2(R+)))_1- The above results can
be obtained from logarithmic Sobolev inequalities, i.e. by application of Corollary 2.5
of [18] to Theorem 0.7 in [1] (or Relation (4.4) in [18] for a formulation in terms of

exponential random variables).

7 Discrete settings

The covariance representations (2.3) and (2.4) which lead to the concentration and
deviation inequalities of the previous sections have versions in discrete settings. Our
purpose is now to explore consequences of such representations. We consider the

discrete structure equation
YZ=1+¢Ys, keN, (7.1)

i.e. (r)ren is a deterministic sequence of real numbers, and (Yy)r>1 is a sequence of
centered independent random variables. Since (7.1) is a second order equation, there

is a family (Xj)r>1 of independent Bernoulli {—1,1}-valued random variables such
that
v, — o+ Xp /i +4
k — )
2
The family (Xj)ren is constructed as a family of canonical projections on Q0 =
{—1,1}", under the measure P determined from the condition (7.1) and the fact

that E[Y;] = 0 (which imply that E[Y}?] = 1), i.e.

pkzP(szl):P<yk:\/Z:’;)

[ Dk 1 Pk
=P X, =—-1)=P(Yy=—/— | =4+ ——~— keN.
4k (X ) (k qk> 2 "5 ¢%+4

Let J,(f,) denote the multiple stochastic integral of f,, € £*(N)°" (the space of square-

k> 1.

_L’ keN)

1
2 2\/p2+4

and

summable symmetric functions on N™), defined as

T(f) = > falkr, o k)Y o Y,

17



where

Ap={(kr,. . ka) €N ¢ ki #ky, 1<i<j<nl},

with the isometry

E[Jn(fn)Jm<gm)] = nll{n:m} <1An Ins gm>Z2(N)®”-

We have
Tlf)=nl> " > Y fulkr k)Y, Y (7.2)
kn=00<kn_1<kn  0<ki<ka
Let S, = ]Zig(Xk +1)/2 be the random walk associated to (Xj)r>o, cf. also [12],

20]. If pp = p and qx = ¢, k € N, then J,(1pnp») is the Krawtchouk polynomial
K,(Sn; N + 1,p) of order n, with parameter (N + 1,p), cf. [26]. The set P of
polynomials in X, Xy, X3,... is dense in L?*(, P), hence any F' € L*(Q), P) can be

represented as a series of multiple stochastic integrals:

F=> Jufa), fe€ CON)™ k20, Jo(fo) = B[F].

n=0

Definition 7.1 We densely define the linear gradient operator D : L?(2) — L*(Q x
N) as
DkJn(fn) = an_l(fn(*a k)]-An<*7 k))? fn E £2<N)on7 n E N

We have for (ki,...,k,) € A,
Dy, (H Ym) = L{cth, b)) H Yy,
= ki
hence the probabilistic interpretation of Dy, is
DkF(S) = \/Pkqk (F(S + 1{Xk=71}1{k§-}) — F(S — 1{Xk:1}1{k§-})) .
When restricted to cylindrical functionals of the form

F=f(X1,...,X,),

18



the gradient D is the finite difference operator

DkF = \/Pkqk (f(Xh e ,kal, —|—1,Xk+1, e ;Xn) — f(Xl, e 7Xk717 —1,Xk+1, e 7Xn))7

which (in the symmetric case pr = qx = 1/2, k € N), is the operator considered in
[4]. The operator D does not satisfy the same product rules as in the continuous time

case (Relation (2.8)), instead we have:

Proposition 7.2 Let F,G : Q) — R. Then,

X
Di(FG) = FDG+ GDyF — p:qk DyFDG, k>0,

and

X},
F F ———L=D,F
k — - . .
Dye X/ Prqre (e VPkTk 1) (7.3)

Proof. Let Ff = F(S + 1{Xk:—1}1{k§~}) and Fk_ = F(S — l{szl}l{kg.}), k>0. We

have
Dy(FG) = prae(FFGE—F;Gy)

= Lx— /ot (F(GE = G) + G(Ff — F) + (Ff = F)(Gf - @)
+1x =iyt (F(G— G+ G(F — Fy) — (F — F)(G = Gy))

= 1{Xk:_1} (FDkG + GD,F + DkFDkG>
Pr4k
+1lix,=1) (FDkG + GDLF — i DkFDkG) .

