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Abstract

Torsion free connections and a notion of curvature are introduced on the
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type and energy identities for anticipating stochastic integral operators. The
one-dimensional Poisson case itself gives rise to a non-trivial geometry, a de
Rham-Hodge-Kodaira operator, and a notion of Ricci tensor under the Poisson
measure. The methods used in this paper have been thus far applied to d-
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tangent bundle and associated damped gradient.
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1 Introduction

The path space of Riemannian Brownian motion can be treated as an infinite-dimensional

manifold via the stochastic calculus of variations. Notions of connection and curvature

have been introduced in this context in [8], [9], [10], and path spaces on Lie groups

have been equipped with flat connections, cf. [1], [12]. The Poisson process being an-

other important example of stochastic process, it is natural to study Poisson spaces as

examples of infinite-dimensional manifolds. The Poisson space (or configuration space)

based on a Riemannian manifold is an example of infinite-dimensional nonlinear space

whose geometry has been studied in [4], [25], via an integration by parts formula. In

this paper we construct connections on configuration spaces using methods generally

applied to Lie group valued Brownian motion. Here, the bracket of vector fields maps

couples of functions on M to functions on M , and in this sense it is similar to the

Poisson bracket in differential geometry. The connection constructed in this paper
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has curvature if dim M > 1 but no torsion in general, it is not Riemannian but al-

lows to state energy and Weitzenböck type identities. The following table gathers the

basic elements of this geometry and presents an analogy between finite and infinite

dimensions.

Notation finite dimension infinite dimension

γ point measure on M element of Γ
C∞c (M) test functions on M tangent vectors to Γ

σ volume element of M Riemannian metric on Γ
U∞c (M) stochastic processes indexed by M vector fields on Γ
dΓu process indexed by M ×M exterior derivative of u ∈ U∞c (M)
{·, ·} bracket on U∞c (M)× U∞c (M) bracket of vector fields on Γ
ΩΓ trilinear mapping on U∞c (M)3 curvature tensor on Γ

D̃ damped stochastic gradient gradient on Γ

We make use of the three basic differential structures (Fock, intrinsic and damped) on

configuration spaces, and proceed as follows. In Sect. 2 we recall that the Shigekawa-

Weitzenböck identity can be stated in terms Fock space and thus also applies to Poisson

space. However, on Poisson space such an identity does not involve intrinsic differential

geometric tools, hence the need for other constructions (the same occurs on the space

of Riemannian Brownian motion compared to the flat Wiener space). In Sect. 3 we

present a summary of the construction of connection and Weitzenböck type identity in

the one-dimensional case (M = R+), which has particular properties. Some results in

this section appear later as consequences of the more general framework of the following

sections. Sect. 4 recalls the construction of a differential structure on configuration

space according to [2], [3], [4], [5], and the proof of integration by parts formula via

pointwise identities as in [20]. In Sect. 5 we state the definition of the damped gradient

which will be essential here (for M = R+ this gradient coincides with the gradient of

[6]). Functions on M are viewed as tangent vectors and a connection with vanishing

torsion but non-zero curvature in general is introduced in Sect. 6. This connection is

not Riemannian but it has suitable commutation properties with stochastic integrals,

for this reason it will be called the Markovian connection (a Riemannian and torsion

free Levi-Civita connection is also introduced). The Lie-Poisson bracket {·, ·} acts on

functions on M and we use a notion of differential geometry in continuous indices as

in [8], the indices being elements of M itself. The exterior derivative of differential

one-forms (functions on M) is defined in Sect. 8. The Markovian connection is used

to state energy identities and bounds for the damped anticipating integral operator δ̃

in Sect. 9. The one-dimensional case is given again particular attention in Sect. 10,
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where a de Rham-Hodge-Kodaira operator and a notion of Ricci curvature are defined.

Sect. 11 is devoted to a linear numerical model of Poisson space in which the Ricci

tensor vanishes.

2 Shigekawa identity in Fock space

Let Φ(L2(M)) denote the Fock space with inner product 〈·, ·〉Φ, on a L2 space L2(M,dσ).

Let D : Φ(L2(M)) −→ Φ(L2(M))⊗ L2(M) and δ : Φ(L2(M))⊗ L2(M) −→ Φ(L2(M))

denote the unbounded gradient and Skorokhod integral operator on Φ(L2(M)), which

are mutually adjoint. An energy identity for δ can be stated as

‖δ(u)‖2
Φ = ‖u‖2

Φ⊗L2(M) +

∫
M

∫
M

〈Dxu(y), Dyu(x)〉Φσ(dx)σ(dy),

see e.g. Th. 4.1. of [18]. Its proof being dependent only on the Fock structure, this

identity makes sense on flat Wiener space via the Wiener-Itô isomorphism and can be

rewritten as a Weitzenböck identity, cf. [26]:

‖δ(u)‖2
Φ +

1

2

∫
M

∫
M

‖Dxu(y)−Dyu(x)‖2
Φσ(dx)σ(dy) = ‖u‖2

Φ⊗L2(M) + ‖Du‖2
Φ⊗L2(M)⊗2 .

(2.1)

Using the Wiener-Itô isomorphism, this identity applies on Poisson space as well as on

the flat Wiener space of Rd-valued Brownian motion, but in the latter case it is not

directly relevant to Riemannian Brownian motion for which a special geometry has to

be developed via intrinsic differential operators, cf. [9]. The situation in the Poisson

case is similar. Let Γ denote the configuration space on a metric space M , that is the

set of Radon measures on M of the form

Γ =

{
γ =

i=n∑
i=1

εxi : (xi)
i=n
i=1 ⊂M, xi 6= xj ∀i 6= j, n ∈ N ∪ {∞

}
,

where εx denotes the Dirac measure at x ∈M , with the vague topology and associated

σ-algebra, cf. [4]. Let σ be a diffuse Radon measure on M , and let P denote the

Poisson measure with intensity σ on Γ. Under the Wiener-Itô identification of Poisson

space and Fock space, D is a finite difference operator, cf. e.g. [15]:

DxF (γ) = F (γ + (1− γ({x}))εx)− F (γ), x ∈M, γ ∈ Γ,

for measurable F : Γ −→ R, and δ acts as a compensated Poisson stochastic integral,

in particular if h ∈ C∞c (M) is deterministic,

δ(h)(γ) =

∫
M

hdγ −
∫
M

hdσ =
∑

{x∈M : γ({x})=1}

h(x)−
∫
M

h(x)σ(dx), h ∈ C∞c (M).
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Definition 2.1 Let S denote the space of cylindrical functionals of the form

F (γ) = f

(∫
M

u1dγ, . . . ,

∫
M

undγ

)
, u1, . . . , un ∈ C∞c (M), f ∈ C∞b (Rn). (2.2)

Definition 2.2 Let U∞c (M), resp. U∞b (M), denote the space of smooth vector fields

of the form

v(γ, x) =
i=n∑
i=1

Fi(γ)hi(x), (γ, x) ∈ Γ×M, Fi ∈ S, (2.3)

hi ∈ C∞c (M), resp. hi ∈ C∞b (M), i = 1, . . . , n.

