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Abstract

The classical combinatorial relations between moments and cumulants of
random variables are generalized into covariance-moment identities for stochas-
tic integrals and divergence operators. This approach is based on cumulant
operators defined by the Malliavin calculus in a general framework that in-
cludes Itô-Wiener and Poisson stochastic integrals as well as the Lie-Wiener
path space. In particular, this allows us to recover and extend various charac-
terizations of Gaussian and infinitely divisible distributions.
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1 Introduction

This paper is concerned with the relations between integration by parts on probability

spaces and the combinatorics of moments and cumulants of stochastic integrals.
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More precisely, given (Mt)t∈R+ a normal martingale (e.g., a standard Brownian motion

or a compensated Poisson process), the stochastic integral
∫∞

0
utdMt of a square-

integrable adapted process (ut)t∈R+ is known to be a centered random variable whose

second moment is given by the Itô isometry

E

[(∫ ∞
0

utdMt

)2
]

= E

[∫ ∞
0

|ut|2dt
]
. (1.1)

Although the Itô isometry still requires the computation of an expectation on the

right hand side, its main interest is to remove the stochastic integration present on

the left hand side.

Our goal in this paper is to derive extensions of (1.1) to moments of all orders, by

removing any stochastic integral (or “noise”) term from the left hand side. This is

achieved by the covariance-moment identity (3.1) below which is based on the Skoro-

hod integral on the Lie-Wiener and Poisson spaces.

Clearly, the moment

E

[(∫ ∞
0

utdMt

)n]
can be evaluated by decomposing the power

(∫∞
0
utdMt

)n
into a sum of multiple

stochastic integrals having zero expectation plus a remainder term, based on the Itô

rule and combinatorics of the underlying martingale (Mt)t∈R+ . In this sense, our aim

is to compute the expectation of this remainder term. For this, we will rely on the

integration by parts formulas of the Malliavin calculus on the Wiener and Poisson

spaces. In particular, we will represent
∫∞

0
utdMt using the Skorohod integral opera-

tor δ(u).

The moment formulas obtained in this paper are based on a “cumulant operator” Γk

and stated in Proposition 4.3 in the general case, followed by Propositions 5.7 and

6.3, respectively, in the Lie-Wiener and Poisson cases. A different type of cumulant

operator has been defined in [8] using the inverse L−1 of the Ornstein-Uhlenbeck op-

erator L in order to derive expressions for the cumulants of random variables on the
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Wiener space. Our approach is different as it is specially suited to the moments of

stochastic integrals on both the Lie-Wiener and Poisson spaces.

In Theorem 5.1 of [18], moment formulas for have been obtained in the Poisson case by

carrying out repeated integration by parts and removing all stochastic integral terms

by means of using finite difference operators, leading to another type of cumulant

operators in Proposition 3.1 of [21]

We proceed as follows. After a review of definitions and results on moments and

cumulants in Section 2, the main results of the paper are presented in Section 3. The

general integration by parts setting under minimal conditions is treated in Section 4,

and the results are then specialized to the Lie-Wiener and Poisson cases in Sections 5

and 6 respectively. The appendix Section 7 contains several technical results and

additional notation.

2 Moments and cumulants

We refer the reader to [10] and references therein for the relationships between the

moments and cumulants of random variables recalled in this section. Given the cu-

mulants (κXn )n≥1 of a random variable X, defined from the generating function

logE[etX ] =
∞∑
n=1

κXn
tn

n!
,

for t in a neighborhood of 0, the moments of X can be recovered by the combinatorial

identity

E[Xn] =
n∑
a=1

∑
P1,...,Pa

κX|P1| · · ·κ
X
|Pa| = An(κX1 , . . . , κ

X
n ), (2.1)

where the sum runs over the partitions P1, . . . , Pa of {1, . . . , n} with cardinal |Pi| by

the Faà di Bruno formula, cf. § 2.4 and Relation (2.4.4) page 27 of [7], and

An(x1, . . . , xn) = n!
∑

r1+2r2+···+nrn=n
r1,...,rn≥0

n∏
l=1

(
1

rl!

(xl
l!

)rl)

is the Bell polynomial of degree n.

3



Gaussian cumulants

When X is centered, we have κX1 = 0 and κX2 = E[X2] = var[X], and X becomes

Gaussian if and only if κXn = 0, n ≥ 3. Consequently, (2.1) can be read as Wick’s

theorem for the computation of Gaussian moments of X ' N (0, σ2) by counting the

pair partitions of {1, . . . , n}, cf. [5], as

E[Xn] = σn
n∑
a=1

∑
|P1|=2,...,|Pa|=2

κX|P1| · · ·κ
X
|Pa| =


σn(n− 1)!!, n even,

0, n odd,
(2.2)

where the double factorial (n − 1)!! =
∏

1≤2k≤n

(2k − 1) = 2−n/2n!/(n/2)! counts the

number of pair partitions of {1, . . . , n} when n is even, Relation (2.2) clearly applies

when X is given by the Wiener integral

X =

∫ ∞
0

h(s)dBs

of the deterministic function h ∈ L2(R+) with respect to a standard Brownian motion

(Bt)t∈R+ , i.e., X has the Gaussian cumulants

κn(h) = 1{n=2}

∫ ∞
0

|h(s)|2ds, n ≥ 1. (2.3)

Infinitely divisible cumulants

On the other hand, when X is the infinitely divisible Poisson stochastic integral

X =

∫ ∞
0

h(t)(dNt − λdt)

with respect to a standard Poisson process (Nt)t∈R+ with intensity λ > 0, we have

logE

[
exp

(∫
X

h(t)(dNt − λdt)
)]

= λ

∫ ∞
0

(eh(t) − h(t)− 1)dt = λ

∞∑
n=1

κn(h)
tn

n!
,

where

κn(h) = 1{n≥2}

∫
X

hn(t)dt, n ≥ 1, (2.4)

is the normalized centered Poisson cumulant, and (2.1) becomes the moment identity

E

[(∫
X

h(t)(dNt − λdt)
)n]

=
n∑
a=1

λa
∑

|P1|≥2,...,|Pa|≥2

∫
X

h|P1|(t)dt · · ·
∫
X

h|Pa|(t)dt,

(2.5)
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where the sum runs over the partitions P1, . . . , Pa of {1, . . . , n} of size at least equal to

2, cf. [1] for the non-compensated case and [21], Proposition 3.2 for the compensated

case. In the particular case of a Poisson random variable Z ' P(λ) with intensity

λ > 0 we have

E[Zn] =
n∑
a=1

∑
|P1|≥1,...,|Pa|≥1

λa =
n∑
k=0

λkS(n, k), (2.6)

where S(n, k) is the Stirling number of the second kind, i.e., the number of ways

to partition a set of n objects into k non-empty subsets. Note that (2.4) and (2.5)

immediately extend to Poisson random measures over a metric space X with arbitrary

σ-finite intensity measure on X.

3 Main results

In this paper, we work in the general setting of an arbitrary probability space (Ω,F , µ)

on which is defined a Skorohod type stochastic integral operator (or divergence) δ

which coincides with the stochastic integral with respect to an underlying martin-

gale (Mt)t∈R+ on the square-integrable processes, which are adapted to the filtration

(Ft)t∈R+ generated by (Mt)t∈R+ .

The operator δ is adjoint of a closable linear operator

D : S −→ L2(Ω;H),

defined on a dense linear subspace S of L2(Ω,F , µ), where H itself is a linear space

dense in L2(R+;Rd) for some d ≥ 1, and endowed with the inner product 〈·, ·〉 = 〈·, ·〉H
of L2(R+;Rd), with the duality relation

λE[〈DF, u〉] = E[Fδ(u)], F ∈ Dom(D), u ∈ Dom(δ),

for some λ > 0. We show in particular that the above formulas (2.2) and (2.5) both

stem from the general covariance-moment identity

E[Fδ(u)n] = n!
n∑
a=1

λa
∑

l1+···+la=n
l1≥1,...,la≥1

E
[
Γul1 · · ·Γ

u
la
F
]

l1(l1 + l2) · · · (l1 + · · ·+ la)
, (3.1)
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cf. Proposition 4.3 below, for u ∈ Dom(δ) a possibly anticipating process and F a

sufficiently D-differentiable random variable, where

Γuk : S −→ L2(Ω;H), k ≥ 1,

is a cumulant operator defined from D in (3.2) and Definition 4.1 below.