We have

- +
Dpe™ = Lpxemiyv/pran(e” — ™) + 1= 1y v/prai (e —eF)

V e Dk —L_p,F
L=y v/Praee” (1= e R0 4 1y /pigie” (e VP — 1)
X
= —Xk\/kakeF (e\/ﬁD’“F _ 1) ‘
]

The next result is the predictable representation of the functionals of (S,),>0. Let

fN:O'(XQ,...,XN),NEN,
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Proposition 7.3 We have the Clark formula
F =E[F]+ ) E[D/F | FoulYe, F € L(Q).

k=1
Proof. For F' = J,(f,) we have, using (7.2) (see e.g. [26]):

Fo= (fn) - H'J fn]-A

|M8

Ly o1 (-)Ys

= > E[DpJu(fn) | FealYe
k=1

This identity also shows that F' — E[D.F' | F._1] has norm equal to one as an operator
from L%(Q) into L?(2 x N):

IED.F | Fall Tz = I1F = ElF)l[f2) < |1F = E[F72(0) + EIF]* < | Fllf2q)
hence the Clark formula extends to F' € L*(Q). O

The Clark formula implies the covariance identity

Cov(F,G)

ZDkFE DiG | Fi_ 1]] , (7.4)

k=1

and we also have as in the continuous time case:

Z / — D, FP,D,Gds

where (P,)icr, denotes the semi-group

Cov(F,G) , (7.5)

PF =Y e ™I.(f.), teRy,

F =3 Ju(fn). The next result shows that the semi-group (P;)icr, admits a
representation by a probability kernel and an Ornstein-Uhlenbeck type process which

(in the symmetric case py = g, = 1/2, k € N) is in fact the Brownian motion on

{—1,1}" considered in [2].
Proposition 7.4 For F € L*(Q, Fy),

PF(W') = i F(w)gY (w,w)dP(w), w,w' €, (7.6)
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where q¥ (w,w') is the kernel

=N
oY (w,0) = [+ e Vi), wo €.

i=1
Proof. Since L?(2, Fy) is finite (2V*1-)dimensional it suffices to consider the func-

tional Yy, - -+ Yy, with (kq1,...,k,) € A,. We have for v’ € Q, k € N:
EYi()(1+ e V() Yi(w))]
= ppy ) B (1 +e’y /q—kYk(w’)) — Qg R <1 —e, /@Yk(w’)) = e "V (),
Pk Pk 4k 4k
which implies by independence of (Xj)gen:

Py (Y, -+ Vi, )W) = 7"V (W) - Vi, () = EYe, - Yiq (0], W' €.

The Ornstein-Uhlenbeck process ((X})ren)ier, associated to (P,)er, satisfies

PXt=1]X0=1)=pp +e g, PXi=—1]X"=1)=q(l—e?),
PXp=1|X)=-1)=p(l—e") P(Xp=-1|X)=-1)=q+e'p, keN.

In other terms, the hitting time 7 _; € R, U {+o0} of —1 starting from +1, resp. of

+1 starting from —1, has distribution
Prii<t)=q(l—e), teRy,

resp.

Pt <t)=p(l—e™), teR,.

The covariance identity (7.5) and the representation (7.6) imply the inequality
[P DE| L @emy) < [P DFew)llze@ < [|DFllie@eey, s €Ry,

for FF € Dom(D), hence the next proposition can be proved in a way similar to

Proposition 3.3.
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Proposition 7.5 Let F € Dom(D). Then

E[e!F=EFD] < exp (/t h(s)ds) , 0<t<ty, (7.7)
0
where h is any of the following functions:
5) = i IDiF || |le™*" Dre’™|| ., (7.8)
k=0
h(s) = | DF[|r0.e0m) ||6_8FD68FHL°°(Q,£2(N))’ (7.9)
s = | 2| IpFI e, s et (7.10

Although D does not satisfy the same product rule as in the continuous case, from

(7.3) we still have the bound
le™*F Dye’™| < \/pqu(evpzqkmkﬂ —1), keN, (7.11)
which gives the following corollary to Proposition 7.5.

