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Abstract

Given (M;)ier, and (M;)icr, respectively a forward and a backward mar-
tingale with jumps and continuous parts, we prove that E[¢(M; + M;)] is non-
increasing in ¢ when ¢ is a convex function, provided the local characteristics
of (M;)ier, and (M;)icr, satisfy some comparison inequalities. We deduce
convex concentration inequalities and deviation bounds for random variables
admitting a predictable representation in terms of a Brownian motion and a
non-necessarily independent jump component.
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1 Introduction

Two random variables F' and G satisfy a convex concentration inequality if

E[p(F)] < E[p(G)] (1.1)

for all convex functions ¢ : R — R. By a classical argument, the application of (1.1)

to ¢(z) = exp(Az), A > 0, entails the deviation bound

P(F > ) < inf Ele Lirza] < inf Ele J < inf Ele (12
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x > 0, hence the deviation probabilities for F' can be estimated via the Laplace
transform of G, see [2], [3], [15] for more results on this topic. In particular, if G is
Gaussian then Theorem 3.11 of [15] shows moreover that

2

e

P(F>z) < §P(G2x), x> 0.

On the other hand, if F' is more convex concentrated than G then E[F| = E[G] as
follows from taking successively ¢(z) = = and ¢(x) = —z, and applying the convex

concentration inequality to ¢(x) = zlogx we get

Ent[F] = E[FlogF]— E[F]logE[F]
— E[Flog F] — E[G]log E[G]
< E|[Glog G] — E[G]log E[G]
Ent[G],

hence a logarithmic Sobolev inequality of the form Ent[G] < £(G, G) implies
Ent[F] < (G, G).

In this paper we obtain convex concentration inequalities for the sum M;+M;, t € R,
of a forward and a backward martingale with jumps and continuous parts. Namely

we prove that M; + M} is more concentrated than M, + M ift > s >0, i.e.
E[¢(M; + M;)] < E[p(M, + M), 0<s<t,

for all convex functions ¢ : R — R, provided the local characteristics of (M;)cr,
and (M} )icr, satisfy the comparison inequalities assumed in Theorem 3.2 below. If
further E[M;|FM] =0, t € Ry, where (FM);cr, denotes the filtration generated by
(My)ier, , then Jensen’s inequality yields

Elp(M)] <E[p(M, + M])],  0<s<t,
and if in addition we have M, = 0, then
Elp(Mr)] < Elp(Mg)], T =0. (1.3)
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In other terms, we will show that a random variable F'is more concentrated than Mg:
E[¢(F — E[F])] < E[¢(My)];

provided certain assumptions are made on the processes appearing in the predictable
representation of F'— E[F| = My in terms of a point process and a Brownian motion.

Consider for example a random variable F' represented as

+00 “+oo
F =E[F] + H dW, + / J(dZy — Ndt),
0 0

where (Z;)ier, is a point process with compensator (A;)icr,, (Wi)ier, is a standard
Brownian motion, and (Hy)icr, , (Ji)icr, are predictable square-integrable processes

satisfying J; < k, dPdt-a.e., and
+o0 400
/ |H,?dt < 3%, and / |2 Ndt < o?, P —a.s.
0 0

By applying (1.3) or Theorem 4.1—ii) below to forward and backward martingales of
the form . .
M, = E[F] +/ H,dw, +/ Ju(dZ, — Aydu), teR,,
0 0

and
M} = Wﬁ2 — Wv2(t) + k(NQQ/kQ — NU2(t)/k2) — (042 — Uz(t))//{}, teR,,

where (m)teR = (Nt)teR ., are a Brownian motion and a left-continuous standard
Poisson process, 3 > 0, « > 0, k > 0, and (V(t))ser,, (U(t))icr, are suitable random

time changes, it will follow in particular that F' is more concentrated than
MS = ngQ + kNQZ/k2 - 062/]{?,

i.e.

E[¢(F — E[F]))] <E [¢(Wﬁ2 + kN 2 — a2/k) (1.4)

for all convex functions ¢ such that ¢’ is convex.

From (1.2) and (1.4) we get

2, 3272
_ > ) < - — e — _
P(F-E[F]>x) < /1\r>1%exp (kz2 (e Mg —1)+ 5 )\:17) :
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1.e.

P(F —E[F] > z) < exp (g 2N

? ok (2—kXo(z)) — (z + a2/k))\0(x)) ,

where \g(x) > 0 is the unique solution of

a? a?’
When H; =0, t € Ry, we can take 3 = 0, then \o(x) = k™' log(1 + zk/a?) and this

implies the Poisson tail estimate

P(F —E[F] > y) < exp <%— (%+Z_§) log (1+%)) y>0. (L5

Such an inequality has been proved in [1], [19], using (modified) logarithmic Sobolev
inequalities and the Herbst method when Z; = N;, t € R, is a Poisson process, under
different hypotheses on the predictable representation of F' via the Clark formula, cf.
Section (6). When J; = A\, = 0, t € Ry, we recover classical Gaussian estimates
which can be independently obtained from the expression of continuous martingales
as time-changed Brownian motions.

We proceed as follows. In Section 3 we present convex concentration inequalities
for martingales. In Sections 4 and 5 these results are applied to derive convex concen-
tration inequalities with respect to Gaussian and Poisson distributions. In Section 6
we consider the case of predictable representations obtained from the Clark formula.
The proofs of the main results are formulated using forward/backward stochastic
calculus and arguments of [10]. Section 7 deals with an application to normal martin-
gales, and in the appendix (Section 8) we prove the forward-backward 1t6 type change
of variable formula which is used in the proof of our convex concentration inequalities.
See [4] for a reference where forward It6 calculus with respect to Brownian motion

has been used for the proof of logarithmic Sobolev inequalities on path spaces.

2 Notation

Let (©, F, P) be a probability space equipped with an increasing filtration (F)er,

and a decreasing filtration (F;")ser, . Consider (M,);cr, an Fi-forward martingale and

4



(M} )ier, an F;-backward martingale. We assume that (M;).cr, has right-continuous
paths with left limits, and that (M} )cr, has left-continuous paths with right limits.
Denote respectively by (Mf)ier, and (M;“);cr, the continuous parts of (M;)ier, and

(M )ier, , and by
AM, = M, — M,-, A*M) = M} — M},

their forward and backward jumps. The processes (My)icr, and (M) )ier, have jump
measures
p(dt, dr) = Z Lians,#0y0(s,an,) (dL, dz),

5>0

and
p*(dt,dx) = Z Laarr2010(s,a% 0 (dt, d),

5>0
where d(s ) denotes the Dirac measure at (s,z) € R. x R. Denote by v(dt,dx) and
v*(dt,dx) the (Fi)ier, and (F;)icr,-dual predictable projections of u(dt,dz) and
w(dt,dx), i.e.