In general for h ∈ U∞c (M) we have

δ(h)(γ) =

∫
M

h(γ \ {x}, x)γ(dx)−
∫
M

hdσ,

cf. e.g. [19]. As in the Brownian case, we are interested in isometry formulas that di-

rectly involve intrinsic differential operators on Γ. For this we will need a differentiable

structure on M .

3 The one-dimensional case

In this section we introduce the construction of connection, covariant derivative and

Weitzenböck type identities for a Poisson random measure on M = R+, and we make

a complete use of the particularities of the one-dimensional case, where the curvature

of Γ vanishes. Some results of this section will be consequences of the more general

framework developed in the next sections for Riemannian manifolds. Here, every con-

figuration γ ∈ Γ can be viewed as the ordered sequence γ = (Tn)n≥1 of jump times

of a standard Poisson process (Nt)t∈R+ on R+. Let S denote the space of cylindrical

functionals of the form

F = f(T1, . . . , Tn), f ∈ C∞b (Rn). (3.1)

Let D̂ be the intrinsic gradient operator defined as

D̂tF =
i=n∑
i=1

1{t=Ti}∂if(T1, . . . , Tn), dNt − a.e.,

i.e.

D̂uF = 〈D̂F, u〉L2(R+,dN) =

∫ ∞
0

u(t)D̂tFdNt =
i=n∑
i=1

u(Ti) ∂if(T1, . . . , Tn)

=
d

dε
f(T1 + εu(T1), . . . , Tn + εu(Tn))|ε=0,

4



u ∈ C∞c (R+). We have if t = Tk:

D̂tF = ∂kf(T1, . . . , Tn) =
∂

∂s
f(T1, . . . , Tk−1, s, Tk+1, . . . , Tn)|s=Tk =

∂

∂s
DsF (γ\{s})|s=Tk ,

hence for v ∈ C∞0 (R+) := {f ∈ C∞c (R+) : f(0) = 0}:

〈D̂F, v〉L2(R+,dN) = δ(v∂DF ) +

∫ ∞
0

∂tDtFv(t)dt = δ(v∂DF )−
∫ ∞

0

v̇(t)DtFdt, (3.2)

which implies the integration by parts formula by taking expectations:

E
[
〈D̂F, v〉L2(R+,dN)

]
= −E

[∫ ∞
0

v̇(t)DtFdt

]
= −E[Fδ(v̇)], v ∈ C∞0 (R+),

F ∈ S. The damped gradient D̃ is defined as

D̃tF = −
i=n∑
i=1

1[0,Ti](t)∂if(T1, . . . , Tn), dt− a.e., (3.3)

i.e.

D̃uF = 〈u, D̃F 〉L2(R+) = 〈ũ, D̂F 〉L2(R+,dNt) = D̂ũF,

with ũ(t) = −
∫ t

0
u(s)ds, t ∈ R+. We denote by δ̃ : L2(Γ× R+) −→ L2(Γ) the closable

adjoint of D̃, which satisfies

E[F δ̃(u)] = E[〈D̃F, u〉L2(R+,dt)], F ∈ S, u ∈ U∞c (R+).

If u ∈ C∞c (R+) then

E[F δ̃(u)] = E[〈D̃F, u〉L2(R+,dt)] = E[〈D̂F, ũ〉L2(R+,dN)] = −E[Fδ(∂ũ)] = E[Fδ(u)].

In particular, δ̃ coincides with the compensated Poisson stochastic integral on the

adapted square-integrable processes. Given u ∈ U∞c (R+) we define the covariant deriva-

tive ∇Γ
uv ∈ U∞b (R+) of the vector field v =

∑i=n
i=1 Fihi ∈ U∞c (R+) as

∇Γ
uv(t) =

i=n∑
i=1

hi(t)D̃uFi − Fih′i(t)
∫ t

0

u(s)ds, t ∈ R+. (3.4)

In particular,

∇Γ
uv(t) = v̇(t)ũ(t), t ∈ R+, u, v ∈ C∞c (R+),

and

∇Γ
uF (vG) = FvD̃uG+ FG∇Γ

uv, u, v ∈ C∞c (R+), F,G ∈ S.
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Letting

∇Γ
s v(t) =

i=n∑
i=1

hi(t)D̃sFi − Fih′i(t)1[0,t](s), s, t ∈ R+,

we have

∇Γ
uv(t) =

∫ ∞
0

u(s)∇Γ
s v(t)ds, t ∈ R+, u, v ∈ U∞c (R+).

Lemma 3.1 We have

D̃uD̃v − D̃vD̃u = D̃∇Γ
uv−∇Γ

vu
, u, v ∈ U∞c (R+).

Proof. Since D̃ is a derivation it suffices to consider F = Tn.

i) We have for u, v ∈ C∞c (R+):

(D̃uD̃v − D̃vD̃u)Tn = −D̃u

∫ Tn

0

v(s)ds+ D̃v

∫ Tn

0

u(s)ds

= v(Tn)

∫ Tn

0

u(s)ds− u(Tn)

∫ Tn

0

v(s)ds

=

∫ Tn

0

(
v′(t)

∫ t

0

u(s)ds− u′(t)
∫ t

0

v(s)ds

)
dt

= D̃∇Γ
uv−∇Γ

vu
Tn.

ii) If u, v ∈ C∞c (R+) and F,G ∈ S,

(D̃uF D̃vG − D̃vGD̃uF )Tn = FD̃uGD̃vTn −GD̃vFD̃uTn + FG(D̃uD̃v − D̃vD̃u)Tn

= D̃wTn,

with

w = FvD̃uG−GuD̃vF + FG(v̇ũ− u̇ṽ) = ∇Γ
uF (vG)−∇Γ

vG(uF ).