Corollary 7.6 Let F' € Dom(D). Then

t
E[et(FfE[F])] < exp </ h(s)ds) , 05t <ty, (7.12)
0
where h is any of the following functions:
= > IDkFl| H\/pqu(evpzqkwm - 1)H ’ (7.13)
k=0 >
h(s) = | DF|| e q,e2qv) H\/pq.(eJ%lD'F| — 1)” : (7.14)

Lo (Q,02(N))

= H\/kakD

Again, the inequalities given by (7.13), (7. 14) and (7.15) are not comparable. The
bound 1/}JkCJk(eWJqulD'“Fl —1) < s|DyF|e’ o P
lary 7.6 holds with

h(s) = SZ | DeF|%,

1 — 5 _|DyF|
F(em REL 1)H HDFH%OO(Q’ZQ(N)), s € [0, to). (7.15)

, k € N, also shows that Corol-

‘e T | Dk F| H

and

s _|D.F
h(S) = S”DFHLoo(Q’gQ(N))He\/W' ‘D.FHLoo(Q’gz(N)), S € [O,to].
The following corollary is obtained with the same proof as on the Poisson space.
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Corollary 7.7 Let F € Dom(D) be such that
K >0, and [|[DF|| o @,em) < 0o. Then

IDFN7 e 0,020 K
P(F—-E[F]>z) < exp|— ’ g
K IDE L 0,0

< 2 oe [ 1+ 2
< exp og :
T IDF )

with g(u) = (1 4+ u)log(l +u) —u, u > 0.

Tiqk|D’fF| < K, k € N, for some

Proof. Use the inequality

estDkGSF 1 s Xk D F GSK -1
—s < ———5 = X}/ VPRTE R 1) <
"= T DiF VPt (e v )< %
and apply Corollary 7.6. O

In case pr = p and ¢, = ¢, for all £k € N, the conditions —|DkF| < B, ke N, and
IDF 702y < @7, give

2
-z sen (A (32)) sen (e 22).

which is relation (13) obtained on {0,1}" in [6]. In particular if F' is Fy-measurable,

then

P(F — E[F] > ) < exp( Ng (5:;)) < exp (—% (log (1+5—N> - 1)) .

Finally we show a Gaussian concentration inequality for functionals of (S,,),en, using

the covariance identity (7.4). We refer to [5], [3], [14], [16], for other versions of this

inequality.

Proposition 7.8 Let F': Q2 — R be such that

o

Z \DkF\HDkFHOO
k=

< K2

o0

Then

P(F — E[F] > z) < exp (‘ﬁ) . x>0

23



Proof. Using the inequality

1
e — eV < Stz —yl(¢" +€¥),  myeR, (7.16)
we have
|Dpe'?| = ,/pqu|etF;—etFk_|< w/pquﬂF — F|(e B4 eth; 5 )
1
= —tDF FCpetfiy< —— 4IDWF|E [ | X,, i # k
DL 4 efh) < 5o SHDF|B [ | X, i 4]
1
= —— tE [ |DLF| | X, i # K],
2(pk N Qi) (1D 7K
and
E[Fe"™] = Y EIEIDF | Fuea] Dpe'™] < | DpFl|oE [| Die'™|]
k=0 k=0
<t DiF || E [E [e|DLF| | X, i # k
< 1Y G DI [B [ |DAF] | X,y i # 4]
k=0
= tE | Dy F||oo| D F
€Zp/\q||k|||k|
< )Y DD
“— 2(pk N qr) N
We can conclude as in the proof of Corollary 4.4. 0

In case pp = p < 1/2 for all k € N, we obtain

pa?
P(F—E[F]Ex)ﬁexp( IDF[2 >
22(N,L>(Q))
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