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Abstract - We propose a formula for the computation of the moments of all orders of
Itô and Skorohod stochastic integrals with respect to Brownian motion, based on cumulant
operators defined by the Malliavin calculus. Some characterizations of Gaussian distributions
for stochastic integrals are recovered as a consequence.

Opérateurs cumulants et moments des intégrales d’Itô et de Skorohod

Résumé - Nous proposons une formule de calcul des moments d’intégrales d’Itô et de
Skorohod par rapport au mouvement Brownien à l’aide d’opérateurs cumulants définis par le
calcul de Malliavin. On retrouve ainsi certaines caractérisations de la loi gaussienne pour les
intégrales stochastiques.
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1 Introduction

The moments of a random variable X are linked to its cumulants (κXn )n≥1 by the combi-
natorial identity

E[Xn] =
n∑

a=1

∑
B1,...,Ba

κX|B1| · · ·κ
X
|Ba|, (1.1)

where the sum runs over the partitions B1, . . . , Ba of {1, . . . , n} with cardinal |Bi| by the
Faà di Bruno formula, cf. [5], [6] and references therein for background on combinatorial
probability. When X is centered Gaussian, e.g. X is the Wiener integral of a determin-
istic function with respect to a standard Brownian motion (Bt)t∈R+ , we have κXn = 0,
n 6= 2, and (1.1) reads as Wick’s theorem for the computation of Gaussian moments of
X counting the pair partitions of {1, . . . , n}, cf. [1].

When X =
∫∞
0
utdBt is the (centered) stochastic integral of a square-integrable adapted

process (ut)t∈R+ the second moment of X is given by the Itô isometry, and higher order
moments can be evaluated by decomposing the power

(∫∞
0
utdBt

)n
into a sum of multiple

integrals with vanishing expectation plus a remainder term. In this Note we derive a mo-
ment formula for X by computing the expectation of this remainder term using cumulant
operators defined through the duality relation between the gradient D and divergence
δ of the Malliavin calculus. Being based on the Skorohod extension of the adapted Itô
integral, our results also include the case where the process u is anticipating with respect
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to the Brownian filtration.

A different approach to cumulants using the Malliavin calculus has been developed in [3],
based on the inverse L−1 of the Ornstein-Uhlenbeck operator L = δD on the Wiener
space. The present representation is different and complementary as it is specially
adapted to the stochastic integral δ(u) and it does not involve L−1 as in [3].

This Note is a special case on the Wiener space of a more general construction presented
in [10], that includes the Lie-Wiener path space and the Poisson space.

2 Cumulant operators

We work on the Wiener space (Ω,F , µ) of a d-dimensional Brownian motion, on which
is defined the Skorohod stochastic integral operator (or divergence) δ which coincides
with the stochastic integral with respect to (Bt)t∈R+ on the square-integrable adapted
processes with respect to the filtration (Ft)t∈R+ generated by (Bt)t∈R+ . The operator δ
admits an adjoint gradient operator D that satisfies the duality relation

E[Fδ(v)] = E[〈DF, v〉H ], F ∈ Dom(D), v ∈ Dom(δ), (2.1)

where H = L2(R+;Rd). We let IDp,k, resp. IDp,k(H), p, k ≥ 1, denote the standard
Sobolev spaces of real-valued, resp. H-valued, functionals on the Wiener space, cf. [4]
for a definition. The composition (Du)l and the adjoint D∗ are defined in the sense of
matrix powers on with continuous indices, cf. e.g. § 7 of [10] for details.

Definition 1. Given k ≥ 1 and u ∈ IDk,2(H), the cumulant operator Γu
k : ID2,1 −→ L2(Ω)

is defined by Γu
11 = 0 and

Γu
k1 = 〈(Du)k−2u, u〉H + 〈D∗u,D((Du)k−2u)〉H⊗H , k ≥ 2, (2.2)

and is extended to all F ∈ ID2,1 by the definition

Γu
kF := FΓu

k1 + 〈(Du)k−1u,DF 〉H , k ≥ 1. (2.3)

By (2.2) we have Γu
21 = 〈u, u〉H + 〈D∗u,Du〉H⊗H , which from (3.2) below yields the

Skorohod isometry

E[δ(u)2] = E[Γu
21] = E[〈u, u〉H ] + E[〈D∗u,Du〉H⊗H ].

Proposition 1. Letting u ∈ ID2,2(H), for all k ≥ 3 we have

Γu
k1 =

1

2
〈(Du)k−3u,D〈u, u〉H〉H + trace (Du)k +

k−1∑
i=2

1

i
〈(Du)k−1−iu,Dtrace (Du)i〉H .