When Γul 1 is deterministic for all l ≥ 1, Relation (3.1) shows that the cumulant κ
δ(u)
l

of δ(u) is given by

κ
δ(u)
l = λ(l − 1)!Γul 1, l ≥ 1,

cf. Relation (4.13) below. This will allow us to recover various results on invariance

of the Lie-Wiener and Poisson measures, cf. Propositions 5.8 and 6.5 below.

The canonical example for this setting is when (Ω, µ) is the d-dimensional Wiener

space with the Wiener measure µ. In addition to the Wiener space, our framework

covers both the Lie-Wiener space, for which the operators D and δ can be defined on

the path space over a Lie group, cf. [4], [11], [24], and the discrete path setting of the

Poisson process, cf. [2], [3], [12].

In all of the above cases, the Skorohod integral operator δ coincides, on the square-

integrable Ft-adapted processes, with the Itô or Poisson stochastic integral with re-

spect to the underlying martingale. In particular, Relation (3.1) yields an extension

of the Gaussian moment identity (2.2) to the case where X is given by the Itô-Wiener

stochastic integral

X =

∫ ∞
0

utdBt

of a square-integrable process (ut)t∈R+ ∈ L2(Ω×R+) adapted to the filtration (Ft)t∈R+

generated by (Bt)t∈R+ , cf. (3.9) below and Section 5. A similar extension follows

for adapted stochastic integrals with respect to the compensated Poisson process

(Nt − λt)t∈R+ in Section 6.

Being based on the divergence operator δ, our results also include the case where

the process u is anticipating with respect to the Brownian or Poisson filtrations and
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are stated in a general framework that covers path spaces over Lie groups as well as

(discrete) stochastic integrals with respect to the standard Poisson process. In this

general framework, the operator Γuk in (3.1) is shown to be given by

ΓukF = F 〈(∇u)k−2u, u〉+ F 〈∇∗u,∇((∇u)k−2u)〉+ 〈(∇u)k−1u,DF 〉, (3.2)

k ≥ 2, where D denotes the Malliavin gradient operator on the Lie-Wiener or Poisson

spaces ∇ is a covariant derivative operator acting on the stochastic process u, cf.

Condition (H3) in Section 4. The composition (∇u)l is defined in the sense of a

matrix power with continuous indices, cf. (7.3) below, and Γuk satisfies the product

rule

Γuk(FG) = GΓukF + F 〈(∇u)k−1u,DG〉, k ≥ 1. (3.3)

For any integer n ≥ 2 we let

κn(u) =


1{n=2}

∫ ∞
0

u2
tdt, on the Lie-Wiener space, and

κn(u) =

∫ ∞
0

unt dt, on the Poisson space,

denote the natural extensions of κn(h) in (2.3) and (2.4) from deterministic h ∈
Lp(R+) to random u. We show that 〈(∇u)nu, u〉 in (3.2) can be computed by the

relation

〈(∇u)nu, u〉 =
1

(n+ 1)!
κn+2(u) +

n+1∑
i=2

1

i!

〈
(∇u)n+1−iu,Dκi(u)

〉
, (3.4)

n ≥ 0, on both the Lie-Wiener and Poisson spaces, cf. Relation (5.5) in Lemma 5.3

on the Lie-Wiener space and Relation (6.4) in Lemma 6.2 below on the Poisson space.

Applying (3.4) to (3.2) shows that Γuk is given by

Γuk1 =
κk(u)

(k − 1)!
+ 〈∇∗u,∇((∇u)k−2u)〉+

k−1∑
i=0

1

i!

〈
(∇u)k−1−iu,Dκi(u)

〉
, (3.5)

k ≥ 2, cf. Lemma 5.4 on the Lie-Wiener space and Proposition 6.3 on the Poisson

space, with

ΓukF = FΓuk1 + 〈(∇u)k−1u,DF 〉, (3.6)

from (3.3). Next, we discuss two consequences of (3.5).
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1) When the process u is adapted with respect to the Brownian or Poisson filtration,

the term

〈∇∗u,∇((∇u)l−2u)〉 = 0, l ≥ 2, (3.7)

vanishes, since (5.14) below vanishes by (5.15) and Lemma 2.3 of [19] on the

Wiener space and by (6.10) below on the Poisson space. Hence, (3.5) reduces

to

Γul 1 =
κl(u)

(l − 1)!
+

l−1∑
i=0

1

i!

〈
(∇u)l−1−iu,Dκi(u)

〉
, (3.8)

l ≥ 2, cf. (5.16) and (6.9) below, while Γul F can be computed by (3.6).

For example, in case u is a sufficiently differentiable adapted process on the

Wiener space, (3.1) shows the moment identity

E

[(∫ ∞
0

utdBt

)n]
=

n∑
a=1

λa
∑

P1,...,Pa

(|P1| − 1)! · · · (|Pa| − 1)!E
[
Γu|P1| · · ·Γ

u
|Pa|1

]
,

(3.9)

where (3.8) reads

Γuk1 = 1{k=2}〈u, u〉+ 1{k≥3}
1

2

〈
(∇u)k−3u,D〈u, u〉

〉
and ΓukF is given by (3.6), cf. Lemma 5.4 below. On the Lie-Wiener space, this

applies in particular when u = Rh is given from a random adapted isometry

R : L2(R+) −→ L2(R+), as noted after the proof of Proposition 5.5 below, cf.

[25] Theorem 2.1−b) on the Wiener space.

On the Poisson space of Section 6, when u is adapted with respect to the filtra-

tion generated by the Poisson process (Nt)t∈R+ we find the moment identity

E

[(∫ ∞
0

ut(dNt − λdt)
)n]

= n!
n∑
a=1

λa
∑

l1+···+la=n
l1≥1,...,la≥1

E
[
Γul1 · · ·Γ

u
la

1
]

l1(l1 + l2) · · · (l1 + · · ·+ la)
,

from (3.1), where (3.8) reads

Γuk1 =
1

(k − 1)!

∫ ∞
0

ukt dt+
k−1∑
i=0

1

i!

〈
(∇u)k−1−iu,D

∫ ∞
0

uitdt

〉
,

with ΓukF given by (3.6), cf. Proposition 6.3 below.
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2) If, in addition to (3.7), κl(u) is deterministic for all l ≥ 2, then we have

Γul 1 =
κl(u)

(l − 1)!
, (3.10)

l ≥ 2, cf. (5.10) and (6.11) below, and in this case, it follows that

Γula · · ·Γ
u
l1
1 =

κla(u)

(la − 1)!
· · · κl1(u)

(l1 − 1)!
, l1, . . . , la ≥ 1,

and (3.1) recovers the classical combinatorial identity (2.1). In this case, the

Skorohod integral δ(u) has a centered infinitely divisible distribution whose cu-

mulant of order n ≥ 1 is given by

κn(u) = (n− 1)!Γun1,

and we have the coincidence κn(u) = κ
δ(u)
n between κn(u) and the cumulant κ

δ(u)
n

of δ(u), cf. Propositions 5.8 and 6.5 below, respectively, on the Lie-Wiener and

Poisson spaces.

For example, when both h ∈ H and ∇h are deterministic, which will be in

particular the case in Sections 5 and 6 on the Lie-Wiener and Poisson spaces,

the cumulant κ
δ(h)
n of δ(h) is given by

κδ(h)
n = (n− 1)!〈(∇h)n−2h, h〉, n ≥ 2, (3.11)

cf. Corollary 4.4 below, and (3.1) shows that

E[δ(h)n] =
n∑
a=1

λa
∑

|P1|≥2,...,|Pa|≥2

(|P1|−1)! · · · (|Pa|−1)!〈(∇h)|P1|−2h, h〉 · · · 〈(∇h)|Pa|−2h, h〉.

(3.12)

As a consequence of (3.1) and (3.10), when h is deterministic, we also find the

covariance-moment identity

E[Fδ(h)n] = n!
a∑

n=1

λa
∑

l1+···+la=n
l1≥1,...,la≥1

E
[
Γul1 · · ·Γ

u
la
F
]

l1(l1 + l2) · · · (l1 + · · ·+ la)

= n!
n∑
a=1

λa
∑

l1+···+la=n
l1≥1,...,la≥1

∑
{i1,...,ik}⊂{1,...,a}

E
[
D

(∇h)
li1
−1
h
· · ·D

(∇h)
lik
−1
h
F
]

l1(l1 + l2) · · · (l1 + · · ·+ la)

∏
j∈{1,...,a}\{i1,...,ik}

κlj(h).
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(3.13)

cf. (4.15) below, in particular (5.12) holds on the Lie-Wiener path space, and (6.12)

holds on the Poisson space.

