CONVEX COMPARISON INEQUALITIES FOR EXPONENTIAL JUMP-DIFFUSION PROCESSES

JEAN-CHRISTOPHE BRETON AND NICOLAS PRIVAULT

Abstract

Given $\left(M_{t}\right)_{t \in \mathbb{R}_{+}}$and $\left(M_{t}^{*}\right)_{t \in \mathbb{R}_{+}}$respectively a forward and a backward exponential martingale with jumps and a continuous part, we prove that $E\left[\phi\left(M_{t} M_{t}^{*}\right)\right]$ is non-increasing in t when ϕ is a convex function, provided the local characteristics of the stochastic logarithms of $\left(M_{t}\right)_{t \in \mathbb{R}_{+}}$and of $\left(M_{t}^{*}\right)_{t \in \mathbb{R}_{+}}$satisfy some comparison inequalities. As an application, we deduce bounds on option prices in markets with jumps, in which the underlying processes need not be Markovian. In this setting the classical propagation of convexity assumption for Markov semigroups [4] is not needed.

1. Introduction

Bounds on option prices with convex payoff functions have been obtained by several authors. Theorem 6.2 of [4], for example, states that

$$
\begin{equation*}
E\left[\phi\left(S_{T}\right) \mid S_{0}=x\right] \leq E\left[\phi\left(S_{T}^{*}\right) \mid S_{0}^{*}=x\right], \quad x>0 \tag{1.1}
\end{equation*}
$$

for any convex function ϕ, provided S and S^{*} are price processes of the form

$$
\frac{d S_{t}}{S_{t}}=r_{t} d t+\sigma_{t} d W_{t}
$$

and

$$
\frac{d S_{t}^{*}}{S_{t}^{*}}=r_{t} d t+\sigma^{*}\left(t, S_{t}^{*}\right) d W_{t}
$$

where $\left(W_{t}\right)_{t \in \mathbb{R}_{+}}$is a standard Brownian motion, under the condition

$$
\left|\sigma_{t}\right| \leq\left|\sigma^{*}\left(t, S_{t}\right)\right|, \quad t \in \mathbb{R}_{+}
$$

The proof of (1.1) relies on the backward Kolmogorov equation, provided the Markov semigroup of $\left(S_{t}^{*}\right)_{t \in \mathbb{R}_{+}}$propagates convexity. A first extension of this type of bound to the jump-diffusion case can be found in [1], and more general results have been later proved in [2] under refined conditions, still under the propagation of convexity hypothesis. Note however that the propagation of convexity property is not always satisfied, even in the (Markovian) jump-diffusion case, cf. e.g. Theorem 4.4 in [3].

In this paper we prove a convex comparison inequality of the form

$$
\begin{equation*}
E\left[\phi\left(M_{t} M_{t}^{*}\right)\right] \leq E\left[\phi\left(M_{s} M_{s}^{*}\right)\right], \quad 0 \leq s \leq t, \tag{1.2}
\end{equation*}
$$

[^0]where M_{t}, M_{t}^{*} are respectively forward and backward exponential martingales with jumps and continuous parts, satisfying some conditions. More precisely, (1.2) will hold for convex function $\phi: \mathbb{R} \rightarrow \mathbb{R}$, provided the local characteristics of the stochastic logarithms of $\left(M_{t}\right)_{t \in \mathbb{R}_{+}}$and of $\left(M_{t}^{*}\right)_{t \in \mathbb{R}_{+}}$satisfy the comparison inequalities assumed in Theorem 3.1 below. Our proof relies on arguments of [6], with the difference that we consider products instead of sums of forward and backward martingales. Moreover the results of [6] require a.s. uniform bounds on the diffusion coefficients which cannot be satisfied for stochastic exponentials. In some results we assume in addition that ϕ^{\prime} is convex, a condition that can be realized in applications when ϕ is e.g. an exponential payoff function.

If further $E\left[M_{t}^{*} \mid \mathcal{F}_{t}^{M}\right]=1, t \in \mathbb{R}_{+}$, where $\left(\mathcal{F}_{t}^{M}\right)_{t \in \mathbb{R}_{+}}$denotes the filtration generated by $\left(M_{t}\right)_{t \in \mathbb{R}_{+}}$, then Jensen's inequality yields

$$
\begin{aligned}
E\left[\phi\left(M_{t}\right)\right] & =E\left[\phi\left(M_{t} E\left[M_{t}^{*} \mid \mathcal{F}_{t}^{M}\right]\right)\right] \\
& =E\left[\phi\left(E\left[M_{t} M_{t}^{*} \mid \mathcal{F}_{t}^{M}\right]\right)\right] \\
& \leq E\left[E\left[\phi\left(M_{t} M_{t}^{*}\right) \mid \mathcal{F}_{t}^{M}\right]\right] \\
& =E\left[\phi\left(M_{t} M_{t}^{*}\right)\right] \\
& \leq E\left[\phi\left(M_{s} M_{s}^{*}\right)\right], \quad 0 \leq s \leq t
\end{aligned}
$$

and in particular

$$
\begin{equation*}
E\left[\phi\left(M_{t}\right)\right] \leq E\left[\phi\left(M_{0} M_{0}^{*}\right)\right], \quad t \geq 0 . \tag{1.3}
\end{equation*}
$$

We prove (1.2) using forward-backward stochastic calculus, assuming only the convexity of ϕ, and without propagation of convexity, cf. Theorem 3.1.

We note that (1.3) can be read as a bound on option prices, where ϕ is a convex payoff function and M_{t} is the price of an underlying asset. More precisely, cf. Corollaries 4.2, 5.1 and 6.2, it yields bounds of the form

$$
\begin{equation*}
E\left[\phi\left(S_{T}\right) \mid S_{0}=x\right] \leq E\left[\phi\left(S_{T}^{*}\right) \mid S_{0}^{*}=x\right], \quad x>0 \tag{1.4}
\end{equation*}
$$

where $\left(S_{t}\right)_{t \in \mathbb{R}_{+}}$and $\left(S_{t}^{*}\right)_{t \in \mathbb{R}_{+}}$are jump-diffusion price processes of the form

$$
\frac{d S_{t}}{S_{t^{-}}}=r_{t} d t+\sigma_{t} d W_{t}+J_{t^{-}}\left(d Z_{t}-\lambda_{t} d t\right)
$$

where $\left(W_{t}\right)_{t \in \mathbb{R}_{+}}$is a standard Brownian motion, $\left(Z_{t}\right)_{t \in \mathbb{R}_{+}}$is a point process of (stochastic) intensity λ_{t}, and $\left(S_{t}^{*}\right)_{t \in \mathbb{R}_{+}}$can be taken as the solution of

$$
\frac{d S_{t}^{*}}{S_{t^{-}}^{*}}=r_{t} d t+\sigma_{t}^{*} d \hat{W}_{t}+J_{t^{-}}^{*}\left(d \hat{N}_{t}-\lambda_{t}^{*} d t\right)
$$

where $\left(\hat{W}_{t}\right)_{t \in \mathbb{R}_{+}}$is a standard Brownian motion and $\left(\hat{N}_{t}\right)_{t \in \mathbb{R}_{+}}$is a Poisson process of (deterministic) intensity λ_{t}^{*}, mutually independent and independent of $\left(W_{t}\right)_{t \in \mathbb{R}_{+}}$ and of $\left(N_{t}\right)_{t \in \mathbb{R}_{+}}$, provided the three conditions

$$
\begin{equation*}
\left|\sigma_{t}\right| \leq\left|\sigma_{t}^{*}\right|, \quad 0 \leq J_{t} \leq J_{t}^{*}, \quad J_{t} \lambda_{t} \leq J_{t}^{*} \lambda_{t}^{*}, \quad t \in[0, T] \tag{1.5}
\end{equation*}
$$

are satisfied. The choice of the standard Poisson process $\left(\hat{N}_{t}\right)_{t \in \mathbb{R}_{+}}$to drive the jump part of $\left(S_{t}^{*}\right)_{t \in \mathbb{R}_{+}}$is made here to simplify the formulation of the hypotheses
in (1.5). More general point processes can be actually considered, cf. Sections 4, 5 and 6.

Here, the coefficients $r_{t}, \sigma_{t}, J_{t}, \sigma_{t}^{*}, J_{t}^{*}$, are (random) \mathcal{F}^{M}-adapted processes and need not be diffusion coefficients. The difference between (1.4) and (1.1) is that in (1.4) the integrator processes $\left(\hat{W}_{t}\right)_{t \in \mathbb{R}_{+}}$and $\left(\hat{N}_{t}\right)_{t \in \mathbb{R}_{+}}$are independent of $\left(\sigma_{t}^{*}\right)_{t \in \mathbb{R}_{+}}$ and of $\left(J_{t}^{*}\right)_{t \in \mathbb{R}_{+}}$.

Denoting by $B S\left(\phi, x, t, r^{*}, \sigma^{*}, J^{*}\right)$ the conditional Black-Scholes price

$$
B S\left(\phi, x, t, r, \sigma^{*}, J^{*}\right)=E\left[\phi\left(S_{t}^{*}\right) \mid W, Z, S_{0}^{*}=x\right]
$$

(1.4) reads

$$
E\left[\phi\left(S_{t}\right) \mid S_{0}=x\right] \leq E\left[B S\left(\phi, x, t, r^{*}, \sigma^{*}, J^{*}\right)\right]
$$

between $E\left[\phi\left(S_{t}\right) \mid S_{0}=x\right]$ and the averaged Black-Scholes price $E\left[B S\left(\phi, x, t, r^{*}, \sigma^{*}, J^{*}\right)\right]$.