�

Definition 3.1 The Lie bracket {u, v} of u, v ∈ C∞c (R+), is defined to be the unique

element of C∞c (R+) satisfying (D̃uD̃v − D̃vD̃u)F = D̃wF , F ∈ S.

The bracket {u, v} is defined for u, v ∈ U∞c (R+) with

{Fu,Gv}(x) = FG{u, v}(x) + v(x)FD̃uG− u(x)GD̃vF, x ∈M,

u, v ∈ C∞c (M), F,G ∈ S. The next proposition is a consequence of Lemma 3.1 and

Def. 3.1.
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Proposition 3.1 The Lie bracket {u, v} of u, v ∈ U∞c (R+) satisfies

{u, v} = ∇Γ
uv −∇Γ

vu,

i.e. the connection defined by ∇Γ has a vanishing torsion.

Proposition 3.2 The curvature tensor ΩΓ : U∞c (R+)×U∞c (R+)×U∞c (R+) −→ U∞c (R+),

of the connection ∇Γ vanishes on U∞c (R+), i.e.

ΩΓ(u, v)h = [∇Γ
u,∇Γ

v ]h−∇Γ
{u,v}h = 0, u, v, h ∈ U∞c (R+),

and U∞c (R+) is a Lie algebra under the bracket {·, ·}.

Proof. We have

ΩΓ(uF, vG)(hH) = FGh([D̃u, D̃v]− D̃{u,v})H + FGHΩΓ(u, v)h = FGHΩΓ(u, v)h,

h, u, v,∈ C∞c (R+), F,G,H ∈ S. Hence it suffices to show that ΩΓ(u, v)h = 0, h, u, v ∈
C∞c (R+). We have

[∇Γ
u,∇Γ

v ]h = ũ
˙︷︸︸︷
∇Γ
vh− ṽ

˙︷︸︸︷
∇Γ
uh = ũ

˙︷︸︸︷
ṽḣ − ṽ

˙︷︸︸︷
ũḣ = −ũvḣ+ ũṽ ˙̇h+ ṽuḣ− ṽũ ˙̇h,= −ũvḣ+ ṽuḣ,

and

∇Γ
{u,v}h = ∇Γ

ũv̇−ṽu̇h = ( ˜ũv̇ − ṽu̇)ḣ = (uṽ − vũ)ḣ.

The Lie algebra property follows from the vanishing of ΩΓ. �

The exterior derivative dΓu of a smooth vector field u ∈ U∞c (R+) is defined from

〈dΓu, h1 ∧ h2〉L2(R+)∧L2(R+) = 〈∇Γ
h1
u, h2〉L2(R+) − 〈∇Γ

h2
u, h1〉L2(R+),

h1, h2 ∈ U∞c (R+). We have

dΓu(s, t) =
1

2
(∇Γ

su(t)−∇Γ
t u(s)), s, t ∈ R+,

and the relation

‖dΓu‖2
L2(R+)∧L2(R+) =

1

2

∫ ∞
0

∫ ∞
0

(∇Γ
su(t)−∇Γ

t u(s))2dsdt, (3.5)

u ∈ U∞c (R+). We now state a Weitzenböck type identity on configuration space. For

this we will use the commutation relation satisfied by the damped gradient D̃:

D̃uδ̃(v) = δ̃(∇Γ
uv) + 〈u, v〉L2(R+), u, v ∈ C∞c (R+), (3.6)
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which can be proved as follows:

D̃uδ̃(v) = D̃u

∞∑
k=1

v(Tk) = −
∞∑
k=1

v′(Tk)

∫ Tk

0

u(s)ds

= −δ̃
(
v(·)

∫ ·
0

u(s)ds

)
−
∫ ∞

0

v′(t)

∫ t

0

u(s)dsdt

= −δ̃
(
v(·)

∫ ·
0

u(s)ds

)
+

∫ ∞
0

u(t)v(t)dt

= δ̃(∇Γ
uv) + 〈u, v〉L2(R+).

Proposition 3.3 We have for u ∈ U∞c (R+):

E[δ̃(u)2] + E
[
‖dΓu‖2

L2(R+)∧L2(R+)

]
= E[‖u‖2

L2(R+)] + E
[
‖∇Γu‖2

L2(R+)⊗L2(R+)

]
. (3.7)

Proof. We have

E[δ̃(uiFi)δ̃(ujFj)] = E[FiD̃ui δ̃(ujFj)]

= E[FiD̃ui(Fj δ̃(uj)− D̃ujFj)]

= E[FiFjD̃ui δ̃(uj) + Fiδ̃(uj)D̃uiFj − FiD̃uiD̃ujFj]

= E[FiFj〈ui, uj〉L2(R+) + FiFj δ̃(∇Γ
ui
uj) + Fiδ̃(uj)D̃uiFj − FiD̃uiD̃ujFj]

= E[FiFj〈ui, uj〉L2(R+) + D̃∇Γ
ui
uj(FiFj) + D̃uj(FiD̃uiFj)− FiD̃uiD̃ujFj]

= E[FiFj〈ui, uj〉L2(R+) + D̃∇Γ
ui
uj(FiFj) + D̃ujFiD̃uiFj + Fi(D̃ujD̃uiFj − D̃uiD̃ujFj)]

= E[FiFj〈ui, uj〉L2(R+) + D̃∇Γ
ui
uj(FiFj) + D̃ujFiD̃uiFj + FiD̃∇Γ

uj
ui−∇Γ

ui
ujFj]

= E[FiFj〈ui, uj〉L2(R+) + FjD̃∇Γ
ui
ujFi + FiD̃∇Γ

uj
uiFj + D̃ujFiD̃uiFj]

= E

[
FiFj〈ui, uj〉L2(R+) + Fj

∫ ∞
0

D̃sFi

∫ ∞
0

∇Γ
t uj(s)ui(t)dtds

+ Fi

∫ ∞
0

D̃tFj

∫ ∞
0

∇Γ
sui(t)uj(s)dsdt+

∫ ∞
0

ui(t)D̃tFj

∫ ∞
0

uj(s)D̃sFidsdt

]
,

which implies

E[δ̃(u)2] = E[‖u‖2
L2(R+)] + E

[∫ ∞
0

∫ ∞
0

∇Γ
su(t)∇Γ

t u(s)dsdt

]
,

and (3.7) for u =
∑n

i=1 uiFi ∈ U∞c (R+). �

4 Intrinsic differential structure on configuration

space

In this section we work in the general case where M is a Riemannian manifold. We

start by recalling the definition of the intrinsic gradient of [4], Sect. 3, see also [5], p.
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152, and state a short proof of the integration by parts formula. If K is a compact set

such that u1, . . . , un ∈ C∞c (K) and card(γ ∩K) = n, then F (γ) can be represented as

