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Abstract

The goal of this paper is to obtain probabilistic representation formulas that are
suitable for the numerical computation of the (possibly non-continuous) density
functions of infima of reserve processes commonly used in insurance. In particular
we show, using Monte Carlo simulations, that these representation formulas perform
better than standard finite difference methods. Our approach differs from Malliavin
probabilistic representation formulas which generally require more smoothness on
random variables and entail the continuity of their density functions.
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1 Introduction

In ruin theory, computational methods for finite-time ruin probabilities have
received considerable attention in the last decade. The reader is referred to
the books by Gerber [7], Grandell [8], Panjer and Willmot [13], Asmussen [1],
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where this work was initiated.
2 The work described in this paper was partially supported by a grant from City
University of Hong Kong (Project No. 7002312).



and Kaas et al. [10] for general results on ruin-related issues.

Consider the classical compound Poisson risk model, in which the surplus
process (Rx(t))t≥0 is defined as

Rx(t) = x+ f(t) − S(t), t ≥ 0, (1.1)

where x ≥ 0 is the amount of initial reserves and f(t) is the premium income
received between time 0 and time t > 0. Here, the aggregate claim amount up
to time t is described by the compound Poisson process

S(t) =
N(t)
∑

k=1

Wk,

where the claim amounts Wk, k ≥ 1, are non-negative independent, identically
distributed random variables, with S(t) = 0 if N(t) = 0. The number of claims
N(t) until t ≥ 0 is modeled by a homogeneous Poisson process (N(t))t≥0 with
intensity λ > 0. We do not make any assumption on the claim amount distri-
bution, which are nevertheless assumed to be independent of the arrival times.

Given T some fixed time horizon, the ruin probability

ψ(x, T ) = P

(

inf
0≤t≤T

Rx(t) < 0
)

in the classical Crámer-Lundberg risk model has been analyzed by many au-
thors, in particular by way of the Picard and Lefèvre formula [14], discussed
by De Vylder [5] and Ignatov et al. [9], and compared to a Prabhu or Seal-type
formula by Rullière and Loisel [18]. Further analysis and extensions have been
proposed more recently by Lefèvre and Loisel [11].

Another important practical problem is to obtain numerical values for the
sensitivity

∂ψ

∂x
(x, T )

of the finite-time ruin probability ψ(x, t) with respect to the initial reserve x, in
particular due to new solvency regulations in Europe. This problem is closely

related to that of density estimation since −∂ψ
∂x

(x, T ) is also the probability

density at −x < 0 of the infimum

M[0,T ] = inf{f(t) − S(t) : t ∈ [0, T ]}.

In [17], Privault and Wei used the Malliavin calculus to compute the sensitivity
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of the probability

P (Rx(T ) < 0)

that the terminal surplus is negative with respect to parameters such as the
initial reserve x or the interest rate of the model.

However the problem of computing the corresponding sensitivity for the finite-
time ruin probability ψ(x, T ) has not been covered in [17] because inf0≤t≤T Rx(t)
does not satisfy the smoothness conditions imposed, see Remark 5.2 therein.

We proceed in two steps. First, in Sections 2 and 3 we review the main fea-
tures of the Malliavin calculus applied to density estimation, in relation to
the discontinuity of probability densities. In particular, in Section 3 we use
the Malliavin calculus on the Poisson space to show in Proposition 4 that the
infimum

inf
0≤t≤T

Rx(t)

admits a probability density under certain conditions. We also note that the
probability density of inf

0≤t≤T
Rx(t) is not continuous, and that this infimum

actually fails to satisfy the second order Malliavin differentiability conditions
that would ensure the continuity of its density.

Second, in Section 4 we develop an alternative approach to the problem of
existence and smoothness of the density of inf

0≤t≤T
Rx(t), based on a direct

integration by parts. In particular this technique yields, in Proposition 5 below,
an explicit probabilistic representation formulas suitable for the computation
of the sensitivity

∂ψ

∂x
(x, T )

by numerical simulation. We also treat the case of jump-diffusion processes
(with an independent Brownian component that models investment of the
surplus into a risky asset), using the density of the Brownian bridge.

Finally in Section 5 we present several simulation examples (for unit valued,
exponential, and Pareto distributed claim amounts) that demonstrate the sta-
bility of our method compared to classical finite difference schemes. Our results
are general and operational for light- or heavy-tailed, discrete or continuous
claim amount distributions.

2 Malliavin calculus for density estimation

This section is a preparation for the next one where we apply the Malliavin
calculus on Poisson space to show that although the random variable

inf
0≤t≤T

Rx(t),
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has an absolutely continuous law with respect to the Lebesgue measure, it
does not satisfy the stronger differentiability conditions that would lead to
the continuity of this density.

Our goal in particular is to determine more precisely the range of application
of these techniques to the suprema of compensated jump processes. Here we
work in an abstract setting before turning to the Poisson space in Section 3.

Existence of densities

Here we state conditional versions of classical results on the existence of prob-
ability densities, see e.g. § 3.1 of Nualart [12] or Corollary 5.2.3 of Bouleau
and Hirsch [3]. We work on a probability space (Ω,F ,P).

Proposition 1 Let A ∈ F such that P(A) > 0 and let F , G be two random
variables satisfying the relation

E[Gf ′(F )|A] = E[ΛF,Gf(F )|A], f ∈ C1
b (R), (2.1)

where ΛF,G is an integrable random variable depending on F and G, and in-
dependent of f ∈ C1

b (R).