In the diffusion case when $J^{*}=\lambda^{*}=0$ and σ_{t}^{*} is deterministic, our result coincides with those of the above mentioned papers, and in particular with (1.1) or Theorem 6.2 of [4].

In the jump-diffusion case, still taking $\sigma_{t}^{*}, J_{t}^{*}, \lambda_{t}^{*}$ deterministic, we get

$$
E\left[\phi\left(S_{T}\right) \mid S_{0}=x\right] \leq B S\left(\phi, x, T, r^{*}, \sigma^{*}, J^{*}\right)
$$

but our hypothesis differ from those of [2] where convex ordering of the jump caracteristics is required, see Theorem 2.3 therein, whereas here our conditions are directly formulated in terms of $J_{t}, \lambda_{t}, J_{t}^{*}$ and λ_{t}^{*}. In the general case where $\sigma_{t}^{*}, J_{t}^{*}, \lambda_{t}^{*}$ are random, our results can not be compared since our process $\left(S_{t}^{*}\right)_{t \in \mathbb{R}_{+}}$ is no longer a diffusion process as in [2].

We proceed as follows. In Section 2 we recall the framework of [6] on forwardbackward stochastic calculus. In Section 3 we prove our convex concentration inequalities for exponential martingales following the arguments of [6], in which sums are replaced by products. Applications to point processes and Poisson random measures in view of option pricing are given in Sections 4, 5, 6 .

2. Forward-backward stochastic calculus

In this section we recall some definitions and results on forward-backward stochastic calculus, see [6] for details. Let (Ω, \mathcal{F}, P) be a probability space equipped with an increasing filtration $\left(\mathcal{F}_{t}\right)_{t \in \mathbb{R}_{+}}$and a decreasing filtration $\left(\mathcal{F}_{t}^{*}\right)_{t \in \mathbb{R}_{+}}$. Consider $\left(X_{t}\right)_{t \in \mathbb{R}_{+}}$an \mathcal{F}_{t}-forward martingale with $X_{0}=0$, and $\left(X_{t}^{*}\right)_{t \in \mathbb{R}_{+}}$an \mathcal{F}_{t}^{*} backward martingale with $X_{\infty}^{*}=0$, such that $\left(X_{t}\right)_{t \in \mathbb{R}_{+}}$has right-continuous paths with left limits and $\left(X_{t}^{*}\right)_{t \in \mathbb{R}_{+}}$has left-continuous paths with right limits. Denote respectively by $\left(X_{t}^{c}\right)_{t \in \mathbb{R}_{+}}$and $\left(X_{t}^{* c}\right)_{t \in \mathbb{R}_{+}}$the continuous parts of $\left(X_{t}\right)_{t \in \mathbb{R}_{+}}$and of $\left(X_{t}^{*}\right)_{t \in \mathbb{R}_{+}}$, and by

$$
\Delta X_{t}=X_{t}-X_{t^{-}}, \quad \Delta^{*} X_{t}^{*}=X_{t}^{*}-X_{t^{+}}^{*}
$$

their forward and backward jumps. Denote by

$$
\mu(d t, d x)=\sum_{s>0} 1_{\left\{\Delta X_{s} \neq 0\right\}} \delta_{\left(s, \Delta X_{s}\right)}(d t, d x),
$$

and

$$
\mu^{*}(d t, d x)=\sum_{s>0} 1_{\left\{\Delta^{*} X_{s}^{*} \neq 0\right\}} \delta_{\left(s, \Delta^{*} X_{s}^{*}\right)}(d t, d x),
$$

the jump measures of $\left(X_{t}\right)_{t \in \mathbb{R}_{+}}$and $\left(X_{t}^{*}\right)_{t \in \mathbb{R}_{+}}$, by $\nu(d t, d x)$ and $\nu^{*}(d t, d x)$ their respective $\left(\mathcal{F}_{t}\right)_{t \in \mathbb{R}_{+}}$and $\left(\mathcal{F}_{t}^{*}\right)_{t \in \mathbb{R}_{+}}$-dual predictable projections, and by $([X, X])_{t \in \mathbb{R}_{+}}$, $\left(\left[X^{*}, X^{*}\right]\right)_{t \in \mathbb{R}_{+}}$, resp. $\left\langle X^{c}, X^{c}\right\rangle_{t},\left\langle X^{* c}, X^{* c}\right\rangle_{t} t \in \mathbb{R}_{+}$, their optional, resp. predictable quadratic variations, which constitute the local characteristics of $\left(X_{t}\right)_{t \in \mathbb{R}_{+}}$, cf. [5] in the forward case.

We will use the following Itô type change of variable formula for forward-backward martingales which has been proved in [6], Theorem 8.1:

$$
\begin{aligned}
f\left(X_{t}, X_{t}^{*}\right) & -f\left(X_{0}, X_{0}^{*}\right) \\
= & \int_{0^{+}}^{t} \partial_{1} f\left(X_{u^{-}}, X_{u}^{*}\right) d X_{u}+\frac{1}{2} \int_{0}^{t} \partial_{1}^{2} f\left(X_{u}, X_{u}^{*}\right) d\left\langle X^{c}, X^{c}\right\rangle_{u} \\
& +\sum_{0<u \leq t}\left(f\left(X_{u}, X_{u}^{*}\right)-f\left(X_{u^{-}}, X_{u}^{*}\right)-\Delta X_{u} \partial_{1} f\left(X_{u^{-}}, X_{u}^{*}\right)\right) \\
& -\int_{0}^{t^{-}} \partial_{2} f\left(X_{u}, X_{u^{+}}^{*}\right) d^{*} X_{u}^{*}-\frac{1}{2} \int_{0}^{t} \partial_{2}^{2} f\left(X_{u}, X_{u}^{*}\right) d\left\langle X^{* c}, X^{* c}\right\rangle_{u} \\
& -\sum_{0 \leq u<t}\left(f\left(X_{u}, X_{u}^{*}\right)-f\left(X_{u}, X_{u^{+}}^{*}\right)-\Delta X_{u}^{*} \partial_{2} f\left(X_{u}, X_{u^{+}}^{*}\right)\right),
\end{aligned}
$$

for all $f \in C^{2}\left(\mathbb{R}^{2}, \mathbb{R}\right)$, where d^{*} denotes the backward Itô differential.
Finally, recall the following classical comparison lemma.
Lemma 2.1. Let m_{1}, m_{2} be two finite non-negative measures on \mathbb{R}. The inequality

$$
\int_{-\infty}^{\infty} f(x) m_{1}(d x) \leq \int_{-\infty}^{\infty} f(x) m_{2}(d x)
$$

holds for all non-decreasing m_{1}, m_{2}-integrable function f on \mathbb{R} if and only if

$$
m_{1}([x, \infty)) \leq m_{2}([x, \infty))
$$

for all $x \in \mathbb{R}$.

3. Convex comparison for exponential martingales

In the sequel we assume further that the angle brackets of $\left(X_{t}\right)_{t \in \mathbb{R}_{+}}$and $\left(X_{t}^{*}\right)_{t \in \mathbb{R}_{+}}$ have the form

$$
\begin{equation*}
d\left\langle X^{c}, X^{c}\right\rangle_{t}=\left|\sigma_{t}\right|^{2} d t, \quad \text { and } \quad d\left\langle X^{* c}, X^{* c}\right\rangle_{t}=\left|\sigma_{t}^{*}\right|^{2} d t \tag{3.1}
\end{equation*}
$$

and jump measures of the form

$$
\begin{equation*}
\nu(d t, d x)=\nu_{t}(d x) d t \quad \text { and } \quad \nu^{*}(d t, d x)=\nu_{t}^{*}(d x) d t \tag{3.2}
\end{equation*}
$$

where $\left(\sigma_{t}\right)_{t \in \mathbb{R}_{+}},\left(\nu_{t}\right)_{t \in \mathbb{R}_{+}}$and $\left(\sigma_{t}^{*}\right)_{t \in \mathbb{R}_{+}},\left(\nu_{t}^{*}\right)_{t \in \mathbb{R}_{+}}$, are respectively predictable with respect to $\left(\mathcal{F}_{t}\right)_{t \in \mathbb{R}_{+}}$and to $\left(\mathcal{F}_{t}^{*}\right)_{t \in \mathbb{R}_{+}}$.