(2.4)
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Proof. Letting k ≥ 3 and u ∈ IDk,k(H), we apply the relation

〈(Du)kv, u〉H =
1

2
〈(Du)k−1v,D〈u, u〉H〉H , v ∈ H, (2.5)

cf. e.g. (2.3) in [7], to the first term in the right hand side of (2.2). Next, by the proof
of Lemma 3.1 in [7] we have

〈D∗u,D((Du)kv)〉H⊗H = trace ((Du)k+1Dv) +
k+1∑
i=2

1

i
〈(Du)k+1−iv,Dtrace (Du)i〉H , (2.6)

u ∈ ID2,2(H), v ∈ ID2,1(H), k ∈ N. �

By (2.6) we have
〈D∗u,D((Du)k−2u)〉H⊗H = 0, k ≥ 2, (2.7)

under the quasi-nilpotence condition

trace (Du)n = 0, n ≥ 2, (2.8)

which is satisfied in particular when the process u is adapted with respect to the Brownian
filtration, (Ft)t∈R+ . Indeed, in this case for almost all t1, . . . , tn ∈ R+ there exists i ∈
{1, . . . , n} such that ti > ti+1 mod n, which gives Dtiuti+1mod n

= 0 by Corollary 1.2.1 of [4]
since uti+1mod n

is Fti+1mod n
-measurable. In this case we find

Γu
k1 = 1{k=2}

∫ ∞
0

|ut|2dt+ 1{k≥3}
1

2

〈
(Du)k−3u,D

∫ ∞
0

|ut|2dt
〉
, k ≥ 1. (2.9)

3 Moment identities

Our covariance-moment relation (3.2) is established in the next Proposition, and can
be seen as a non-linear (polynomial) extension of the integration by parts formula (2.1)
between D and δ, where Γh

1F = 〈h,DF 〉H , F ∈ ID2,1, h ∈ H. By inversion of the classical
cumulant formula (1.1), cf. [2] Theorem 1, the cumulant κXn can be computed from the
moments µX

n of X.

Theorem 1. Let F ∈ ID2,1 and u ∈ ID2,1(H), n ≥ 1, and assume that

Γu
l1
· · ·Γu

lk
F ∈ ID2,1, (3.1)

for all l1 + · · ·+ lk ≤ n, k = 1, . . . , n. Then we have

E[Fδ(u)n] = n!
n∑

a=1

λa
∑

l1+···+la=n
l1≥1,...,la≥1

E
[
Γu
l1
· · ·Γu

la
F
]

l1(l1 + l2) · · · (l1 + · · ·+ la+1)
. (3.2)

3



Proof. Our proof will use an induction argument based on the identity

E[Fδ(u)n] =
n−1∑
l=0

(n− 1)!

l!
E
[
δ(u)lΓu

n−lF
]
, (3.3)

that follows from (2.3) above and Lemma 2.2 of [9], or Theorem 2.1 of [7] in case F = 1,
and can be seen as a stochastic version of the Thiele [11] recursion formula between
moments and cumulants of random variables, cf. e.g. § 1.3.2 of [6]. For n = 1, (3.1)
is the duality relation (2.1). Next, assuming that (3.2) holds up to the rank n ≥ 1, we
have, at the order n+ 1,

E[Fδ(u)n+1] = λ
n+1∑
k=1

n!

(n+ 1− k)!
E
[
δ(u)n+1−kΓu

kF
]

= λn!
n+1∑
k=1

n+1−k∑
a=1

λa
∑

l1+···+la=n+1−k
l1≥1,...,la≥1

E
[
Γu
l1
· · ·Γu

la
Γu
kF
]

l1(l1 + l2) · · · (l1 + · · ·+ la)

= n!
n+1∑
a=1

λa+1
∑

l1+···+la=n+1−la+1
l1≥1,...,la≥1

n+1∑
la+1=1

E
[
Γu
l1
· · ·Γu

la+1
F
]

l1(l1 + l2) · · · (l1 + · · ·+ la)

= n!
n+1∑
a=1

λa+1
∑

l1+···+la+1=n+1

l1≥1,...,la+1≥1

E
[
Γu
l1
· · ·Γu

la+1
F
]

l1(l1 + l2) · · · (l1 + · · ·+ la)

= (n+ 1)!
n+1∑
a=1

λa
∑

l1+···+la=n+1
l1≥1,...,la≥1

E
[
Γu
l1
· · ·Γu

la
F
]

l1(l1 + l2) · · · (l1 + · · ·+ la+1)
.

�

When h ∈ H is deterministic, Definition 1 reads

Γh
kF = 1{k=2}F 〈h, h〉H + 1{k=1}〈h,DF 〉H , k ≥ 1,

and (3.1) becomes

E[Fδ(h)n] =
n∑

a=1

λa
∑

l1+···+la=n
1≤l1≤2,...,1≤la≤2

NLa(la − 1)! · · · (l1 − 1)!E
[
Γh
l1
· · ·Γh

laF
]

=
n∑

k=0

(
n

k

)
E[(〈h,DF 〉H)k]E

[(∫ ∞
0

h(t)dBt

)n−k
]
.

If, in addition to (2.7),
∫∞
0
|ut|2dt is deterministic we find

Γu
lk
· · ·Γu

l1
1 = 1{l1=2} · · ·1{lk=2}

(∫ ∞
0

|ut|2dt
)k

, l1, . . . , lk ≥ 1,
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and δ(u) has cumulants
Γu
l 1 = 1{l=2}〈u, u〉H , l ≥ 1, (3.4)

i.e. δ(u) becomes a centered Gaussian random variable with variance 〈u, u〉H . This applies
in particular when u = Rh is given from a random adapted isometry R : Lp(R+) −→
Lp(R+), p ≥ 1, cf. [12] Theorem 2.1-b), in which case the Skorohod integral δ(Rh) on
the Wiener space has a Gaussian law when h ∈ H and R is a random isometry of H with
quasi-nilpotent gradient DRh.
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