Then:

i) If G is (strictly) positive a.s. on A then the law of F has a conditional
density ϕF |A given A with respect to the Lebesgue measure.

ii) If in addition G = 1 a.s. on A then this density is given by

ϕF |A(y) = E[ΛF,11{y≤F}|A], y ∈ R. (2.2)

Proof.

i) The bound

E[Gf ′(F )|A] = E[f(F )ΛF,G|A] ≤ ‖f‖∞E[|ΛF,G| | A], f ∈ C1
b (R),

extends to f ′ = 1B for any bounded Borel subset B of R, to yield

E[G1B(F )|A] ≤ m(B)E[|ΛF,G| | A],

where m(B) denotes the Lebesgue measure of B, hence the law of F is
absolutely continuous with respect to the Lebesgue measure since G > 0
a.s. on A.

ii) In the case G = 1 a.s. on A we get
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E[f(F )|A] = E

[

∫ F

−∞
f ′(y)dy

∣

∣

∣

∣

A

]

=
∫ 0

−∞
E

[

f ′(y + F )

∣

∣

∣

∣

A
]

dy

=
∫ 0

−∞
E

[

ΛF,1f(y + F )
∣

∣

∣

∣

A
]

dy

=
∫ ∞

−∞
f(y)E

[

1{F≥y}ΛF,1

∣

∣

∣

∣

A
]

dy.

�

In what follows, any relation of the form (2.2) will be termed an integration
by parts formula, and the random variable ΛF,G will be called a weight.

Continuity of densities

Proposition 1 ensures the existence of the density ϕF |A but not its smoothness.
The next proposition provides a more precise statement.

Proposition 2 Assume that the hypotheses of Proposition 1 hold with G = 1

a.s. on A, and suppose in addition that ΛF,1 ∈ Lp(A) for some p > 1.

Then the conditional probability density ϕF |A is continuous on R.

Proof. Use the bound

|ϕF |A(y) − ϕF |A(z)| ≤ 1

P(A)
‖ΛF,1‖Lp(A)(E[1[z,y](F )])1/q, y, z ∈ R, (2.3)

that follows from (2.2), with 1/p+ 1/q = 1. �

The integrability of ΛF,1 in Lp(A) for p > 1 can be obtained under strong (sec-
ond order) differentiability conditions in the Malliavin sense as a consequence
of Corollary 2 and Proposition 3 below.

Non-continuous densities

In Section 4 we will replace (2.1) by an expression of the form

E[f ′(F )|A] = E





Z
∑

j=1

Λjf(Fj)

∣

∣

∣

∣

A




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where Z, Fj, Λj, j ≥ 1, are random variables, which also implies the existence
of a conditional density of F given A as

ϕF |A(y) = E





Z
∑

j=1

Λj1{y≤Fj}

∣

∣

∣

∣

A



 . (2.4)

However, Relation (2.4) no longer ensures the continuity of ϕF |A as the bound
(2.3) is no longer valid. Such expressions will be obtained in Section 4, Propo-
sition 5, for the infimum

M[0,T ] = inf
t∈[0,T ]

Rx(t).

3 Malliavin calculus on the Poisson space

In this section we consider the application of the Malliavin calculus on the
Poisson space to the infimum

inf
0≤t≤T

Rx(t).

In Corollaries 1 and 2 below we implement the results of Section 2. For this
we will use an unbounded linear derivation operator

D : L2(Ω) → L2(Ω × R+)

admitting an adjoint

δ : L2(Ω × R+) → L2(Ω),

with respective domains Dom (D|A) ⊂ L2(Ω) and Dom (δ|A) ⊂ L2(Ω × R+),
such that

E[〈DF, u〉|A] = E[Fδ(u)|A], F ∈ Dom(D|A), u ∈ Dom(δ|A), (3.1)

where 〈·, ·〉 := 〈·, ·〉L2([0,T ]) denotes the scalar product in L2([0, T ]). A concrete
example of operator D will be given in Definition 2 below.

First, we treat the existence of densities in the next corollary of Proposition 1,
using the duality (3.1) between D and δ.

Corollary 1 Let F ∈ Dom (D|A) and w ∈ Dom (δ|A) such that

〈DF,w〉 > 0, a.s. on A. (3.2)

Then the law of F has a conditional density ϕF |A given A with respect to the
Lebesgue measure.
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Proof. Letting G = 〈DF,w〉 we get

E[〈DF,w〉f ′(F )|A] = E

[

〈Df(F ), w〉
∣

∣

∣

∣

A
]

= E

[

f(F )δ(w)

∣

∣

∣

∣

A
]

,

hence it suffices to apply Proposition 1 with ΛF,G = δ(w). �

As a consequence, the existence of density of the random variable F can be
obtained under first order Malliavin D-differentiability conditions, see below
for an implementation in the setting of jump processes.

Next we recall how the operators D and δ can be applied to the representation
and continuity of densities.

Corollary 2 Let F ∈ Dom (D|A) and w ∈ L2(Ω × R+) such that

〈DF,w〉 > 0, a.s. on A, and
wG

〈DF,w〉 ∈ Dom (δ|A).

Then:

i) if G is (strictly) positive a.s. on A then the law of F has a conditional
density ϕF |A given A with respect to the Lebesgue measure.

ii) if in addition G = 1 a.s. on A then this density is continuous and given
by (2.2), with the weight

ΛF,G = δ

(

G
w

〈DF,w〉

)

. (3.3)

Proof. Using the relation

f ′(F ) =
〈Df(F ), w〉
〈DF,w〉 , f ∈ C1

b (R),

we get

E[Gf ′(F )|A] = E

[

G
〈Df(F ), w〉
〈DF,w〉

∣

∣

∣

∣

A

]

= E

[

f(F )δ

(

wG

〈DF,w〉

)

∣

∣

∣

∣

A

]

,

hence the existence of a conditional density follows from Proposition 1. The
continuity of ϕF |A in the case G = 1 a.s. on A follows from Proposition 2 and
the fact that δ is L2(Ω)-valued on Dom(δ|A). �

In order to apply the above results to functionals of jump processes, we now
turn to a specific implementation of the Malliavin calculus on Poisson space,
cf. Carlen and Pardoux [4], Privault [15]. Here, (Ω,F ,P) denotes the canonical
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probability space of the Poisson process (N(t))t∈R+ with intensity λ > 0 whose
jumps are denoted by (Tk)k≥1, with T0 = 0.