Let now $\left(\mathcal{F}_{t}^{X}\right)_{t \in \mathbb{R}_{+}}$, resp. $\left(\mathcal{F}_{t}^{X^{*}}\right)_{t \in \mathbb{R}_{+}}$, denote the forward, resp. backward, filtration generated by $\left(X_{t}\right)_{t \in \mathbb{R}_{+}}$, resp. by $\left(X_{t}^{*}\right)_{t \in \mathbb{R}_{+}}$. Recall that

$$
\begin{equation*}
\left(X_{t}\right)_{t \in \mathbb{R}_{+}},\left(X_{t}^{*}\right)_{t \in \mathbb{R}_{+}} \text {are respectively } \mathcal{F}_{t}^{*} \text {-adapted and } \mathcal{F}_{t} \text {-adapted. } \tag{3.3}
\end{equation*}
$$

Let $M=\mathcal{E}(X)$ and $M^{*}=\mathcal{E}^{*}\left(X^{*}\right)$ respectively denote the forward and backward stochastic exponentials of X and of X^{*}, i.e.

$$
M_{t}=M_{0} \exp \left(X_{t}-\frac{1}{2}[X, X]_{t}\right) \prod_{0 \leq s \leq t}\left(\left(1+\Delta X_{s^{-}}\right) e^{-\Delta X_{s}-+\frac{1}{2}\left|\Delta X_{s}-\right|^{2}}\right)
$$

in the forward case, cf. [7], and
$M_{t}^{*}=M_{\infty}^{*} \exp \left(X_{t}^{*}-\frac{1}{2} \int_{t}^{\infty} d\left[X^{*}, X^{*}\right]_{s}\right) \prod_{t \leq s<\infty}\left(\left(1+\Delta^{*} X_{s^{+}}^{*}\right) e^{-\Delta^{*} X_{s+}^{*}+\frac{1}{2}\left|\Delta^{*} X_{s}^{*}\right|^{2}}\right)$, $t \in \mathbb{R}_{+}$, in the backward case. Equivalently, $\left(M_{t}\right)_{t \in \mathbb{R}_{+}}$and $\left(M_{t}^{*}\right)_{t \in \mathbb{R}_{+}}$are the respective solutions of

$$
d M_{t}=M_{t^{-}} d X_{t} \quad \text { and } \quad d^{*} M_{t}^{*}=M_{t^{+}}^{*} d^{*} X_{t}^{*}
$$

with respective initial and final conditions M_{0} and M_{∞}^{*}. Note also that $\left(M_{t}\right)_{t \geq 0}$ and $\left(M_{t}^{*}\right)_{t \geq 0}$ do not need to be independent. Let now

$$
\bar{\nu}_{t}(d x):=x \nu_{t}(d x), \quad \bar{\nu}_{t}^{*}(d x):=x \nu_{t}^{*}(d x), \quad t \in \mathbb{R}_{+}
$$

and

$$
\tilde{\nu}_{t}(d x):=|x|^{2} \nu_{t}(d x)+\left|\sigma_{t}\right|^{2} \delta_{0}(d x), \quad \tilde{\nu}_{t}^{*}(d x):=|x|^{2} \nu_{t}^{*}(d x)+\left|\sigma_{t}^{*}\right|^{2} \delta_{0}(d x)
$$

$$
t \in \mathbb{R}_{+}
$$

Theorem 3.1. Let $\phi: \mathbb{R} \rightarrow \mathbb{R}$ be a convex function. Assume that (3.1), (3.2), (3.3) hold, and either:
i) $\left|\sigma_{t}\right| \leq\left|\sigma_{t}^{*}\right|, d P d t$-a.e., ν_{t} and ν_{t}^{*} are supported by $\mathbb{R}_{+}, M_{0}, M_{\infty}^{*} \geq 0$, a.s., and

$$
\bar{\nu}_{t}\left([x, \infty) \leq \bar{\nu}_{t}^{*}([x, \infty))<\infty, \quad x \in \mathbb{R}, t \in \mathbb{R}_{+}\right.
$$

or:
ii) $\tilde{\nu}_{t}([x, \infty)) \leq \tilde{\nu}_{t}^{*}([x, \infty))<\infty, x \in \mathbb{R}, t \in \mathbb{R}_{+}$and ϕ^{\prime} is convex.

Then we have:

$$
E\left[\phi\left(M_{t} M_{t}^{*}\right)\right] \leq E\left[\phi\left(M_{s} M_{s}^{*}\right)\right], \quad 0 \leq s \leq t
$$

If in addition
iii) $E\left[M_{t}^{*} \mid \mathcal{F}_{t}^{X}\right]=1, t \in \mathbb{R}_{+}$,
then

$$
\begin{equation*}
E\left[\phi\left(M_{t}\right)\right] \leq E\left[\phi\left(M_{s} M_{s}^{*}\right)\right], \quad 0 \leq s \leq t \tag{3.4}
\end{equation*}
$$

Proof. By an approximation argument we may assume that ϕ is \mathcal{C}^{2} and convex. We apply Itô's formula for forward-backward martingales to $f\left(x_{1}, x_{2}\right)=\phi\left(x_{1} x_{2}\right)$:

$$
\begin{aligned}
& f\left(M_{t} M_{t}^{*}\right)=f\left(M_{s} M_{s}^{*}\right) \\
& \quad+\int_{s^{+}}^{t} M_{u} M_{u}^{*} \phi^{\prime}\left(M_{u^{-}} M_{u}^{*}\right) d X_{u}+\frac{1}{2} \int_{s}^{t}\left(M_{u} M_{u}^{*}\right)^{2} \phi^{\prime \prime}\left(M_{u} M_{u}^{*}\right) d\left\langle X^{c}, X^{c}\right\rangle_{u} \\
& \left.\quad+\sum_{s<u \leq t}\left(\phi\left(\left(1+\Delta X_{u}\right) M_{u^{-}} M_{u}^{*}\right)\right)-\phi\left(M_{u^{-}} M_{u}^{*}\right)-M_{u}^{*} M_{u^{-}} \Delta X_{u} \phi^{\prime}\left(M_{u^{-}} M_{u}^{*}\right)\right) \\
& \quad-\int_{s}^{t^{-}} M_{u} M_{u}^{*} \phi^{\prime}\left(M_{u} M_{u^{+}}^{*}\right) d^{*} X_{u}^{*}-\frac{1}{2} \int_{s}^{t}\left(M_{u} M_{u}^{*}\right)^{2} \phi^{\prime \prime}\left(M_{u} M_{u}^{*}\right) d\left\langle X^{* c}, X^{* c}\right\rangle_{u} \\
& \quad-\sum_{s \leq u<t}\left(\phi\left(M_{u} M_{u^{+}}^{*}\left(1+\Delta^{*} X_{u}^{*}\right)\right)-\phi\left(M_{u} M_{u^{+}}^{*}\right)-M_{u} M_{u^{+}}^{*} \Delta^{*} X_{u}^{*} \phi^{\prime}\left(M_{u}, M_{u^{+}}^{*}\right)\right)
\end{aligned}
$$

$0 \leq s \leq t$, where d and d^{*} denote the forward and backward Itô differential.
$i)$ Under hypothesis (i), taking expectations on both sides of this formula we get

$$
\begin{aligned}
& E\left[\phi\left(M_{t} M_{t}^{*}\right)\right]=E\left[\phi\left(M_{s} M_{s}^{*}\right)\right]+ \\
& \frac{1}{2} E\left[\int_{s}^{t}\left(M_{u} M_{u}^{*}\right)^{2} \phi^{\prime \prime}\left(M_{u} M_{u}^{*}\right) d\left\langle X^{c}, X^{c}\right\rangle_{u}-\int_{s}^{t}\left(M_{u} M_{u}^{*}\right)^{2} \phi^{\prime \prime}\left(M_{u} M_{u}^{*}\right) d\left\langle X^{* c}, X^{* c}\right\rangle_{u}\right] \\
& +E\left[\int_{s}^{t} \int_{-\infty}^{\infty}\left(\phi\left(M_{u} M_{u}^{*}(1+x)\right)-\phi\left(M_{u} M_{u}^{*}\right)-M_{u}^{*} M_{u} x \phi^{\prime}\left(M_{u} M_{u}^{*}\right)\right) \nu_{u}(d x) d u\right] \\
& -E\left[\int_{s}^{t} \int_{-\infty}^{\infty}\left(\phi\left(M_{u} M_{u}^{*}(1+x)\right)-\phi\left(M_{u} M_{u}^{*}\right)-M_{u}^{*} M_{u} x \phi^{\prime}\left(M_{u} M_{u}^{*}\right)\right) \nu_{u}^{*}(d x) d u\right] \\
& \quad=E\left[\phi\left(M_{s} M_{s}^{*}\right)\right]+\frac{1}{2} E\left[\int_{s}^{t}\left(M_{u} M_{u}^{*}\right)^{2} \phi^{\prime \prime}\left(M_{u} M_{u}^{*}\right)\left(\left|\sigma_{u}\right|^{2}-\left|\sigma_{u}^{*}\right|^{2}\right) d u\right] \\
& \quad+E\left[\int_{s}^{t} M_{u} M_{u}^{*} \int_{-\infty}^{\infty} \varphi\left(M_{u} M_{u}^{*} x, M_{u} M_{u}^{*}\right)\left(\bar{\nu}_{u}(d x)-\bar{\nu}_{u}^{*}(d x)\right) d u\right]
\end{aligned}
$$

where

$$
\varphi(x, y)=\frac{\phi(x+y)-\phi(y)-x \phi^{\prime}(y)}{x}, \quad x \in \mathbb{R}_{+}, \quad y \in \mathbb{R} .
$$

