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Abstract

Given (Mt)t∈R+
and (M∗

t )t∈R+
respectively a forward and a backward mar-

tingale with jumps and continuous parts, we prove that E[φ(Mt + M∗
t )] is non-

increasing in t when φ is a convex function, provided the local characteristics
of (Mt)t∈R+

and (M∗
t )t∈R+

satisfy some comparison inequalities. We deduce
convex concentration inequalities and deviation bounds for random variables
admitting a predictable representation in terms of a Brownian motion and a
non-necessarily independent jump component.
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1 Introduction

Two random variables F and G satisfy a convex concentration inequality if

E[φ(F )] ≤ E[φ(G)] (1.1)

for all convex functions φ : R → R. By a classical argument, the application of (1.1)

to φ(x) = exp(λx), λ > 0, entails the deviation bound

P (F ≥ x) ≤ inf
λ>0

E[eλ(F−x)1{F≥x}] ≤ inf
λ>0

E[eλ(F−x)] ≤ inf
λ>0

E[eλ(G−x)], (1.2)
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x > 0, hence the deviation probabilities for F can be estimated via the Laplace

transform of G, see [2], [3], [15] for more results on this topic. In particular, if G is

Gaussian then Theorem 3.11 of [15] shows moreover that

P (F ≥ x) ≤
e2

2
P (G ≥ x), x > 0.

On the other hand, if F is more convex concentrated than G then E[F ] = E[G] as

follows from taking successively φ(x) = x and φ(x) = −x, and applying the convex

concentration inequality to φ(x) = x log x we get

Ent[F ] = E[F log F ] − E[F ] log E[F ]

= E[F log F ] − E[G] log E[G]

≤ E[G log G] − E[G] log E[G]

= Ent[G],

hence a logarithmic Sobolev inequality of the form Ent[G] ≤ E(G, G) implies

Ent[F ] ≤ E(G, G).

In this paper we obtain convex concentration inequalities for the sum Mt+M∗
t , t ∈ R+,

of a forward and a backward martingale with jumps and continuous parts. Namely

we prove that Mt + M∗
t is more concentrated than Ms + M∗

s if t ≥ s ≥ 0, i.e.

E[φ(Mt + M∗
t )] ≤ E[φ(Ms + M∗

s )], 0 ≤ s ≤ t,

for all convex functions φ : R → R, provided the local characteristics of (Mt)t∈R+

and (M∗
t )t∈R+

satisfy the comparison inequalities assumed in Theorem 3.2 below. If

further E[M∗
t |F

M
t ] = 0, t ∈ R+, where (FM

t )t∈R+
denotes the filtration generated by

(Mt)t∈R+
, then Jensen’s inequality yields

E[φ(Mt)] ≤ E[φ(Ms + M∗
s )], 0 ≤ s ≤ t,

and if in addition we have M0 = 0, then

E[φ(MT )] ≤ E[φ(M∗
0 )], T ≥ 0. (1.3)
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In other terms, we will show that a random variable F is more concentrated than M ∗
0 :

E[φ(F − E[F ])] ≤ E[φ(M ∗
0 )],

provided certain assumptions are made on the processes appearing in the predictable

representation of F −E[F ] = MT in terms of a point process and a Brownian motion.

Consider for example a random variable F represented as

F = E[F ] +

∫ +∞

0

HtdWt +

∫ +∞

0

Jt(dZt − λtdt),

where (Zt)t∈R+
is a point process with compensator (λt)t∈R+

, (Wt)t∈R+
is a standard

Brownian motion, and (Ht)t∈R+
, (Jt)t∈R+

are predictable square-integrable processes

satisfying Jt ≤ k, dPdt-a.e., and
∫ +∞

0

|Ht|
2dt ≤ β2, and

∫ +∞

0

|Jt|
2λtdt ≤ α2, P − a.s.

By applying (1.3) or Theorem 4.1−ii) below to forward and backward martingales of

the form

Mt = E[F ] +

∫ t

0

HudWu +

∫ t

0

Ju(dZu − λudu), t ∈ R+,

and

M∗
t = Ŵβ2 − ŴV 2(t) + k(N̂α2/k2 − N̂U2(t)/k2) − (α2 − U2(t))/k, t ∈ R+,

where (Ŵt)t∈R+
, (N̂t)t∈R+

, are a Brownian motion and a left-continuous standard

Poisson process, β ≥ 0, α ≥ 0, k > 0, and (V (t))t∈R+
, (U(t))t∈R+

are suitable random

time changes, it will follow in particular that F is more concentrated than

M∗
0 = Ŵβ2 + kN̂α2/k2 − α2/k,

i.e.

E[φ(F − E[F ])] ≤ E

[

φ(Ŵβ2 + kN̂α2/k2 − α2/k)
]

(1.4)

for all convex functions φ such that φ′ is convex.

From (1.2) and (1.4) we get

P (F − E[F ] ≥ x) ≤ inf
λ>0

exp

(

α2

k2
(eλk − λk − 1) +

β2λ2

2
− λx

)

,
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i.e.

P (F − E[F ] ≥ x) ≤ exp

(

x

k
−

β2λ0(x)

2k
(2 − kλ0(x)) − (x + α2/k)λ0(x)

)

,

where λ0(x) > 0 is the unique solution of

ekλ0(x) +
kλ0(x)β2

α2
− 1 =

kx

α2
.

When Ht = 0, t ∈ R+, we can take β = 0, then λ0(x) = k−1 log(1 + xk/α2) and this

implies the Poisson tail estimate

P (F − E[F ] ≥ y) ≤ exp

(

y

k
−

(

y

k
+

α2

k2

)

log

(

1 +
ky

α2

))

, y > 0. (1.5)

Such an inequality has been proved in [1], [19], using (modified) logarithmic Sobolev

inequalities and the Herbst method when Zt = Nt, t ∈ R+, is a Poisson process, under

different hypotheses on the predictable representation of F via the Clark formula, cf.

Section (6). When Jt = λt = 0, t ∈ R+, we recover classical Gaussian estimates

which can be independently obtained from the expression of continuous martingales

as time-changed Brownian motions.

We proceed as follows. In Section 3 we present convex concentration inequalities

for martingales. In Sections 4 and 5 these results are applied to derive convex concen-

tration inequalities with respect to Gaussian and Poisson distributions. In Section 6

we consider the case of predictable representations obtained from the Clark formula.

The proofs of the main results are formulated using forward/backward stochastic

calculus and arguments of [10]. Section 7 deals with an application to normal martin-

gales, and in the appendix (Section 8) we prove the forward-backward Itô type change

of variable formula which is used in the proof of our convex concentration inequalities.

See [4] for a reference where forward Itô calculus with respect to Brownian motion

has been used for the proof of logarithmic Sobolev inequalities on path spaces.

2 Notation

Let (Ω,F , P ) be a probability space equipped with an increasing filtration (Ft)t∈R+

and a decreasing filtration (F ∗
t )t∈R+

. Consider (Mt)t∈R+
an Ft-forward martingale and
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(M∗
t )t∈R+

an F∗
t -backward martingale. We assume that (Mt)t∈R+

has right-continuous

paths with left limits, and that (M ∗
t )t∈R+

has left-continuous paths with right limits.

Denote respectively by (M c
t )t∈R+

and (M∗c
t )t∈R+

the continuous parts of (Mt)t∈R+
and

(M∗
t )t∈R+

, and by

∆Mt = Mt − Mt− , ∆∗M∗
t = M∗

t − M∗
t+,

their forward and backward jumps. The processes (Mt)t∈R+
and (M∗

t )t∈R+
have jump

measures

µ(dt, dx) =
∑

s>0

1{∆Ms 6=0}δ(s,∆Ms)(dt, dx),

and

µ∗(dt, dx) =
∑

s>0

1{∆∗M∗
s 6=0}δ(s,∆∗M∗

s )(dt, dx),

where δ(s,x) denotes the Dirac measure at (s, x) ∈ R+ × R. Denote by ν(dt, dx) and

ν∗(dt, dx) the (Ft)t∈R+
and (F∗

t )t∈R+
-dual predictable projections of µ(dt, dx) and

µ∗(dt, dx), i.e.