/0 t / Zf<s7x>(u<ds,d:v>—u(ds,da:» and /:O /:g(w(ﬂ*(d&dm)_y*( 4s, )

are respectively F;-forward and F;-backward local martingales for all sufficiently in-
tegrable F;-predictable, resp. F;-predictable, process f, resp. g. The quadratic vari-
ations ([M, M])ier, , ([M*, M*])icr, are defined as the limits in uniform convergence

in probability

n—o0 4
1

(M, M, = lim Y |Myp — My %,

and
n—1

[M*v M*]t = nh_)noloz ‘Mt? - Mt?«}»l |27
=0
for all refining sequences {0 =t <7 < --- <t} =t}, n > 1, of partitions of [0, ]

tending to the identity. We then let M@ = M, — M¢, M4 = M; — M;©,

[Mded]t: Z ‘AMS|27 [M*duM*d]t: Z ‘A*M:F?

0<s<t 0<s<t



and
<MC,MC>t — [M, M]t . [Md,Md]t, <M*C,M*c>t — [M*,M*]t . [M*de*d]t’

t € Ry. Note that ([M, Ml )ier, , ((M, M))ier,, ([M*, M*]i)ier, and ((M*, M*)¢)ter,
are F;-adapted, but ([M*, M*];)icr, and ((M*, M*);)icr, are not F;-adapted. The
pairs

(v(dt,dx), (M, M¢)) and (v*(dt,dz), (M*°, M*))

are called the local characteristics of (M;)icr, , cf. [8] in the forward case. Denote by
(M MY, )er, , ((M*?, M*),)er, the conditional quadratic variations of (M{)er,
(Mt*d)tER+7 Wlth

(M, M), — / w2u(dt,dz) and  d(M* MDY, = / (o[2* (dt, dz).
R R

The conditional quadratic variations ((M, M);)ier, , ((M*, M*)¢)ier, of (My)er, and
(M;)ter, satisfy

(M, M)y = (M, M), + (M* M?%),, and (M*, M*), = (M**, M*), + (M**, M),

t € R,. In the sequel, given n, resp. n*, a forward, resp. backward, adapted and suf-
ficiently integrable process, the notation fot NudM,,, Tesp. ftoo nidM,,, will respectively
denote the right, resp. left, continuous version of the indefinite stochastic integral,

i.e. we have

t tt 00 00
/ NudM,, = / NudM, and / . dM, = / e dM,, teR,, dP —a.e.
0 0 t t=

3 Convex concentration inequalities for martingales
In the sequel we assume that
(My)ier, is an F/-adapted, Fi-forward martingale, (3.1)

and

(M )ier, is an Fi-adapted, F;-backward martingale, (3.2)



whose characteristics have the form
v(du,dx) = v,(dx)du and v*(du, dz) = v, (dz)du, (3.3)
and
d(M¢, M®), = |H,|*dt, and d{M*, M*), = |H}|*dt, (3.4)

where (Hy)ier, , (H;)icr, , are respectively predictable with respect to (F;)icr, and
(ft*)t€R+'

Hypotheses (3.1) and (3.2) may seem artificial but they are actually crucial to the
proofs of our main results. Indeed, Theorem 3.2 and Theorem 3.3 are based on
a forward/backward It6 type change of variable formula (Theorem 8.1 below) for
(My, M} )ier, , in which (3.1) and (3.2) are needed in order to make sense of the

integrals
[ o0n s aa,
and :’
/ o (M, + M=, )d* M.
Note that in our main applicatisons (see Sections 4, 5, 6 and 7), these hypotheses are

fulfilled by construction of F; and F;.

Recall the following Lemma.

Lemma 3.1. Let my, ma be two measures on R such that my([x,00)) < ma([z, 00)) <
00, € R. Then for all non-decreasing and my, ma-integrable function f on R we

have
| t@mn) < [ pemain).
If my, my are probability measures then the above property corresponds to stochastic

domination for random variables of respective laws my, ms.

Theorem 3.2. Let
Uu(dz) = zvy,(dx), vi(de) = zv;(dz), wueRy,

and assume that:



i) Uy([z,00)) < 7i([x,00)) < 00, z,u € R, and
i) |H,| < |H}|, dPdu— a.e.
Then we have:
E[p(M; + M;)] < E[p(M, + M7)],  0<s<H{, (3.5)
for all convex functions ¢ : R — R.

Next is a different version of the same result, under L? hypotheses.

Theorem 3.3. Let
Pu(dz) = |z[*vy(dx) + | Hy[*0(dz),  7,(d) = |2V (dx) + [H}[*do(dw),
u € Ry, and assume that:
Uy ([z,00)) < 72 ([x, 00)) < 00, reR, wueR;. (3.6)
Then we have:
E[p(M; + M;)] < E[p(M, + MJ)],  0<s<t, (3.7)
for all convex functions ¢ : R — R such that ¢' is conver.

Remark 3.4. Note that in both theorems, (My)i>o and (M )i>o do not have to be

independent.

In the proof we may assume that ¢ is C? since a convex ¢ can be approximated
by an increasing sequence of C? convex Lipschitz functions, and the results can
then be extended to the general case by an application of the monotone conver-
gence theorem. In order to prove Theorem 3.2 and Theorem 3.3, we apply [to’s

formula for forward/backward martingales (Theorem 8.1 in the Appendix Section 8),

to f(x1,29) = P(x1 + x2):
(M + M) = ¢(M, + M)

t 1 t
+ [ gn s aar,+ 5 [ oon - aane e,
st s
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+ D (O(Mum + M+ AM,) = (M- + M) = AM,¢' (M- + M)
- [t - 5 [t v agdare i),
-2

(@(My + My + A"My) — ¢(My + My, ) — A"M¢" (M, + M)
s<u<t
0 < s <t, where d and d* denote the forward and backward Ito differential, respec-
tively defined as the limits of the Riemann sums

n

D (M — My )¢/ (M, + M, )

=1

and

—_

n—

(Mt? o M%L+1)¢,(Mt?+1 + Mt?H)

o

1=
for all refining sequences {s =t <7 <--- <} =t}, n > 1, of partitions of [s, ]
tending to the identity.