By the comparison Lemma 2.1, the conclusion follows from the hypothesis and the fact that since ϕ is convex, the function $x \mapsto \varphi(x, y)$ is nondecreasing in $x \in \mathbb{R}_{+}$ for all $y \in \mathbb{R}$, and $\phi^{\prime \prime}(x) \geq 0$ for all $x \in \mathbb{R}$.
ii) Under hypothesis (ii), using the identity

$$
\phi(y(1+x))=\phi(y)+x y \phi^{\prime}(y)+|x y|^{2} \int_{0}^{1}(1-\tau) \phi^{\prime \prime}(y(1+\tau x)) d \tau, \quad x, y \in \mathbb{R}
$$

we have:

$$
\begin{aligned}
& E\left[\phi\left(M_{t} M_{t}^{*}\right)\right]=E\left[\phi\left(M_{s} M_{s}^{*}\right)\right] \\
&+\frac{1}{2} E\left[\int_{s}^{t}\left(M_{u} M_{u}^{*}\right)^{2} \phi^{\prime \prime}\left(M_{u} M_{u}^{*}\right)\left(\left|\sigma_{u}\right|^{2}-\left|\sigma_{u}^{*}\right|^{2}\right) d u\right] \\
&+E\left[\int_{s}^{t}\left(M_{u} M_{u}^{*}\right)^{2} \int_{-\infty}^{\infty}|x|^{2} \int_{0}^{1}(1-\tau) \phi^{\prime \prime}\left(M_{u} M_{u}^{*}(1+\tau x)\right) d \tau \nu_{u}(d x) d u\right] \\
&-E\left[\int_{s}^{t}\left(M_{u} M_{u}^{*}\right)^{2} \int_{-\infty}^{\infty}|x|^{2} \int_{0}^{1}(1-\tau) \phi^{\prime \prime}\left(M_{u} M_{u}^{*}(1+\tau x)\right) d \tau \nu_{u}^{*}(d x) d u\right] \\
&= E\left[\phi\left(M_{s} M_{s}^{*}\right)\right] \\
&+ E\left[\int_{0}^{1}(1-\tau) \int_{s}^{t}\left(M_{u} M_{u}^{*}\right)^{2} \int_{-\infty}^{\infty} \phi^{\prime \prime}\left(M_{u} M_{u}^{*}(1+\tau x)\right)\left(\tilde{\nu}_{u}(d x)-\tilde{\nu}_{u}^{*}(d x)\right) d u d \tau\right],
\end{aligned}
$$

and the conclusion follows from the hypothesis, the use of Lemma 2.1 and the use of the fact that $\phi^{\prime \prime}$ is non-decreasing when ϕ^{\prime} is convex.
iii) Under the additional hypothesis (iii), the proof of (3.4) follows from the argument leading to (1.3) in the introduction.

We close this section with the following remarks, which will be useful in particular to take into account interest rate processes in financial applications.
Remark 3.2. i) The proofs and statements of Theorem 3.1 extend to semimartingales $\left(M_{t}\right)_{t \in \mathbb{R}_{+}},\left(M_{t}^{*}\right)_{t \in \mathbb{R}_{+}}$solutions of

$$
\frac{d M_{t}}{M_{t^{-}}}=r_{t} d t+d X_{t} \quad \text { and } \quad \frac{d^{*} M_{t}^{*}}{M_{t^{+}}^{*}}=r_{t} d t+d^{*} X_{t}
$$

provided $\left(r_{t}\right)_{t \in \mathbb{R}_{+}}$is both \mathcal{F}_{t} and \mathcal{F}_{t}^{*}-adapted.
ii) If ϕ is non-decreasing, the same bounds hold also for semimartingales $\left(M_{t}\right)_{t \in \mathbb{R}_{+}}$, $\left(M_{t}^{*}\right)_{t \in \mathbb{R}_{+}}$represented as

$$
\frac{d M_{t}}{M_{t^{-}}}=r_{t} d t+d X_{t} \quad \text { and } \quad \frac{d^{*} M_{t}^{*}}{M_{t^{+}}^{*}}=r_{t}^{*} d t+d^{*} X_{t}
$$

provided $\left(r_{t}\right)_{t \in \mathbb{R}_{+}},\left(r_{t}^{*}\right)_{t \in \mathbb{R}_{+}}$, are respectively \mathcal{F}_{t} and \mathcal{F}_{t}^{*}-adapted with $r_{t} \leq r_{t}^{*}$, $d P d t$-a.e.

Note also that all upper bounds presented in this paper can be stated as lower bounds provided the order of the inequalities on the process characteristics is reversed in the assumptions.

4. Bounded jumps

Here we assume that $\nu_{t}^{*}(d x)$ has the form

$$
\begin{equation*}
\nu_{t}^{*}(d x)=\lambda_{t}^{*} \delta_{k}(d x) d t \tag{4.1}
\end{equation*}
$$

where $\left(\lambda_{t}^{*}\right)_{t \in \mathbb{R}_{+}}$is a positive \mathcal{F}_{t}^{*}-predictable process, i.e. $\left(X_{t}^{*}\right)_{t \in \mathbb{R}_{+}}$has jumps of fixed size $k \in \mathbb{R}$. In this setting we have

$$
M_{t}^{*}=1+\int_{t}^{\infty} \sigma_{s}^{*} M_{s}^{*} d^{*} W_{s}^{*}+k \int_{t}^{\infty} M_{s^{+}}\left(d^{*} Z_{s}^{*}-\lambda_{s}^{*} d s\right),
$$

or equivalently

$$
M_{t}^{*}=\exp \left(\int_{t}^{\infty} \sigma_{s}^{*} d^{*} W_{s}^{*}-\frac{1}{2} \int_{t}^{\infty}\left|\sigma_{s}^{*}\right|^{2} d s-k \int_{t}^{\infty} \lambda_{s}^{*} d s\right) \prod_{t \leq s<T}\left(1+k \Delta^{*} Z_{s}^{*}\right)
$$

$t \in \mathbb{R}_{+}$, where $\left(W_{t}^{*}\right)_{t \in \mathbb{R}_{+}}$is a backward Brownian motion and $\left(Z_{t}^{*}\right)_{t \in \mathbb{R}_{+}}$is a backward point process with intensity $\left(\lambda_{t}^{*}\right)_{t \in \mathbb{R}_{+}}$.

Corollary 4.1. Assume that (3.1), (3.2), (3.3) and (4.1) hold, and that one of the following conditions is satisfied:
i) $0 \leq \Delta X_{t} \leq k, d P d t$-a.e. and

$$
\left|\sigma_{t}\right| \leq\left|\sigma_{t}^{*}\right|, \quad \int_{0}^{k} x \nu_{t}(d x) \leq k \lambda_{t}^{*}, \quad d P d t-a . e .
$$

ii) $\Delta X_{t} \leq k, d P d t-a . e$. and

$$
\left|\sigma_{t}\right| \leq\left|\sigma_{t}^{*}\right|, \quad \int_{-\infty}^{k}|x|^{2} \nu_{t}(d x) \leq k^{2} \lambda_{t}^{*}, \quad d P d t-a . e .
$$

iii) $\Delta X_{t} \leq 0 \leq k, d P d t-a . e$. and

$$
\left|\sigma_{t}\right|^{2}+\int_{-\infty}^{0}|x|^{2} \nu_{t}(d x) \leq\left|\sigma_{t}^{*}\right|^{2}+k^{2} \lambda_{t}^{*}, \quad d P d t-a . e .
$$

iv) $0 \leq \Delta X_{t} \leq k$, dPdt-a.e. $\int_{0}^{k}|x|^{2} \nu_{t}(d x) \leq k^{2} \lambda_{t}^{*}$ and

$$
\left|\sigma_{t}\right|^{2}+\int_{0}^{k}|x|^{2} \nu_{t}(d x) \leq\left|\sigma_{t}^{*}\right|^{2}+k^{2} \lambda_{t}^{*}, \quad d P d t-a . e .
$$

v) $\Delta X_{t} \leq k \leq 0, d P d t$-a.e. $\left|\sigma_{t}\right| \leq\left|\sigma_{t}^{*}\right|$, $d P d t$-a.e., and

$$
\left|\sigma_{t}\right|^{2}+\int_{-\infty}^{k}|x|^{2} \nu_{t}(d x) \leq\left|\sigma_{t}^{*}\right|^{2}+k^{2} \lambda_{t}^{*}, \quad d P d t-a . e .
$$

Then we have:

$$
\begin{equation*}
E\left[\phi\left(M_{t}\right)\right] \leq E\left[\phi\left(M_{s} M_{s}^{*}\right)\right], \quad 0 \leq s \leq t \tag{4.2}
\end{equation*}
$$

for all convex functions $\phi: \mathbb{R} \rightarrow \mathbb{R}$, with moreover ϕ^{\prime} convex in cases ii)-v).
Proof. The condition $0 \leq \Delta X_{t} \leq k$, resp. $\Delta X_{t} \leq k$, is equivalent to $\nu_{t}\left([0, k]^{c}\right)=$ 0 , resp. $\nu_{t}((k, \infty))=0$. Using the expressions

$$
\begin{aligned}
\bar{\nu}_{t}^{*}([x,+\infty[) & =k \lambda_{t}^{*} \mathbf{1}_{]-\infty, k]}(x) \\
\tilde{\nu}_{t}^{*}([x,+\infty[) & =k^{2} \lambda_{t}^{*} \mathbf{1}_{]-\infty, k]}(x)+\left|\sigma_{t}^{*}\right|^{2} \delta_{0}([x,+\infty[)
\end{aligned}
$$

and the comparison Lemma 2.1 we show that the hypothesis of Theorem 3.1-(i), resp. (ii), are satisfied in case (i), resp. in cases $(i i)-(v)$.
Note that in Corollary 4.1 and in the following corollaries, conditions (iii)-(iv) make a combined use of the continuous and jump characteristics of the processes.