F (γ) = fn(x1, . . . , xn), if γ = {x1, . . . , xn} ∈ Γ, n ≥ 1,

where fn ∈ C∞c (Mn) is symmetric. Let ∇M and divM denote the gradient and diver-

gence on M , let TxM denote the tangent space at x ∈ M , and assume that σ is the

volume element of M , under which divM and ∇M are adjoint:

〈∇Mu, U〉L2(M,dσ;TM,) = 〈u, divMU〉L2(M,σ), U ∈ C∞0 (M ;TM), u ∈ C∞c (M),

where C∞0 (M ;TM) is a space of C∞ vector fields satisfying suitable boundary conditions

for integration by parts (see examples below). Given U ∈ TxM and f ∈ C∞c (M), we

adopt the notation Uf(x) = 〈U, f(x)〉TxM , x ∈M . Let C∞(M ;TM) be the Lie algebra

of C∞ vector fields on M , let Diff(M) denote the group of diffeomorphisms of M , let

(φUt )t∈R+ denote the flow generated by the vector field U ∈ C∞(M ;TM), let φUt (γ)

denote the image measure of γ by φUt , U ∈ C∞(M ;TM) and let D̂ be the gradient

operator defined in [4] as

〈D̂F (γ), U〉L2(M,dγ;TM) = lim
ε→0

F (φUε (γ))− F (γ)

ε

=
i=n∑
i=1

∫
M

Uuidγ ∂if

(∫
M

u1dγ, . . . ,

∫
M

undγ

)
,

U ∈ C∞(M ;TM), i.e.

D̂xF (γ) =
i=n∑
i=1

∇Mui(x) ∂if

(∫
M

u1dγ, . . . ,

∫
M

undγ

)
, x ∈M.

We can also formulate this definition as

D̂xF (γ) =
i=n∑
i=1

1{xi}(x)∇M
i fn(x1, . . . , xn), γ(dx)− a.e.,

with F (γ) = fn(x1, . . . , xn), γ = {x1, . . . , xn} ∈ Γ, n ≥ 1, and ∇M
i is the gradient of

f with respect to its i-th variable. We recall the following explicit expression of D̂ in

terms of the flat gradient D and flat divergence δ, cf. Remark 3 of [24] and Th. 8.2.1

of [20].

Proposition 4.1 We have for V ∈ C∞0 (M ;TM) and F ∈ S:

〈D̂F (γ), V 〉L2(M,dγ;TM) = 〈∇MDF (γ), V 〉L2(M,dσ;TM) + δ(〈∇MDF, V 〉TM)(γ). (4.1)
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Proof. This identity follows from the relations D̂xF (γ) = (∇M
x DxF )(γ \ x) and

δ(u) =

∫
M

u(x, γ \ x)γ(dx)−
∫
M

u(x, γ)σ(dx).

�

Taking expectations on both sides in (4.1), we obtain the integration by parts formula

for D̂, cf. [4]:

E[〈D̂F (γ), V 〉L2(M,dγ;TM)] = E[〈∇MDF, V 〉L2(M,dσ;TM)] = E[Fδ(divMV )], (4.2)

V ∈ C∞0 (M ;TM), F ∈ D. However the gradient D̂ is not satisfactory here, due to the

presence of dγ in Relation (4.1), see Sect. 6 and Prop. 9.1 below. For this reason we

need to define a damped gradient.

5 Damped gradient and tangent bundle

This section recalls the definition and properties of the damped gradient D̃ on config-

uration space, cf. [20], and introduces the corresponding tangent bundle. We assume

that the Laplacian L = divM∇M is invertible on C∞c (M), and that its inverse L−1 is

given by a Green kernel g : M ×M −→ R:

L−1u(x) =

∫
M

g(x, y)u(y)σ(dy), x ∈M, u ∈ C∞c (M).

In general, g(·, y) belongs to the Sobolev space W 1,1(M ;TM), and if M is of dimension

one then g(·, y) ∈ W 1,p(M ;TM) for all p ≥ 1, y ∈M . We define ∂x(y) ∈ TxM as

∂x(y) = ∇M
x g(x, y), σ ⊗ σ(dx, dy)− a.e.

We have ∂x(·) ∈ L1(M ;TM) and define ũ ∈ C∞0 (M ;TM) as

ũ(x) = ∇ML−1u(x) =

∫
M

u(y)∂x(y)σ(dy) ∈ TxM, x ∈M, u ∈ C∞c (M).

Moreover ũ ∈ C∞0 (M) and satisfies

P-i) divM ũ = u, u ∈ C∞c (M), and

P-ii) 〈v, u〉L2(M,dσ) = 〈v, divM ũ〉L2(M,dσ) = 〈∇Mv, ũ〉L2(M,dσ;TM), u, v ∈ C∞c (M),

Examples:
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If M = R+ we set C∞0 (R+;R) = {u ∈ C∞b (R+;R) : u(0) = 0}, g(x, y) = −x ∨ y,

∂x(y) = −1[0,x](y), x, y ∈ R+, and ũ(x) = −
∫ x

0
u(y)dy (cf. Sects. 3 and 10).

If M = Rd we let C∞0 (Rd;Rd) = {u ∈ C∞(Rd;Rd) : limx→∞ u(x) = 0}, with

g(x, y) = 1
2π

log |x− y| if d = 2, and g(x, y) = 1
(d−2)cd

|x− y|1−d if d ≥ 3, where cd

is the volume of the unit ball, i.e.

∂x(y) =
1

2π
|x− y|−2(x1 − y1, x2 − y2) if d = 2,

and

∂x(y) =
1

(d− 2)cd
|x− y|−d(x1 − y1, . . . , xd − yd) if d ≥ 3.