On the Wiener space we have ∇ = D and the identity

〈D∗u,D((Du)k−2v)〉 = trace((Du)k−1Dv) +
k−1∑
i=2

1

i
〈(Du)k−1−iv,D trace(Du)i〉,

for sufficiently smooth processes u, k ≥ 2, cf. Lemma 4 in [20], which shows that (3.7)

vanishes under the quasi-nilpotence condition

trace(Du)n = 0, n ≥ 2, (3.14)

which is satisfied when the process u is adapted with respect to the Brownian filtra-

tion, cf. Corollary 5.8 below and Lemma 2.3 of [19]. However, adaptedness of the

process u is not necessary for the condition (3.7) to hold, as shown in the example

(5.11) below.

The classical cumulant formula (2.1) can be inverted to compute the cumulant κXn

from the moments µXn of X by the inversion formula

κXn =
n∑
a=1

(a− 1)!(−1)a−1
∑

P1,...,Pa

µX|P1| · · ·µ
X
|Pa|, n ≥ 1, (3.15)

where the sum runs over the partitions P1, . . . , Pa of {1, . . . , n} with cardinal |Pi| by

the Faà di Bruno formula, cf. [6] or § 2.4 and Relation (2.4.3) page 27 of [7]. Hence,

(3.1) can be used to compute the cumulants of δ(u) via (3.15), cf. Relation (4.13)

below.

Note that another type of cumulant operators Γk has been recursively defined in [8]

using the inverse L−1 of the Ornstein-Uhlenbeck operator L = δD on the Wiener

space, with the direct relation

κFk+1 = E[ΓkF ], k ≥ 1.
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Our representation formula is different as it relies on the representation of F as the

stochastic integral F = δ(u), while applying to both the Lie-Wiener and Poisson

spaces. On the other hand it does not involve the inverse operator L−1 which is better

suited to multiple stochastic integrals since they form a sequence of eigenvectors for

L.

4 The general case

In this section, we consider a closable gradient operator D : S −→ L2(Ω;H) initially

defined on a dense linear subspace S of L2(Ω,F , µ), and extended to its closed domain

Dom(D) ⊂ L2(Ω), and we work under the following general assumptions (H1)-(H4)

on the Skorohod integral operator δ and the covariant derivative ∇.

(H1) The operator D satisfies the chain rule of derivation

Dtg(F ) = g′(F )DtF, t ∈ R+, F ∈ Dom(D), (4.1)

for g in the space C1
b (R) continuously differentiable functions on R with bounded

derivative, with DtF = (DF )(t), t ∈ R+.

(H2) there exists a closable divergence (or Skorohod integral) operator

δ : S ⊗H 7−→ L2(Ω),

acting on stochastic processes, with domain Dom(δ) ⊂ L2(Ω × R+;Rd) and

adjoint of D, with the duality relation

λE[〈DF, u〉] = E[Fδ(u)], F ∈ Dom(D), u ∈ Dom(δ), (4.2)

where λ > 0 is a parameter that can represent the variance or the intensity of

the underlying process.

(H3) There exists a closable covariant derivative operator

∇ : S ⊗H −→ H ⊗H
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with domain Dom(∇) ⊂ L2(Ω×R+;Rd) that satisfies the commutation relations

Dtδ(h) = h(t) + δ(∇†th), t ∈ R+, h ∈ H, (4.3)

, where † denotes matrix transposition in Rd ⊗ Rd, the relations

∇s(F ⊗ h(t)) = h(t)DsF + F∇sh(t), t ∈ R+,

and ∇sh(t) = 0, 0 ≤ t < s, h ∈ H.

We refer to the Appendix Section 7 for additional notational conventions and the

definition of the Sobolev spaces IDp,k and IDp,k(H) which satisfy ID2,1 ⊂ Dom(D),

ID2,1(H) ⊂ Dom(δ) and ID2,1(H) ⊂ Dom(∇). Note that as a consequence of the

chain rule (H1) and duality (H2) we have the divergence relation

Fδ(u) = δ(uF ) + 〈DF, u〉, (4.4)

for F ∈ ID2,1 such that uF ∈ L2(Ω;H), cf., e.g., Proposition 1.3.3 of [9]. Given F ∈ S
we let DhF := 〈h,DF 〉, h ∈ H, and define the Lie bracket {f, g} of f, g ∈ H by

D{f,g}F = DfDgF −DgDfF, F ∈ S.

In addition to (H2), (H1) and (H3) we will assume that

(H4) The connection defined by ∇ has a vanishing torsion, i.e.

{f, g} = ∇fg −∇gf, f, g ∈ H, (4.5)

As a consequence of Assumption (H4) we can extend the commutation relation (4.3)

to random processes as in Lemma 4.5 below. This framework includes both the Lie-

Wiener and Poisson cases that will be detailed in Sections 5 and 6. In both cases,

the operator δ coincides with the stochastic integral over square-integrable adapted

processes.

Definition 4.1 Given k ≥ 1 and u ∈ IDk,2(H), the cumulant operator

Γuk : ID2,1 −→ L2(Ω)
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is defined by Γu11 = 0 and

Γuk1 = 〈(∇u)k−2u, u〉+ 〈∇∗u,∇((∇u)k−2u)〉, k ≥ 2, (4.6)

and is extended to all F ∈ ID2,1 by the formula

ΓukF := FΓuk1 + 〈(∇u)k−1u,DF 〉, k ≥ 1. (4.7)

By (4.6) we also have the product rule

Γuk(FG) = GΓukF + F 〈(∇u)k−1u,DG〉,

which implies

Γuk(FG) = GΓukF + FΓukG− FGΓuk1,

and in particular

ΓukF = FΓuk1 + 〈(∇u)k−1u,DF 〉.

First, we state the next Lemma 4.2 which is used in the proof of Proposition 4.3 below

and follows from Lemma 2.2 of [19]. It can be seen as a generalization to random u

of the recurrence relation

E[Xn] =
n−1∑
l=0

(
n− 1

l

)
κXn−lE[X l], n ≥ 1,

between the moments and cumulants of a given random variable X, cf., e.g., Rela-

tion (5) of [22].

Lemma 4.2 For any n ≥ 1, u ∈ IDn,1(H) and F ∈ ID2,1 such that (∇u)ku ∈
ID2,1(H), k = 1, . . . , n− 2, we have

E[Fδ(u)n] = λ
n−1∑
l=0

(n− 1)!

l!
E
[
δ(u)lΓun−lF

]
= λ

n∑
k=1

(n− 1)!

(n− k)!
E
[
δ(u)n−kΓukF

]
, (4.8)

where ΓukF , k ≥ 1, is defined in (4.6).

The proof of Lemma 4.2 is postponed to the end of this section. We note that in

addition to Γu11 = 0, in this general framework, for k = 2 we always have

Γu21 = 〈u, u〉+ 〈∇∗u,∇u〉, (4.9)
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by (4.6), which from (4.8) yields the Skorohod isometry

E[δ(u)2] = λE[Γu21] = λE[〈u, u〉] + λE[〈∇∗u,∇u〉].

As an application of Lemma 4.2 by induction, we obtain the following Proposition 4.3

which establishes the covariance-moment Relation (3.1) and can be seen as a nonlinear

(polynomial) extension of the integration by parts formula (or duality)

E [Fδ(u)] = λE [〈u,DF 〉] = λE [Γu1F ] , (4.10)

between D and δ, where Γu1F = 〈u,DF 〉, F ∈ ID2,1, u ∈ H.

Proposition 4.3 Let F ∈ ID2,1 and u ∈ ID2,1(H), n ≥ 1, and assume that

Γul1 · · ·Γ
u
laF ∈ ID2,1, (4.11)

for all l1 + · · ·+ la ≤ n, a = 1, . . . , n. Then we have

E[Fδ(u)n] = n!
n∑
a=1

λa
∑

l1+···+la=n
l1≥1,...,la≥1

E
[
Γul1 · · ·Γ

u
la
F
]

l1(l1 + l2) · · · (l1 + · · ·+ la)
. (4.12)

Proof. For n = 1 we check that (4.11) holds from (4.10). Next, for n ≥ 1, by (4.8)

we have

E[Fδ(u)n+1] = λ
n+1∑
k=1

n!