Assume now that \mathcal{F}^{X} is generated by a standard Brownian motion $\left(W_{t}\right)_{t \in \mathbb{R}_{+}}$and a point process $\left(J_{t}\right)_{t \in \mathbb{R}_{+}}$with intensity $\left(\lambda_{t}\right)_{t \in \mathbb{R}_{+}}$. Let $\left(S_{t}\right)_{t \in \mathbb{R}_{+}}$be a price process defined by

$$
\begin{equation*}
\frac{d S_{t}}{S_{t^{-}}}=r_{t} d t+\sigma_{t} d W_{t}+J_{t^{-}}\left(d Z_{t}-\lambda_{t} d t\right) \tag{4.3}
\end{equation*}
$$

where $\left(r_{t}\right)_{t \in \mathbb{R}_{+}},\left(\sigma_{t}\right)_{t \in \mathbb{R}_{+}},\left(J_{t}\right)_{t \in \mathbb{R}_{+}}$are square-integrable \mathcal{F}_{t}^{X}-adapted processes. Consider $(\hat{W})_{t \in \mathbb{R}_{+}}$a (forward) standard Brownian motion and $\left(\hat{N}_{t}\right)_{t \in \mathbb{R}_{+}}$a (forward, right-continuous) Poisson process of (deterministic) intensity $\left(\hat{\lambda}_{t}\right)_{t \in \mathbb{R}_{+}}$, both independent of \mathcal{F}^{X}, and let $\left(S_{t}^{*}\right)_{t \in \mathbb{R}_{+}}$be defined by

$$
\begin{equation*}
\frac{d S_{t}^{*}}{S_{t^{-}}^{*}}=r_{t} d t+\sigma_{t}^{*} d \hat{W}_{t}+k\left(d \hat{N}_{t}-\hat{\lambda}_{t} d t\right) \tag{4.4}
\end{equation*}
$$

where $\left(\sigma_{t}^{*}\right)_{t \in \mathbb{R}_{+}}$is a square-integrable \mathcal{F}_{t}^{X}-adapted process.
Corollary 4.2. Assume that one of the following conditions is satisfied:
i) $0 \leq \Delta X_{s} \leq k, d P d s$-a.e. and

$$
\left|\sigma_{s}\right| \leq\left|\sigma_{s}^{*}\right|, \quad \int_{0}^{k} x \nu_{s}(d x) \leq k \hat{\lambda}_{s}, \quad d P d s-a . e .
$$

ii) $\Delta X_{s} \leq k, d P d s$-a.e. and

$$
\left|\sigma_{s}\right| \leq\left|\sigma_{s}^{*}\right|, \quad \int_{-\infty}^{k}|x|^{2} \nu_{s}(d x) \leq k^{2} \hat{\lambda}_{s}, \quad d P d s-a . e .
$$

iii) $\Delta X_{s} \leq 0 \leq k$, dPds-a.e. and

$$
\left|\sigma_{s}\right|^{2}+\int_{-\infty}^{0}|x|^{2} \nu_{s}(d x) \leq\left|\sigma_{s}^{*}\right|^{2}+k^{2} \hat{\lambda}_{s}, \quad d P d s-a . e .
$$

iv) $0 \leq \Delta X_{s} \leq k$, dPds-a.e., $\int_{0}^{k}|x|^{2} \nu_{s}(d x) \leq k^{2} \hat{\lambda}_{s}$, dPds-a.e. and

$$
\left|\sigma_{s}\right|^{2}+\int_{0}^{k}|x|^{2} \nu_{s}(d x) \leq\left|\sigma_{s}^{*}\right|^{2}+k^{2} \hat{\lambda}_{s}, \quad d P d s-a . e .
$$

v) $\Delta X_{s} \leq k \leq 0, d P d s$-a.e., $\left|\sigma_{s}\right| \leq\left|\sigma_{s}^{*}\right|, d P d s$-a.e. and

$$
\left|\sigma_{s}\right|^{2}+\int_{-\infty}^{k}|x|^{2} \nu_{s}(d x) \leq\left|\sigma_{s}^{*}\right|^{2}+k^{2} \hat{\lambda}_{s}, \quad d P d s-a . e .
$$

Then we have

$$
\begin{equation*}
E\left[\phi\left(S_{t}\right) \mid S_{0}=x\right] \leq E\left[\phi\left(S_{t}^{*}\right) \mid S_{0}^{*}=x\right], \quad x>0, \quad t \in \mathbb{R}_{+}, \tag{4.5}
\end{equation*}
$$

with moreover ϕ^{\prime} convex in cases $(i i)-(v)$.
Proof. We apply Corollary 4.1 to the processes $\left(1_{[0, t]}(s) \sigma_{s}\right)_{s \in \mathbb{R}_{+}},\left(1_{[0, t]}(s) \sigma_{s}^{*}\right)_{s \in \mathbb{R}_{+}}$, $\left(1_{[0, t]}(s) \nu_{s}\right)_{s \in \mathbb{R}_{+}},\left(1_{[0, t]}(s) \lambda_{s}\right)_{s \in \mathbb{R}_{+}},\left(\lambda_{s}^{*}\right)_{s \in \mathbb{R}_{+}}:=\left(1_{[0, t]}(s) \hat{\lambda}_{s}\right)_{s \in \mathbb{R}_{+}}$, with $M_{t}^{*}=1$, and use the identity in law

$$
M_{0}^{*}=S_{t}^{*}
$$

which holds because the forward and backward stochastic integral coincide when the integrator process is independent of the integrand.

5. Point process diffusions

Consider now $\left(W_{t}\right)_{t \in \mathbb{R}_{+}},\left(Z_{t}\right)_{t \in \mathbb{R}_{+}}$a standard Brownian motion and a point process generating the filtration

$$
\mathcal{F}_{t}^{X}=\sigma\left(W_{s}, Z_{s}: 0 \leq s \leq t\right), \quad t \in \mathbb{R}_{+}
$$

We will assume that $\left(W_{t}\right)_{t \in \mathbb{R}_{+}}$is also an \mathcal{F}_{t}^{X}-Brownian motion and that $\left(Z_{t}\right)_{t \in \mathbb{R}_{+}}$ has compensator $\left(\lambda_{t}\right)_{t \in \mathbb{R}_{+}}$with respect to $\left(\mathcal{F}_{t}^{X}\right)_{t \in \mathbb{R}_{+}}$, which does not in general require the independence of $\left(W_{t}\right)_{t \in \mathbb{R}_{+}}$from $\left(Z_{t}\right)_{t \in \mathbb{R}_{+}}$.

Consider also $\left(W_{t}^{*}\right)_{t \in \mathbb{R}_{+}}$a backward standard Brownian motion, $\left(Z_{t}^{*}\right)_{t \in \mathbb{R}_{+}}$a backward point process with intensity $\left(\lambda_{t}^{*}\right)_{t \in \mathbb{R}_{+}}$, all independent of $\left(\mathcal{F}_{t}^{X}\right)_{t \in \mathbb{R}_{+}}$, and let $\left(X_{t}\right)_{t \in \mathbb{R}_{+}}$and $\left(X_{t}^{*}\right)_{t \in \mathbb{R}_{+}}$be defined as

$$
X_{t}=\int_{0}^{t} \sigma_{s} d W_{s}+\int_{0}^{t} J_{s^{-}}\left(d Z_{s}-\lambda_{s} d s\right), \quad t \in \mathbb{R}_{+}
$$

and

$$
X_{t}^{*}=\int_{t}^{\infty} \sigma_{s}^{*} d^{*} W_{s}^{*}+\int_{t}^{\infty} J_{s^{+}}^{*}\left(d^{*} Z_{s}^{*}-\lambda_{s}^{*} d s\right), \quad t \in \mathbb{R}_{+}
$$

where σ_{t} is a square-integrable \mathcal{F}_{t}^{X}-predictable process and $\left(J_{t}\right)_{t \in \mathbb{R}_{+}}$is an $\mathcal{F}_{t}^{X}{ }_{-}$ predictable process which is either square-integrable or positive and integrable, and the processes $\left(\sigma_{t}^{*}\right)_{t \in \mathbb{R}_{+}},\left(J_{t}^{*}\right)_{t \in \mathbb{R}_{+}}$, are taken (forward) \mathcal{F}_{t}^{X}-predictable under the same integrability conditions. The characteristic measures of X and X^{*} are given by

$$
\nu_{t}(d x)=\lambda_{t} \delta_{J_{t}}(d x) d t \quad \text { and } \quad \nu_{t}^{*}(d x)=\lambda_{t}^{*} \delta_{J_{t}^{*}}(d x) d t
$$

and we have

$$
M_{t}=M_{0}+\int_{0}^{t} \sigma_{s} M_{s} d W_{s}+\int_{0}^{t} J_{s^{-}} M_{s^{-}}\left(d Z_{s}-\lambda_{s} d s\right), \quad t \in \mathbb{R}_{+}
$$

and

$$
\begin{equation*}
M_{t}^{*}=1+\int_{t}^{\infty} \sigma_{s}^{*} M_{s}^{*} d^{*} W_{s}^{*}+\int_{t}^{\infty} J_{s^{+}}^{*} M_{s^{+}}^{*}\left(d^{*} Z_{s}^{*}-\lambda_{s}^{*} d s\right), \quad t \in \mathbb{R}_{+} \tag{5.1}
\end{equation*}
$$

i.e.