Definition 5.1 The damped gradient of F ∈ S in the direction h ∈ C∞c (M) is D̃hF ∈
L2(Γ, P ), defined as

D̃hF (γ) = D̂h̃F (γ) =
i=n∑
i=1

∫
M

h̃uidγ ∂if

(∫
M

u1dγ, . . . ,

∫
M

undγ

)
, (5.1)

with F as in (2.2).

This description of the gradient would be incomplete without a description of the

tangent bundle of Γ. The space L2(M,dγ), which explicitly depends on the random

element γ ∈ Γ, is a natural candidate as a tangent space to Γ at γ, cf. [4]. However

this choice is compatible with the gradient D̂ which is not damped in the sense of [14]

and is not appropriate to our context, in particular it can not be used to state the

commutation relation of Prop. 9.1 below, and does not seem to lead to Weitzenböck

type identities. Instead of L2(M,dγ) we will choose C∞c (M) as tangent space to Γ. We

choose the trivial tangent bundle to Γ with group Diff(M) and fiber C∞c (M) which is

defined as TΓ = Γ× C∞c (M), with group action

TΓ×Diff(M) −→ TΓ

((γ, u), φ) 7→ (γ, u ◦ φ).

Each stochastic process u ∈ U∞c (M) is identified to a smooth vector field γ 7→ (γ, u(γ, ·)) ∈
TΓ. Let

D̃ : L2(Γ, P ) −→ L2(Γ;L1(M,σ), P )

be defined on S as

D̃yF (γ) =

∫
M

〈∂x(y), D̂xF 〉TxMγ(dx) = 〈∂·(y),∇D̂·F 〉L2(M,γ;TM), y ∈M,
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or

D̃yF (γ) =
i=n∑
i=1

∫
M

∂x(y)ui(x)γ(dx) ∂if

(∫
M

u1dγ, . . . ,

∫
M

undγ

)
, y ∈M. (5.2)

We have

D̃uF =

∫
M

u(y)D̃yFσ(dy), u ∈ C∞c (M), F ∈ S,

and more generally we will let D̃uF = 〈D̃F, u〉L2(M,dσ), u ∈ U∞c (M). We may also write

D̃yF (γ) =
i=n∑
i=1

∂xi(y)fn(x1, . . . , xn), y ∈M, γ = {x1, . . . , xn} ∈ Γ,

with F (γ) = fn(x1, . . . , xn), where the notation ∂xi(y)fn(x1, . . . , xn) denotes the appli-

cation of the derivation ∂xi(y) to the i-th variable of fn.

Definition 5.2 We define the anticipating integral of u ∈ U∞b (M) as

δ̃(u) =
i=n∑
i=1

Fiδ(hi)− 〈D̃Fi, hi〉L2(M,dσ),

if u ∈ U∞c (M) is of the form (2.3).

In particular we have

δ̃(h)(γ) = δ(h)(γ) =

∫
M

hdγ −
∫
M

hdσ, h ∈ C∞c (M).

Proposition 5.1 The operators D̃ : L∞(Γ) −→ L2(Γ;L1(M)) and δ̃ : L2(Γ;L∞(M)) −→
L1(Γ) are mutually adjoint:

E[F δ̃(u)] = E[〈D̃F, u〉L2(M,dσ)], F ∈ S, u ∈ U∞c (M). (5.3)

Proof. For u ∈ C∞c (M) we apply (4.1) to V = ũ ∈ C∞0 (M ;TM) and property P-ii) to

obtain the identity

D̃uF = 〈DF, u〉L2(M,dσ) + δ(ũDF ), F ∈ S. (5.4)

see Prop. 8 of [23] when M = R+. Taking the expectation and using the duality

between D and δ provides (5.3) for u ∈ C∞c (M). If u ∈ U∞c (M) is of the form (2.3)

then δ̃(u) also satisfies (5.3) due to the derivation property of D̃. The closability of

δ̃ follows from the integration by parts formula and the density of S and U∞c (M) in

L2(Γ, P ) and L2(Γ×M,P ⊗ σ). �
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As a consequence, D̃ is closable in the sense that if (Fn)n∈N ⊂ S is bounded in L∞(Γ)

and converges a.s. to 0 and (DFn)n∈N converges to U in L2(Γ;L1(M)), then U = 0. If

U = ∇f is a gradient field, f ∈ C∞c (M), then we have

D̃divMUF = D̂UF, F ∈ S, (5.5)

since

d̃ivMU = ˜divM∇f = L̃f = ∇ML−1Lf = ∇Mf = U.

In general for U ∈ C∞0 (M ;TM), Relation (5.5) does not hold but we have

E[D̃divMUF ] = E[D̂UF ], F ∈ S, U ∈ C∞0 (M ;TM), (5.6)

since from (4.1), and (5.4),

E[D̂UF ] = E[〈∇MDF,U〉L2(M,dσ;TM))] = E[〈DF, divMU〉L2(M,dσ;TM))] = E[D̃divMUF ].

6 Covariant derivative

We define the covariant derivative ∇Γ
u, u ∈ C∞c (M), as

∇Γ
uv(x) = 〈ũ(x),∇Mv(x)〉TxM = ũv(x), x ∈M, v ∈ C∞c (M),

hence ∇Γ
uv ∈ Cb(M). Since ∇Γ

uv depends only on u and ∇Mv, and given its commu-

tation properties with stochastic integrals, cf. Prop. 9.1, this connection will be called

the Markovian connection in reference to [9]. Its definition extends to vector fields.

Definition 6.1 Given u ∈ U∞c (M) we define the covariant derivative ∇Γ
uv ∈ U∞b (M)

of the vector field v ∈ U∞c (M) as

∇Γ
uv(x) =

i=n∑
i=1

hi(x)D̃uFi + Fi∇Γ
uhi(x) = D̃uv(x) + ũv(x), x ∈M, (6.1)

with v as in (2.3).

This definition has an interpretation in a decomposition of the tangent space to TΓ

at u ∈ TΓ in horizontal and vertical subspaces is Q ⊕ C∞0 (M ;TM), where Q =

{(u,−ũ) : u ∈ C∞c (M)}, i.e. (v, V ) = (v,−ṽ) ⊕ (0, V + ṽ), v ∈ C∞c (M), V ∈
C∞0 (M ;TM). The horizontal lift starting from (γ, v) ∈ TΓ of the curve t 7→ φũt (γ)

is t 7→ (φũt (γ), v ◦ φũ−t), the parallel transport τut v : Tφũt (γ)Γ → TγΓ along t 7→ φũt (γ) is
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given by τut v = v ◦ φũt . Given a vector field u ∈ U∞c (M) the covariant derivative ∇Γ
uv

of v ∈ U∞c (M) is

∇Γ
uv(γ, x) = lim

ε→0

τuε v(φũε (γ), x)− v(γ, x)

ε
, x ∈M, γ ∈ Γ.