(n+ 1− k)!
E
[
δ(u)n+1−kΓukF

]
= λn!

n+1∑
k=1

n+1−k∑
a=1

λa
∑

l1+···+la=n+1−k
l1≥1,...,la≥1

E
[
Γul1 · · ·Γ

u
la

ΓukF
]

l1(l1 + l2) · · · (l1 + · · ·+ la)

= n!
n+1∑
a=1

λa+1
∑

l1+···+la=n+1−la+1
l1≥1,...,la≥1

n+1∑
la+1=1

E
[
Γul1 · · ·Γ

u
la+1

F
]

l1(l1 + l2) · · · (l1 + · · ·+ la)

= n!
n+1∑
a=1

λa+1
∑

l1+···+la+1=n+1

l1≥1,...,la+1≥1

E
[
Γul1 · · ·Γ

u
la+1

F
]

l1(l1 + l2) · · · (l1 + · · ·+ la)

= (n+ 1)!
n+1∑
a=1

λa
∑

l1+···+la=n+1
l1≥1,...,la≥1

E
[
Γul1 · · ·Γ

u
la
F
]

l1(l1 + l2) · · · (l1 + · · ·+ la+1)
,
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showing that

E[Fδ(u)n] = n!
n∑
a=1

λa
∑

l1+···+la=n
l1≥1,...,la≥1

E
[
Γul1 · · ·Γ

u
la
F
]

l1(l1 + l2) · · · (l1 + · · ·+ la)
,

or

E[Fδ(u)n] = n!
n∑
a=1

a!λa
∑

0=k0<k1<···<ka−1<ka=n

E
[
Γuk1−k0 · · ·Γ

u
ka−ka−1

F
]

k1 · · · ka
.

�

In Proposition 4.3, Condition (4.11) is satisfied if F ∈ IDn,n and u ∈ IDn,n(H) for all

n ≥ 1. As examples of application of (4.12), for n = 2 we have E[δ(u)2] = λ2E[Γu21]

and

E[Fδ(u)2] = λ2E [Γu1Γu1F ] + λE [Γu2F ]

= λ2E [〈u,D〈u,DF 〉〉] + λE [〈(∇u)u,DF 〉+ F 〈u, u〉+ F 〈∇∗u,∇u〉] .

For n = 3 we find

E[Fδ(u)3] = 2λ2E [Γu1Γu2F ] + 3λ2E [Γu2Γu1F ] + λE [Γu3F ] .

We note that when Γul 1 is deterministic for all l ≥ 2, the cumulant κ
δ(u)
l of δ(u) is

given by

κ
δ(u)
l = λ(l − 1)!Γul 1, l ≥ 1. (4.13)

Indeed, Proposition 4.3 yields the moment identity

E[δ(u)n] =
n∑
a=1

λa
∑

P1,...,Pa

(|P1| − 1)! · · · (|Pa| − 1)!E
[
(Γu|P1|1) · · · (Γu|Pa|1)

]
, (4.14)

which recovers the cumulant κ
δ(u)
l in (4.13) in the same way as in the classical case

by application of the inversion formula (3.15).

In addition, when both h ∈ H and ∇h are deterministic, which will be the case

in Sections 5 and 6 on the Lie-Wiener and Poisson spaces, we obtain the following

consequence of Relation (4.13).
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Corollary 4.4 Assume that both h ∈ H and ∇h are deterministic. The cumulant

κ
δ(h)
k of δ(h) is given by

κ
δ(h)
k = (k − 1)!〈(∇h)k−2h, h〉, k ≥ 2,

and by (4.7) we have

ΓukF =
1

(k − 1)!
Fκ

δ(h)
k + 〈(∇h)k−1h,DF 〉, F ∈ S, k ≥ 1.

Proof. Relation (4.6) shows that Γhk1 = 〈(∇h)k−2h, h〉, k ≥ 2, hence from Rela-

tion (4.13) the cumulant κ
δ(h)
k of δ(h) is given by κ

δ(h)
1 = 0 and

κ
δ(h)
k = (k − 1)!Γhk1 = (k − 1)!〈(∇h)k−2h, h〉,

k ≥ 2. �

By Proposition 4.3 and Corollary 4.4, when both h ∈ H and ∇h are deterministic,

we also get the covariance-moment identity

E[Fδ(h)n] = n!
n∑
a=0

λa
∑

l1+···+la=n
l1≥1,...,la≥1

E
[
Γhl1 · · ·Γ

h
la
F
]

l1(l1 + l2) · · · (l1 + · · ·+ la)
(4.15)

= n!
n∑
a=0

λa
∑

l1+···+la=n
l1≥1,...,la≥1

∑
{i1,...,ik}⊂{1,...,a}

E
[
D

(∇h)
li1
−1
h
· · ·D

(∇h)
lik
−1
h
F
]

l1(l1 + l2) · · · (l1 + · · ·+ lk)

∏
j∈{1,...,a}\{i1,...,ik}

κ
δ(h)
lj

(lj − 1)!
.

These results will be specialized to the Lie-Wiener, Wiener, and Poisson cases in the

next sections 5 and 6 respectively.

Proof of Lemma 4.2. The proof of this key lemma is a combination of arguments from

Lemma 3.1 of [15], Lemma 2.3 of [19] and Proposition 1 of [20], extended to include

the parameter λ > 0 and the role of the covariant derivative operator ∇. First, we

note that for F ∈ ID2,1, u ∈ IDn+1,2(H), and all i, l ∈ N we have

E[Fδ(u)l〈(∇u)iu, δ(∇∗u)〉]− λlE[Fδ(u)l−1〈(∇∗u)i+1u, δ(∇∗u)〉] (4.16)

= λlE[Fδ(u)l−1〈(∇u)i+1u, u〉] + λE[δ(u)l〈(∇u)i+1u,DF 〉] + λE[Fδ(u)l〈∇∗u,D((∇u)iu)〉]

+λlE[Fδ(u)l−1〈∇∗u,∇((∇u)i+1u)〉]− λlE[Fδ(u)l−1〈∇∗u,D((∇u)i+1u)〉].
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Indeed, the duality (4.2) between D and δ, the chain rule of derivation (4.1) and

Lemma 4.5 show that

E[Fδ(u)l〈(∇u)iu, δ(∇∗u)〉]− λlE[Fδ(u)l−1〈(∇∗u)i+1u, δ(∇∗u)〉]

= λE[〈∇∗u,D(Fδ(u)l(∇u)iu)〉]− λlE[Fδ(u)l−1〈(∇∗u)i+1u, δ(∇∗u)〉]

= λlE[Fδ(u)l−1〈(∇u)i+1u,Dδ(u)〉]

−λlE[Fδ(u)l−1〈(∇∗u)i+1u, δ(∇∗u)〉] + λE[δ(u)l〈∇∗u,D(F (∇u)iu)〉]

= λlE[Fδ(u)l−1〈(∇u)i+1u, u〉] + λlE[Fδ(u)l−1〈(∇u)i+1u, δ(∇∗u)〉]

+λlE[Fδ(u)l−1〈∇∗u,∇((∇u)i+1u)〉]− λlE[Fδ(u)l−1〈∇∗u,D((∇u)i+1u)〉]

−λlE[Fδ(u)l−1〈(∇∗u)i+1u, δ(∇∗u)〉] + λE[δ(u)l〈∇∗u,D(F (∇u)iu)〉]

= λlE[Fδ(u)l−1〈(∇u)i+1u, u〉]

+λlE[Fδ(u)l−1〈∇∗u,∇((∇u)i+1u)〉]− λlE[Fδ(u)l−1〈∇∗u,D((∇u)i+1u)〉]

+λE[δ(u)l〈∇∗u,D(F (∇u)iu)〉]

= λlE[Fδ(u)l−1〈(∇u)i+1u, u〉]

+λlE[Fδ(u)l−1〈∇∗u,∇((∇u)i+1u)〉]− λlE[Fδ(u)l−1〈∇∗u,D((∇u)i+1u)〉]

+λE[δ(u)l〈(∇u)i+1u,DF 〉] + λE[Fδ(u)l〈∇∗u,D((∇u)iu)〉].