$$
M_{t}=M_{0} \exp \left(\int_{0}^{t} \sigma_{s} d W_{s}-\frac{1}{2} \int_{0}^{t} \sigma_{s}^{2} d s-\int_{0}^{t} \lambda_{s} d s\right) \prod_{0<s \leq t}\left(1+J_{s^{-}} \Delta Z_{s}\right), t \in \mathbb{R}_{+}
$$

and

$$
M_{t}^{*}=\exp \left(\int_{t}^{\infty} \sigma_{s}^{*} d^{*} W_{s}^{*}-\frac{1}{2} \int_{t}^{\infty}\left|\sigma_{s}^{*}\right|^{2} d s-\int_{t}^{\infty} J_{s}^{*} \lambda_{s}^{*} d s\right) \prod_{t \leq s<\infty}\left(1+J_{s^{+}}^{*} \Delta^{*} Z_{s}^{*}\right)
$$

$t \in \mathbb{R}_{+}$. Applying Theorem 3.1 with

$$
\mathcal{F}_{t}=\mathcal{F}_{t}^{X} \vee \sigma\left(W_{s}^{*}, Z_{s}^{*}: s \in \mathbb{R}_{+}\right), \quad t \in \mathbb{R}_{+}
$$

and

$$
\mathcal{F}_{t}^{*}=\mathcal{F}_{\infty}^{X} \vee \sigma\left(W_{s}^{*}, Z_{s}^{*}: s \geq t\right), \quad t \in \mathbb{R}_{+}
$$

and noting that $E\left[M_{t}^{*} \mid \mathcal{F}_{t}^{X}\right]=1$ (as follows from the independence of $\left(W_{t}^{*}\right)_{t \in \mathbb{R}_{+}}$ and of $\left(Z_{t}^{*}\right)_{t \in \mathbb{R}_{+}}$with $\left.\mathcal{F}^{X}\right), t \in \mathbb{R}_{+}$, we derive the following corollary:

Corollary 5.1. Assume that (3.1), (3.2), (3.3) hold. Then we have:

$$
E\left[\phi\left(M_{t}\right)\right] \leq E\left[\phi\left(M_{s} M_{s}^{*}\right)\right], \quad 0 \leq s \leq t
$$

for all convex functions $\phi: \mathbb{R} \rightarrow \mathbb{R}$, provided one of the following conditions is satisfied:
i) $0 \leq J_{t} \leq J_{t}^{*}, \lambda_{t} d P d t$-a.e. and

$$
\left|\sigma_{t}\right| \leq\left|\sigma_{t}^{*}\right|, \quad \lambda_{t} J_{t} \leq \lambda_{t}^{*} J_{t}^{*}, \quad d P d t-a . e .,
$$

ii) $J_{t} \leq J_{t}^{*}, \lambda_{t} d P d t-a . e$. and

$$
\left|\sigma_{t}\right| \leq\left|\sigma_{t}^{*}\right|, \quad \lambda_{t}\left|J_{t}\right|^{2} \leq \lambda_{t}^{*}\left|J_{t}^{*}\right|^{2}, \quad d P d t-\text { a.e. },
$$

iii) $J_{t} \leq 0 \leq J_{t}^{*}, \lambda_{t} d P d t$-a.e., and

$$
\left|\sigma_{t}\right|^{2}+\lambda_{t}\left|J_{t}\right|^{2} \leq\left|\sigma_{t}^{*}\right|^{2}+\lambda_{t}^{*}\left|J_{t}^{*}\right|^{2}, \quad d P d t-a . e .,
$$

iv) $0 \leq J_{t} \leq J_{t}^{*}, \lambda_{t} d P d t-a . e$,
$\lambda_{t}\left|J_{t}\right|^{2} \leq \lambda_{t}^{*}\left|J_{t}^{*}\right|^{2}, \quad$ and $\quad\left|\sigma_{t}\right|^{2}+\lambda_{t}\left|J_{t}\right|^{2} \leq\left|\sigma_{t}^{*}\right|^{2}+\lambda_{t}^{*}\left|J_{t}^{*}\right|^{2}, \quad d P d t-$ a.e.,
v) $J_{t} \leq J_{t}^{*} \leq 0, \lambda_{t} d P d t-a . e$.,

$$
\left|\sigma_{t}\right| \leq\left|\sigma_{t}^{*}\right| \quad \text { and } \quad\left|\sigma_{t}\right|^{2}+\lambda_{t}\left|J_{t}\right|^{2} \leq\left|\sigma_{t}^{*}\right|^{2}+\lambda_{t}^{*}\left|J_{t}^{*}\right|^{2}, \quad d P d t-\text { a.e. }
$$

with moreover ϕ^{\prime} convex in cases $\left.i i\right)-v$).
Proof. Similarly to the proof of Corollary 4.1, we use the comparison Lemma 2.1 and show that the hypothesis of Theorem 3.1-(i), resp. (ii), are satisfied in case (i), resp. in cases $(i i)-(v)$, with

$$
\begin{aligned}
\bar{\nu}_{t}([x,+\infty[) & =\lambda_{t} J_{t} \mathbf{1}_{]-\infty, J_{t}\right]}(x), \\
\bar{\nu}_{t}^{*}([x,+\infty[) & =\lambda_{t}^{*} J_{t}^{*} \mathbf{1}_{]-\infty, J_{t}^{*}\right]}(x), \\
\tilde{\nu}_{t}([x,+\infty[) & =\lambda_{t}\left|J_{t}\right|^{2} \mathbf{1}_{]-\infty, J_{t}\right]}(x)+\left|\sigma_{t}\right|^{2} \delta_{0}([x,+\infty[), \\
\tilde{\nu}_{t}^{*}([x,+\infty[) & =\lambda_{t}^{*}\left|J_{t}^{*}\right|^{2} \mathbf{1}_{]-\infty, J_{t}^{*}\right]}(x)+\left|\sigma_{t}^{*}\right|^{2} \delta_{0}([x,+\infty[) .
\end{aligned}
$$

In the following corollary, $\left(\hat{\lambda}_{t}\right)_{t \in \mathbb{R}_{+}}$is a positive deterministic function and $\left(S_{t}\right)_{t \in \mathbb{R}_{+}},\left(S_{t}^{*}\right)_{t \in \mathbb{R}_{+}}$are respectively defined as in (4.3) and (4.4).

Corollary 5.2. Assume that one of the following conditions is satisfied:
i) $0 \leq J_{s} \leq J_{s}^{*}$, $\lambda_{s} d P d s$-a.e., and

$$
\left|\sigma_{s}\right| \leq\left|\sigma_{s}^{*}\right|, \quad \lambda_{s} J_{s} \leq \hat{\lambda}_{s} J_{s}^{*}, \quad d P d s-a . e .
$$

ii) $J_{s} \leq J_{s}^{*}, \lambda_{s} d P d s$-a.e., and

$$
\left|\sigma_{s}\right| \leq\left|\sigma_{s}^{*}\right|, \quad \lambda_{s}\left|J_{s}\right|^{2} \leq \hat{\lambda}_{s}\left|J_{s}^{*}\right|^{2}, \quad d P d s-\text { a.e. }
$$

iii) $J_{s} \leq 0 \leq J_{s}^{*}, \lambda_{s} d P d s$-a.e. and

$$
\left|\sigma_{s}\right|^{2}+\lambda_{s}\left|J_{s}\right|^{2} \leq\left|\sigma_{s}^{*}\right|^{2}+\hat{\lambda}_{s}\left|J_{s}^{*}\right|^{2}, \quad d P d s-\text { a.e. }
$$

iv) $0 \leq J_{s} \leq J_{s}^{*}, \lambda_{s} d P d s$-a.e. $\lambda_{s}\left|J_{s}\right|^{2} \leq \hat{\lambda}_{s}\left|J_{s}^{*}\right|^{2}$, $d P d s$-a.e. and

$$
\left|\sigma_{s}\right|^{2}+\lambda_{s}\left|J_{s}\right|^{2} \leq\left|\sigma_{s}^{*}\right|^{2}+\hat{\lambda}_{s}\left|J_{s}^{*}\right|^{2}, \quad d P d s-a . e .
$$

v) $J_{s} \leq J_{s}^{*} \leq 0, \lambda_{s} d P d s$-a.e. $\left|\sigma_{s}\right| \leq\left|\sigma_{s}^{*}\right|, d P d s$-a.e., and

$$
\left|\sigma_{s}\right|^{2}+\lambda_{s}\left|J_{s}\right|^{2} \leq\left|\sigma_{s}^{*}\right|^{2}+\hat{\lambda}_{s}\left|J_{s}^{*}\right|^{2}, \quad d P d s-\text { a.e. }
$$