Relation (6.1) is similar to (2.2) of [12] which uses the Lie bracket of deterministic

vector fields on the space of Brownian paths in a Lie group instead of ũv. We have the

relation

∇Γ
u(Fv)(x) = v(x)D̃uF + F∇Γ

uv(x), x ∈M, u, v ∈ U∞c (M), F ∈ S.

Definition 6.2 We extend naturally ∂x(y) from a derivation on C∞c (M) to a derivation

on U∞c (M), with ∂x(y)(Fh) = F∂x(y)h, F ∈ S, h ∈ C∞c (M), and let

∇Γ
yu(x) =

i=n∑
i=1

hi(x)D̃yFi + Fi〈∂x(y),∇Mhi(x)〉TxM = D̃yv(x) + ∂x(y)v(x), x, y ∈M,

F ∈ S, for u ∈ U∞c (M) of the form (2.3), i.e.

∇Γ
vu(x) =

∫
M

v(y)∇Γ
yu(x)σ(dy), x ∈M, u, v ∈ U∞c (M).

7 Torsion, curvature and Lie-Poisson bracket

The Lie bracket {u, v} of vector fields is normally defined from the commutator [D̃u, D̃v].

We have ũv ∈ C∞c (M), u, v ∈ C∞c (M), and from (4.2) and (5.3),

(D̃uD̃v − D̃vD̃u)

∫
M

hdγ = D̃u

∫
M

ṽhdγ − D̃v

∫
M

ũhdγ

=

∫
M

ũṽhdγ −
∫
M

ṽũhdγ =

∫
M

[ũ, ṽ]hdγ

= 〈[ũ, ṽ],∇Mh〉L2(M,dγ) = D̂[ũ,ṽ]

∫
M

hdγ.

If dim M > 1, [ũ, ṽ] may not be a gradient field, in particular it can not be written as

[ũ, ṽ] = w̃, hence in general there may not exist w ∈ C∞c (M) such that

D̃uD̃v − D̃vD̃u = D̃w. (7.2)

A definition of the Lie bracket {u, v} is nevertheless possible via an equality between

expectations, due to the following Lemma.
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Lemma 7.1 Let u, v, w ∈ C∞c (M). The relation

E[D̃uD̃vF − D̃vD̃uF ] = E[D̃wF ], F ∈ S, (7.3)

holds if and only if w = ∇Γ
uv −∇Γ

vu.

Proof. We have (D̃uD̃v − D̃vD̃u)F = D̂[ũ,ṽ]F , and

E
[
(D̃uD̃v − D̃vD̃u)F

]
= E

[
D̂[ũ,ṽ]F,

]
= E

[
Fδ(divM [ũ, ṽ])

]
= E

[
D̃divM ([ũ,ṽ])F

]
, F ∈ S.

Since the connection on M has no torsion we have:

divM([ũ, ṽ]) = divM(∇M
ũ ṽ −∇M

ṽ ũ).

Let (X1, . . . , Xd) denote a set of normal coordinates at x ∈ M with ũ =
∑j=d

j=1 ũ
jXj,

ṽ =
∑i=d

i=1 ṽ
iXi. We have at x ∈ M : ∇M

Xj
Xi = 0, [Xi, Xj] = [∇M

Xi
,∇M

Xj
] = 0, i, j =

1, . . . , d, and from [16], p. 282,

divM(∇M
ũ ṽ) =

l=d∑
l=1

〈∇M
Xl
∇M
ũ ṽ, Xl〉TxM = 〈

l=d∑
l=1

∇M
Xl

d∑
i,j=1

ũj∇M
Xj

(ṽiXi), Xl〉TxM

=
d∑

i,l=1

(Xlũ
i)(Xiṽ

l) +
l=d∑
l=1

d∑
i,j=1

ũj〈(XlXj ṽ
i)Xi, Xl〉TxM

=
d∑

i,l=1

(Xlũ
i)(Xiṽ

l) +
d∑

i,j=1

ũjXiXj ṽ
i

=
d∑

i,l=1

(Xlũ
i)(Xiṽ

l) +
d∑

i,j=1

ũjXjXiṽ
i

=
d∑

i,l=1

(Xlũ
i)(Xiṽ

l) +
d∑

i,j=1

ũjXj〈∇M
Xi
ṽ, Xi〉TxM ,

=
d∑

i,l=1

(Xlũ
i)(Xiṽ

l) +

j=d∑
j=1

ũjXjdiv(ṽ)

=
d∑

i,l=1

(Xlũ
i)(Xiṽ

l) + ũdiv(ṽ).

Hence

divM([ũ, ṽ]) = divM(∇M
ũ ṽ −∇M

ṽ ũ) = ũdiv(ṽ)− ṽdiv(ũ) = ũv − ṽu = ∇Γ
uv −∇Γ

vu,

and

E
[
(D̃uD̃v − D̃vD̃u)F

]
= E

[
D̃∇Γ

uv−∇Γ
vu
F
]
.
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On the other hand, given w1, w2 ∈ C∞c (M), we note that E[D̃w1F ] = E[D̃w2F ], F ∈ S,

implies in particular for F =
∫
M
hdγ:∫

M

〈w̃1(x),∇Mh(x)〉TxMσ(dx) =

∫
M

〈w̃2(x),∇Mh(x)〉TxMσ(dx),

hence ∫
M

h(x)divM w̃1(x)σ(dx) =

∫
M

h(x)divM w̃2(x)σ(dx),

i.e. 〈h,w1〉L2(M) = 〈h,w2〉L2(M) for all h ∈ C∞c (M) and x ∈M , and w1 = w2. �

This allows to state the following definition.

Definition 7.3 The Lie bracket {u, v} of u, v ∈ C∞c (M) is defined to be the unique

element of C∞c (M) satisfying E[D̃uD̃vF − D̃vD̃uF ] = E[D̃wF ], F ∈ S. The bracket

{u, v} is extended to u, v ∈ U∞c (M) by

{Fu,Gv}(x) = FG{u, v}(x) + v(x)FD̃uG− u(x)GD̃vF, x ∈M, (7.4)

u, v ∈ C∞c (M), F,G ∈ S.