Definition 1 Given m ∈ N we denote by Sm the space of Poisson functionals
of the form

F = h(T1 ∧ T, . . . , Tn ∧ T ) (3.4)

for some h ∈ C1([0, T ]n) and n ≥ m, with the boundary condition F = 0 on
{N(T ) < m}, i.e.

h(t1, . . . , tm−1, T, . . . , T ) = 0, t1, . . . , tm−1 ∈ [0, T ]. (3.5)

Every F ∈ Sm can be written as

F =
∞
∑

k=m

1{N(T )=k}fk(T1, . . . , Tk), (3.6)

where f0 ∈ R and fk ∈ C1([0, T ]k) satisfies

fk(T1, . . . , Tk) = h(T1, . . . , Tn∧k, T, . . . , T ), k ≥ m, on {N(T ) = k}.
(3.7)

Note that Condition (3.5) is void when m = 0.

Definition 2 Let DtF , t ∈ R+, denote the gradient of F ∈ Sm, defined as

DtF = −
n
∑

k=1

1[0,Tk](t)∂kh(T1 ∧ T, . . . , Tn ∧ T ),

for F ∈ Sm of the form (3.4), where ∂kh denotes the partial derivative of h
with respect to its k-th variable.

For F of the form (3.6) we have:

DtF = −
∞
∑

n=m∨1

1{N(T )=n}

n
∑

k=1

1[0,Tk](t)∂kfn(T1, . . . , Tn).

From now on we consider A of the form A = {N(T ) ≥ m} for some m ∈ N,
and let Domm (D), Domm (δ) respectively denote Dom (D|N(T ) ≥ m) and
Dom (δ|N(T ) ≥ m). Similarly we will denote E[F |N(T ) ≥ m] by Em[F ] for
simplicity of notation.

Lemma 1 The operator D can be extended to its closed domain Domm (D)
and admits an adjoint δ with domain Domm (δ) such that

Em[〈DF, u〉] = Em[Fδ(u)], F ∈ Domm (D), u ∈ Domm (δ). (3.8)
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Moreover for all u ∈ L2([0, T ]) and F ∈ Domm (D) we have

δ(Fu) = F
∫ T

0
u(t)d(N(t) − λdt) −

∫ ∞

0
u(t)DtFdt. (3.9)

Proof. This proposition is a conditional version of the classical integration by
parts formula on the Poisson space. For completeness its proof is given in the
Appendix Section 6. �

In order to check that ΛF,G defined in (3.3) belongs to Lp as required in
Corollary 2, we can proceed as follows.

Let U denote the space of processes of the form

u =
n
∑

k=1

Fkhk, h1, . . . , hn ∈ C1
c ((0, T )), F1, . . . , Fn ∈ Sm, n ≥ 1,

(3.10)
and let the operator ∇ be defined as

∇su(t) = Dsu(t) − 1[0,t](s)u̇(t), s, t ∈ R+, u ∈ U .

We remark that the operator ∇ plays the role of a covariant derivative in the
framework of the Malliavin calculus, cf. [16].

Proposition 3 For all u ∈ U we have the identity

Em[|δ(u)|2] = Em[‖u‖2
L2([0,T ])] + Em

[

∫ T

0

∫ T

0
∇su(t)∇tu(s)dsdt

]

. (3.11)

Proof. cf. the Appendix Section 6 . �

The identity (3.11) is called the Skorohod isometry and implies the bound

Em[|δ(u)|2] ≤ Em[‖u‖2
L2([0,T ])] + Em[‖∇u‖2

L2([0,T ]2)], (3.12)

which provides sufficient conditions for a process u ∈ U to belong to Dom(δ).

As an example of application of Propositions 1 and 2 (resp. Corollaries 1 and 2)
in this context, consider a constant premium income rate f(t) = α, t ∈ [0, T ],
with deterministic claim amounts equal to 1, and consider the infimum

M[0,T ] = inf
0≤t≤T

(αt−N(t)) = inf
Tk≤T, k≥0

(αTk−k) = 1{N(T )≥1} inf
Tk≤T, k≥1

(αTk−k).
(3.13)

Proposition 4 Assume that 0 < αT ≤ 1. Then the probability law of M[0,T ]

admits a density conditionally to {M[0,T ] < 0} with respect to the Lebesgue
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measure.

Proof. First, note that M[0,T ] has the form (3.6) with f0 = 0 and

fn(t1, . . . , tn) = inf
1≤k≤n

(αtk − k), n ≥ 1,

and we have {M[0,T ] < 0} = {N(T ) ≥ 1} since αT ≤ 1. Hence taking m = 1,

M[0,T ] =
N(T )
∑

k=1

(αTk − k)1{M[0,T ]=αTk−k}

belongs to Dom1 (D) with

DtM[0,T ] = −α
N(T )
∑

k=1

1[0,Tk](t)1{M[0,T ]=αTk−k},

and the gradient norm

〈DM[0,T ], DM[0,T ]〉 = α
N(T )
∑

k=1

Tk1{M[0,T ]=αTk−k}

is a.e. positive on A = {N(T ) ≥ 1}, thus ensuring the existence of the density
of M[0,T ] conditionally to {M[0,T ] < 0} from Corollary 1. �

The application of Corollary 2 to obtain the continuity of the density of F =
M[0,T ] < 0 and its representation formula (2.2) with the weight (3.3) would
require ΛF,1 ∈ Lp for some p > 1. In order to check this condition one can
apply the divergence formula (3.9) to G = 1/〈DF,w〉, however from (3.12) this
would require a second order D-differentiability as a function of the Poisson
process jump times, a property not satisfied by F = M[0,T ].