Next, since (∇u)k−1u ∈ ID(n+1)/k,1(H), δ(u) ∈ ID(n+1)/(n−k+1),1, by (4.16) and Lemma 4.5

we get

E
[
Fδ(u)l〈(∇u)iu,Dδ(u)〉

]
− λlE

[
Fδ(u)l−1〈(∇u)i+1u,Dδ(u)〉

]
= λE

[
Fδ(u)l〈(∇u)iu, u〉

]
+ λE

[
Fδ(u)l〈(∇u)iu, δ(∇∗u)〉

]
+λE[Fδ(u)l〈∇∗u,∇((∇u)iu)〉]− λE[Fδ(u)l〈∇∗u,D((∇u)iu)〉]

−λlE
[
Fδ(u)l−1〈(∇u)i+1u, u〉

]
− λlE

[
Fδ(u)l−1〈(∇u)i+1u, δ(∇∗u)〉

]
−λlE[Fδ(u)l−1〈∇∗u,∇((∇u)i+1u)〉] + λlE[Fδ(u)l−1〈∇∗u,D((∇u)i+1u)〉]

= λE
[
Fδ(u)l〈(∇u)iu, u〉

]
+ λE[Fδ(u)l〈∇∗u,∇((∇u)iu)〉] + λE[δ(u)l〈(∇u)i+1u,DF 〉],

and applying this formula to l = n− k and i = k − 1 via a telescoping sum yields

E[Fδ(u)nδ(u)] = λE[F 〈u,Dδ(u)n〉] + λE[δ(u)n〈u,DF 〉]

= λnE[Fδ(u)n−1〈u,Dδ(u)〉] + λE[δ(u)n〈u,DF 〉]
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= λ

n∑
k=1

n!

(n− k)!

(
E
[
Fδ(u)n−k〈(∇u)k−1u,Dδ(u)〉

]
− (n− k)E

[
Fδ(u)n−k−1〈(∇u)ku,Dδ(u)〉

])
+λE[δ(u)n〈u,DF 〉]

= λ

n∑
k=1

n!

(n− k)!

(
E
[
Fδ(u)n−k〈(∇u)k−1u, u〉

]
+ E

[
Fδ(u)n−k〈∇∗u,∇((∇u)k−1u)〉

])
+λ

n∑
k=0

n!

(n− k)!
E
[
δ(u)n−k〈(∇u)ku,DF 〉

]
.

Finally, we get

E[Fδ(u)n+1]

= λ

n∑
k=1

n!

(n− k)!

(
E
[
Fδ(u)n−k〈(∇u)k−1u, u〉

]
+ E

[
Fδ(u)n−k〈∇∗u,∇((∇u)k−1u)〉

])
+λ

n∑
k=0

n!

(n− k)!
E
[
δ(u)n−k〈(∇u)ku,DF 〉

]
= λ

n∑
k=0

(
n

k

)
E

[
δ(u)n−k

(
1

k!
Γuk+11 + 〈(∇u)ku,DF 〉

)]
= λ

n∑
k=0

n!

(n− k)!
E
[
δ(u)n−kΓuk+1F

]
.

�

The next commutation relation has been used in the proof of Lemma 4.2.

Lemma 4.5 Let u ∈ Dom(∇) such that ∇tu ∈ Dom(δ), t ∈ R+. We have

〈h,Dδ(u)〉 = 〈h, u〉+ 〈h, δ(∇u)〉+ 〈∇∗u,∇h〉, h ∈ H.

Proof. The argument is done for u ∈ S ⊗H of the form u = F ⊗ g ∈ S and h ∈ H,

and extended by closability. By (4.3) and (4.4) we have, under Condition (H4), and

using the notation DhF := 〈h,DF 〉,

〈h,Dδ(u)〉 = 〈h,D(Fδ(g)−DgF )〉

= δ(g)DhF + FDhδ(g)−DhDgF

= δ(g)DhF + F 〈g, h〉+ F 〈h, δ(∇g)〉 −DhDgF

= 〈h, δ(gDF )〉+ F 〈g, h〉+ 〈h, δ(F∇tg)〉
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+DgDhF −DhDgF + 〈DF ⊗ h,∇g〉

= 〈h, u〉+ 〈h, δ(∇u)〉+DgDhF −DhDgF + 〈DF ⊗ h,∇g〉

= 〈h, u〉+ 〈h, δ(∇u)〉+D{g,h}F + 〈DF,∇hg〉

= 〈h, u〉+ 〈h, δ(∇u)〉+ 〈D∗u,∇h〉

= 〈h, u〉+ 〈h, δ(∇u)〉+ 〈∇∗u,∇h〉,

where at the last step, we used the relation ∇sh(t) = 0, 0 ≤ t < s, h ∈ H. �

5 The Lie-Wiener path space

In this section, we specialize the results of Section 4 to the setting of path spaces over

Lie groups, which includes the classical Wiener space. Let G denote either Rd or a

compact connected d-dimensional Lie group with associated Lie algebra G identified

to Rd and equipped with an Ad-invariant scalar product on Rd ' G, also denoted

by 〈·, ·〉, with H = L2(R+;G). The commutator in G is denoted by [·, ·] and we let

ad(u)v = [u, v], u, v ∈ G, with Adeu = eadu, u ∈ G. The Brownian motion (γ(t))t∈R+

on G is constructed from a standard Brownian motion (Bt)t∈R+ with variance λ > 0

via the Stratonovich differential equation
dγ(t) = γ(t)� dBt

γ(0) = e,

where e is the identity element in G. Let IP(G) denote the space of continuous G-valued

paths starting at e, with the image measure of the Wiener measure by the mapping

I : (Bt)t∈R+ 7−→ (γ(t))t∈R+ . Here, we take

S = {F = f(γ(t1), . . . , γ(tn)) : f ∈ C∞b (Gn)},

and

U =

{
n∑
i=1

uiFi : Fi ∈ S, ui ∈ L2(R+;G), i = 1, . . . , n, n ≥ 1

}
.

Next is the definition of the right derivative operatorD, which satisfies Condition (H1).
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Definition 5.1 For F of the form

F = f(γ(t1), . . . , γ(tn)) ∈ S, f ∈ C∞b (Gn), (5.1)

we let DF ∈ L2(Ω× R+;G) be defined as

〈DF, v〉 =
d

dε
f
(
γ(t1)eε

∫ t1
0 vsds, . . . , γ(tn)eε

∫ tn
0 vsds

)
|ε=0

, v ∈ L2(R+,G).

Given F of the form (5.1) we also have

DtF =
n∑
i=1

∂if(γ(t1), . . . , γ(tn))1[0,ti](t), t ≥ 0.

The operator D is known to admit an adjoint δ that satisfies Condition (H2), i.e.

E[Fδ(v)] = λE[〈DF, v〉], F ∈ S, v ∈ L2(R+;G), (5.2)

cf., e.g., [4]. In addition, recall that when (ut)t∈R+ is square-integrable and adapted to

the Brownian filtration (Ft)t∈R+ , δ(u) coincides with the Itô integral of u ∈ L2(Ω;H)

with respect to the underlying Brownian motion (Bt)t∈R+ , i.e.

δ(u) =

∫ ∞
0

utdBt, (5.3)

as a consequence of, e.g., Lemma 4.1 of [14].

Definition 5.2 Let the operator ∇ : ID2,1(H) −→ L2(Ω;H ⊗H) be defined as

∇sut = Dsut + 1[0,t](s)adut ∈ G ⊗ G, s, t ∈ R+, (5.4)

u ∈ ID2,1(H).

It is known that D and ∇ satisfy Condition (H3) and the commutation relation (4.3)

as a consequence, cf. [4]. From Lemma 5.6 below, for all deterministic h ∈ H we have

(∇∗h)h = (D∗h)h = 0, and hence

〈(∇h)u, h〉 = 〈u, (∇∗h)h〉 = 0,

and in particular,

〈(∇h)kh, h〉 = 0, k ≥ 1,
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which shows, by Corollary 4.4, that (3.12) recovers (2.1). On the other hand, it is

known that ∇ satisfies Conditions (H3) and (H4), cf. Theorem 2.3−i) of [4].

As another consequence of Lemma 5.6 we have the following result which shows that

(3.5) holds on the Lie-Wiener path space, cf. also Lemma 3 in [20].