The following is an immediate consequence of Lemma 7.1 and Def. 7.3.

Proposition 7.1 The connection defined by ∇Γ has a vanishing torsion:

{u, v} = ∇Γ
uv −∇Γ

vu, u, v ∈ U∞c (M).

Proof. We have

{Fu,Gv}(x) = FG{u, v}(x)−Gu(x)D̃vF + Fv(x)D̃uG

= FG(∇Γ
uv(x)−∇Γ

vu(x))−Gu(x)D̃vF + Fv(x)D̃uG

= ∇Γ
Fu(Gv)(x)−∇Γ

Gv(Fu)(x), x ∈M, u, v ∈ C∞c (M), F,G ∈ S.

�

The curvature is defined as a trilinear mapping on smooth processes.

Definition 7.4 Let ΩΓ : U∞c (M)× U∞c (M)× U∞c (M) −→ U∞c (M), defined as

ΩΓ(u, v)h = [∇Γ
u,∇Γ

v ]h−∇Γ
{u,v}h, u, v, h ∈ U∞c (M),

denote the curvature tensor of the connection ∇Γ.

We let [·, ·] denotes the commutator of operators.

16



Proposition 7.2 Let u, v ∈ U∞c (M). We have

i) [D̃uF , D̃vG]− D̃{uF,vG} = FG([D̃u, D̃v]− D̃{u,v}), F,G ∈ S,

ii) ΩΓ(uF, vG)(hH) = hFG([D̃u, D̃v]−D̃{u,v})H+HFGΩΓ(u, v)h, h ∈ C∞c (M), u, v ∈
U∞c (M), F,G,H ∈ S,

iii)
∫
M

ΩΓ(u, v)h(x)σ(dx) = 0 if h ∈ C∞c (M), or if h ∈ U∞c (M) and
∫
M
hdσ = 0.

Proof. i) We have

D̃uF (GD̃v)− D̃vG(FD̃u) = GD̃uF D̃v + (D̃uFG)D̃v − (FD̃vGD̃u + (D̃vGF )D̃u),

and

D̃{uF,vG} = FGD̃{u,v} + F (D̃uG)D̃v −G(D̃vF )D̃u.

ii) We have

∇Γ
uF∇Γ

vG(Hh) = ∇Γ
uF (GH∇Γ

vh+GhD̃vH)

= hFD̃u(GD̃vH) + FGD̃vH∇Γ
uh+ F∇Γ

vhD̃u(HG) + FGH∇Γ
u∇Γ

vh

= hFGD̃uD̃vH + hFD̃uGD̃vH + FGD̃vH∇Γ
uh+ FH∇Γ

vhD̃uG

+FG∇Γ
vhD̃uH + FGH∇Γ

u∇Γ
vh,

hence

∇Γ
uF∇Γ

vG(Hh)−∇Γ
vG∇Γ

uF (Hh)

= hFG[D̃u, D̃v]H + hFD̃uGD̃vH + FGD̃vH∇Γ
uh+ FH∇Γ

vhD̃uG+ FG∇Γ
vhD̃uH

+FGH∇Γ
u∇Γ

vh− hGD̃vFD̃uH − FGD̃uH∇Γ
vh−GH∇Γ

uhD̃vF − FG∇Γ
uhD̃vH

−FGH∇Γ
v∇Γ

uh

= hFG[D̃u, D̃v]H + hFD̃uGD̃vH + FGD̃vH∇Γ
uh+ FH∇Γ

vhD̃uG+ FG∇Γ
vhD̃uH

+FGH[∇Γ
u,∇Γ

v ]h− hGD̃vFD̃uH − FGD̃uH∇Γ
vh−GH∇Γ

uhD̃vF − FG∇Γ
uhD̃vH

= hFG[D̃u, D̃v]H + hFD̃uGD̃vH + FH∇Γ
vhD̃uG+ FGH[∇Γ

u,∇Γ
v ]h− hGD̃vFD̃uH

−GH∇Γ
uhD̃vF,

and

∇Γ
{uF,vG}(Hh) = FG∇Γ

{u,v}(Hh) + FD̃uG∇Γ
v (Hh)−GD̃vF∇Γ

u(hH)

= FGH∇Γ
{u,v}h+ FHD̃uG∇Γ

vh−GHD̃vF∇Γ
uh

+FGhD̃{u,v}H + hFD̃uGD̃vH − hGD̃vFD̃uH

= FGH∇Γ
{u,v}h+ FHD̃uG∇Γ

vh−GHD̃vF∇Γ
uh

+FGhD̃{u,v}H + hFD̃uGD̃vH − hGD̃vFD̃uH.
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Hence

[∇Γ
uF ,∇Γ

vG](Hh)−∇Γ
{uF,vG}(Hh) = hFG([D̃u, D̃v]− D̃{u,v})H

+FGH
(
[∇Γ

u,∇Γ
v ]h−∇Γ

{u,v}h
)
,

which implies ii).

iii) We have [∇Γ
u,∇Γ

v ]h(x) = [ũ, ṽ]h(x) x ∈M , u, v, h ∈ C∞c (M), and∫
M

[∇Γ
u,∇Γ

v ]hdσ =

∫
M

[ũ, ṽ]hdσ =

∫
M

hdivM [ũ, ṽ]dσ

=

∫
M

h{u, v}dσ =

∫
M

hdivM {̃u, v}dσ

=

∫
M

{̃u, v}hdσ =

∫
M

∇Γ
{u,v}hdσ, u, v, h ∈ C∞c (M),

hence from ii),
∫
M

ΩΓ(u, v)hdσ = 0, h ∈ C∞c (M), u, v ∈ U∞c (M), and∫
M

ΩΓ(u, v)(hH)dσ =

∫
M

hdσ([D̃u, D̃v]− D̃{u,v})H, h ∈ C∞c (M), H ∈ S,

hence (iii). �

It follows in particular that for h ∈ C∞c (M) we have ΩΓ(uF, vG)h = FGΩΓ(u, v)h. The

relation ∫
M

[∇Γ
u,∇Γ

v ]hdσ =

∫
M

∇Γ
whdσ, h ∈ C∞c (M),

holds if and only if w = {u, v}.