Then we have

$$
\begin{equation*}
E\left[\phi\left(S_{t}\right) \mid S_{0}=x\right] \leq E\left[\phi\left(S_{t}^{*}\right) \mid S_{0}^{*}=x\right], \quad x>0, \quad t \in \mathbb{R}_{+} \tag{5.2}
\end{equation*}
$$

for all convex functions $\phi: \mathbb{R} \rightarrow \mathbb{R}$, with moreover ϕ^{\prime} convex in cases $\left.i i\right)-v$).
Proof. Similarly to the proof of Corollary 4.2, we apply Corollary 5.1 to the processes $\left(1_{[0, t]}(s) \sigma_{s}\right)_{s \in \mathbb{R}_{+}}, \quad\left(1_{[0, t]}(s) \sigma_{s}^{*}\right)_{s \in \mathbb{R}_{+}}, \quad\left(1_{[0, t]}(s) J_{s}\right)_{s \in \mathbb{R}_{+}}, \quad\left(1_{[0, t]}(s) J_{s}^{*}\right)_{s \in \mathbb{R}_{+}}$, $\left(1_{[0, t]}(s) \lambda_{s}\right)_{s \in \mathbb{R}_{+}}$, with $\left(\lambda_{s}^{*}\right)_{s \in \mathbb{R}_{+}}:=\left(1_{[0, t]}(s) \hat{\lambda}_{s}\right)_{s \in \mathbb{R}_{+}}$and $M_{t}^{*}=1$.

6. Poisson random measures

We now investigate the consequences of Theorem 3.1 in the setting of Poisson random measures. Let γ be a diffuse Radon measure on $\mathbb{R}^{d} \backslash\{0\}$ with

$$
\int_{\mathbb{R}^{d} \backslash\{0\}}\left(|x|^{2} \wedge 1\right) \gamma(d x)<\infty
$$

and consider a random measure $\omega(d t, d x)$ of the form

$$
\omega(d t, d x)=\sum_{i \in \mathbb{N}} \delta_{\left(t_{i}, x_{i}\right)}(d t, d x)
$$

identified to its (locally finite) support $\left\{\left(t_{i}, x_{i}\right)\right\}_{i \in \mathbb{N}}$. We assume that $\omega(d t, d x)$ is Poisson distributed with intensity $d t \gamma(d x)$ on $\mathbb{R}_{+} \times\left(\mathbb{R}^{d} \backslash\{0\}\right)$, and consider a standard Brownian motion $\left(W_{t}\right)_{t \in \mathbb{R}_{+}}$, independent of $\omega(d t, d x)$, under a probability P on Ω. Let

$$
\mathcal{F}_{t}^{X}=\sigma\left(W_{s}, \omega([0, s] \times A): 0 \leq s \leq t, A \in \mathcal{B}_{b}\left(\mathbb{R}^{d} \backslash\{0\}\right)\right), \quad t \in \mathbb{R}_{+}
$$

where $\mathcal{B}_{b}\left(\mathbb{R}^{d} \backslash\{0\}\right)=\left\{A \in \mathcal{B}\left(\mathbb{R}^{d} \backslash\{0\}\right): \gamma(A)<\infty\right\}$. Here, $\left(M_{t}\right)_{t \in \mathbb{R}_{+}}$is the solution of the forward stochastic differential equation

$$
\begin{equation*}
d M_{t}=\sigma_{t} M_{t} d W_{t}+\int_{\mathbb{R}^{d} \backslash\{0\}} J_{t^{-}, x} M_{t^{-}}(\omega(d t, d x)-\gamma(d x)), \tag{6.1}
\end{equation*}
$$

where σ_{t} is a square-integrable \mathcal{F}_{t}^{X}-predictable process and $\left(J_{t, x}\right)_{(t, x) \in \mathbb{R}_{+} \times\left(\mathbb{R}^{d} \backslash\{0\}\right)}$ is an \mathcal{F}_{t}^{X}-predictable process satisfying the hypotheses of Corollary 6.1 below, and $\left(M_{t}^{*}\right)_{t \in \mathbb{R}_{+}}$is defined as in (5.1). On the other hand, $\left(M_{t}^{*}\right)_{t \in \mathbb{R}_{+}}$solves the backward stochastic differential equation

$$
d^{*} M_{t}^{*}=\sigma_{t}^{*} M_{t}^{*} d^{*} W_{t}^{*}+J_{t^{+}}^{*} M_{t^{+}}^{*}\left(d^{*} Z_{t}^{*}-\lambda_{t}^{*} d t\right),
$$

where $\left(W_{t}^{*}\right)_{t \in \mathbb{R}_{+}}$is a backward standard Brownian motion and $\left(Z_{t}^{*}\right)_{t \in \mathbb{R}_{+}}$a backward point process with intensity $\left(\lambda_{t}^{*}\right)_{t \in \mathbb{R}_{+}}$, independent of $\left(\mathcal{F}_{t}^{X}\right)_{t \in \mathbb{R}_{+}}$.
Corollary 6.1. Assume that (3.1), (3.2), (3.3) hold, and that one of the following conditions is satisfied:
i) $0 \leq J_{t, x} \leq J_{t}^{*}, d P \gamma(d x) d t$-a.e.,

$$
\left|\sigma_{t}\right| \leq\left|\sigma_{t}^{*}\right|, \quad \text { and } \quad \int_{\mathbb{R}^{d} \backslash\{0\}} J_{t, y} \gamma(d y) \leq \lambda_{t}^{*} J_{t}^{*}, \quad d P d t-a . e .
$$

ii) $J_{t, x} \leq J_{t}^{*}, d P \gamma(d x) d t-$ a.e.,

$$
\left|\sigma_{t}\right| \leq\left|\sigma_{t}^{*}\right|, \quad \text { and } \quad \int_{\mathbb{R}^{d} \backslash\{0\}}\left|J_{t, y}\right|^{2} \gamma(d y) \leq \lambda_{t}^{*}\left|J_{t}^{*}\right|^{2}, \quad d P d t-a . e .
$$

iii) $J_{t, x} \leq 0 \leq J_{t}^{*}, d P \gamma(d x) d t$-a.e.,

$$
\left|\sigma_{t}\right|^{2}+\int_{\mathbb{R}^{d} \backslash\{0\}}\left|J_{t, x}\right|^{2} \gamma(d x) \leq\left|\sigma_{t}^{*}\right|^{2}+\lambda_{t}^{*}\left|J_{t}^{*}\right|^{2}, \quad d P d t-\text { a.e. }
$$

iv) $J_{t, x} \leq 0 \leq J_{t}^{*}, d P \gamma(d x) d t$-a.e.,
$\int_{\mathbb{R}^{d} \backslash\{0\}}\left|J_{t, x}\right|^{2} \gamma(d x) \leq \lambda_{t}^{*}\left|J_{t}^{*}\right|^{2}, \quad$ and $\quad\left|\sigma_{t}\right|^{2}+\int_{\mathbb{R}^{d} \backslash\{0\}}\left|J_{t, x}\right|^{2} \gamma(d x) \leq\left|\sigma_{t}^{*}\right|^{2}+\lambda_{t}^{*}\left|J_{t}^{*}\right|^{2}$,
$d P d t$-a.e., v) $J_{t, x} \leq 0 \leq J_{t}^{*}, d P \gamma(d x) d t$-a.e.,
$\left|\sigma_{t}\right| \leq\left|\sigma_{t}^{*}\right|, \quad$ and $\quad\left|\sigma_{t}\right|^{2}+\int_{\mathbb{R}^{d} \backslash\{0\}}\left|J_{t, x}\right|^{2} \gamma(d x) \leq\left|\sigma_{t}^{*}\right|^{2}+\lambda_{t}^{*}\left|J_{t}^{*}\right|^{2}, \quad d P d t-a . e .$,
with

$$
\left(J_{t, x}\right)_{(t, x) \in \mathbb{R}_{+} \times\left(\mathbb{R}^{d} \backslash\{0\}\right)} \in L^{1}\left(\Omega \times \mathbb{R}_{+} \times\left(\mathbb{R}^{d} \backslash\{0\}\right), d P \times d t \times d \gamma\right)
$$

in case (i) and with

$$
\left(J_{t, x}\right)_{(t, x) \in \mathbb{R}_{+} \times\left(\mathbb{R}^{d} \backslash\{0\}\right)} \in L^{2}\left(\Omega \times \mathbb{R}_{+} \times\left(\mathbb{R}^{d} \backslash\{0\}\right), d P \times d t \times d \gamma\right)
$$

in cases $(i i)-(v)$.