Lemma 5.3 Letting k ≥ 1 and u ∈ ID2,1(H), we have

〈(∇u)kv, u〉 =
1

2
〈(∇u)k−1v,D〈u, u〉〉, v ∈ H. (5.5)

Proof. By Lemma 5.6 below and the relation D〈u, u〉 = 2(D∗u)u we have

〈(∇u)v, u〉 = 〈(∇∗u)u, v〉 = 〈(D∗u)u, v〉 =
1

2
〈v,D〈u, u〉〉.

�

In the following Proposition 5.5 we compute the cumulant operator Γuk appearing in

the relation

E[Fδ(u)n] = n!
n∑
a=0

λa
∑

l1+···+la=n
l1≥1,...,la≥1

E
[
Γul1 · · ·Γ

u
la
F
]

l1(l1 + l2) · · · (l1 + · · ·+ la)
, (5.6)

n ≥ 1, F ∈ IDn,n, u ∈ IDn,n(H), which is a consequence of Proposition 4.3 and shows

that (3.5) holds on the Lie-Wiener path space. Due to Relations (4.7) and (4.9) it is

sufficient to compute Γuk1 for k ≥ 3. The next lemma has been used in the proof of

Lemma 5.3 above.

Lemma 5.4 Letting k ≥ 3 and u ∈ IDk,k(H), we have

Γuk1 =
1

2
〈(∇u)k−3u,D〈u, u〉〉+ 〈∇∗u,∇((∇u)k−2u)〉. (5.7)

Proof. This is a direct application of Relation (5.5) to (4.6). �

As a consequence of Lemma 5.4 we have the following result.

Proposition 5.5 Let u ∈ ID∞,2(H), and assume that

〈∇∗u,∇((∇u)k−2u)〉 = 0, k ≥ 2, (5.8)

and the cumulant κ2(u) = 〈u, u〉 is deterministic. Then, δ(u) is a centered Gaussian

random variable with variance 〈u, u〉.
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Proof. By (5.7) and (5.8) we get Γu21 = 〈u, u〉, and

Γuk1 =
1

2
〈(∇u)k−3u,D〈u, u〉〉 = 0, k ≥ 3, (5.9)

for any u ∈ IDk,1(H). Consequently, Relations (4.13) and (5.9) show that δ(u) has

cumulants

Γul 1 = κl(u) = 1{l=2}〈u, u〉, l ≥ 1. (5.10)

�

In particular, the Skorohod integral δ(Rh) on the Wiener space has a Gaussian law

when h ∈ H = L2(R+,Rd) and R is a random isometry of H with quasi-nilpotent

gradient, cf. Corollary 5.8 below, which extends by a direct argument to the Lie-

Wiener space the sufficient conditions found in [25] Theorem 2.1−b). An example of

anticipating process u satisfying (5.8) is provided in [19] on the Lie-Wiener space by

letting

u =
∞∑
k=0

Akek ∈ ID2,1(H) (5.11)

where (Ak)k∈N is a sequence of σ(δ(fk) : k ∈ N)-measurable scalar random variables

such that ‖u‖H = 1, a.s., and (ek)k∈N and (fk)k∈N are orthonormal sequences that

are also mutually orthogonal in H, and such that (ek(t))k∈N,t∈R+ is made of com-

muting elements in G, by noting that ∇ut3∇t1u = Dut3Dt1u = 0, t1, t3 ∈ R+, and

(∇u)u = (Du)u.

Note that Condition (5.15) is satisfied in particular when (ut)t∈R+ is adapted to the

Brownian filtration (Ft)t∈R+ , cf. Lemma 3.5 of [19]. In addition, if h is deterministic,

(4.15) shows that we have

E[Fδ(h)n] (5.12)

= n!
n∑
a=1

λa
∑

l1+···+la=n
l1≥1,...,la≥1

∑
{i1,...,ik}⊂{1,...,a}

E
[
D

(∇h)
li1
−1
h
· · ·D

(∇h)
lik
−1
h
F
]

l1(l1 + l2) · · · (l1 + · · ·+ la)

∏
j∈{1,...,a}\{i1,...,ik}

κlj(h)

(lj − 1)!

= n!
n∑
a=1

λa
∑

l1+···+la=n
l1≥1,...,la≥1

∑
{i1,...,ik}⊂{1,...,a}

lj=2, j∈{1,...,a}\{i1,...,ik}

E
[
D

(∇h)
li1
−1
h
· · ·D

(∇h)
lik
−1
h
F
]

l1(l1 + l2) · · · (l1 + · · ·+ la)

∏
j∈{1,...,a}\{i1,...,ik}

〈h, h〉
(lj − 1)!

.
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Lemma 5.6 For u ∈ ID2,1(H), we have

(∇∗u)u = (D∗u)u.

Proof. By Relation (7.5) in the appendix we have

(∇∗u)us =

∫ ∞
0

(∇†sut)utdt =

∫ ∞
0

(Dsut)
†utdt+

∫ ∞
0

1[0,t](s)(adut)
†utdt

=

∫ ∞
0

(Dsut)
†utdt−

∫ ∞
s

(adut)utdt =

∫ ∞
0

(Dsut)
†utdt−

∫ ∞
s

[ut, ut]dt

=

∫ ∞
0

(Dsu
†
t)utdt = (D∗u)us, s ∈ R+.

�

Wiener space

Here we consider the case where G = Rd and (γ(t))t∈R+ = (Bt)t∈R+ is a standard

Rd-valued Brownian motion on the Wiener space W = C0(R+,Rd), in which case ∇
equals the Malliavin derivative which will be denoted by D̂. In this case, we let δ̂ = δ

denote the Skorohod integral operator adjoint of D̂, which coincides by (5.3) with the

Itô integral of u ∈ L2(W ;H) with respect to Brownian motion, i.e.,

δ̂(u) =

∫ ∞
0

utdBt,

when (ut)t∈R+ is square-integrable and adapted with respect to the Brownian filtration

(Ft)t∈R+ , cf., e.g., Proposition 4.3.4 of [16], and references therein. In the Wiener case,

the relation ∇ = D̂ implies that (4.9) reads

Γu21 = 〈u, u〉+ trace(D̂u)2.

The following result shows how Γuk in (5.6) can be computed on the Wiener space.

Proposition 5.7 Letting u ∈ ID2,2(H), for all k ≥ 3 we have

Γuk1 =
1

2
〈(D̂u)k−3u, D̂〈u, u〉〉+trace(D̂u)k+

k−1∑
i=2

1

i
〈(D̂u)k−1−iu, D̂ trace(D̂u)i〉. (5.13)
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Proof. It suffices to use Lemma 5.4 and the relation

〈D̂∗u, D̂((D̂u)kv)〉 = trace((D̂u)k+1D̂v) +
k+1∑
i=2

1

i
〈(D̂u)k+1−iv, D̂ trace(D̂u)i〉, (5.14)

u ∈ ID2,2(H), v ∈ ID2,1(H), k ∈ N, cf. Lemma 4 in [20]. �

As a consequence of Proposition 5.5 we have the following corollary.

Corollary 5.8 Let u ∈ ID∞,2(H), and assume

1) the quasi-nilpotence condition

trace(D̂u)n = 0, n ≥ 2, (5.15)

2) the cumulant κ2(u) = 〈u, u〉 is deterministic.

Then, δ(u) is a centered Gaussian random variable with variance 〈u, u〉.

Proof. By (5.13) and (5.15) we get (5.8) and we conclude from Proposition 5.5.