Proof of Theorem 3.2. Taking expectations on both sides of the above It6 formula we

et
Bl (0, + 7)) = Bl + )]+ 38 | [0, 300087 0%, — (017, 307,
w2 ][]0+ 0 ) - 600+ M) — 0 (M 28)d)
][]0+ 0 ) 600+ M) — 0 (a4 D))
= Bip(e+ ) + 38| [ 600+ M — (1]

=1 et ) - 7i(de)i

where
o(x +y) — oly) — v¢'(y)

o(z,y) = . , z,y € R

The conclusion follows from the hypotheses and the fact that since ¢ is convex, the

function = — p(z,y) is increasing in z € R for all y € R. O



Proof of Theorem 3.3. Using the following version of Taylor’s formula

o(y + ) = ¢(y) + x¢' (y) + | /01(1 —7)¢"(y+Ta)dr,  x,y€ER,
which is valid for all C? functions ¢, we get
EWM@+AFH:EWM1+AFM
+ =5 L/‘¢w (M, + M) (| Hol? \f{*|)du]

+oo
+E / / |x\2/ " (M, + M + 7x)drv,(dx)du }

E / /HﬂxP/ ”Nf+AF+wwMﬂ/M@d]

= E[p(M, + M)

iE /01(1—7) / _:°¢~<Mu+M;+m><ﬁu<dx>—ﬁ::(dx))dudT],

and the conclusion follows from the hypothesis and the fact that ¢ is convex implies

that ¢” is non-decreasing. d

Note that if ¢ is C? and ¢” is also convex, then it suffices to assume that 7, is more

convex concentrated than o instead of hypothesis (3.6) in Theorem 3.3.

Remark 3.5. In case |Hy| = |H}| and v, = v/, dPdt-a.e., from the proof of Theo-
rem 3.2 and Theorem 3.3 we get the identity

Elp(M; + M;)] = E[o(M, + M)],  0<s<t, (3.8)
for all sufficiently integrable functions ¢ : R — R.

In particular, Relation (3.8) extends its natural counterpart in the independent in-
crement case: given (Z,)sejo.4, (Zs)se[oﬂg] two independent copies of a Lévy process
without drift, define the backward martingale (Z})scpo.q as Z = Z;_, s € [0,], then
by convolution E[¢(Zs + ZF)] = E[¢(Z;)] does clearly not depend on s € [0, ¢].

Remark 3.6. If ¢ is non-decreasing, the proofs and statements of Theorem 3.2,
Theorem 3.3, Corollary 3.9 and Corollary 3.8 extend to semi-martingales (Mt)teR+,

(M )icr, represented as

+oo

t
Mzm+/%@aMAk:w+ Byds, (3.9)
0
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provided (ou)ier, , (Bt)ier, , are respectively Fy and F; -adapted with ooy < 3y, dPdt-a.e.

Let now (FM)ier,, resp. (FM )icr,, denote the forward, resp. backward, filtration

generated by (Mt)telR+a resp. (Mt*)teR+'

Corollary 3.7. Under the hypothesis of Theorem 3.2, if further E[M}|FM] = 0,
t e Ry, then
Elp(M)] < Elp(M, + M{)],  0<s<t. (3.10)

Proof. From (3.19) we get

Elo (M +M])] = E[p(M; + M;)]
= E[E [¢(M; + M) 7]
> E[¢ (M +E[M;|FM])]
0 < s <t, where we used Jensen’s inequality. U

In particular, if My = E[M,] is deterministic (or FJ! is the trivial o-field), Corol-
lary 3.7 shows that M; — E[M,] is more concentrated than Mg:

Elp(M, — E[M])] < E[p(Mg)], >0

The filtrations (F;)icr, and (F;)ier, considered in Theorem 3.2 can be taken as
Fo=F VvFM, Fr=FMvFM, t € Ry, provided (M;)ier, and (M )er, are in-
dependent. In this case, if additionally we have Mj = 0, then E[M;|FM] = E[M;] =
E[M;] =0,0 <t <T, hence the hypothesis of Corollary 3.7 is also satisfied. However
the independence of (M, M), with (M*, M*),, t € R, is not compatible (except in

particular situations) with the assumptions imposed in Theorem 3.2.
In applications to convex concentration inequalities between random variables (ad-

mitting a predictable representation) and Poisson or Gaussian random variables, the

independence of (M;)ier, with (M} )cr, will not be required, see Sections 4 and 5.
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The case of bounded jumps

Assume now that v*(dt, dz) has the form
v (dt,dx) = A\ 0xdt, (3.11)

where k € Ry and (A\})ier, is a positive F;-predictable process. Let

+oo +o0
AL = / rv(dr), A;t = / 2|2 (de), te Ry,

[e.e] [e.e]

denote respectively the compensator and quadratic variation of the jump part of

(My)ier, , under the respective assumptions

+00 +oo
/ w(dz) < 0o, and / P(dz) < oo, (3.12)

oo o0

te Ry, P-as.

Corollary 3.8. Assume that (M;)iecr, and (M} )icr, have jump characteristics satis-
fying (3.11) and (3.12), that (M,).er, is F;-adapted, and that (M )er, is Fi-adapted.

Then we have:
Elp(M; + M;)] < E[p(Ms + M),  0<s<t, (3.13)

for all convex functions ¢ : R — R, provided any of the three following conditions is

satisfied:
i) 0 < AM, <k, dPdt — a.e., and
|H,| < |H/|, M < kX, dPdt—a.e.,
ii) AM, < k, dPdt — a.e., and
|H,| < |H/|, Ay <KX, dPdt—a.e.,
ii) AM, <0, dPdt — a.e., and
|Hy* + X5, < |Hf? +K°X;, dPdt—a.e.,
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with moreover ¢’ convex in cases ii) and iii).

Proof. The conditions 0 < AM,; < k, AM, < k, AM,; < 0, are respectively equivalent
to 14([0, k]¢) = 0, 14((k,00)) = 0, 14((0,00)) = 0, hence under condition (7), the result
follows from Theorem 3.2-i), and under conditions (i7) — (i7i) it is an application of

Theorem 3.2-ii). O

For example we may take (M;)icr, and (M} )icr, of the form

t t —+o00
M, = M, +/ HydW, +/ / x(p(ds, dx) — vs(dz)ds), t >0, (3.14)
0 0 —00
where (W,)icr, is a standard Brownian motion, and

+oo +o00

M} = H:dW! +k (Zt* —/ )\:ds) : (3.15)
t t

where (W )icr, is a backward Brownian motion and (Z;)icr, is a backward point

process with intensity (A;)cr, . However in Section 5 we will consider an example for

which the decomposition (3.15) does not hold.