∫ t

0

∫ ∞

−∞

f(s, x)(µ(ds, dx)−ν(ds, dx)) and

∫ ∞

t

∫ ∞

−∞

g(s, x)(µ∗(ds, dx)−ν∗(ds, dx))

are respectively Ft-forward and F ∗
t -backward local martingales for all sufficiently in-

tegrable Ft-predictable, resp. F ∗
t -predictable, process f , resp. g. The quadratic vari-

ations ([M, M ])t∈R+
, ([M∗, M∗])t∈R+

are defined as the limits in uniform convergence

in probability

[M, M ]t = lim
n→∞

n
∑

i=1

|Mtni
− Mtni−1

|2,

and

[M∗, M∗]t = lim
n→∞

n−1
∑

i=0

|M∗
tni
− M∗

tni+1
|2,

for all refining sequences {0 = tn
0 ≤ tn1 ≤ · · · ≤ tnkn

= t}, n ≥ 1, of partitions of [0, t]

tending to the identity. We then let M d
t = Mt − M c

t , M∗d
t = M∗

t − M∗c
t ,

[Md, Md]t =
∑

0<s≤t

|∆Ms|
2, [M∗d, M∗d]t =

∑

0≤s<t

|∆∗M∗
s |

2,
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and

〈M c, M c〉t = [M, M ]t − [Md, Md]t, 〈M∗c, M∗c〉t = [M∗, M∗]t − [M∗d, M∗d]t,

t ∈ R+. Note that ([M, M ]t)t∈R+
, (〈M, M〉t)t∈R+

, ([M∗, M∗]t)t∈R+
and (〈M∗, M∗〉t)t∈R+

are Ft-adapted, but ([M∗, M∗]t)t∈R+
and (〈M∗, M∗〉t)t∈R+

are not F∗
t -adapted. The

pairs

(ν(dt, dx), 〈M c, M c〉) and (ν∗(dt, dx), 〈M∗c, M∗c〉)

are called the local characteristics of (Mt)t∈R+
, cf. [8] in the forward case. Denote by

(〈Md, Md〉t)t∈R+
, (〈M∗d, M∗d〉t)t∈R+

the conditional quadratic variations of (M d
t )t∈R+

,

(M∗d
t )t∈R+

, with

d〈Md, Md〉t =

∫

R

|x|2ν(dt, dx) and d〈M ∗d, M∗d〉t =

∫

R

|x|2ν∗(dt, dx).

The conditional quadratic variations (〈M, M〉t)t∈R+
, (〈M∗, M∗〉t)t∈R+

of (Mt)t∈R+
and

(M∗
t )t∈R+

satisfy

〈M, M〉t = 〈M c, M c〉t + 〈Md, Md〉t, and 〈M∗, M∗〉t = 〈M∗c, M∗c〉t + 〈M∗d, Md∗〉t,

t ∈ R+. In the sequel, given η, resp. η∗, a forward, resp. backward, adapted and suf-

ficiently integrable process, the notation
∫ t

0
ηudMu, resp.

∫ ∞

t
η∗

udMu, will respectively

denote the right, resp. left, continuous version of the indefinite stochastic integral,

i.e. we have

∫ t

0

ηudMu =

∫ t+

0

ηudMu and

∫ ∞

t

η∗
udMu =

∫ ∞

t−
η∗

udMu, t ∈ R+, dP − a.e.

3 Convex concentration inequalities for martingales

In the sequel we assume that

(Mt)t∈R+
is an F∗

t -adapted, Ft-forward martingale, (3.1)

and

(M∗
t )t∈R+

is an Ft-adapted, F∗
t -backward martingale, (3.2)
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whose characteristics have the form

ν(du, dx) = νu(dx)du and ν∗(du, dx) = ν∗
u(dx)du, (3.3)

and

d〈M c, M c〉t = |Ht|
2dt, and d〈M∗c, M∗c〉t = |H∗

t |
2dt, (3.4)

where (Ht)t∈R+
, (H∗

t )t∈R+
, are respectively predictable with respect to (Ft)t∈R+

and

(F∗
t )t∈R+

.

Hypotheses (3.1) and (3.2) may seem artificial but they are actually crucial to the

proofs of our main results. Indeed, Theorem 3.2 and Theorem 3.3 are based on

a forward/backward Itô type change of variable formula (Theorem 8.1 below) for

(Mt, M
∗
t )t∈R+

, in which (3.1) and (3.2) are needed in order to make sense of the

integrals
∫ t

s+

φ′(Mu− + M∗
u)dMu

and
∫ t−

s

φ′(Mu + M∗
u+)d∗M∗

u .

Note that in our main applications (see Sections 4, 5, 6 and 7), these hypotheses are

fulfilled by construction of Ft and F∗
t .

Recall the following Lemma.

Lemma 3.1. Let m1, m2 be two measures on R such that m1([x,∞)) ≤ m2([x,∞)) <

∞, x ∈ R. Then for all non-decreasing and m1, m2-integrable function f on R we

have
∫ ∞

−∞

f(x)m1(dx) ≤

∫ ∞

−∞

f(x)m2(dx).

If m1, m2 are probability measures then the above property corresponds to stochastic

domination for random variables of respective laws m1, m2.

Theorem 3.2. Let

ν̄u(dx) = xνu(dx), ν̄∗
u(dx) = xν∗

u(dx), u ∈ R+,

and assume that:
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i) ν̄u([x,∞)) ≤ ν̄∗
u([x,∞)) < ∞, x, u ∈ R, and

ii) |Hu| ≤ |H∗
u|, dPdu− a.e.

Then we have:

E[φ(Mt + M∗
t )] ≤ E[φ(Ms + M∗

s )], 0 ≤ s ≤ t, (3.5)

for all convex functions φ : R → R.

Next is a different version of the same result, under L2 hypotheses.

Theorem 3.3. Let

ν̃u(dx) = |x|2νu(dx) + |Hu|
2δ0(dx), ν̃∗

u(dx) = |x|2ν∗
u(dx) + |H∗

u|
2δ0(dx),

u ∈ R+, and assume that:

ν̃u([x,∞)) ≤ ν̃∗
u([x,∞)) < ∞, x ∈ R, u ∈ R+. (3.6)

Then we have:

E[φ(Mt + M∗
t )] ≤ E[φ(Ms + M∗

s )], 0 ≤ s ≤ t, (3.7)

for all convex functions φ : R → R such that φ′ is convex.

Remark 3.4. Note that in both theorems, (Mt)t≥0 and (M∗
t )t≥0 do not have to be

independent.

In the proof we may assume that φ is C2 since a convex φ can be approximated

by an increasing sequence of C2 convex Lipschitz functions, and the results can

then be extended to the general case by an application of the monotone conver-

gence theorem. In order to prove Theorem 3.2 and Theorem 3.3, we apply Itô′s

formula for forward/backward martingales (Theorem 8.1 in the Appendix Section 8),

to f(x1, x2) = φ(x1 + x2):

φ(Mt + M∗
t ) = φ(Ms + M∗

s )

+

∫ t

s+

φ′(Mu− + M∗
u)dMu +

1

2

∫ t

s

φ′′(Mu + M∗
u)d〈M c, M c〉u
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+
∑

s<u≤t

(φ(Mu− + M∗
u + ∆Mu) − φ(Mu− + M∗

u) − ∆Muφ
′(Mu− + M∗

u))

−

∫ t−

s

φ′(Mu + M∗
u+)d∗M∗

u −
1

2

∫ t

s

φ′′(Mu + M∗
u)d〈M∗c, M∗c〉u

−
∑

s≤u<t

(φ(Mu + M∗
u+ + ∆∗M∗

u) − φ(Mu + M∗
u+) − ∆∗M∗

uφ′(Mu + M∗
u+)) ,

0 ≤ s ≤ t, where d and d∗ denote the forward and backward Itô differential, respec-

tively defined as the limits of the Riemann sums

n
∑

i=1

(Mtni
− Mtni−1

)φ′(Mtni−1
+ M∗

tni−1
)

and
n−1
∑

i=0

(M∗
tni
− M∗

tni+1
)φ′(Mtni+1

+ M∗
tni+1

)

for all refining sequences {s = tn
0 ≤ tn1 ≤ · · · ≤ tnkn

= t}, n ≥ 1, of partitions of [s, t]

tending to the identity.

Proof of Theorem 3.2. Taking expectations on both sides of the above Itô formula we

get

E[φ(Mt + M∗
t )] = E[φ(Ms + M∗

s )] +
1

2
E

[
∫ t

s

φ′′(Mu + M∗
u)d(〈M c, M c〉u − 〈M∗c, M∗c〉u)

]

+E

[
∫ t

s

∫ +∞

−∞

(φ(Mu + M∗
u + x) − φ(Mu + M∗

u) − xφ′(Mu + M∗
u))νu(dx)du

]

−E

[
∫ t

s

∫ +∞

−∞

(φ(Mu + M∗
u + x) − φ(Mu + M∗

u) − xφ′(Mu + M∗
u))ν∗

u(dx)du

]

= E[φ(Ms + M∗
s )] +

1

2
E

[
∫ t

s

φ′′(Mu + M∗
u)(|Hu|

2 − |H∗
u|

2)du

]

+E

[
∫ t

s

∫ +∞

−∞

ϕ(x, Mu + M∗
u)(ν̄u(dx) − ν̄∗

u(dx))du

]

,

where

ϕ(x, y) =
φ(x + y) − φ(y) − xφ′(y)

x
, x, y ∈ R.