�

Under the quasi-nilpotence condition (5.15) we get Γu21 = 〈u, u〉 and

Γuk1 =
1

2
〈(D̂u)k−3u, D̂〈u, u〉〉, (5.16)

k ≥ 3, for any u ∈ ID2,1(H), which shows (3.7) on the Wiener space as a consequence of

Proposition 5.7, and by Lemma 2.3 of [19], Condition (5.15) is satisfied in particular

when (ut)t∈R+ is adapted to the Brownian filtration (Ft)t∈R+ . When h ∈ H is a

deterministic function, we have ∇h = D̂h = 0, and hence, (5.10) shows that

Γh21 = 1{k=2}κ2(h) = 1{k=2}〈h, h〉,

and ΓhkF = 0, k ≥ 3, and hence, from (5.12), for n ≥ 2 we find

E

[
F

(∫ ∞
0

h(t)dBt

)n]
= n!

n∑
a=0

λa
∑

l1+···+la=n
1≤l1≤2,...,1≤la≤2

E
[
Γhl1 · · ·Γ

h
la
F
]

l1(l1 + l2) · · · (l1 + · · ·+ la)

= n!
n∑
a=0

λa
∑

l1+···+la=n
1≤l1≤2,...,1≤la≤2

∑
{i1,...,ik}⊂{1,...,a}

lj=2, j∈{1,...,a}\{i1,...,ik}

(
〈h, h〉

2

)a−k
E
[
D

(∇h)
li1
−1
h
· · ·D

(∇h)
lik
−1
h
F
]
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= n!
n∑
a=0

λa
a∑
k=0

(
a

k

)
〈h, h〉a−k

2a−k
E[〈h⊗k, D̂kF 〉]

∑
l1+···+la−k=n−k

l1=···=la−k=2

1

=
n∑
k=0

(
n

k

)
〈h, h〉(n−k)/2

2(n−k)/2
E[〈h⊗k, D̂kF 〉]

n∑
a=0

λa+k(n− k)!
∑

l1+···+la=n−k
l1=···=la=2

1,

=



n/2∑
k=0

(
n

2k

)
(n− 2k − 1)!!λn/2+k〈h, h〉n/2−kE[〈h⊗2k, D̂2kF 〉], n even,

(n−1)/2∑
k=0

(
n

2k + 1

)
(n− 2k − 2)!!λ(n−1)/2+k〈h, h〉(n−1)/2−kE[〈h⊗2k+1, D̂2k+1F 〉], n odd.

=
n∑
k=0

(
n

k

)
λkE[〈h⊗k, D̂kF 〉]E

[(∫ ∞
0

h(t)dBt

)n−k]

=
n∑
k=0

(
n

k

)
E[FIk(h

⊗k)]E

[(∫ ∞
0

h(t)dBt

)n−k]
,

where Ik(fk) denotes the multiple stochastic integral of the symmetric function fk of

k variables with respect to Brownian motion. This formula recovers the identity

E
[
Feδ(h)

]
=

∞∑
n=0

1

n!
E[Fδ(h)n]

=
∞∑
n=0

1

n!

n∑
k=0

λk
(
n

k

)
E[〈h⊗k, D̂kF 〉]E[δ(h)n−k]

=
∞∑
k=0

λk

k!
E[〈h⊗k, D̂kF 〉]

∞∑
n=k

1

(n− k)!
E[δ(h)n−k]

=
∞∑
k=0

λk

k!
E[〈h⊗k, D̂kF 〉]

∞∑
l=0

λl

(2l)!
(2l − 1)!!〈h, h〉l

=
∞∑
k=0

λk

k!
E[〈h⊗k, D̂kF 〉]

∞∑
l=0

λl

2ll!
〈h, h〉l

= eλ〈h,h〉/2
∞∑
k=0

λk

k!
E[〈h⊗k, D̂kF 〉],

which can be found independently by the Stroock [23] formula

F =
∞∑
n=0

1

n!
In(E[D̂nF ]),
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as follows:

E
[
Feδ(h)

]
= eλ〈h,h〉/2

∞∑
n=0

E
[
FIn(h⊗n)

]
= eλ〈h,h〉/2

∞∑
n=0

λn

n!
E
[
〈h⊗n, D̂nF 〉

]
,

cf. e.g. Proposition 4.2.5 in [16].

6 The Poisson case

In this section we show that the general framework of Section 4 also includes other

infinitely divisible distributions as we apply it to the standard Poisson process on R+.

Let (Nt)t∈R+ be a standard Poisson process with intensity λ > 0, jump times (Tk)k≥1,

and generating a filtration (Ft)t∈R+ on a probability space (Ω,F∞, P ), with T0 = 0.

The gradient D̃ defined as

D̃tF = −
n∑
k=1

1[0,Tk](t)
∂f

∂xk
(T1, . . . , Tn), (6.1)

for F ∈ S := {F = f(T1, . . . , Tn) : f ∈ C1
b (Rn)}, has the derivation property and

therefore satisfies Condition (H1), cf. [2], § 7 of [16]. Here, we let

U =

{
n∑
i=1

uiFi : Fi ∈ S, ui ∈ C1
c (R+), i = 1, . . . , n, n ≥ 1

}
,

and we have H = L2(R+). The operator D̃ has an adjoint δ̃ which coincides with

the compensated Poisson stochastic integral on square-integrable processes (ut)t∈R+

adapted to the filtration (Ft)t∈R+ generated by (Nt)tıR+ , i.e., we have

δ̃(u) =

∫ ∞
0

utd(Nt − λt),

and in particular δ̃ satisfies Condition (H2). The next definition of covariant deriva-

tive in the jump case, cf. [13], is the counterpart of Definition 5.2.

Definition 6.1 Let the operator ∇̃ be defined as

∇̃sut := D̃sut − u̇t1[0,t](s), s, t ∈ R+, u ∈ U , (6.2)

where u̇t denotes the time derivative of t 7−→ ut with respect to t.
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In particular, for u, v ∈ U we have

(∇̃u)vs =

∫ ∞
0

vt∇̃tusdt = −u̇s
∫ ∞

0

vt1[0,s](t)dt = −u̇s
∫ s

0

vtdt s ∈ R+. (6.3)

The operator D̃ defines the Sobolev spaces ĨDp,1 and ĨDp,1(H), p > 1, respectively, by

the Sobolev norms

‖F‖ĨDp,1
= ‖F‖Lp(Ω) + ‖D̃F‖Lp(Ω,H), F ∈ S,

and

‖u‖ĨDp,1(H)
= ‖u‖Lp(Ω,H) + ‖D̃u‖Lp(Ω,H⊗H) +

(
E

[(∫ ∞
0

t|u̇t|2dt
)p/2])1/p

,

u ∈ U . In addition, the operators ∇̃, δ̃ and D̃ satisfy the commutation relation

D̃tδ̃(u) = ut + δ̃(∇̃tu),

which is (4.3) in Condition (H3), for u ∈ ĨD2,1(H) such that ∇̃tu ∈ ĨD2,1(H), t ∈ R+,

cf. Relation (3.6) and Proposition 3.3 in [13], or Lemma 7.6.6 page 276 of [16].

Condition (H4) is satisfied from Proposition 3.1 of [13] or Proposition 7.6.3 of [16].

The following lemma shows that (3.4) holds on the Poisson space, which allows one

to compute Γuk by (3.2).

Lemma 6.2 Letting k ≥ 1 and F ∈ IDk,k, u ∈ IDk,k(H), we have

〈(∇̃u)nu, u〉 =
1

(n+ 1)!

∫ ∞
0

un+2
s ds+

n+1∑
i=2

1

i!

〈
(∇̃u)n+1−iu, D̃

∫ ∞
0

uitdt

〉
. (6.4)

Proof. By Relation (4.10) in Lemma 4.7 of [19], for all n ∈ N and u ∈ ĨD2,1(H) such

that u ∈
⋂2n+2
k=1 Lk(R+) a.s., we have

(∇̃∗u)nut =

∫ ∞
0

· · ·
∫ ∞

0

utn∇̃tut1∇̃t1ut2 · · · ∇̃tn−1utndt1 · · · dtn (6.5)

=
1

(n+ 1)!
un+1
t +

n+1∑
i=2

1

i!
(∇̃∗u)n+1−iD̃t

∫ ∞
0

uisds,

t ∈ R+, and by integration with respect to t ∈ R+ we get (6.4). �
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When f and h are smooth deterministic functions, (6.3) extends to k ≥ 2 as

(∇̃h)kfs = (−1)kḣ(s)

∫ ∞
0

· · ·
∫ ∞

0

∇̃tkh(s)∇̃tk−1
h(tk) · · · ∇̃t1h(t2)f(t1)dt1 · · · dtk

= (−1)kḣ(s)

∫ ∞
0

· · ·
∫ ∞

0

1[0,s](tk)1[0,tk](tk−1)ḣ(tk) · · ·1[0,t2](t1)ḣ(t2)f(t1)dt1 · · · dtk

= (−1)kḣ(s)

∫ s

0

ḣ(tk)

∫ tk

0

· · · ḣ(t2)

∫ t2

0

f(t1)dt1 · · · dtk, s ∈ R+, (6.6)

which complements (6.5), and recovers (6.5) for deterministic functions as

〈(∇̃h)kf, h〉 = (−1)k
∫ ∞

0

h(s)ḣ(s)

∫ s

0

∫ tk

0

· · ·
∫ t2

0

ḣ(tk) · · · ḣ(t2)f(t1)dt1 · · · dtk

=
1

2
(−1)k−1

∫ ∞
0

h2(tk)ḣ(tk)

∫ tk

0

· · ·
∫ t2

0

ḣ(tk−1) · · · ḣ(t2)f(t1)dt1 · · · dtk

=
1

(k + 1)!