The case of point processes

In particular, (M,)cr, and (M;)icr, can be taken as

t t
Mt = MO +/ HdeS +/ Js(dZS — )\SdS), t e R+, (316)
0 0

and
“+o0

—+00
M; = H:dW? + / JHd*ZF — Neds), teRy, (3.17)
t

t
where (W}).er, is a standard Brownian motion, (Z;),cr, is a point process with in-

tensity (Ar)ier,, (W;)ier, is a backward standard Brownian motion, and (Z;)icr,
is a backward point process with intensity (A})ier,, and (Hy)ier,, (Ji)ier,, resp.

(H)ier, » (J] )ier, are predictable with respect to (F¢)er, , resp. (F;)ick, -

In this case, taking
v(dt,dz) = v(dr) = N\dy,(dr)dt  and v*(dt,dr) = v} (dx) = N[0 (dx)dt  (3.18)
in Theorem 3.3 yields the following corollary.
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Corollary 3.9. Let (M;)ier,, (M])ier, have the jump characteristics (3.18) and
assume that (My)ier, is F; -adapted and (M, )er, is Fi-adapted. Then we have:

E[p(M, + M;)] < E[p(M, + M7)],  0<s<H{, (3.19)

for all convex functions ¢ : R — R, provided any of the three following conditions are

satisfied:
i) 0 < Jy < Jf, MdPdt — a.e. and

\H| < |Hf|, N <N Jf, dPdt —ae.,

i) Jy < Jf, MdPdt — a.e., and

|H:| < |H{], M| L2 < MFJF|?, dPdt — ae..

iit) Jy <0< Jf, MdPdt — a.e., and

|H|? + M| )2 < |HP )P+ A Jf)2, dPdt — ace..

with moreover ¢’ convex in cases ii) and iit).
Note that condition 7) in Corollary 3.9 can be replaced with the stronger condition:
i) 0 < Jy < Jf, dPdt — a.e. and

H|<|Hf|, N<A, dPdt—ac.

4 Application to point processes

Let (Wi)ier, and (Z;)ier, be a standard Brownian motion and a point process, gen-
erating a filtration (FM),cg, . We will assume that (W;).eg, is also an F-Brownian
motion and that (Z;)egr, has compensator (\;)ier, with respect to (FM);er, , which
does not in general require the independence of (W,);cr, from (Z;)ier,. Consider F
a random variable with the representation

+00 “+oo
F =E[F] + H dW, + / J(dZ, — \dt), (4.1)
0 0
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where (H,)yer, is a square-integrable FM-predictable process and (J;)ier, is an FM-
predictable process which is either square-integrable or positive and integrable. The-
orem 4.1 is a consequence of Corollary 3.9 above, and shows that the possible depen-
dence of (W})ier, from (Z;)icr, can be decoupled in terms of independent Gaussian
and Poisson random variables. Note that inequality (4.2) below is weaker than (4.3)
but it holds for a wider class of functions, i.e. for all convex functions instead of all

convex functions having a convex derivative.

Theorem 4.1. Let F' have the representation (4.1):

+00 “+oo
F - E[F] + thWt + / Jt(dZt - )\tdt),
0 0

and let N(c), W(3?) be independent random variables with compensated Poisson law

of intensity ¢ > 0 and centered Gaussian law with variance 32 > 0, respectively.

i) Assume that 0 < J, < k, dPdt-a.e., for some k > 0, and let

+o00
/ JiAedt H .
0 [e'e)

El6(F ~ EIF])] < E [0 (W(8) + kN (a/R)) |, (4:2)

+o0
B = H/ |Ht|2dtH and o =
0 00

Then we have

for all convex functions ¢ : R — R.

ii) Assume that J; < k, dPdt-a.e., for some k > 0, and let

“+00 “+00
/ |Ht|2dtH and agz‘/ |Jt\2)\tdtH |
0 00 0 0o

E[6(F — EIF])] < E o (W(8)) + kN (a}/k%)] | (43)

% -|

Then we have

for all convex functions ¢ : R — R such that ¢' is conve.

ii1) Assume that J; <0, dPdt-a.e., and let

+o0 +o00
/ |Ht\2dt+/ |Jt\2)\tdtH .
0 0 0

15
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Then we have
El¢(F — E[F])] < E [¢(W(53))] . (4.4)
for all convex functions ¢ : R — R such that ¢’ is conver.

Proof. Consider the FM-martingale
M, = E[F|FM] - / H,dW, +/ J(dZ, — N\yds), >0,

and let (NS)SGR o (WS)SGR . Tespectively denote a left-continuous standard Poisson
process and a standard Brownian motion which are assumed to be mutually indepen-

dent, and also independent of (FM) g, .

i) — 1) For p = 1,2, let the filtrations (F;)er, and (F;)icr, be defined by
F = fé\g V U(Wg}g — VAV\/};(S), Nag/kp NUp yEe S 2 t},
and F, = o(W,, Ny : s>0)VFM teR,, and let
M; =Wz = Wiz + k(Nag e — Nyzojue) — (ab = UP(1) /R, (4.5)
where
t t
= / |H,[’ds and UP(t) = / JPAsds, P—a.s., s>0.
0 0

Then (M} )ier, satisfies the hypothesis of Corollary 3.9—i) — ii), as well as the con-
dition E[M?|FM] = 0, t € Ry, with H* = H,, J* = k, \* = JP\,/k?, dPds-a.c.,

s

hence
Elo(M:)] < E[o(Mj)],

and letting ¢ go to infinity we obtain (4.2) and (4.3), respectively for p = 1 and p = 2.

iii) Let
Mg =Wz — Wy, (4.6)
where

Usz(s) = / |H,| du—l—/ | Ju)*Audu, P —a.s.
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Then (M )ier, satisfies the hypothesis of Corollary 3.9—iii) with |H:|> = |H|* +
|J|2As and \* = J* = 0, dPds-a.e., hence

Elp(My)] < E[p(Mg)],

and letting ¢ go to infinity we obtain (4.4). O

Remark 4.2. The proof of Theorem 4.1 can also be obtained from Corollary 3.8.

Proof. Let
pldt,de) = Y Sy(dt,dr),  w(dz) = N\dy,(d).