The conclusion follows from the hypotheses and the fact that since φ is convex, the

function x 7→ ϕ(x, y) is increasing in x ∈ R for all y ∈ R. �
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Proof of Theorem 3.3. Using the following version of Taylor’s formula

φ(y + x) = φ(y) + xφ′(y) + |x|2
∫ 1

0

(1 − τ)φ′′(y + τx)dτ, x, y ∈ R,

which is valid for all C2 functions φ, we get

E[φ(Mt + M∗
t )] = E[φ(Ms + M∗

s )]

+
1

2
E

[
∫ t

s

φ′′(Mu + M∗
u)(|Hu|

2 − |H∗
u|

2)du

]

+E

[
∫ t

s

∫ +∞

−∞

|x|2
∫ 1

0

(1 − τ)φ′′(Mu + M∗
u + τx)dτνu(dx)du

]

−E

[
∫ t

s

∫ +∞

−∞

|x|2
∫ 1

0

(1 − τ)φ′′(Mu + M∗
u + τx)dτν∗

u(dx)du

]

= E[φ(Ms + M∗
s )]

+E

[
∫ 1

0

(1 − τ)

∫ t

s

∫ +∞

−∞

φ′′(Mu + M∗
u + τx)(ν̃u(dx) − ν̃∗

u(dx))dudτ

]

,

and the conclusion follows from the hypothesis and the fact that φ is convex implies

that φ′′ is non-decreasing. �

Note that if φ is C2 and φ′′ is also convex, then it suffices to assume that ν̃u is more

convex concentrated than ν̃∗
u instead of hypothesis (3.6) in Theorem 3.3.

Remark 3.5. In case |Ht| = |H∗
t | and νt = ν∗

t , dPdt-a.e., from the proof of Theo-

rem 3.2 and Theorem 3.3 we get the identity

E[φ(Mt + M∗
t )] = E[φ(Ms + M∗

s )], 0 ≤ s ≤ t, (3.8)

for all sufficiently integrable functions φ : R → R.

In particular, Relation (3.8) extends its natural counterpart in the independent in-

crement case: given (Zs)s∈[0,t], (Z̃s)s∈[0,t] two independent copies of a Lévy process

without drift, define the backward martingale (Z∗
s )s∈[0,t] as Z∗

s = Z̃t−s, s ∈ [0, t], then

by convolution E[φ(Zs + Z∗
s )] = E[φ(Zt)] does clearly not depend on s ∈ [0, t].

Remark 3.6. If φ is non-decreasing, the proofs and statements of Theorem 3.2,

Theorem 3.3, Corollary 3.9 and Corollary 3.8 extend to semi-martingales (M̂t)t∈R+
,

(M̂∗
t )t∈R+

represented as

M̂t = Mt +

∫ t

0

αsds and M̂∗
t = M∗

t +

∫ +∞

t

βsds, (3.9)
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provided (αt)t∈R+
, (βt)t∈R+

, are respectively Ft and F∗
t -adapted with αt ≤ βt, dPdt-a.e.

Let now (FM
t )t∈R+

, resp. (FM∗

t )t∈R+
, denote the forward, resp. backward, filtration

generated by (Mt)t∈R+
, resp. (M∗

t )t∈R+
.

Corollary 3.7. Under the hypothesis of Theorem 3.2, if further E[M ∗
t |F

M
t ] = 0,

t ∈ R+, then

E[φ(Mt)] ≤ E[φ(Ms + M∗
s )], 0 ≤ s ≤ t. (3.10)

Proof. From (3.19) we get

E [φ (Ms + M∗
s )] ≥ E [φ(Mt + M∗

t )]

= E
[

E
[

φ(Mt + M∗
t )|FM

t

]]

≥ E
[

φ
(

Mt + E[M∗
t |F

M
t ]

)]

= E [φ(Mt)] ,

0 ≤ s ≤ t, where we used Jensen’s inequality. �

In particular, if M0 = E[Mt] is deterministic (or FM
0 is the trivial σ-field), Corol-

lary 3.7 shows that Mt − E[Mt] is more concentrated than M ∗
0 :

E[φ(Mt − E[Mt])] ≤ E[φ(M∗
0 )], t ≥ 0.

The filtrations (Ft)t∈R+
and (F∗

t )t∈R+
considered in Theorem 3.2 can be taken as

Ft = FM∗

0 ∨ FM
t , F∗

t = FM
∞ ∨ FM∗

t , t ∈ R+, provided (Mt)t∈R+
and (M∗

t )t∈R+
are in-

dependent. In this case, if additionally we have M ∗
T = 0, then E[M∗

t |F
M
t ] = E[M∗

t ] =

E[M∗
T ] = 0, 0 ≤ t ≤ T , hence the hypothesis of Corollary 3.7 is also satisfied. However

the independence of 〈M, M〉t with 〈M∗, M∗〉t, t ∈ R+, is not compatible (except in

particular situations) with the assumptions imposed in Theorem 3.2.

In applications to convex concentration inequalities between random variables (ad-

mitting a predictable representation) and Poisson or Gaussian random variables, the

independence of (Mt)t∈R+
with (M∗

t )t∈R+
will not be required, see Sections 4 and 5.
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The case of bounded jumps

Assume now that ν∗(dt, dx) has the form

ν∗(dt, dx) = λ∗
t δkdt, (3.11)

where k ∈ R+ and (λ∗
t )t∈R+

is a positive F ∗
t -predictable process. Let

λ1,t =

∫ +∞

−∞

xνt(dx), λ2
2,t =

∫ +∞

−∞

|x|2νt(dx), t ∈ R+,

denote respectively the compensator and quadratic variation of the jump part of

(Mt)t∈R+
, under the respective assumptions

∫ +∞

−∞

|x|νt(dx) < ∞, and

∫ +∞

−∞

|x|2νt(dx) < ∞, (3.12)

t ∈ R+, P -a.s.

Corollary 3.8. Assume that (Mt)t∈R+
and (M∗

t )t∈R+
have jump characteristics satis-

fying (3.11) and (3.12), that (Mt)t∈R+
is F∗

t -adapted, and that (M ∗
t )t∈R+

is Ft-adapted.

Then we have:

E[φ(Mt + M∗
t )] ≤ E[φ(Ms + M∗

s )], 0 ≤ s ≤ t, (3.13)

for all convex functions φ : R → R, provided any of the three following conditions is

satisfied:

i) 0 ≤ ∆Mt ≤ k, dPdt − a.e., and

|Ht| ≤ |H∗
t |, λ1,t ≤ kλ∗

t , dPdt − a.e.,

ii) ∆Mt ≤ k, dPdt − a.e., and

|Ht| ≤ |H∗
t |, λ2

2,t ≤ k2λ∗
t , dPdt − a.e.,

iii) ∆Mt ≤ 0, dPdt − a.e., and

|Ht|
2 + λ2

2,t ≤ |H∗
t |

2 + k2λ∗
t , dPdt − a.e.,

12



with moreover φ′ convex in cases ii) and iii).

Proof. The conditions 0 ≤ ∆Mt ≤ k, ∆Mt ≤ k, ∆Mt ≤ 0, are respectively equivalent

to νt([0, k]c) = 0, νt((k,∞)) = 0, νt((0,∞)) = 0, hence under condition (i), the result

follows from Theorem 3.2-i), and under conditions (ii) − (iii) it is an application of

Theorem 3.2-ii). �

For example we may take (Mt)t∈R+
and (M∗

t )t∈R+
of the form

Mt = M0 +

∫ t

0

HsdWs +

∫ t

0

∫ +∞

−∞

x(µ(ds, dx) − νs(dx)ds), t ≥ 0, (3.14)

where (Wt)t∈R+
is a standard Brownian motion, and

M∗
t =

∫ +∞

t

H∗
s d∗W ∗

s + k

(

Z∗
t −

∫ +∞

t

λ∗
sds

)

, (3.15)

where (W ∗
t )t∈R+

is a backward Brownian motion and (Z∗
t )t∈R+

is a backward point

process with intensity (λ∗
t )t∈R+

. However in Section 5 we will consider an example for

which the decomposition (3.15) does not hold.

The case of point processes

In particular, (Mt)t∈R+
and (M∗

t )t∈R+
can be taken as

Mt = M0 +

∫ t

0

HsdWs +

∫ t

0

Js(dZs − λsds), t ∈ R+, (3.16)

and

M∗
t =

∫ +∞

t

H∗
s d∗W ∗

s +

∫ +∞

t

J∗
s (d∗Z∗

s − λ∗
sds), t ∈ R+, (3.17)

where (Wt)t∈R+
is a standard Brownian motion, (Zt)t∈R+

is a point process with in-

tensity (λt)t∈R+
, (W ∗

t )t∈R+
is a backward standard Brownian motion, and (Z∗

t )t∈R+

is a backward point process with intensity (λ∗
t )t∈R+

, and (Ht)t∈R+
, (Jt)t∈R+

, resp.