It is actually natural that such differentiability conditions do not hold here
since they would ensure the continuity of the probability density of M[0,T ], a
property which is not satisfied, cf. Relation (5.1) and Figure 1 below.

4 Calculation of densities by integration by parts

In this section we develop a direct integration by parts method as a way
around the difficulties noted in Section 3 with the application of the Malliavin
calculus to M[0,T ]. In particular, in Proposition 5 we obtain a probabilistic
representation formula for non-continuous densities that replaces (2.2). We
consider both deterministic and random drifts.
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Monotone deterministic drift

Assume that (S(t))t∈R+ has the form

S(t) = YN(t), t ∈ R+,

where Y0 = 0 and (Yk)k≥1 is a sequence of random variables, independent
of (N(t))t∈R+ , i.e. in the compound Poisson risk model, S(t) represents the
aggregate claim amount and

Yk =
k
∑

j=1

Wj, k ∈ N.

Let f : R+ → R+ be an increasing function mapping t ≥ 0 to the premium
income f(t) received between time 0 and time t, such that f(0) = 0, and
consider the infimum

M[0,T ] = inf
0≤t≤T

(f(t) − S(t)).

Clearly we have M[0,T ] ≤ f(0) − S(0) = 0 hence the law of M[0,T ] is carried
by (−∞, 0]. On the other hand, we have M[0,T ] = 0 if and only if N(T ) = 0
or f(Tk)−Yk > 0 for all k = 1, . . . , N(T ). Hence the law of M[0,T ] has a Dirac
mass P(M[0,T ] = 0) at 0, equal to

P(M[0,T ] = 0) = P(N(T ) = 0) + P({M[0,T ] ≥ 0} ∩ {N(T ) ≥ 1})

= e−λT + e−λT
E

[

∞
∑

k=1

λk
∫ T

0

∫ tk

0
· · ·

∫ t2

0
1{f(t1)>Y1} · · ·1{f(tk)>Yk}dt1 · · · dtk

]

.

In the next proposition we compute the density of M[0,T ], and provide a prob-
abilistic representation which is suitable for simulation purposes.

Proposition 5 Assume that f is C1 on R+ with f ′(t) > c > 0 for all t ∈ R+.
Then the probability density at y < 0 of M[0,T ] given that {M[0,T ] < 0} is
equal to

ϕM[0,T ]|M[0,T ]<0(y) =

λ(f−1)′(y)

P (M[0,T ] < 0)
E





N(T )
∑

j=1

1{y≤inf1≤l≤j(f(Tl)−Yl)}1{f(Tj−1)−Yj<y}1{y≤infj≤l≤N(T )(f(Tl)−Yl+1)}





+
λ(f−1)′(y)

P (M[0,T ] < 0)
E

[

1{0<YN(T )+1+y<f(T )}1{f(TN(T ))<YN(T )+1+y}1{inf1≤l≤N(T )(f(Tl)−Yl)>y}

]

,

y < 0, where we use the convention inf ∅ = +∞.
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Proof. Since f is increasing we have, on {M[0,T ] < 0},

M[0,T ] = inf
Tk≤T, k≥0

(f(Tk) − Yk) = 1{N(T )≥1} inf
Tk≤T, k≥1

(f(Tk) − Yk).

Hence for y < 0,

P({M[0,T ] > y}) (4.1)

= P({N(T ) = 0}) + e−λT
E

[

∞
∑

k=1

λk
∫ T

0

∫ tk

0
· · ·

∫ t2

0
1{y<inf1≤l≤k(f(tl)−Yl)}dt1 · · ·dtk

]

= e−λT + λe−λT
E

[

∞
∑

k=0

λk
∫ T

0

∫ tk+1

0
· · ·

∫ t2

0
1{f(t1)>Y1+y} · · ·1{f(tk+1)>Yk+1+y}dt1 · · · dtk+1

]

.

Now, using the relation

d
(

1{f(t1)>Y1+y} · · ·1{f(tk+1)>Yk+1+y}

)

= −
k+1
∑

j=1

k+1
∏

l=1, l 6=j

1{f(tl)>Yl+y}δ(f(tj )−Yj)(dy)

we have, for any g ∈ Cc((−∞, 0)):

E[g(M[0,T ])] = −
∫ 0

−∞
g(y)dP (M[0,T ] > y)

= λe−λT
E





∞
∑

k=0

λk
k+1
∑

j=1

∫ T

0

∫ tk+1

0
· · ·

∫ t2

0

∫ 0

−∞

k+1
∏

l=1, l 6=j

1{f(tl)>Yl+y}g(y)δ(f(tj)−Yj)(dy)dt1 · · · dtk+1





= λe−λT
E





∞
∑

k=0

λk
k+1
∑

j=1

∫ T

0

∫ tk+1

0
· · ·

∫ t2

0

k+1
∏

l=1, l 6=j

1{f(tl)>Yl+f(tj )−Yj}g(f(tj) − Yj)dt1 · · · dtk+1





= λe−λT
E





∞
∑

k=0

λk
k
∑

j=1

∫ T

0

∫ tk+1

0
· · ·

∫ t2

0
g(f(tj) − Yj)1{f(tj )−Yj<inf1≤l6=j≤k+1(f(tl)−Yl)}dt1 · · · dtk+1





+λe−λT
E

[

∞
∑

k=0

λk
∫ T

0
g(f(tk+1) − Yk+1)