Then we have:

$$
\begin{equation*}
E\left[\phi\left(M_{t}\right)\right] \leq E\left[\phi\left(M_{s} M_{s}^{*}\right)\right], \quad 0 \leq s \leq t, \tag{6.2}
\end{equation*}
$$

for all convex functions $\phi: \mathbb{R} \rightarrow \mathbb{R}$, with moreover ϕ^{\prime} convex in cases $(i i)-(v)$.
Proof. We directly apply Theorem 3.1 instead of Corollary 5.1, with $\left(\mathcal{F}_{t}\right)_{t \in \mathbb{R}_{+}}$and $\left(\mathcal{F}_{t}^{*}\right)_{t \in \mathbb{R}_{+}}$defined again as

$$
\mathcal{F}_{t}=\mathcal{F}_{t}^{X} \vee \sigma\left(W_{s}^{*}, Z_{s}^{*}: s \in \mathbb{R}_{+}\right), \quad t \in \mathbb{R}_{+}
$$

and

$$
\mathcal{F}_{t}^{*}=\mathcal{F}_{\infty}^{X} \vee \sigma\left(W_{s}^{*}, Z_{s}^{*}: s \geq t\right), \quad t \in \mathbb{R}_{+} .
$$

Here, $\nu_{t}(d x)$ denotes the image measure of $\gamma(d x)$ by the mapping $x \mapsto J_{t, x}, t \geq 0$, $\mu(d t, d x)$ is the image measure of $\omega(d t, d x)$ by $(s, y) \mapsto\left(s, J_{s, y}\right)$, i.e.

$$
\mu(d t, d x)=\sum_{\omega(\{(s, y)\})=1} \delta_{\left(s, J_{s, y}\right)}(d t, d x),
$$

and $\nu^{*}(t, x, d y)=\lambda^{*}(t, x) \delta_{J^{*}(t, x)}(d y)$.
Note that our hypotheses imply $\nu_{t}\left(\left(J_{t}^{*}, \infty\right)\right)=0$. For $p=1,2$, using the comparison Lemma 2.1, the hypotheses of Theorem 3.1 are satisfied since

$$
\int_{\mathbb{R}^{d} \backslash\{0\}} J_{t, y}^{p} \mathbf{1}_{\left\{x \leq J_{t, y}\right\}} \gamma(d y) \leq \lambda_{t}^{*} \int_{x}^{\infty} y^{p} \delta_{J_{t}^{*}}(d y), \quad x \geq 0, \quad t \in \mathbb{R}_{+},
$$

which follows from

$$
J_{t, x} \leq J_{t}^{*}, \quad d P \gamma(d x) d t-a . e .
$$

and

$$
\int_{\mathbb{R}^{d} \backslash\{0\}} J_{t, y}^{p} \gamma(d y) \leq \lambda_{t}^{*}\left(J_{t}^{*}\right)^{p}, \quad d P d t-a . e .
$$

For $p=1$, resp. $p=2$, this proves (6.2) under (i), resp. (ii). Finally, we note that conditions (iii)-(v) imply

$$
\begin{aligned}
& \int_{\mathbb{R}^{d} \backslash\{0\}}\left|J_{t, y}\right|^{2} \mathbf{1}_{\left\{x \leq J_{t, y}\right\}} \gamma(d y)+\left|\sigma_{t}\right|^{2} \delta_{0}([x,+\infty[) \\
& \leq \lambda_{t}^{*} \int_{x}^{\infty} y^{p} \delta_{J_{t}^{*}}(d y)+\left|\sigma_{t}^{*}\right|^{2} \delta_{0}([x,+\infty[)
\end{aligned}
$$

$x \in \mathbb{R}$, which allows us to conclude again via Theorem 3.1 and the comparison Lemma 2.1. Note that here also we have $E\left[M_{t}^{*} \mid \mathcal{F}_{t}^{X}\right]=1, t \in \mathbb{R}_{+}$.

Finally, as in Corollaries 4.2 and 5.2 we get, defining respectively $\left(S_{t}\right)_{t \in \mathbb{R}_{+}}$and $\left(S_{t}^{*}\right)_{t \in \mathbb{R}_{+}}$as in (4.3) and (4.4):
Corollary 6.2. Assume that one of the following conditions is satisfied:
i) $0 \leq J_{s, x} \leq J_{s}^{*}$, $d P d s$-a.e.,

$$
\left|\sigma_{s}\right| \leq\left|\sigma_{s}^{*}\right|, \quad \text { and } \quad \int_{\mathbb{R}^{d} \backslash\{0\}} J_{s, y} \gamma(d y) \leq \hat{\lambda}_{s} J_{s}^{*}, \quad d P d s-\text { a.e. }
$$

ii) $J_{s, x} \leq J_{s}^{*}, d P \gamma(d x) d s$-a.e.,

$$
\left|\sigma_{s}\right| \leq\left|\sigma_{s}^{*}\right|, \quad \text { and } \quad \int_{\mathbb{R}^{d} \backslash\{0\}}\left|J_{s, y}\right|^{2} \gamma(d y) \leq \hat{\lambda}_{s}\left|J_{s}^{*}\right|^{2}, \quad d P d s-\text { a.e. }
$$

iii) $J_{s, x} \leq 0 \leq J_{s}^{*}$, $d P \gamma(d x) d s$-a.e., and

$$
\left|\sigma_{s}\right|^{2}+\int_{\mathbb{R}^{d} \backslash\{0\}}\left|J_{s, x}\right|^{2} \gamma(d x) \leq\left|\sigma_{s}^{*}\right|^{2}+\lambda_{s}^{*}\left|J_{s}^{*}\right|^{2}, \quad d P d s-\text { a.e. }
$$

iv) $J_{s, x} \leq 0 \leq J_{s}^{*}, d P \gamma(d x) d s$-a.e.,
$\int_{\mathbb{R}^{d} \backslash\{0\}}\left|J_{s, x}\right|^{2} \gamma(d x) \leq \lambda_{s}^{*}\left|J_{s}^{*}\right|^{2} \quad$ and $\quad\left|\sigma_{s}\right|^{2}+\int_{\mathbb{R}^{d} \backslash\{0\}}\left|J_{s, x}\right|^{2} \gamma(d x) \leq\left|\sigma_{s}^{*}\right|^{2}+\lambda_{s}^{*}\left|J_{s}^{*}\right|^{2}$, $d P d s$-a.e., v) $J_{s, x} \leq 0 \leq J_{s}^{*}, d P \gamma(d x) d s$-a.e.,
$\left|\sigma_{s}\right| \leq\left|\sigma_{s}^{*}\right| \quad$ and $\quad\left|\sigma_{s}\right|^{2}+\int_{\mathbb{R}^{d} \backslash\{0\}}\left|J_{s, x}\right|^{2} \gamma(d x) \leq\left|\sigma_{s}^{*}\right|^{2}+\lambda_{s}^{*}\left|J_{s}^{*}\right|^{2}, \quad d P d s$ - a.e.,
with

$$
\left(J_{s, x}\right)_{(s, x) \in[0, t] \times\left(\mathbb{R}^{d} \backslash\{0\}\right)} \in L^{1}\left(\Omega \times[0, t] \times\left(\mathbb{R}^{d} \backslash\{0\}\right), d P \times d s \times d \gamma\right)
$$

in case (i) and with

$$
\left(J_{s, x}\right)_{(s, x) \in[0, t] \times\left(\mathbb{R}^{d} \backslash\{0\}\right)} \in L^{2}\left(\Omega \times[0, t] \times\left(\mathbb{R}^{d} \backslash\{0\}\right), d P \times d s \times d \gamma\right)
$$

in cases (ii)-(v).
Then we have

$$
\begin{equation*}
E\left[\phi\left(S_{t}\right) \mid S_{0}=x\right] \leq E\left[\phi\left(S_{t}^{*}\right) \mid S_{0}^{*}=x\right], \quad x>0, \quad t \in \mathbb{R}_{+}, \tag{6.3}
\end{equation*}
$$

with moreover ϕ^{\prime} convex in cases $\left.i i\right)-v$).

References

1. Bellamy, N.; Jeanblanc, M.: Incompleteness of markets driven by a mixed diffusion, Finance and Stochastics 4 (2000) 209-222.
2. Bergenthum, J.; Rüschendorf, L.: Comparison of option prices in semimartingale models, Finance and Stochastics, 10 (2006) 229-249.
3. Ekström, E.; Tysk, J.: Properties of option prices in models with jumps, Preprint (2006).
4. El Karoui, N.; Jeanblanc, M.; and Shreve, S.: Robustness of the Black and Scholes formula. Math. Finance, 8 (1998) 93-126.
5. Jacod, J.; Mémin, J.: Caractéristiques locales et conditions de continuité absolue pour les semi-martingales, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 35 (1976) 1-37.
6. Klein, Th.; Ma, Y.; and Privault, N.: Convex concentration inequalities via forwardbackward stochastic calculus. Electron. J. Probab., 11 (2006) 27 pp.
7. Protter, Ph.: Stochastic integration and differential equations. A new approach, SpringerVerlag, Berlin, 1990.

Jean-Christophe Breton : Département de Mathématiques, Université de La Rochelle, Avenue Michel Crépeau 17042 La Rochelle Cedex, France

E-mail address: jean-christophe.breton@univ-lr.fr
URL: http://perso.univ-lr.fr/jcbreton/
Nicolas Privault: Département de Mathématiques, Université de Poitiers, Téléport 2 - BP 30179, 86962 Chasseneuil Cedex, France

E-mail address: nicolas.privault@math.univ-poitiers.fr
URL: http://www-math.univ-poitiers.fr/~privault/

[^0]: 2000 Mathematics Subject Classification. Primary 60E15; Secondary 60H05, ,60G44, 60G55.
 Key words and phrases. Convex concentration, forward-backward stochastic calculus, exponential jump diffusion processes, option prices.