AZs#0
i) —it) In both cases p = 1,2, let (]:t)teR+, (F#)ter, and (M} )ier, be defined in (4.5),
with V2(t) = [) |H,[?ds and U2(t) = [y |J,|Pds, P-a.s., t > 0. Then (M;)cr, satisfies
the hypothesm of Corollary 3.8—1 ) —i1), with HY = Hy, vi = |Js|P/kP, dPds-a.e.

iii) Let (M?)ser, be defined as in (4.6), and let Ui(s) = [; |Hu|*du + [ |Ju[*du,
|H*|* = |H,|* + | Js|* and v = 0, dPds-a.e. O

In the pure jump case, Theorem 4.1-ii) yields

2 k k
P(Mp > z) < exp (% — (%jt%) log (1—1— a_?;)) < exp (—%log <1+ y)) ,
2 o5

y > 0, with a2 = ||(M, M)7||e, cf. Theorem 23.17 of [9], although some differences
in the hypotheses make the results not directly comparable: here no lower bound is
assumed on jump sizes, and the presence of a continuous component is treated in a

different way.

The results of this section and the next one apply directly to solutions of stochastic

differential equations such as
dXt = a(t, Xt)th + b(t, Xt)(dZt - )\tdt),

with Hy = a(t, Xy), Jy = b(t, Xy), t € Ry, for which the hypotheses can be formulated
directly on the coefficients a(-, ), b(-,-) without explicit knowledge of the solution.

17



5 Application to Poisson random measures

Since a large family of point processes can be represented as stochastic integrals with
respect to Poisson random measures (see e.g. [7], Section 4, Ch. XIV), it is natural
to investigate the consequences of Theorem 3.2 in the setting of Poisson random

measures. Let o be a Radon measure on R?, diffuse on R?\ {0}, such that o({0}) = 1,

/ (2P A D)o (dz) < oo,
R4\ {0}

and consider a random measure w(dt, dz) of the form

and

w(dt, dz) = 61, 0, (dt, dx)

1€EN
identified to its (locally finite) support {(¢;,z;)}ien. We assume that w(dt,dz) is
Poisson distributed with intensity dto(dz) on Ry x R4\ {0}, and consider a standard
Brownian motion (W;)ier, , independent of w(dt, dz), under a probability P on €2. Let

Fi=o(W,, w([0,s] x A) : 0<s<t, AcBy(R {0})), te Ry,

where B,(R?\ {0}) = {A € B(R?\ {0}) : o(A) < co}. The stochastic integral of a
square-integrable Fi-predictable process u € L2(2 x R, x R4, dP x dt x do) is written

/0+°° u(t,0)dW,; + /R o) u(t, z)(w(dt,dr) — o(dx)dt), (5.1)

and satisfies the Ito isometry

+OO u(t,0)dW, + - , u(t, z)(w(dt,dz) — o(dx)dt) 2
0 0 R4\ {0}
= F {/OJFOO u?(t, O)dt} +FE |:/]R+><]Rd\{0} uz(t,x)a(dx)dt}
= F |:/R+><Rd uQ(t,a:)a(d:E)dt] : (5.2)

Recall that due to the Ito isometry, the predictable and adapted version of w can be
used indifferently in the stochastic integral (5.1), c¢f. p. 199 of [5] for details. When
u € L*(Ry x R4, dt x do), the characteristic function of

I (u) = /0 T u(t, 0w, + /R g ML ) — o)),

E

18



is given by the Lévy-Khintchine formula

. 1 [T ;
E [6”1(“)] — exp <__/ uz(t, 0)dt + / (em(t’x) — 1 —qu(t, I))U(dx)dt) .
2Jo R xR\ {0}

Theorem 5.1. Let F' with the representation

+00 “+oo

F=E[F]+ H dW, + / / Juo(w(du, dzr) — o(dx)du),
0 0 R4\ {0}

where (Hy)er, € L*(xR4), and (J1.2) t,0)er, xra are Fy-predictable with (Ji ) )er, xra €

LY(Q xRy xRN0}, dP x dt x do) and (J,4)40)er, xre € L*(Q X Ry x R4\ {0}, dP x

dt x do) respectively in (i) and in (it — iit) below.

i) Assume that 0 < J, . < k, dPo(dx)du-a.e., for some k > 0, and let

+00 +oo
/ | H,|*du / Juadu
0 0

Then we have

Bio(F ~ EIF)] < B o (wigt) + k8 ([ 24 8o(an) ).

“\{0}

5 =

, o(dx) —a.e.

oo

, and oq(z) =

o0

for all convex functions ¢ : R — R.

ii) Assume that J, , < k, dPo(dzx)du-a.e., for some k > 0, and let

+oo —+o00
/ \H,2du / Jua Pl
0 0

Then we have

sio(r - sE) < o (Wi +ad ([ o)),

“\{o}

for all convex functions ¢ : R — R such that ¢’ is conver.

5 -

, o(dxr) —a.e.

. and ai(x) :‘

(e} [e.e]

iii) Assume that J,, <0, dPo(dz)du-a.e., and let
+0o0 “+oo
/ |H, [*du + / / | S|P duc (dz)
0 0 R\ {0}

El¢(F - E[F])] < E [¢(W(55))] .

for all convex functions ¢ : R — R such that ¢’ is conver.

g —

[e.e]

Then we have
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Proof. The proof is similar to that of Theorem 4.1, replacing the use of Corollary 3.9
by that of Corollary 3.8. Let

t ¢
M, = M, +/ H,dW, +/ / Juz(w(du,dz) — o(dx)du),
0 RA\{0} J0

generating the filtration (FM),cg, . Here, v4(dx) denotes the image measure of o (dx)
by the mapping z — J;,, t > 0, and p(dt, dr) denotes the image measure of w(dt, dx)
by (s,y) — (s, Jsy), i€

pldt,de) = > 8(e,,(dt, dx).
w({(sy)h=1

i) —ii) For p = 1,2, let the filtrations (F;)ier, and (F;)wcr, be defined by

Fi = FV oWag = Wz + Nogjio = Nygr = 5 2 13),

and
ft:FtMvo—(Ww Ns : 320), te Ry,
and let
My = Wﬁ% - Wsz(t) + k(Nag/kp - NUg(t)/kp) — (b — UP(t)) /K",
where

t t +o0
Vp2(t):/0 |H,|?ds and Ug(t):/o /_Oo 2Pvg(dx)ds, P—as., t>0.