∫ tk

0
· · ·

∫ t2

0
1{f(tk+1)−Yk+1<inf1≤l≤k(f(tl)−Yl)}dt1 · · · dtk+1

]

= λe−λT
E





∞
∑

k=0

λk
∫ 0

−∞

k
∑

j=1

∫ T

0

∫ tk+1

0
· · ·

∫ tj+1

0

∫ tj−1

0
· · ·

∫ t2

0

g(y)

f ′(f−1(y))

1{y<inf1≤l<j(f(tl)−Yl)}1{f(tj−1)<y+Yj<f(tj+1)}1{y<infj<l≤k+1(f(tl)−Yl)}dt1 · dtj−1dtj+1 · dtk+1dy
]

+λe−λT
E

[

∞
∑

k=0

λk
∫ 0

−∞
1{0<Yk+1+y<f(T )}

g(y)

f ′(f−1(y))
∫ T

0
1{f(tk)<f(tk+1)}

∫ tk

0
· · ·

∫ t2

0
1{y<inf1≤l≤k(f(tl)−Yl)}dt1 · · · dtk+1dy

]

= λe−λT
∫ 0

−∞

g(y)

f ′(f−1(y))
E





∞
∑

k=0

λk
k
∑

j=1

∫ T

0

∫ tk+1

0
· · ·

∫ tj+1

0

∫ tj−1

0
· · ·

∫ t2

0

12



1{y<inf1≤l<j(f(tl)−Yl)}1{f(tj−1)<Yj+y<f(tj+1)}1{y<infj<l≤k+1(f(tl)−Yl)}dt1 · dtj−1dtj+1 · dtk+1

]

dy

+λe−λT
∫ 0

−∞

g(y)

f ′(f−1(y))
E

[

∞
∑

k=0

λk1{0<Yk+1+y<f(T )}

∫ T

0
1{f(tk)<Yk+1+y}

∫ tk

0
· · ·

∫ t2

0
1{y<inf1≤l≤k(f(tl)−Yl)}dt1 · · · dtk

]

dy

= λe−λT
∫ 0

−∞

g(y)

f ′(f−1(y))
E





∞
∑

k=0

λk
k
∑

j=1

∫ T

0

∫ tk−1

0
· · ·

∫ t2

0

1{y≤inf1≤l<j(f(tl)−Yl)}1{f(tj−1)<y+Yj<f(tj )}1{y≤infj≤l≤k(f(tl)−Yl+1)}dt1 · · · dtk

+
∞
∑

k=0

λk1{0<Yk+1+y<f(T )}

∫ T

0
1{f(tk)<Yk+1+y}

∫ tk

0
· · ·

∫ t2

0
1{y<inf1≤l≤k(f(tl)−Yl)}dt1 · · · dtk

]

dy

= λe−λT
∫ 0

−∞

g(y)

f ′(f−1(y))
E





∞
∑

k=0

λk
k
∑

j=1

∫ T

0

∫ tk

0
· · ·

∫ t2

0

1{y≤inf1≤l≤j(f(tl)−Yl)}1{f(tj−1)−Yj<y}1{y≤infj≤l≤k(f(tl)−Yl+1)}dt1 · · · dtk

+
∞
∑

k=0

λk1{Yk+1+y<f(T )}

∫ T

0

∫ tk

0
· · ·

∫ t2

0
1{f(tk)<Yk+1+y}1{y<inf1≤l≤k(f(tl)−Yl)}dt1 · · · dtk

]

dy

=
∫ 0

−∞

λg(y)

f ′(f−1(y))
E





N(T )
∑

j=1

1{y≤inf1≤l≤j(f(Tl)−Yl)}1{f(Tj−1)−Yj<y}1{y≤infj≤l≤N(T )(f(Tl)−Yl+1)}



 dy

+
∫ 0

−∞

λg(y)

f ′(f−1(y))
E

[

1{0<YN(T )+1+y<f(T )}1{f(TN(T ))<YN(T )+1+y}1{inf1≤l≤N(T )(f(Tl)−Yl)>y}

]

dy.

�

Note that other analytic expressions for the density of M[0,T ] can be obtained
in some cases. For example, when (Yk)k≥1 are independent, exponentially dis-
tributed random variables with parameter µ > 0 and f(t) = αt is linear,
α ≥ 0, Theorem 4.1 and Relation (4.6) of Dozzi and Vallois [6] show that

P(M[0,T ] < x)

= λ
∫ T

0

(

x
∞
∑

n=0

(λµt(x+ αt))n

(n!)2
+ αt

∞
∑

n=0

(λµt(x+ αt))n

n!(n+ 1)!

)

e−µ(x+αt)−λt

x+ αt
dt,

which provides another expression for the density of M[0,T ] by differentiation
with respect to x.

Note that other series expansions for sup0≤t<1X(t) have been recently ob-
tained by Bernyk, Dalang and Peskir [2] when X(t) is a stable Lévy process
with no negative jump.

13



We can use Proposition 5 to derive an expression for the sensitivity of the
expectation

E[h(Rx(T ))|M[0,T ] < 0]

with respect to the initial reserve x.

Corollary 3 Assume that f(t) = αt, t ∈ R+, for some α > 0. We have for
all h ∈ C1

b (R):

∂

∂x
E[h(Rx(T )) | M[0,T ] < 0]

=
λ

α
E





N(T )
∑

j=1

h

(

x+ min

(

inf
1≤l≤j

(αTl − Yl), inf
j≤l≤N(T )

(αTl − Yl+1)

))

−
N(T )
∑

j=1

h(x+ αTj−1 − Yj)|M[0,T ] < 0





+
λ

α
E

[

h

(

x+ min

(

inf
1≤l≤N(T )

(αTl − Yl), αT − YN(T )+1

))

∣

∣

∣

∣

M[0,T ] < 0

]

−λ
α

E

[

h(x+ αTN(T ) − YN(T )+1)|M[0,T ] < 0
]

.