∫ ∞
0

hk+1(t1)f(t1)dt1, s ∈ R+.

As a direct consequence of (4.6) and (6.4), in the next Proposition 6.3 we compute the

cumulant operator Γuk appearing in the moment identity (3.1) on the Poisson space,

i.e. we have

E[Fδ(u)n] = n!
n∑
a=1

λa
∑

l1+···+la=n
l1≥1,...,la≥1

E
[
Γul1 · · ·Γ

u
la
F
]

l1(l1 + l2) · · · (l1 + · · ·+ la)
, (6.7)

for n ≥ 1, u ∈ ĨDn,2(H) and F ∈ ID2,1, with u ∈
n⋂
k=2

L2k(Ω, Lk(R+)), and (∇̃u)ku ∈

ĨD2,1(H), k = 1, . . . , n− 2, provided

Γul1 · · ·Γ
u
laF ∈ ID2,1,

for all l1 + · · ·+ la ≤ n, a = 1, . . . , n. Again, due to Relation (4.7) it suffices to give the

value of Γuk1 in order to compute (6.7). The next proposition is a corollary of Propo-

sition 4.3 and provides the expression of (4.6) in the Poisson case, cf. Proposition 5.7

for the Lie-Wiener case.

Proposition 6.3 Let n ≥ 1, u ∈ ĨDn,2(H), with u ∈
n⋂
k=2

L2k(Ω, Lk(R+)), and (∇̃u)ku ∈

ĨD2,1(H), k = 1, . . . , n− 2. We have

Γuk1 =
1

(k − 1)!

∫ ∞
0

uksds+
k−1∑
i=2

1

i!

〈
(∇̃u)k−1−iu, D̃

∫ ∞
0

uitdt

〉
+ 〈∇̃∗u, ∇̃((∇̃u)k−2u)〉,

(6.8)
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k ≥ 2.

The next proposition shows that (3.8) holds for adapted processes on the Poisson

space.

Proposition 6.4 Let u ∈ ĨD∞,1(H) be adapted with respect to the Poisson filtration

(Ft)t∈R+. Then, Γuk1 in (6.7) is given by

Γuk1 =
1

(k − 1)!

∫ ∞
0

uksds+
k−1∑
i=2

1

i!

〈
(∇̃u)k−1−iu, D̃

∫ ∞
0

uitdt

〉
, (6.9)

k ≥ 2, which shows that (3.8) holds on the Poisson space.

Proof. Let u, v ∈ ĨD∞,1(H) be two processes adapted with respect to the Poisson

filtration (Ft)t∈R+ , such that (∇̃u)nu ∈ ID2,1(H), n ≥ 1. By Lemma 4.4 of [19] we

have

〈∇̃∗u, ∇̃((∇̃u)kv)〉 = 0, k ∈ N. (6.10)

Hence, when the process u is adapted, this yields (6.9) by (6.8) and (6.10). �

In particular, if h is a deterministic function, we have

Γhk1 =
1

(k − 1)!
κk(h) =

1

(k − 1)!

∫ ∞
0

hk(s)ds, (6.11)

k ≥ 2, and consequently, we have the following result.

Proposition 6.5 Let (ut)t∈R+ be a process in ĨD∞,1(H) such that

〈∇̃∗u, ∇̃((∇̃u)ku)〉 = 0, k ≥ 0, (6.10)

and
∫∞

0
uitdt is deterministic for all i ≥ 2. Then, δ̃(u) has a centered infinitely divisible

distribution with cumulants κi(u) =
∫∞

0
uitdt, i ≥ 2.

Examples of processes satisfying the conditions of Proposition 6.5 can be constructed

by composition of a function of R+ with an adapted process (ut)t∈R+ such that t 7−→ ut

is a.s. measure-preserving on R+, cf. [19]. On the Poisson space, Relation (4.15) holds

as

E[Fδ(h)n] = n!
n∑
a=0

λa
∑

l1+···+la=n
l1≥1,...,la≥1

E
[
Γul1 · · ·Γ

u
la
F
]

l1(l1 + l2) · · · (l1 + · · ·+ la)
(6.12)
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= n!
n∑
a=0

λa
∑

l1+···+la=n
l1≥1,...,la≥1

∑
{i1,...,ik}⊂{1,...,a}

E
[
D̃

(∇̃h)
li1
−1
h
· · · D̃

(∇̃h)
lik
−1
h
F
]

l1(l1 + l2) · · · (l1 + · · ·+ la)

∏
j∈{1,...,a}\{i1,...,ik}

κlj(h)

(lj − 1)!

with (∇̃h)kh given by (6.6).

7 Appendix

In this appendix, for completeness, we gather some notation and conventions used in

this paper, cf. [19] for details. Given X a real separable Hilbert space, the definition

of D is naturally extended to X-valued random variables by letting

DF =
n∑
k=1

xi ⊗DFi (7.1)

for F ∈ X ⊗ S ⊂ L2(Ω;X) of the form

F =
n∑
k=1

xi ⊗ Fi

x1, . . . , xn ∈ X, F1, . . . , Fn ∈ S. When D maps S to S ⊗ H, as on the Lie-Wiener

space, iterations of this definition starting with X = R, then X = H, and successively

replacing X with X ⊗H at each step, allow one to define

Dn : X ⊗ S 7−→ L2(Ω;X⊗̂H⊗̂n)

for all n ≥ 1, where ⊗̂ denotes the completed symmetric tensor product of Hilbert

spaces. In that case, we let IDp,k(X) denote the completion of the space X ⊗ S of

X-valued random variables under the norm

‖u‖IDp,k(X)
=

k∑
l=0

‖Dlu‖Lp(Ω,X⊗̂H⊗̂l), p ≥ 1, (7.2)

with

ID∞,k(X) =
⋂
k≥1

IDp,k(X),

and IDp,k = IDp,k(R), p ∈ [1,∞], k ≥ 1. Note that for all p, q > 1 such that

p−1 + q−1 = 1 and k ≥ 1, the gradient operator D is continuous from IDp,k(X) into
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IDq,k−1(X⊗̂H) and the Skorohod integral operator δ adjoint of D is continuous from

IDp,k(H) into IDq,k−1. Given u ∈ ID2,1(H) we also identify

∇u = ((s, t) 7−→ ∇tus)s,t∈R+ ∈ H⊗̂H

to the random operator ∇u on H almost surely defined by

(∇u)vs :=

∫ ∞
0

(∇tus)vtdt, s ∈ R+, v ∈ H, (7.3)

in which a⊗ b ∈ X⊗̂H is identified to the

(a⊗ b)c = a〈b, c〉, a⊗ b ∈ X⊗̂H, c ∈ H.

More generally, for u ∈ ID2,1(H) and v ∈ H we have

(∇u)kvs =

∫ ∞
0

· · ·
∫ ∞

0

(∇tkus∇tk−1
utk · · · ∇t1ut2)vt1dt1 · · · dtk, s, t ∈ R+. (7.4)

We also define the adjoint ∇∗u of ∇u on H which satisfies

〈(∇u)v, h〉 = 〈v, (∇∗u)h〉, v, h ∈ H,

and is given by

(∇∗u)vs =

∫ ∞
0

(∇†sut)vtdt, s ∈ R+, v ∈ L2(W ;H). (7.5)

Although D is originally defined for scalar random variables, its definition extends

pointwise to u ∈ ID2,1(H) by (7.1), i.e.,

D(u) := ((s, t) 7−→ Dtus)s,t∈R+ ∈ H⊗̂H, (7.6)

and the operators Du and D∗u are constructed in the same way as ∇u and ∇∗u in

(7.3) and (7.5).
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[24] A.S. Üstünel. Stochastic analysis on Lie groups. In Stochastic Analysis and Related Topics VI:
The Geilo Workshop, Progress in Probability, pages 129–158. Birkäuser, 1996.
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