Then (M} )er, satisfies the hypothesis of Theorem 3.2—7) —ii), and also the condition
E[M|FM] =0, te€ Ry, with H} = H,, v} = fj;o 2Pv,(dr), dPds-a.e., hence

Elp(My)] < E[p(Mg)].
Letting ¢ go to infinity we obtain (4.2) and (4.3), respectively for p = 1, 2.
iii) Let

M =Wz = Wiy,
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where

s s +oo
Uz (s) :/0 \Hu\2du+/0 / |z, (dx)du, P—as., s>0.

Then (M )icr, satisfies the hypotheses of Theorem 3.2—iii) with
+o00

HY? = |H? + / 2 Pra(da)

—00

and v} = 0, dPds-a.e., hence

Elp(My)] < E[p(M;g)],

and letting ¢ go to infinity we obtain (4.4). O

In Theorem 4.1, (Z;)er, can be taken equal to the standard Poisson process (N¢)er, ,
which also satisfies the hypotheses of Theorem 5.1 since it can be defined with d = 1
and o(dx) = 1jp1)(z)dx as

N, =w([0,] x [0,1]), t>0.

In other terms, being a point process, (N;)er, is at the intersection of Corollary 3.8

and Corollary 3.9, as already noted in Remark 4.2.

6 Clark formula

In this section we examine the consequence of results of Section 5 when the predictable
representation of random variables is obtained via the Clark formula. We work on a
product

(Q, P) = (Qw x Qx, Pw ® Px),

where (Qy, Py ) is the classical Wiener space on which is defined a standard Brownian

motion (W;)er, and
Qx = {WX(dtadx) = San(dt dz) ¢ (L, z;) € Ry x (R\{0}), i € N} :
ieN
The elements of Qx are identified to their (by assumption locally finite) support

{(t;, ;) }ien, and wx +— wx(dt,dz) is Poisson distributed under Px with intensity
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dto(dz) on R, x R®\ {0}.

The multiple stochastic integral I,,(h,) of h, € L*(R, x R¢ dtdo)°™ can be defined
by induction with

In(hy) =n / Loy (27 hn) AW, + 1 / Lo (77 ) (wx (dt, dz) — o (dac)dt),
0 R

+XRd

where
(T ) (t, 1, - b1, 1) = (b, 21, 1, T, 8, 0) Lo g (B1) < - 1jo, (B,
tyeo st t €ERL, 21, ..., 21, € RY. The isometry property
E [In(hn)2] = "!||hn’|%2(R+de,dt®a)®"
follows by induction from (5.2). Let the linear, closable, finite difference operator
D:L*Q,P) — L*(Q x Ry x R dP x dt x do)
be defined as
Dy o1 (fn) = nlyr (fu(x, 1, ), o(dx)dtdP — a.e.,
cf. e.g. [12], [17], with in particular
Dy oL, (fn) = ndp_1(fn(x,t,0)), dtdP — a.e.,

Recall that the closure of D is also linear, and given F' € Dom(D), for o(dz)dt-a.e.
every (t,x) € Ry x (RY\ {0}) we have

D, . F(ww,wx) = Flow,wx U{(t,2)}) — Flow,wx), P(dw) — a.s.,

cf. e.g. [12], [14], while D, has the derivation property, and

Deof (L(F"), . L(A™) =Y A2, 00k f (LAY, .. L(A™)),

k=1

dtdP-ac., f, ..., f9 e [2R, x RY, dtdo), f € C°(R), cf. e.g. [16].
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The Clark formula for Lévy processes, cf. [13], [16], states that every F' € L*(Q) has

the representation

+o0 +oo
F =E[F] —I—/ E[D; oF|F]dW; —i—/ / E[D; . F|Fs|(wx (ds, dx) — o(dz)ds).
0 0 R4\ {0}
(6.1)
(The formula originally holds for F' in the domain of D but its extension to L*(Q)
is straightforward, cf. [16], Proposition 12). Theorem 5.1 immediately yields the
following corollary when applied to any F € L?(f2) represented as in (6.1).

Corollary 6.1. Let F € L*(2) have the representation (6.1), and assume additionally
that ["* Jaay (o) [E[DsoF|Follo(dz)ds < 00 a.s. in (i) below.

i) Assume that 0 < E[D, ,F|F,] <k, dPo(dx)du-a.e., for some k > 0, and let

+00 too
/ (E[DuoF|F.))*du / E[D, . F|F.)du
0 0

. and al(x):‘ ,

o0 [e.9]

o(dx)-a.e. Then we have

Bio(r Bl < B o (w4 av ([ oan))]. (62)

“\{o}

for all convex functions ¢ : R — R.

i) Assume that E[D,, ,F|F,| < k, dPo(dz)du-a.e., for some k > 0, and let

Y
[e.9]

+oo +o0
=] [ @D.arz [ E@D.rim)

, and a2(x):‘

oo

o(dx)-a.e. Then we have

E[¢p(F — E[F]))] <E [¢ <W(5§) L kN ( /R O‘i(f)a(dx)))] . (6.3)

“\{o}

for all convex functions ¢ : R — R such that ¢’ is conver.

iii) Assume that E[D,, ,F|F,] <0, dPo(dx)du-a.e., and let

+o00 too
2 ) ,
B = ‘ /0 (E[DyoF|Fy,)])*du +/O /Rd\{o} (E[Dy. F|F.)) duo(dz)

e}

Then we have
El¢p(F —E[F))] <E [¢(W(53))], (6.4)

for all convex functions ¢ : R — R such that ¢’ is convez.
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As mentioned in the introduction, from (6.4) we deduce the deviation inequality

2 2 2
PIF-EIF 2 ) < GPOVER >0 < Sow (-2 ). w0

provided E[D, . F|F,] <0, dPo(dz)du-a.e., and

+o0 +oo
/ (E[DuoF | F.))*du + / / (E[Dy . F|F.))?duc(dr) < 83, P —a.s.
0 0 RN\{0}

Similarly from (6.3) we get

2 k
PE-EF >y <ep(L- (242 )log(1+22)),  y>0,  (65)
E\k R a2

provided
E[D, . F|F] <k, dPo(dz)dt— a.e., (6.6)
and

[ (BDLFIF) o <ol Pas,
R4 xR4\ {0}

for some k > 0 and a3 > 0. In [1] this latter estimate has been proved using (modified)

logarithmic Sobolev inequalities and the Herbst method under the stronger condition
|D: . F| <k, dPo(dx)dt-a.e., (6.7)

and

/ |Dy . F|o(dz)dt < a3, P —a.s., (6.8)
Ry xR\ {0}

for some k£ > 0 and a3 > 0. In [19] it has been shown, using sharp logarithmic Sobolev

inequalities, that the condition |D, ,F| < k can be relaxed to
D, F <k, dPo(dz)dt-a.e., (6.9)

which is nevertheless stronger than (6.6).
In the next result, which however imposes uniform almost sure bounds on DF', we

consider Poisson random measures on R?\ {0} instead of R, x R4\ {0}.