Proof. We apply Proposition 5 and the relation

∂

∂x
E[h(Rx(T ))|M[0,T ] < 0] = E[h′(Rx(T ))|M[0,T ] < 0]

=
∫ ∞

−∞
h′(x+ z)ϕM[0,T ]|M[0,T ]<0(z)dz,

�

Note that the above formula has the form (2.4) (with constant weights Λj)
and, as noted in Section 2, it does not ensure the continuity of the probability
density of M[0,T ].

Random drift

In this section we study the effect of replacing the drift f(t) by a random
process Z(t). Now consider the infimum

M[0,T ] = inf
0≤t≤T

(Z(t) − S(t))

14



where (Z(t))t∈R+ is a stochastic process with independent increments and
Z(0) = 0, independent of (S(t))t∈R+ , and such that

inf
t∈[a,b]

Z(t), 0 ≤ a < b,

has a density denoted by ϕa,b(x). For example, if (Z(t))t∈R+ is a standard
Brownian motion then ϕa,b(x) is given by

∫ ∞

x
ϕa,b(z)dz = P

(

inf
t∈[a,b]

Z(t) ≥ x

)

= E

[

1{Z(a)<x}P

(

inf
t∈[a,b]

Z(t) ≥ x
∣

∣

∣

∣

Z(a)

)]

+ E

[

1{Z(a)≥x}P

(

inf
t∈[a,b]

Z(t) ≥ x
∣

∣

∣

∣

Z(a)

)]

= E

[

1{Z(a)<x}P

(

inf
t∈[0,b−a]

B(t) ≥ x− Z(a)

∣

∣

∣

∣

Z(a)

)]

+ P(Z(a) ≥ x)

= 2E

[

1{Z(a)<x}P (B(b− a) ≥ x− Z(a)|Z(a))
]

+ P(Z(a) ≥ x)

=
1

π
√

a(b− a)

∫ ∞

0
e−(x−y)2/(2a)

∫ ∞

y
e−z2/(2(b−a))dzdy +

1√
2πa

∫ ∞

x
e−z2/(2a)dz.

We have M[0,T ] ≤ Z(0) = 0 a.s., hence the law of M[0,T ] is carried by (−∞, 0].

Proposition 6 The probability density of M[0,T ] at y < 0 is equal to

ϕM[0,T ]
(y)=−λe−λT

E





∞
∑

k=0

λk
k+1
∑

j=1

∫ T

0

∫ tk+1

0
· · ·

∫ t2

0
ϕtj−1,tj (y + S(tj−1))

P

(

y + S(tk+1) < inf
t∈[tk+1,T ]

Z(t)
∣

∣

∣

∣

S

)

k+1
∏

l=1
l 6=j

P

(

y + S(tl−1) < inf
t∈[tl−1,tl)

Z(t)
∣

∣

∣

∣

S

)

dt1 · · · dtk+1









−λe−λT
E

[

∞
∑

k=0

λk
∫ T

0

∫ tk+1

0
· · ·

∫ t2

0

ϕtk+1,T (y + S(tk+1))
k+1
∏

l=1

P

(

y + S(tl−1) < inf
t∈[tl−1,tl)

Z(t)

∣

∣

∣

∣

S

)

dt1 · · · dtk+1

]

.

Proof. We have

M[0,T ] = min

(

min
Tk≤T, k≥1

inf
t∈[Tk−1,Tk)

(Z(t) − S(Tk−1)), inf
t∈[TN(T ),T ]

(Z(t) − S(TN(T )))

)

.

Hence
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P(M[0,T ] ≥ y) = e−λT
E

[

∞
∑

k=1

λk
∫ T

0

∫ tk

0
· · ·

∫ t2

0
(4.2)

1{y+S(tk)<inft∈[tk,T ] Z(t)}

k
∏

l=1

1{y+S(tl−1)<inft∈[tl−1,tl)
Z(t)}dt1 · · · dtk

]

= λe−λT
E

[

∞
∑

k=0

λk
∫ T

0

∫ tk+1

0
· · ·

∫ t2

0

1{y+S(tk+1)<inft∈[tk+1,T ] Z(t)}

k+1
∏

l=1

1{y+S(tl−1)<inft∈[tl−1,tl)
Z(t)}dt1 · · · dtk+1

]

= λe−λT
E

[

∞
∑

k=0

λk
∫ T

0

∫ tk+1

0
· · ·

∫ t2

0

P

(

y + S(tk+1) < inf
t∈[tk+1,T ]

Z(t)
∣

∣

∣

∣

S

)

k+1
∏

l=1

P

(

y + S(tl−1) < inf
t∈[tl−1,tl)

Z(t)
∣

∣

∣

∣

S

)

dt1 · · · dtk+1

]

,

and in order to determine the density ϕM[0,T ]
of M[0,T ] it remains to compute

the derivative − ∂

∂y
P(M[0,T ] ≥ y). �

By a simple change of variable this also allows one to treat the infima of
exponential jump-diffusion processes, such as

inf
0≤t≤T

eZ(t)−S(t).

5 Numerical simulations

We present an example of simulation when f(t) = t and Wk = 1, k ∈ N, i.e.
for the infimum

M[0,T ] = inf
0≤t≤T

(t−N(t)) = inf
Tk≤T, k≥0

(Tk − k) = 1{N(T )≥1} inf
Tk≤T, k≥1

(Tk − k).