(H∗
t )t∈R+

, (J∗
t )t∈R+

are predictable with respect to (Ft)t∈R+
, resp. (F∗

t )t∈R+
.

In this case, taking

ν(dt, dx) = νt(dx) = λtδJt
(dx)dt and ν∗(dt, dx) = ν∗

t (dx) = λ∗
t δJ∗

t
(dx)dt (3.18)

in Theorem 3.3 yields the following corollary.
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Corollary 3.9. Let (Mt)t∈R+
, (M∗

t )t∈R+
have the jump characteristics (3.18) and

assume that (Mt)t∈R+
is F∗

t -adapted and (M ∗
t )t∈R+

is Ft-adapted. Then we have:

E[φ(Mt + M∗
t )] ≤ E[φ(Ms + M∗

s )], 0 ≤ s ≤ t, (3.19)

for all convex functions φ : R → R, provided any of the three following conditions are

satisfied:

i) 0 ≤ Jt ≤ J∗
t , λtdPdt − a.e. and

|Ht| ≤ |H∗
t |, λtJt ≤ λ∗

t J
∗
t , dPdt − a.e.,

ii) Jt ≤ J∗
t , λtdPdt − a.e., and

|Ht| ≤ |H∗
t |, λt|Jt|

2 ≤ λ∗
t |J

∗
t |

2, dPdt − a.e..

iii) Jt ≤ 0 ≤ J∗
t , λtdPdt − a.e., and

|Ht|
2 + λt|Jt|

2 ≤ |H∗
t |

2 + λ∗
t |J

∗
t |

2, dPdt − a.e..

with moreover φ′ convex in cases ii) and iii).

Note that condition i) in Corollary 3.9 can be replaced with the stronger condition:

i’) 0 ≤ Jt ≤ J∗
t , λtdPdt − a.e. and

|Ht| ≤ |H∗
t |, λt ≤ λ∗

t , dPdt − a.e.

4 Application to point processes

Let (Wt)t∈R+
and (Zt)t∈R+

be a standard Brownian motion and a point process, gen-

erating a filtration (FM
t )t∈R+

. We will assume that (Wt)t∈R+
is also an FM

t -Brownian

motion and that (Zt)t∈R+
has compensator (λt)t∈R+

with respect to (FM
t )t∈R+

, which

does not in general require the independence of (Wt)t∈R+
from (Zt)t∈R+

. Consider F

a random variable with the representation

F = E[F ] +

∫ +∞

0

HtdWt +

∫ +∞

0

Jt(dZt − λtdt), (4.1)
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where (Hu)u∈R+
is a square-integrable FM

t -predictable process and (Jt)t∈R+
is an FM

t -

predictable process which is either square-integrable or positive and integrable. The-

orem 4.1 is a consequence of Corollary 3.9 above, and shows that the possible depen-

dence of (Wt)t∈R+
from (Zt)t∈R+

can be decoupled in terms of independent Gaussian

and Poisson random variables. Note that inequality (4.2) below is weaker than (4.3)

but it holds for a wider class of functions, i.e. for all convex functions instead of all

convex functions having a convex derivative.

Theorem 4.1. Let F have the representation (4.1):

F = E[F ] +

∫ +∞

0

HtdWt +

∫ +∞

0

Jt(dZt − λtdt),

and let Ñ(c), W (β2) be independent random variables with compensated Poisson law

of intensity c > 0 and centered Gaussian law with variance β2 ≥ 0, respectively.

i) Assume that 0 ≤ Jt ≤ k, dPdt-a.e., for some k > 0, and let

β2
1 =

∥

∥

∥

∥

∫ +∞

0

|Ht|
2dt

∥

∥

∥

∥

∞

and α1 =

∥

∥

∥

∥

∫ +∞

0

Jtλtdt

∥

∥

∥

∥

∞

.

Then we have

E[φ(F − E[F ])] ≤ E

[

φ
(

W (β2
1) + kÑ(α1/k)

)]

, (4.2)

for all convex functions φ : R → R.

ii) Assume that Jt ≤ k, dPdt-a.e., for some k > 0, and let

β2
2 =

∥

∥

∥

∥

∫ +∞

0

|Ht|
2dt

∥

∥

∥

∥

∞

and α2
2 =

∥

∥

∥

∥

∫ +∞

0

|Jt|
2λtdt

∥

∥

∥

∥

∞

.

Then we have

E[φ(F − E[F ])] ≤ E

[

φ
(

W (β2
2) + kÑ(α2

2/k
2)

)]

, (4.3)

for all convex functions φ : R → R such that φ′ is convex.

iii) Assume that Jt ≤ 0, dPdt-a.e., and let

β2
3 =

∥

∥

∥

∥

∫ +∞

0

|Ht|
2dt +

∫ +∞

0

|Jt|
2λtdt

∥

∥

∥

∥

∞

.
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Then we have

E[φ(F − E[F ])] ≤ E
[

φ(W (β2
3))

]

, (4.4)

for all convex functions φ : R → R such that φ′ is convex.

Proof. Consider the FM
t -martingale

Mt = E[F |FM
t ] − E[F ] =

∫ t

0

HsdWs +

∫ t

0

Js(dZs − λsds), t ≥ 0,

and let (N̂s)s∈R+
, (Ŵs)s∈R+

respectively denote a left-continuous standard Poisson

process and a standard Brownian motion which are assumed to be mutually indepen-

dent, and also independent of (FM
s )s∈R+

.

i) − ii) For p = 1, 2, let the filtrations (Ft)t∈R+
and (F∗

t )t∈R+
be defined by

F∗
t = FM

∞ ∨ σ(Ŵβ2
p
− ŴV 2

p (s), N̂αp
p/kp − N̂Up

p (s)/kp : s ≥ t},

and Ft = σ(Ŵs, N̂s : s ≥ 0) ∨ FM
t , t ∈ R+, and let

M∗
t = Ŵβ2

p
− ŴV 2

p (t) + k(N̂αp
p/kp − N̂Up

p (t)/kp) − (αp
p − Up

p (t))/kp−1, (4.5)

where

V 2
p (t) =

∫ t

0

|Hs|
2ds and Up

p (t) =

∫ t

0

Jp
s λsds, P − a.s., s ≥ 0.

Then (M∗
t )t∈R+

satisfies the hypothesis of Corollary 3.9−i) − ii), as well as the con-

dition E[M∗
t |F

M
t ] = 0, t ∈ R+, with H∗

s = Hs, J∗
s = k, λ∗

s = Jp
s λs/k

p, dPds-a.e.,

hence

E[φ(Mt)] ≤ E[φ(M∗
0 )],

and letting t go to infinity we obtain (4.2) and (4.3), respectively for p = 1 and p = 2.

iii) Let

M∗
s = Wβ2

3
− WU2

3
(s), (4.6)

where

U2
3 (s) =

∫ s

0

|Hu|
2du +

∫ s

0

|Ju|
2λudu, P − a.s.
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Then (M∗
t )t∈R+

satisfies the hypothesis of Corollary 3.9−iii) with |H∗
s |

2 = |Hs|
2 +

|Js|
2λs and λ∗

s = J∗
s = 0, dPds-a.e., hence

E[φ(Mt)] ≤ E[φ(M∗
0 )],

and letting t go to infinity we obtain (4.4). �

Remark 4.2. The proof of Theorem 4.1 can also be obtained from Corollary 3.8.

Proof. Let

µ(dt, dx) =
∑

∆Zs 6=0

δ(s,Js)(dt, dx), νt(dx) = λtδJt
(dx).

i)− ii) In both cases p = 1, 2, let (Ft)t∈R+
, (F∗

t )t∈R+
and (M∗

t )t∈R+
be defined in (4.5),

with V 2
p (t) =

∫ t

0
|Hs|

2ds and Up
p (t) =

∫ t

0
|Js|

pds, P -a.s., t ≥ 0. Then (M ∗
t )t∈R+

satisfies

the hypothesis of Corollary 3.8−i) − ii), with H∗
s = Hs, ν∗

s = |Js|
p/kp, dPds-a.e.

iii) Let (M∗
s )s∈R+

be defined as in (4.6), and let U 2
3 (s) =

∫ s

0
|Hu|

2du +
∫ s

0
|Ju|

2du,

|H∗
s |

2 = |Hs|
2 + |Js|

2 and ν∗
s = 0, dPds-a.e. �

In the pure jump case, Theorem 4.1-ii) yields

P (MT ≥ x) ≤ exp

(

y

k
−

(

y

k
+

α2
2

k2

)

log

(

1 +
ky

α2
2

))

≤ exp

(

−
y

2k
log

(

1 +
ky

α2
2

))

,

y > 0, with α2
2 = ‖〈M, M〉T‖∞, cf. Theorem 23.17 of [9], although some differences

in the hypotheses make the results not directly comparable: here no lower bound is

assumed on jump sizes, and the presence of a continuous component is treated in a

different way.