Corollary 6.2. i) Assume that 0 < D, F' < (x) < k, dPo(dx) — a.e., where (3(-) :
R\ {0} — [0, k] is deterministic and k > 0. Then for all convex functions ¢

E[p(F —E[F])] <E {qs (kN (/Rd\{()} @a(das)))] :

24
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ii) Assume that |D.F| < B(x) < k, dPo(dz)-a.e., where B(-) : R — [0, k] and k > 0

are deterministic. Then for all convex functions ¢ with a convex derivative ¢’

E[¢(F — E[F])] <E {(p <kN </Rd\{0} 52(;”)0(@)))] .

iii) Assume that —f3(x) < D,F < 0, dPo(dx)-a.e., where f(-) : R — [0,00) is

deterministic. Then for all convex functions ¢ with a convex derivative ¢’ we

E[p(F — E[F]))] <E {(p (W (/Rd\{()} 52(x)a(dx)))} :

Proof. Assume that wx(dt,dz) has intensity 1j1j(s)o(dz)ds on Ry x R®\ {0}, we

we have

have

define the random measure @ on R?\ {0} with intensity o(dz) as
Ox(A) =wx([0,1] x A), A€ By(R*\ {0}).

Then it remains to apply Corollary 6.1 to F(wy,wx) := F(ww, @x). O

In Corollary 6.2, R?\ {0} can be replaced by R? without additional difficulty.

7 Normal martingales

In this section we interpret the above results in the framework of normal martingales.
Let (Z;)ier+ be a normal martingale, i.e. (Z;)icr+ is a martingale such that d(Z, Z); =
dt. If (Z;)ier+ is in L* and has the chaotic representation property it satisfies the
structure equation

d[Z, Z]t - dt + ’YtdZt, t € R+,

where (7¢).er, is a predictable square-integrable process, cf. [6]. Recall that the cases
vs = 0,7 =c € R\ {0}, 75 = 5Zs, B € (—2,0), correspond respectively to Brownian
motion, the compensated Poisson process with jump size ¢ and intensity 1/c?, and to

the Azéma martingales. Consider the martingale

t
M, = M0+/ R.dZ,, (7.1)
0
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where (R, )uer, € L*(2 x Ry) is predictable. We have
d(M®, M), = 10| B[ dt
and

pldt,dz) = > Snan(dt dz),  v(dt,dx) Z Op.n, (dz)d
AZ.H£0 % AZs#0

and the Ito formula, cf. [6]:

M,- + VuRU) - ?b(Mu*)

t
O] = o)+ / Houoy Fud/ (M)A, / 1o & 5 dZ,
1 t " t Mu+ uRu — Mu _ uRu /Mu
+s / ooy | R (M) du + / 1y O+ R m) WRG (L)

¢ € C*(R). The multiple stochastic integrals with respect to (M;)ier, are defined as

+00
fn = n‘ / / / fn tl, e thl thn,

for f, a symmetric function in L?(R"). As an application of Corollary 3.9 we have

the following result.

Theorem 7.1. Let (M,;)er, have the representation (7.1), let (M;)ier, be repre-

sented as
“+o0

+oo

M; = H:d'W; +/ JHd*ZE — Nids),
t t

assume that (M;)er, is an F;-adapted Fi-martingale and that (M} )ier, is an Fi-

adapted F;-martingale. Then we have
E[p(M; + M;)] < E[p(M; + M), 0<s<t,

for all convex functions ¢ : R — R, provided any of the following three conditions is

satisfied:
i) 0 < By < Jf, Lpymoy | Be|? < |H{?, and

Ry
1{%750} 7 < )\*Jt*, dPdt — a.e.,
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i) Ry < Jf, L=y Rel® < [H{|?, and
Losoy R < NP2, dPdt — ace.,
and ¢’ is convez,
i) v Ry <0, |Re|? < |Hf|?, Jf =0, dPdt - a.e., and ¢' is convex.
As above, if further E[M;|FM] =0, t € R, we obtain
Blp(M,)] < Bl(M, + M),  0<s<t

As a consequence we have the following result which admits the same proof as Theo-

rem 4.1.

Theorem 7.2. Let F' € L*(Q, F, P) have the predictable representation
+o0

F =E[F] + R.dZ,.
0

i) Assume that 0 < v Ry < k, dPdt-a.e., for some k > 0, and let

+00 +oo RS
/ Lo, =0y | Rs|*ds and oy = H/ Ly 0y —ds
0 00 0 7

Then we have

B =

oo

E[o(F —E[F))] <E |¢ (W(5) + kN (/b)) |
for all convex functions ¢ : R — R.

ii) Assume that v, R, < k, dPdt-a.e., for some k > 0 and

+o0o
- oin s
0

+oo
and o = H/ Loy | Rsl*ds
00 0

oo

Then for all convex functions ¢ with a convexr derivative ¢', we have

El6(F ~ EIF])] < E [0 (W () + kN (a3/k%)]
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ii1) Assume that v, R, <0 and let

g =

+0o0
/ |R,|*ds
0

Then for all convex functions ¢ with a convex derivative ¢', we have

[e.e]

E[¢(F — E[F])] < E[¢(W(53))]-

Let now

D : L*(Q,F,P)— L*(Q x [0,T],dP x dt)

denote the annihilation operator on multiple stochastic integrals defined as D; =
L,(fn) = nl,(fu(x,1)), t € Ry. The Clark formula for normal martingales [11] pro-
vides a predictable representation for £’ € Dom(D) C L?(Q, F, P), which can be used
in Theorem 7.2: .

F:HH+A E[D,F|F]dZ,

where F; = 0(Zs,0 < s < t).