In this case the (unconditional) density function found in Proposition 5 rewrites
as

− ∂

∂y
P({M[0,T ] ≥ y})

=λE





N(T )
∑

j=1

1{y≤inf1≤l≤j−1(Tl−l)}1{Tj−1−j<y}1{y≤infj≤l≤N(T )(Tl−l−1)}





+λE

[

1{TN(T )<N(T )+1+y<T}1{y<inf1≤l≤N(T )(Tl−l)}

]

=λE





N(T )
∑

j=1

1{y≤inf1≤l≤j−1(Tl−l)}1{Tj−1−j<y}1{y≤infj≤l≤N(T )(Tl−l−1)}





16



+λ
∞
∑

k=0

E

[

1{N(T )=k}1{Tk<k+1+y<T}1{y<inf1≤l≤k(Tl−l)}

]

=λE





N(T )
∑

j=1

1{y≤inf1≤l≤j−1(Tl−l)}1{Tj−1−j<y}1{y≤infj≤l≤N(T )(Tl−l−1)}





+λ
∞
∑

i=0

1[T−i−2,T−i−1](y)
i
∑

k=0

E

[

1{N(T )=k}1{Tk<k+1+y}1{y<inf1≤l≤k(Tl−l)}

]

(5.1)

=λE





N(T )+1
∑

j=1

1{Tj−1−j<y≤min(inf1≤l≤j(T∧Tl−l),infj≤l≤N(T )(Tl−l−1))}



 .

Note that the non-continuous component of the density appears explicitly in
(5.1) of the above expression. For the purpose of sensitivity analysis, the result
of Corollary 3 becomes:

E[g′(y + M[0,T ])]

= λE





N(T )
∑

j=1

g

(

min

(

inf
1≤l≤j−1

(Tl − l), inf
j≤l≤N(T )

(Tl − l − 1)

))

− g(Tj−1 − j)





+λE

[

g

(

min

(

inf
1≤l≤N(T )

(Tl − l), T −N(T ) − 1

))

− g(TN(T ) −N(T ) − 1)

]

= λE





N(T )+1
∑

j=1

g

(

min

(

inf
1≤l≤j

(T ∧ Tl − l), inf
j≤l≤N(T )

(Tl − l − 1)

))

− g(Tj−1 − j)



 .

For a same number of iterations, the integration by parts algorithm is not
significantly slower than the finite differences method, because it only involves
the computation of two infima instead of one. However it yields a much greater
level of precision: one can check in Figure 1 that our results are much less noisy
than the ones of the finite difference method. Besides, the density at each point
is obtained independently from other points, which is not the case with finite
difference or kernel estimation methods. This is especially important for non-
continuous densities, for which kernel estimators will introduce some form of
unwanted smoothing.

In Figure 2 we illustrate the fact that our method requires much fewer trials
to accurately estimate the target value.

After this simple example, we also illustrate the case of exponentially and
Pareto distributed claim amounts in Figures 3, 4 and 5 below, to show that
our method is operational for typical light- and heavy-tailed insurance models.
The respective computation times to obtain the graph of Figure 3 above are
2m35s for the finite difference method and 4m5s for the integration by parts
method.

In Figure 4 we present a density estimate obtained via the integration by
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Figure 1. Estimation of the probability density of M[0,T ] by our method (IBP) and
by finite differences (FD) with N = 100000 trials.
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Figure 2. Estimation of the probability density of M[0,T ] at y = −0.5 vs number of
trials by our method (IBP) and by finite differences (FD).

parts method with N = 1000 samples and a computation time of 2.6s, to be
compared with the similar level of precision reached in Figure 3 by a finite
difference method with N = 100000 samples and a computation time of 4m5s.
Finally, in Figure 5 below we consider the case of Pareto distributed claims.
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Figure 3. Probability density of M[0,T ] by finite differences and integration by parts
for exponentially distributed claim amounts with N = 100000 trials.
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Figure 4. Comparison of density estimates of M[0,T ] for exponentially distributed
claim amounts by integration by parts with N = 1000 and N = 100000 trials.

6 Appendix

For completeness, in this appendix we provide the proofs of Lemma 1 and
Proposition 3, which are conditional versions of existing results, see e.g. [16],
[17], and the references therein.

Proof of Lemma 1. Recall that for all F ∈ Sm of the form (3.6) we have:

Em[F ] = e−λT
∞
∑

n=m

λn
∫ T

0

∫ tn

0
· · ·

∫ t2

0
fn(t1, . . . , tn)dt1 · · · dtn.
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Figure 5. Probability density of M[0,T ] by finite differences and integration by parts
for Pareto distributed claim amounts with N = 100000 trials.

By standard integration by parts we first prove (3.8) when u ∈ L2([0, T ]) is
deterministic:

Em[〈DF, u〉]

= −e−λT
∞
∑

n=m∨1

λn

n!

n
∑

k=1

∫ T

0
· · ·

∫ T

0

∫ tk

0
u(s)ds∂kfn(t1, . . . , tn)dt1 · · · dtn

= e−λT
∞
∑

n=m∨1

λn

n!

n
∑

k=1

∫ T

0
· · ·

∫ T

0
fn(t1, . . . , tn)u(tk)dsdt1 · · · dtn

−e−λT
∞
∑

n=m∨1

λn

(n− 1)!

∫ T

0
u(s)ds

∫ T

0
· · ·

∫ T

0
fn(t1, . . . , tn−1, T )dt1 · · · dtn−1.

From (3.7) we have the continuity condition

fn−1(t1, . . . , tn−1) = fn(t1, . . . , tn−1, T ), n ≥ m, (6.1)

hence

Em[〈DF, u〉]= e−λT
∞
∑

n=m∨1

λn

n!