The results of this section and the next one apply directly to solutions of stochastic

differential equations such as

dXt = a(t, Xt)dWt + b(t, Xt)(dZt − λtdt),

with Ht = a(t, Xt), Jt = b(t, Xt), t ∈ R+, for which the hypotheses can be formulated

directly on the coefficients a(·, ·), b(·, ·) without explicit knowledge of the solution.
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5 Application to Poisson random measures

Since a large family of point processes can be represented as stochastic integrals with

respect to Poisson random measures (see e.g. [7], Section 4, Ch. XIV), it is natural

to investigate the consequences of Theorem 3.2 in the setting of Poisson random

measures. Let σ be a Radon measure on R
d, diffuse on R

d \{0}, such that σ({0}) = 1,

and
∫

Rd\{0}

(|x|2 ∧ 1)σ(dx) < ∞,

and consider a random measure ω(dt, dx) of the form

ω(dt, dx) =
∑

i∈N

δ(ti ,xi)(dt, dx)

identified to its (locally finite) support {(ti, xi)}i∈N. We assume that ω(dt, dx) is

Poisson distributed with intensity dtσ(dx) on R+ ×R
d \ {0}, and consider a standard

Brownian motion (Wt)t∈R+
, independent of ω(dt, dx), under a probability P on Ω. Let

Ft = σ(Ws, ω([0, s] × A) : 0 ≤ s ≤ t, A ∈ Bb(R
d \ {0})), t ∈ R+,

where Bb(R
d \ {0}) = {A ∈ B(Rd \ {0}) : σ(A) < ∞}. The stochastic integral of a

square-integrable Ft-predictable process u ∈ L2(Ω×R+×R
d, dP ×dt×dσ) is written

as
∫ +∞

0

u(t, 0)dWt +

∫

R+×Rd\{0}

u(t, x)(ω(dt, dx) − σ(dx)dt), (5.1)

and satisfies the Itô isometry

E

[

(
∫ +∞

0

u(t, 0)dWt +

∫ +∞

0

∫

Rd\{0}

u(t, x)(ω(dt, dx) − σ(dx)dt)

)2
]

= E

[
∫ +∞

0

u2(t, 0)dt

]

+ E

[
∫

R+×Rd\{0}

u2(t, x)σ(dx)dt

]

= E

[
∫

R+×Rd

u2(t, x)σ(dx)dt

]

. (5.2)

Recall that due to the Itô isometry, the predictable and adapted version of u can be

used indifferently in the stochastic integral (5.1), cf. p. 199 of [5] for details. When

u ∈ L2(R+ × R
d, dt × dσ), the characteristic function of

I1(u) :=

∫ +∞

0

u(t, 0)dWt +

∫

R+×Rd\{0}

u(t, x)(ω(dt, dx) − σ(dx)dt),
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is given by the Lévy-Khintchine formula

E
[

eiI1(u)
]

= exp

(

−
1

2

∫ +∞

0

u2(t, 0)dt +

∫

R+×Rd\{0}

(eiu(t,x) − 1 − iu(t, x))σ(dx)dt

)

.

Theorem 5.1. Let F with the representation

F = E[F ] +

∫ +∞

0

HsdWs +

∫ +∞

0

∫

Rd\{0}

Ju,x(ω(du, dx)− σ(dx)du),

where (Ht)t∈R+
∈ L2(Ω×R+), and (Jt,x)(t,x)∈R+×Rd are Ft-predictable with (Jt,x)(t,x)∈R+×Rd ∈

L1(Ω×R+×R
d \{0}, dP ×dt×dσ) and (Jt,x)(t,x)∈R+×Rd ∈ L2(Ω×R+×R

d \{0}, dP ×

dt × dσ) respectively in (i) and in (ii − iii) below.

i) Assume that 0 ≤ Ju,x ≤ k, dPσ(dx)du-a.e., for some k > 0, and let

β2
1 =

∥

∥

∥

∥

∫ +∞

0

|Hu|
2du

∥

∥

∥

∥

∞

, and α1(x) =

∥

∥

∥

∥

∫ +∞

0

Ju,xdu

∥

∥

∥

∥

∞

, σ(dx) − a.e.

Then we have

E[φ(F − E[F ])] ≤ E

[

φ

(

W (β2
1) + kÑ

(
∫

Rd\{0}

α1(x)

k
σ(dx)

))]

,

for all convex functions φ : R → R.

ii) Assume that Ju,x ≤ k, dPσ(dx)du-a.e., for some k > 0, and let

β2
2 =

∥

∥

∥

∥

∫ +∞

0

|Hu|
2du

∥

∥

∥

∥

∞

, and α2
2(x) =

∥

∥

∥

∥

∫ +∞

0

|Ju,x|
2du

∥

∥

∥

∥

∞

, σ(dx) − a.e.

Then we have

E[φ(F − E[F ])] ≤ E

[

φ

(

W (β2
2) + kÑ

(
∫

Rd\{0}

α2
2(x)

k2
σ(dx)

))]

,

for all convex functions φ : R → R such that φ′ is convex.

iii) Assume that Ju,x ≤ 0, dPσ(dx)du-a.e., and let

β2
3 =

∥

∥

∥

∥

∫ +∞

0

|Hu|
2du +

∫ +∞

0

∫

Rd\{0}

|Ju,x|
2duσ(dx)

∥

∥

∥

∥

∞

.

Then we have

E[φ(F − E[F ])] ≤ E
[

φ(W (β2
3))

]

,

for all convex functions φ : R → R such that φ′ is convex.
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Proof. The proof is similar to that of Theorem 4.1, replacing the use of Corollary 3.9

by that of Corollary 3.8. Let

Mt = M0 +

∫ t

0

HudWu +

∫

Rd\{0}

∫ t

0

Ju,x(ω(du, dx) − σ(dx)du),

generating the filtration (FM
t )t∈R+

. Here, νt(dx) denotes the image measure of σ(dx)

by the mapping x 7→ Jt,x, t ≥ 0, and µ(dt, dx) denotes the image measure of ω(dt, dx)

by (s, y) 7→ (s, Js,y), i.e.

µ(dt, dx) =
∑

ω({(s,y)})=1

δ(s,Js,y)(dt, dx).

i) − ii) For p = 1, 2, let the filtrations (Ft)t∈R+
and (F∗

t )t∈R+
be defined by

F∗
t = FM

∞ ∨ σ(Ŵβ2
p
− ŴV 2

p (s) + N̂αp
p/kp − N̂Up

p (s)/kp : s ≥ t}),

and

Ft = FM
t ∨ σ(Ŵs, N̂s : s ≥ 0), t ∈ R+,

and let

M∗
t = Ŵβ2

p
− ŴV 2

p (t) + k(N̂αp
p/kp − N̂Up

p (t)/kp) − (αp
p − Up

p (t))/kp−1,

where

V 2
p (t) =

∫ t

0

|Hs|
2ds and Up

p (t) =

∫ t

0

∫ +∞

−∞

xpνs(dx)ds, P − a.s., t ≥ 0.

Then (M∗
t )t∈R+

satisfies the hypothesis of Theorem 3.2−i)−ii), and also the condition

E[M∗
t |F

M
t ] = 0, t ∈ R+, with H∗

s = Hs, ν∗
s =

∫ +∞

−∞
xpνs(dx), dPds-a.e., hence

E[φ(Mt)] ≤ E[φ(M∗
0 )].

Letting t go to infinity we obtain (4.2) and (4.3), respectively for p = 1, 2.

iii) Let

M∗
s = Wβ2

3
− WU2

3
(s),
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where

U2
3 (s) =

∫ s

0

|Hu|
2du +

∫ s

0

∫ +∞

−∞

|x|2νu(dx)du, P − a.s., s ≥ 0.

Then (M∗
t )t∈R+

satisfies the hypotheses of Theorem 3.2−iii) with

|H∗
s |

2 = |Hs|
2 +

∫ +∞

−∞

|x|2νs(dx)

and ν∗
s = 0, dPds-a.e., hence

E[φ(Mt)] ≤ E[φ(M∗
0 )],

and letting t go to infinity we obtain (4.4). �

In Theorem 4.1, (Zt)t∈R+
can be taken equal to the standard Poisson process (Nt)t∈R+

,

which also satisfies the hypotheses of Theorem 5.1 since it can be defined with d = 1

and σ(dx) = 1[0,1](x)dx as

Nt = ω([0, t] × [0, 1]), t ≥ 0.

In other terms, being a point process, (Nt)t∈R+
is at the intersection of Corollary 3.8

and Corollary 3.9, as already noted in Remark 4.2.

6 Clark formula

In this section we examine the consequence of results of Section 5 when the predictable

representation of random variables is obtained via the Clark formula. We work on a

product

(Ω, P ) = (ΩW × ΩX , PW ⊗ PX),

where (ΩW , PW ) is the classical Wiener space on which is defined a standard Brownian

motion (Wt)t∈R+
and

ΩX =

{

ωX(dt, dx) =
∑

i∈N

δ(ti,xi)(dt, dx) : (ti, xi) ∈ R+ × (Rd \ {0}), i ∈ N

}

.