8 Appendix

In this section we prove the It6 type change of variable formula for forward /backward
martingales which has been used in the proofs of Theorem 3.2 and Theorem 3.3. As-
sume that (€2, F, P) is equipped with an increasing filtration (F;)cr, and a decreasing

filtration (F;)icr, -

Theorem 8.1. Consider (Mt)teR+ an F{-adapted, Fi-forward martingale with right-
continuous paths and left limits, and (M )er, an Fi-adapted, F} -backward martingale

with left-continuous paths and right limits, whose characteristics have the form (3.3)

and (3.4). For all f € C*(R* R) we have

f(MtaMt*) f(M(]?Mg)

2
" of ——(M,-, M})dM, + 0 ‘é(Mu,M*)d<M‘3, Me),
o+ 011 o Oy
of
E f(M,, M) M-, M; AM, M-, M;
+0<u<t ( f( ) a l( ))
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v aji * * * an * *C *C
_ i 8x2(M MM — = o3 =5 (M, My)d{(M*¢, M*),,
_ Z J(My, MY — f(My, M) — AM; "By ——(M,, M) ],
2

o<u<t

where d* denotes the backward Ito differential and (Mf)ier, , (M;)icr, respectively

denote the continuous parts of (My)er, , (M )icr, -

Proof. We adapt the arguments of Theorem 32 of Chapter II in [18], using here the

following version of Taylor’s formula:

f(y1,w2) — f(21, 22) (8.1)

2

1 5 f

§(y1 - $1)2a—x%(9§17$2)
0 1 0?

+(y2 — $2)a—fo(yhy2) - 5(1/2 — $2)2a—aj£(y1,y2)

+R(z,y),

fy2) = flo,m2) = fly,y2) — f(yr, 22)

+
0
= (51— xl)a—i(%,ifz) +

where R(z,y) < o(ly — z|?). Assume first that (Mj)sepo and (M7)sepoq take their
values in a bounded interval, and let {0 = ¢ < 7 < --- <} =1t}, n > 1, be
a refining sequence of partitions of [0,¢] tending to the identity. As in [18], for any

e > 0, consider A.;, B.; two random subsets of [0, ] such that
i) A.; is finite, P-a.s.,
ii) A.¢ U B.; exhausts the jumps of (M;)scpo,q and (M7)se(04
i) D cp., [AM? + [A*M;? < €2,

iv) for each 1 < i < n, exactly one of the two sets A.; N (¢, "] or By N (¢, 7]

is non-empty, P-a.s.

We have

F(My, M) — f(Mo, Mg) = Yo f(My, M) = f(My My )

A eN(tD_ | t1]F#0

+ Z f(Mt?v Mt?) - f(Mt?_lv M;%Ll)?

B: tn(t;,n 127 ]750
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and from Taylor’s formula (8.1) we get

f(My, M;7) = f (Mo, Mg)

= > F(Myp, M) = f(Myp, My )+ f(Myp, My ) = f(My |, My )
Ae tm(tz 1% }7&0
+ Y f(My, Mp) = f(My, My )+ f(Myn, M ) = f(Myn |, M)
Be tﬂ(t;n 177 ];é@
= D F(Mu My) = (Mg, My ) (Mg, My ) = f(Myg,, M)
Ae tm(tz 1274 }7&0

of 0*f

+ Y (M — My 1)6:): (M, Min ) + —|Mt" — My \2
Be 1 N(t7_,,t7]#£0

(Mw , M)

8 f
82

+ > (Min — Mt?_l)a—xz(Mt?u M) — i‘Mtn M P=5

B: tn(t;,n 1274 ]750

(Mt" MZ;)

+ Z R(Mt?v Mt*?v Mt?_ﬁ Mt?—l)
BE tﬂ( i— 1105 ]7&@

= > f(My, M) = f(Myp, My )+ (M, My ) = f(Min |, M)
Ae tn(tz 1 7,}7&@

af |2a2f

+Z Mt" — Mt” (Mt" M:?— )+ _‘Mtn B Mt Oxy 2 (M M%L_l)

i—17

of . 9% f
B Z (Miy — Mt;‘ll)a—xl(Mt?—NMt;i )+ |Mt” — My |2

Ae tm(tz 1 1}7&@

(Mt?,l ? M;Z"Ll )

+§ (M = My )5 (Mg, Myy) = 5| Mjy — My, ‘2(9 s (M, M)
- Y o = M ) (Mg, M) = 5|M, = My ‘20 5 (M, My,)

Ac (7 20140
+ > R(Mp, My, M M ).
BeiN(E, 471740
By the same arguments as in [18] and from conditions (3.1) and (3.2), letting n tend
to infinity we get

f(Mta Mt*) - f(M07 MS‘)

- 3 (s0m) - st o) - ann S, on) - Jamp S

uEAe,t

Lo, ,M*>)
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- > ( F(My, MF2) — f(M,, M) — AM*gf (M, M) + —\A*M*P f(M M, ))
uEA ¢
+ ggi (M, , M*)dM, + ?J;(Mu , M*)d[M, M),
tof i

2L (M, M) dE M — — (M, M )d[M*, M*],,.

(%2 (9x2

Then letting € tend to 0, the above sum converges to

f(MtaM*) f(MOaME)k)
tof

ot a1’1

t g2 f

M,~, M;)dM,

(Mu , M)d[M, M|,
# 30 (1000 = 00010 - Adt g 0 0 - Glann T T v, )
O<u<t l

t~ 6f 1 t an

— My, M )d*M" — — M, M )d|M*, M*],
0 81’2( +) u 2 0 82( )[ ) ]

—Z( (M, M) — f(M,, M*,) — A2 (M, M*) + —\A*M*P f(Mu,Mn)),

w9 u
Lo
0<u<t T

which yields

Lof toRf
o+ 01 o Oy oa?

+ ( (M, M) = (Mo, M) = AMy 5= (M-, M; ))
O<u<t
" af * * *
-/ axz(M MM — =

F(My, M) = f(Mo, M) = | =2 (M-, M*)dM, + (M, M)d{M®, M®),

2
a f(Mu,M*)d<M*C,M*C>u

a 2
- > < F(My, M) — f(M,, M*) — A* M= of
8;1:2

o<u<t

0101 ).

where the integral with respect to ((M*, M*);)icr, is defined as a Stieltjes integral
with respect to a (not necessarily F;-adapted) increasing process. In the general case,

define the stopping times
R,, = inf{u € [0,t] : |[M,| >m}, and R} =sup{u€[0,t] : |[M}| > m}.

The stopped process (Mynr,,, M., R:n)uE[O,t] is bounded by 2m and since 1t6’s formula

is valid for (XFm),ep,q for each m, it is also valid for (X, )uer, . O
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Note that the cross partial derivative

2

(M, M) does not appear in the formula
L10T2

and there is no need to consider or define a bracket of the form d{M, M*),.
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