∫ T

0
· · ·

∫ T

0
fn(t1, . . . , tn)

n
∑

k=1

u(tk)dt1 · · ·dtn

−λe−λT
∫ T

0
u(s)ds

∞
∑

n=m

λn

n!

∫ T

0
· · ·

∫ T

0
fn(t1, . . . , tn)dt1 · · · dtn

= Em



F





N(T )
∑

k=1

u(Tk) − λ
∫ T

0
u(s)ds









= Em

[

F
∫ T

0
u(t)d(N(t) − λt)

]

.
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Next we define δ(uG), G ∈ Sm, by (3.9), i.e.

δ(uG) := G
∫ T

0
u(t)d(N(t) − λdt) − 〈u,DG〉,

with for all F ∈ Sm:

Em[G〈DF, u〉]= Em[〈D(FG), u〉 − F 〈DG, u〉]

= Em

[

F

(

G
∫ T

0
u(t)dN(t) − 〈DG, u〉

)]

= Em[Fδ(uG)],

which proves (3.8). The closability of D then follows from the integration
by parts formula (3.8): if (Fn)n∈N ⊂ Sm is such that Fn → 0 in L2(Ω) and
DFn → U in L2(Ω), then (3.8) implies

|Em[〈U,Gu〉L2([0,T ])]| ≤ |Em[Fnδ(uG)] − Em[UG]| + |Em[Fnδ(uG)]|
= |Em[(〈DFn, u〉 − U)G]| + |Em[Fnδ(uG)]|
≤ ‖〈DFn, u〉 − U‖L2({N(T )≥m})‖G‖L2({N(T )≥m})

+‖Fn‖L2({N(T )≥m})‖δ(uG)‖L2({N(T )≥m}), n ∈ N,

hence Em[UG] = 0, G ∈ Sm, i.e. U = 0 in L2({N(T ) ≥ m}), which implies
U = 0 in L2(Ω) by construction of Sm.

As a consequence of (3.8) the operator D can be extended to its closed domain
Domm (D) of functionals F ∈ L2({N(T ) ≥ m}) for which there exists a
sequence (Fn)n∈N ⊂ Sm converging to F such that (DFn)n∈N converges in
L2(Ω × R+), by letting

DF = lim
n→∞

DFn,

for all such F ∈ Domm (D), and DF is well-defined due to the closability of
D. The argument is similar for δ. �

Proof of Proposition 3. For simplicity of notation, let

DuF = 〈DF, u〉, F ∈ Domm(D), u ∈ L2(Ω × [0, T ]).

and

∇uv(t) =
∫ T

0
∇sv(t)ds, u ∈ C1

c ((0, T )).

For all u, v ∈ C2
c ((0, T )) we have

(DuDv −DvDu)Tn =−Du

∫ Tn

0
v(s)ds+Dv

∫ Tn

0
u(s)ds
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= v(Tn)
∫ Tn

0
u(s)ds− u(Tn)

∫ Tn

0
v(s)ds

=
∫ Tn

0

(

v̇(t)
∫ t

0
u(s)ds− u̇(t)

∫ t

0
v(s)ds

)

dt

=D∇uv−∇vuTn,

hence

(DuDv −DvDu)F = D∇uv−∇vuF, F ∈ Sm. (6.2)

On the other hand we have

Duδ(v)=−
∞
∑

k=1

v̇(Tk)
∫ Tk

0
u(s)ds

=−δ
(

v(·)
∫ ·

0
u(s)ds

)

−
∫ ∞

0
v̇(t)

∫ t

0
u(s)dsdt

= δ(∇uv) + 〈u, v〉L2(R+),

hence the commutation relation

Duδ(v) = δ(∇uv) + 〈u, v〉L2(R+), u, v ∈ C2
c ((0, T )), (6.3)

between D and δ.

Next, note that for u =
∑n

i=1 hiFi ∈ U of the form (3.10) we have δ(u) ∈
Domm(D) and

Em [δ(hiFi)δ(hjFj)] = Em [FiDhi
δ(hjFj)]

= Em

[

FiDhi
(Fjδ(hj) −Dhj

Fj)
]

= Em

[

(FiFjDhi
δhj + Fiδ(hj)Dhi

Fj − FiDhi
Dhj

Fj)
]

= Em

[

(FiFj〈hi, hj〉L2(R+) + FiFjδ(∇hi
hj) + Fiδ(hj)Dhi

Fj − FiDhi
Dhj

Fj)
]

= Em

[

(FiFj〈hi, hj〉L2(R+) +D∇hi
hj

(FiFj) +Dhj
(FiDhi

Fj) − FiDhi
Dhj

Fj)
]

= Em

[

(FiFj〈hi, hj〉L2(R+) +D∇hi
hj

(FiFj) +Dhj
FiDhi

Fj + Fi(Dhj
Dhi

Fj −Dhi
Dhj

Fj))
]

= Em

[

(FiFj〈hi, hj〉L2(R+) +D∇hi
hj

(FiFj) +Dhj
FiDhi

Fj + FiD∇hj
hi−∇hi

hj
Fj)

]

= Em

[

(FiFj〈hi, hj〉L2(R+) + FjD∇hi
hj
Fi + FiD∇hj

hi
Fj +Dhj

FiDhi
Fj)

]

= Em

[

FiFj〈hi, hj〉L2(R+) + Fj

∫ T

0
DsFi

∫ T

0
∇thj(s)hi(t)dtds

+Fi

∫ T

0
DtFj

∫ T

0
∇shi(t)hj(s)dsdt+

∫ T

0
hi(t)DtFj

∫ T

0
hj(s)DsFidsdt

]

,

where we used the commutation relations (6.2) and (6.3). �
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