The elements of ΩX are identified to their (by assumption locally finite) support

{(ti, xi)}i∈N, and ωX 7→ ωX(dt, dx) is Poisson distributed under PX with intensity
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dtσ(dx) on R+ × R
d \ {0}.

The multiple stochastic integral In(hn) of hn ∈ L2(R+ × R
d, dtdσ)◦n can be defined

by induction with

In(hn) = n

∫ ∞

0

In−1(π
n
t,0hn)dWt + n

∫

R+×Rd

In−1(π
n
t,xhn)(ωX(dt, dx) − σ(dx)dt),

where

(πn
t,xhn)(t1, x1, . . . , tn−1, xn−1) := hn(t1, x1, . . . , tn−1, xn−1, t, x)1[0,t](t1) · · ·1[0,t](tn−1),

t1, . . . , tn−1, t ∈ R+, x1, . . . , xn−1, x ∈ R
d. The isometry property

E
[

In(hn)2
]

= n!‖hn‖
2
L2(R+×Rd,dt⊗σ)⊗n

follows by induction from (5.2). Let the linear, closable, finite difference operator

D : L2(Ω, P ) −→ L2(Ω × R+ × R
d, dP × dt × dσ)

be defined as

Dt,xIn(fn) = nIn−1(fn(∗, t, x)), σ(dx)dtdP − a.e.,

cf. e.g. [12], [17], with in particular

Dt,0In(fn) = nIn−1(fn(∗, t, 0)), dtdP − a.e.,

Recall that the closure of D is also linear, and given F ∈ Dom(D), for σ(dx)dt-a.e.

every (t, x) ∈ R+ × (Rd \ {0}) we have

Dt,xF (ωW , ωX) = F (ωW , ωX ∪ {(t, x)}) − F (ωW , ωX), P (dω) − a.s.,

cf. e.g. [12], [14], while Dt,0 has the derivation property, and

Dt,0f(I1(f
(1)
1 ), . . . , I1(f

(n)
1 )) =

n
∑

k=1

f
(i)
1 (t, 0)∂kf(I1(f

(1)
1 ), . . . , I1(f

(n)
1 )),

dtdP -a.e., f
(1)
1 , . . . , f

(d)
1 ∈ L2(R+ × R

d, dtdσ), f ∈ C∞
b (Rn), cf. e.g. [16].
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The Clark formula for Lévy processes, cf. [13], [16], states that every F ∈ L2(Ω) has

the representation

F = E[F ] +

∫ +∞

0

E[Ds,0F |Fs]dWs +

∫ +∞

0

∫

Rd\{0}

E[Ds,xF |Fs](ωX(ds, dx)− σ(dx)ds).

(6.1)

(The formula originally holds for F in the domain of D but its extension to L2(Ω)

is straightforward, cf. [16], Proposition 12). Theorem 5.1 immediately yields the

following corollary when applied to any F ∈ L2(Ω) represented as in (6.1).

Corollary 6.1. Let F ∈ L2(Ω) have the representation (6.1), and assume additionally

that
∫ +∞

0

∫

Rd\{0}
|E[Ds,xF |Fs]|σ(dx)ds < ∞ a.s. in (i) below.

i) Assume that 0 ≤ E[Du,xF |Fu] ≤ k, dPσ(dx)du-a.e., for some k > 0, and let

β2
1 =

∥

∥

∥

∥

∫ +∞

0

(E[Du,0F |Fu])
2du

∥

∥

∥

∥

∞

, and α1(x) =

∥

∥

∥

∥

∫ +∞

0

E[Du,xF |Fu]du

∥

∥

∥

∥

∞

,

σ(dx)-a.e. Then we have

E[φ(F − E[F ])] ≤ E

[

φ

(

W (β2
1) + kÑ

(
∫

Rd\{0}

α1(x)

k
σ(dx)

))]

, (6.2)

for all convex functions φ : R → R.

ii) Assume that E[Du,xF |Fu] ≤ k, dPσ(dx)du-a.e., for some k > 0, and let

β2
2 =

∥

∥

∥

∥

∫ +∞

0

(E[Du,0F |Fu])
2du

∥

∥

∥

∥

∞

, and α2
2(x) =

∥

∥

∥

∥

∫ +∞

0

(E[Du,xF |Fu])
2du

∥

∥

∥

∥

∞

,

σ(dx)-a.e. Then we have

E[φ(F − E[F ])] ≤ E

[

φ

(

W (β2
2) + kÑ

(
∫

Rd\{0}

α2
2(x)

k2
σ(dx)

))]

, (6.3)

for all convex functions φ : R → R such that φ′ is convex.

iii) Assume that E[Du,xF |Fu] ≤ 0, dPσ(dx)du-a.e., and let

β2
3 =

∥

∥

∥

∥

∫ +∞

0

(E[Du,0F |Fu])
2du +

∫ +∞

0

∫

Rd\{0}

(E[Du,xF |Fu])
2duσ(dx)

∥

∥

∥

∥

∞

.

Then we have

E[φ(F − E[F ])] ≤ E
[

φ(W (β2
3))

]

, (6.4)

for all convex functions φ : R → R such that φ′ is convex.
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As mentioned in the introduction, from (6.4) we deduce the deviation inequality

P (F − E[F ] ≥ y) ≤
e2

2
P (W (β2

3) > y) ≤
e2

2
exp

(

−
y2

2β2
3

)

, y > 0,

provided E[Du,xF |Fu] ≤ 0, dPσ(dx)du-a.e., and
∫ +∞

0

(E[Du,0F |Fu])
2du +

∫ +∞

0

∫

Rd\{0}

(E[Du,xF |Fu])
2duσ(dx) ≤ β2

3 , P − a.s.

Similarly from (6.3) we get

P (E − E[F ] ≥ y) ≤ exp

(

y

k
−

(

y

k
+

α2
2

k2

)

log

(

1 +
ky

α2
2

))

, y > 0, (6.5)

provided

E[Dt,xF |Ft] ≤ k, dPσ(dx)dt − a.e., (6.6)

and
∫

R+×Rd\{0}

(E[Dt,xF |Ft])
2σ(dx)dt ≤ α2

2, P − a.s.,

for some k > 0 and α2
2 > 0. In [1] this latter estimate has been proved using (modified)

logarithmic Sobolev inequalities and the Herbst method under the stronger condition

|Dt,xF | ≤ k, dPσ(dx)dt-a.e., (6.7)

and
∫

R+×Rd\{0}

|Dt,xF |2σ(dx)dt ≤ α2
2, P − a.s., (6.8)

for some k > 0 and α2
2 > 0. In [19] it has been shown, using sharp logarithmic Sobolev

inequalities, that the condition |Dt,xF | ≤ k can be relaxed to

Dt,xF ≤ k, dPσ(dx)dt-a.e., (6.9)

which is nevertheless stronger than (6.6).

In the next result, which however imposes uniform almost sure bounds on DF , we

consider Poisson random measures on R
d \ {0} instead of R+ × R

d \ {0}.

Corollary 6.2. i) Assume that 0 ≤ DxF ≤ β(x) ≤ k, dPσ(dx) − a.e., where β(·) :

R
d \ {0} → [0, k] is deterministic and k > 0. Then for all convex functions φ

we have

E[φ(F − E[F ])] ≤ E

[

φ

(

kÑ

(
∫

Rd\{0}

β(x)

k
σ(dx)

))]

.
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ii) Assume that |DxF | ≤ β(x) ≤ k, dPσ(dx)-a.e., where β(·) : R → [0, k] and k > 0

are deterministic. Then for all convex functions φ with a convex derivative φ′

we have

E[φ(F − E[F ])] ≤ E

[

φ

(

kÑ

(
∫

Rd\{0}

β2(x)

k2
σ(dx)

))]

.

iii) Assume that −β(x) ≤ DxF ≤ 0, dPσ(dx)-a.e., where β(·) : R → [0,∞) is

deterministic. Then for all convex functions φ with a convex derivative φ′ we

have

E[φ(F − E[F ])] ≤ E

[

φ

(

W

(
∫

Rd\{0}

β2(x)σ(dx)

))]

.

Proof. Assume that ωX(dt, dx) has intensity 1[0,1](s)σ(dx)ds on R+ × R
d \ {0}, we

define the random measure ω̂ on R
d \ {0} with intensity σ(dx) as

ω̂X(A) = ωX([0, 1] × A), A ∈ Bb(R
d \ {0}).

Then it remains to apply Corollary 6.1 to F̂ (ωW , ωX) := F (ωW , ω̂X). �

In Corollary 6.2, R
d \ {0} can be replaced by R

d without additional difficulty.

7 Normal martingales

In this section we interpret the above results in the framework of normal martingales.

Let (Zt)t∈R+ be a normal martingale, i.e. (Zt)t∈R+ is a martingale such that d〈Z, Z〉t =

dt. If (Zt)t∈R+ is in L4 and has the chaotic representation property it satisfies the

structure equation

d[Z, Z]t = dt + γtdZt, t ∈ R
+,

where (γt)t∈R+
is a predictable square-integrable process, cf. [6]. Recall that the cases

γs = 0, γs = c ∈ R \ {0}, γs = βZs, β ∈ (−2, 0), correspond respectively to Brownian

motion, the compensated Poisson process with jump size c and intensity 1/c2, and to

the Azéma martingales. Consider the martingale

Mt = M0 +

∫ t

0

RudZu, (7.1)
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where (Ru)u∈R+
∈ L2(Ω × R+) is predictable. We have

d〈M c, M c〉t = 1{γt=0}|Rt|
2dt

and

µ(dt, dx) =
∑

∆Zs 6=0

δ(s,Rsγs)(dt, dx), ν(dt, dx) =
1

γ2
t

∑

∆Zs 6=0

δRsγs
(dx)dt,

and the Itô formula, cf. [6]:

φ(Mt) = φ(Ms) +

∫ t

s

1{γu=0}Ruφ
′(Mu)dZu +

∫ t

s

1{γu 6=0}
φ(Mu− + γuRu) − φ(Mu−)

γu
dZu

+
1

2

∫ t

s

1{γu=0}|Ru|
2φ′′(Mu)du +

∫ t

s

1{γu 6=0}
φ(Mu + γuRu) − φ(Mu) − γuRuφ

′(Mu)

|γu|2
du,

φ ∈ C2(R). The multiple stochastic integrals with respect to (Mt)t∈R+
are defined as

In(fn) = n!

∫ +∞

0

∫ tn

0

· · ·

∫ t2

0

fn(t1, . . . , tn)dMt1 · · ·dMtn ,

for fn a symmetric function in L2(Rn
+). As an application of Corollary 3.9 we have

the following result.

Theorem 7.1. Let (Mt)t∈R+
have the representation (7.1), let (M ∗

t )t∈R+
be repre-

sented as

M∗
t =

∫ +∞

t

H∗
s d∗W ∗

s +

∫ +∞

t

J∗
s (d∗Z∗

s − λ∗
sds),

assume that (Mt)t∈R+
is an F∗

t -adapted Ft-martingale and that (M ∗
t )t∈R+

is an Ft-

adapted F ∗
t -martingale. Then we have

E[φ(Mt + M∗
t )] ≤ E[φ(Ms + M∗

s )], 0 ≤ s ≤ t,

for all convex functions φ : R → R, provided any of the following three conditions is

satisfied:

i) 0 ≤ γtRt ≤ J∗
t , 1{γt=0}|Rt|

2 ≤ |H∗
t |

2, and

1{γt 6=0}
Rt

γt

≤ λ∗
t J

∗
t , dPdt − a.e.,
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ii) γtRt ≤ J∗
t , 1{γt=0}|Rt|

2 ≤ |H∗
t |

2, and

1{γt 6=0}|Rt|
2 ≤ λ∗

t |J
∗
t |

2, dPdt − a.e.,

and φ′ is convex,

iii) γtRt ≤ 0, |Rt|
2 ≤ |H∗

t |
2, J∗

t = 0, dPdt - a.e., and φ′ is convex.

As above, if further E[M ∗
t |F

M
t ] = 0, t ∈ R+, we obtain

E[φ(Mt)] ≤ E[φ(Ms + M∗
s )], 0 ≤ s ≤ t.

As a consequence we have the following result which admits the same proof as Theo-

rem 4.1.

Theorem 7.2. Let F ∈ L2(Ω,F , P ) have the predictable representation

F = E[F ] +

∫ +∞

0

RtdZt.

i) Assume that 0 ≤ γtRt ≤ k, dPdt-a.e., for some k > 0, and let

β2
1 =

∥

∥

∥

∥

∫ +∞

0

1{γs=0}|Rs|
2ds

∥

∥

∥

∥

∞

and α1 =

∥

∥

∥

∥

∫ +∞

0

1{γs 6=0}
Rs

γs
ds

∥

∥

∥

∥

∞

.

Then we have

E[φ(F − E[F ])] ≤ E

[

φ
(

W (β2
1) + kÑ(α1/k)

)]

,

for all convex functions φ : R → R.

ii) Assume that γuRu ≤ k, dPdt-a.e., for some k > 0 and

β2
2 =

∥

∥

∥

∥

∫ +∞

0

1{γs=0}|Rs|
2ds

∥

∥

∥

∥

∞

and α2
2 =

∥

∥

∥

∥

∫ +∞

0

1{γs 6=0}|Rs|
2ds

∥

∥

∥

∥

∞

.

Then for all convex functions φ with a convex derivative φ′, we have

E[φ(F − E[F ])] ≤ E

[

φ
(

W (β2
2) + kÑ(α2

2/k
2)

)]

.
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iii) Assume that γuRu ≤ 0 and let

β2
3 =

∥

∥

∥

∥

∫ +∞

0

|Rs|
2ds

∥

∥

∥

∥

∞

.

Then for all convex functions φ with a convex derivative φ′, we have

E[φ(F − E[F ])] ≤ E[φ(Ŵ (β2
3))].

Let now

D : L2(Ω,F , P ) 7→ L2(Ω × [0, T ], dP × dt)

denote the annihilation operator on multiple stochastic integrals defined as Dt =

In(fn) = nIn(fn(∗, t)), t ∈ R+. The Clark formula for normal martingales [11] pro-

vides a predictable representation for F ∈ Dom(D) ⊂ L2(Ω,F , P), which can be used

in Theorem 7.2:

F = E[F ] +

∫ +∞

0

E[DtF |Ft]dZt,

where Ft = σ(Zs, 0 ≤ s ≤ t).

8 Appendix

In this section we prove the Itô type change of variable formula for forward/backward

martingales which has been used in the proofs of Theorem 3.2 and Theorem 3.3. As-

sume that (Ω,F , P ) is equipped with an increasing filtration (Ft)t∈R+
and a decreasing

filtration (F∗
t )t∈R+

.

Theorem 8.1. Consider (Mt)t∈R+
an F∗

t -adapted, Ft-forward martingale with right-

continuous paths and left limits, and (M ∗
t )t∈R+

an Ft-adapted, F
∗
t -backward martingale

with left-continuous paths and right limits, whose characteristics have the form (3.3)

and (3.4). For all f ∈ C2(R2, R) we have

f(Mt, M
∗
t ) − f(M0, M

∗
0 )

=

∫ t

0+

∂f

∂x1

(Mu−, M∗
u)dMu +

1

2

∫ t

0

∂2f

∂x2
1

(Mu, M
∗
u)d〈M c, M c〉u

+
∑

0<u≤t

(

f(Mu, M
∗
u) − f(Mu−, M∗

u) − ∆Mu
∂f

∂x1
(Mu− , M∗

u)

)
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−

∫ t−

0

∂f

∂x2
(Mu, M

∗
u+)d∗M∗

u −
1

2

∫ t

0

∂2f

∂x2
2

(Mu, M
∗
u)d〈M∗c, M∗c〉u

−
∑

0≤u<t

(

f(Mu, M
∗
u) − f(Mu, M

∗
u+) − ∆M∗

u

∂f

∂x2

(Mu, M
∗
u+)

)

,

where d∗ denotes the backward Itô differential and (M c
t )t∈R+

, (M∗c
t )t∈R+

respectively

denote the continuous parts of (Mt)t∈R+
, (M∗

t )t∈R+
.

Proof. We adapt the arguments of Theorem 32 of Chapter II in [18], using here the

following version of Taylor’s formula:

f(y1, y2) − f(x1, x2) = f(y1, y2) − f(y1, x2) + f(y1, x2) − f(x1, x2) (8.1)

= (y1 − x1)
∂f

∂x1

(x1, x2) +
1

2
(y1 − x1)

2∂2f

∂x2
1

(x1, x2)

+(y2 − x2)
∂f

∂x2
(y1, y2) −

1

2
(y2 − x2)

2∂2f

∂x2
2

(y1, y2)

+R(x, y),

where R(x, y) ≤ o(|y − x|2). Assume first that (Ms)s∈[0,t] and (M∗
s )s∈[0,t] take their

values in a bounded interval, and let {0 = tn
0 ≤ tn1 ≤ · · · ≤ tnkn

= t}, n ≥ 1, be

a refining sequence of partitions of [0, t] tending to the identity. As in [18], for any

ε > 0, consider Aε,t, Bε,t two random subsets of [0, t] such that

i) Aε,t is finite, P -a.s.,

ii) Aε,t ∪ Bε,t exhausts the jumps of (Ms)s∈[0,t] and (M∗
s )s∈[0,t],

iii)
∑

s∈Bε,t
|∆Ms|

2 + |∆∗M∗
s |

2 ≤ ε2,

iv) for each 1 ≤ i ≤ n, exactly one of the two sets Aε,t ∩ (tni−1, t
n
i ] or Bε,t ∩ (tni−1, t

n
i ]

is non-empty, P -a.s.

We have

f(Mt, M
∗
t ) − f(M0, M

∗
0 ) =

∑

Aε,t∩(tni−1
,tni ]6=∅

f(Mtni
, M∗

tni
) − f(Mtni−1

, M∗
tni−1

)

+
∑

Bε,t∩(tni−1
,tni ]6=∅

f(Mtni
, M∗

tni
) − f(Mtni−1

, M∗
tni−1

),

29



and from Taylor’s formula (8.1) we get

f(Mt, M
∗
t ) − f(M0, M

∗
0 )

=
∑

Aε,t∩(tni−1
,tni ]6=∅

f(Mtni
, M∗

tni
) − f(Mtni

, M∗
tni−1

) + f(Mtni
, M∗

tni−1
) − f(Mtni−1

, M∗
tni−1

)

+
∑

Bε,t∩(tni−1
,tni ]6=∅

f(Mtni
, M∗

tni
) − f(Mtni

, M∗
tni−1

) + f(Mtni
, M∗

tni−1
) − f(Mtni−1

, M∗
tni−1

)

=
∑

Aε,t∩(tni−1
,tni ]6=∅

f(Mtn
i
, M∗

tni
) − f(Mtn

i
, M∗

tni−1
) + f(Mtn

i
, M∗

tni−1
) − f(Mtn

i−1
, M∗

tni−1
)

+
∑

Bε,t∩(tn
i−1

,tn
i
]6=∅

(Mtni
− Mtni−1

)
∂f

∂x1

(Mtni−1
, M∗

tni−1
) +

1

2
|Mtni

− Mtni−1
|2

∂2f

∂x2
1

(Mtni−1
, M∗

tni−1
)

+
∑

Bε,t∩(tni−1
,tni ]6=∅

(M∗
tni
− M∗

tni−1
)
∂f

∂x2
(Mtni

, M∗
tni

) −
1

2
|M∗

tni
− M∗

tni−1
|2

∂2f

∂x2
2

(Mtni
, M∗

tni
)

+
∑

Bε,t∩(tni−1
,tni ]6=∅

R(Mtni
, M∗

tni
, Mtni−1

, M∗
tni−1

)

=
∑

Aε,t∩(tni−1
,tni ]6=∅

f(Mtni
, M∗

tni
) − f(Mtni

, M∗
tni−1

) + f(Mtni
, M∗

tni−1
) − f(Mtni−1

, M∗
tni−1

)

+
n

∑

i=1

(Mtni
− Mtni−1

)
∂f

∂x1

(Mtni−1
, M∗

tni−1
) +

1

2
|Mtni

− Mtni−1
|2

∂2f

∂x2
1

(Mtni−1
, M∗

tni−1
)

−
∑

Aε,t∩(tn
i−1

,tn
i
]6=∅

(Mtni
− Mtni−1

)
∂f

∂x1

(Mtni−1
, M∗

tni−1
) +

1

2
|Mtni

− Mtni−1
|2

∂2f

∂x2
1

(Mtni−1
, M∗

tni−1
)

+

n
∑

i=1

(M∗
tni
− M∗

tni−1
)
∂f

∂x2
(Mtni

, M∗
tni

) −
1

2
|M∗

tni
− M∗

tni−1
|2

∂2f

∂x2
2

(Mtni
, M∗

tni
)

−
∑

Aε,t∩(tni−1
,tni ]6=∅

(M∗
tni
− M∗

tni−1
)
∂f

∂x2
(Mtni

, M∗
tni

) −
1

2
|M∗

tni
− M∗

tni−1
|2

∂2f

∂x2
2

(Mtni
, M∗

tni
)

+
∑

Bε,t∩(tni−1
,tni ]6=∅

R(Mtni
, M∗

tni
, Mtni−1

, M∗
tni−1

).

By the same arguments as in [18] and from conditions (3.1) and (3.2), letting n tend

to infinity we get

f(Mt, M
∗
t ) − f(M0, M

∗
0 )

=
∑

u∈Aε,t

(

f(Mu, M
∗
u) − f(Mu− , M∗

u) − ∆Mu
∂f

∂x1
(Mu−, M∗

u) −
1

2
|∆Mu|

2∂2f

∂x2
1

(Mu−, M∗
u)

)
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−
∑

u∈Aε,t

(

f(Mu, M
∗
u+) − f(Mu, M

∗
u) − ∆∗M∗

u

∂f

∂x2
(Mu, M

∗
u+) +

1

2
|∆∗M∗

u |
2∂2f

∂x2
2

(Mu, M
∗
u+)

)

+

∫ t

0

∂f

∂x1
(Mu− , M∗

u)dMu +
1

2

∫ t

0

∂2f

∂x2
1

(Mu−, M∗
u)d[M, M ]u

−

∫ t

0

∂f

∂x2
(Mu, M

∗
u+)d∗M∗

u −
1

2

∫ t

0

∂2f

∂x2
2

(Mu, M
∗
u+)d[M∗, M∗]u.

Then letting ε tend to 0, the above sum converges to

f(Mt, M
∗
t ) − f(M0, M

∗
0 )

=

∫ t

0+

∂f

∂x1
(Mu−, M∗

u)dMu +
1

2

∫ t

0+

∂2f

∂x2
1

(Mu−, M∗
u)d[M, M ]u

+
∑

0<u≤t

(

f(Mu, M
∗
u) − f(Mu−, M∗

u) − ∆Mu
∂f

∂x1
(Mu−, M∗

u) −
1

2
|∆Mu|

2∂2f

∂x2
1

(Mu− , M∗
u)

)

−

∫ t−

0

∂f

∂x2
(Mu, M

∗
u+)d∗M∗

u −
1

2

∫ t−

0

∂2f

∂x2
2

(Mu, M
∗
u+)d[M∗, M∗]u

−
∑

0≤u<t

(

f(Mu, M
∗
u) − f(Mu, M

∗
u+) − ∆∗M∗

u

∂f

∂x2

(Mu, M
∗
u+) +

1

2
|∆∗M∗

u |
2∂2f

∂x2
2

(Mu, M
∗
u+)

)

,

which yields

f(Mt, M
∗
t ) − f(M0, M

∗
0 ) =

∫ t

0+

∂f

∂x1
(Mu− , M∗

u)dMu +
1

2

∫ t

0

∂2f

∂x2
1

(Mu, M
∗
u)d〈M c, M c〉u

+
∑

0<u≤t

(

f(Mu, M
∗
u) − f(Mu−, M∗

u) − ∆Mu
∂f

∂x1
(Mu− , M∗

u)

)

−

∫ t−

0

∂f

∂x2
(Mu, M

∗
u+)d∗M∗

u −
1

2

∫ t

0

∂2f

∂x2
2

(Mu, M
∗
u)d〈M∗c, M∗c〉u

−
∑

0≤u<t

(

f(Mu, M
∗
u) − f(Mu, M

∗
u+) − ∆∗M∗

u

∂f

∂x2

(Mu, M
∗
u+)

)

,

where the integral with respect to (〈M ∗, M∗〉t)t∈R+
is defined as a Stieltjes integral

with respect to a (not necessarily F ∗
t -adapted) increasing process. In the general case,

define the stopping times

Rm = inf{u ∈ [0, t] : |Mu| ≥ m}, and R∗
m = sup{u ∈ [0, t] : |M∗

u | ≥ m}.

The stopped process (Mu∧Rm
, M∗

u∨R∗
m
)u∈[0,t] is bounded by 2m and since Itô’s formula

is valid for (XRm
u )u∈[0,t] for each m, it is also valid for (Xu)u∈R+

. �
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Note that the cross partial derivative
∂2f

∂x1∂x2
(Mu, M

∗
u) does not appear in the formula

and there is no need to consider or define a bracket of the form d〈M, M ∗〉t.
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[1] C. Ané and M. Ledoux. On logarithmic Sobolev inequalities for continuous time random
walks on graphs. Probab. Theory Related Fields, 116(4):573–602, 2000.

[2] V. Bentkus. On Hoeffding’s inequalities. Ann. Probab., 32(2):1650–1673, 2004.

[3] D.L. Burkholder. Strong differential subordination and stochastic integration. Ann.
Probab., 22(2):995–1025, 1994.

[4] M. Capitaine, E.P. Hsu, and M. Ledoux. Martingale representation and a simple proof
of logarithmic Sobolev inequalities on path spaces. Electron. Comm. Probab., 2:71–81
(electronic), 1997.

[5] C. Dellacherie, B. Maisonneuve, and P.A. Meyer. Probabilités et Potentiel, volume 5.
Hermann, 1992.
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Prépublication 49, Université d’Evry, 1997.
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