Lemma 7.2 Let u, v ∈ U∞c (M).

i) If ΩΓ(u, v) = 0 on C∞c (M) then ΩΓ(u, v) = 0 on U∞c (M) and

(D̃uD̃v − D̃vD̃u)F = D̃{u,v}F, F ∈ S.

ii) If M = R+ then ΩΓ(u, v) = 0 on U∞c (R+), D̃uD̃v − D̃vD̃u = D̃{u,v} on S, and

U∞c (R+) is a Lie algebra under the bracket {·, ·}.

iii) If u, v ∈ C∞c (M) and F is σ(G)-measurable, then

E[F (D̃uD̃v − D̃vD̃u)G] = E[FD̃{u,v}G], F,G ∈ S.
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Proof. i) We have(
D̃uD̃v − D̃vD̃u

)∫
M

hdγ =

∫
M

[ũ, ṽ]hdγ

=

∫
M

{̃u, v}hdγ +

∫
M

[ũ, ṽ]hdγ −
∫
M

{̃u, v}hdγ

=

∫
M

{̃u, v}hdγ +

∫
M

ΩΓ(u, v)hdγ

= D̃{u,v}

∫
M

hdγ +

∫
M

ΩΓ(u, v)hdγ, u, v ∈ U∞c (M),

hence(
D̃uD̃v − D̃vD̃u

)
F (γ) = D̃{u,v}F (γ)

+
i=n∑
i=1

∂if

(∫
M

h1dγ, . . . ,

∫
M

h1dγ

)∫
M

ΩΓ(u, v)hidγ,

u, v ∈ U∞c (M), F ∈ S. Consequently, ΩΓ(u, v) = 0 on C∞c (M) implies [D̃u, D̃v] = D̃{u,v}

on S, which from Prop. 7.2-ii) implies ΩΓ(u, v) = 0 on U∞c (M).

ii) If M = R+ the relation d̃ivMU = U , U ∈ C∞0 (M ;TM), implies

ΩΓ(uF, vG)h = FGΩΓ(u, v)h = FG
(
[∇Γ

u,∇Γ
v ]−∇Γ

{u,v}
)
h

= FG
(

[ũ, ṽ]−∇Γ
divM [ũ,ṽ]

)
h = 0, h ∈ U∞c (M),

hence ΩΓ(u, v) vanishes on C∞c (M) and it remains to apply i). We also have

{{u, v}, w} = ∇Γ
{u,v}w −∇Γ

w{u, v}

= ∇Γ
{u,v}w −∇Γ

w(∇Γ
uv −∇Γ

vu)

= (∇Γ
u∇Γ

v −∇Γ
v∇Γ

v )w −∇Γ
w(∇Γ

uv −∇Γ
vu), u, v, w ∈ U∞c (R+),

which implies the Jacobi identity: {{u, v}, w}+ {{v, w}, u}+ {{w, u}, v} = 0.

iii) If F is σ(G)-measurable then there is a Borel measurable function f such that

F = f(G), hence

E[F (D̃uD̃v − D̃vD̃u − D̃{u,v})G] = E[f(G)(D̃uD̃v − D̃vD̃u − D̃{u,v})G]

= E

[
(D̃uD̃v − D̃vD̃u − D̃{u,v})

∫ G

0

f(t)dt

]
= 0,

from (7.3), since
∫ G

0
f(t)dt ∈ S. �
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Proposition 7.3 We have for u, v, h ∈ U∞c (M):

D̃h〈u, v〉L2(M,dσ) = 〈u,∇Γ
hv〉L2(M,dσ) + 〈∇Γ

hu, v〉L2(M,dσ) + 〈u, v〉L2(M,hdσ), (7.5)

i.e. the connection ∇Γ is not Riemannian.

Proof. Integrating by parts on M and using property P-ii), we have∫
M

uvhdσ =

∫
M

uvdivM h̃dσ =

∫
M

h̃(uv)dσ

= 〈u, h̃v〉L2(M,dσ) + 〈v, h̃u〉L2(M,dσ)

= 〈u,∇Γ
hv〉L2(M,dσ) + 〈v,∇Γ

hu〉L2(M,dσ),

hence for u, v ∈ C∞c (M), F,G ∈ S and h ∈ U∞c (M),

D̃h〈Fu,Gv〉L2(M,dσ) = 〈uD̃hF,Gv〉L2(M,dσ) + 〈uF, vD̃hG〉L2(M,dσ)

= 〈∇Γ
h(uF ), vG〉L2(M,dσ) + 〈uF,∇Γ

h(vG)〉L2(M,dσ)

+FG

∫
M

uvhdσ.

�

The identity that links ∇Γ to the metric σ is

2〈∇Γ
hu, v〉L2(M,dσ) = D̃h〈u, v〉L2(M,dσ) + D̃u〈h, v〉L2(M,dσ) − D̃v〈h, u〉L2(M,dσ)

+〈{h, u}, v〉L2(M,dσ) + 〈{v, h}, u〉L2(M,dσ) − 〈{u, v}, h〉L2(M,dσ)

+

∫
M

uvhdσ, u, v, h ∈ U∞c (M),

and the connection can be expressed in terms of the trilinear form

G(u, v, h) = 〈{u, v}, h〉L2(M,dσ) +

∫
M

uvhdσ, u, v, h ∈ U∞c (M),

as

〈∇Γ
hu, v〉L2(M,dσ) =

1

2
(G(h, u, v)−G(u, v, h)−G(v, h, u)), u, v, h ∈ U∞c (M).

The bracket {·, ·} maps couples of C∞c functions on M to C∞c functions on M , in this

sense it is similar to the Poisson bracket, to the exception that the Leibniz rule is not

satisfied. Also, this bracket is not local and it is non-vanishing even if dim M = 1.

One may prefer to write

H(u, v, h) = 〈{u, v}, h〉L2(M,dσ), K(u, v, h) =

∫
M

uvhdσ, u, v, h ∈ C∞c (M),
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and

〈∇Γ
hu, v〉L2(M,dσ) =

1

2
(H(h, u, v)−H(u, v, h)−H(v, h, u) +K(u, v, h)),

u, v, h ∈ U∞c (M). The Markovian connection ∇Γ is not Riemannian, for this reason we

may define a Levi-Civita connection ∇̃Γ as

∇̃Γ
uv(x) = ∇Γ

uv(x)− 1

2
u(x)v(x), x ∈M, u, v ∈ U∞c (M).

Proposition 7.4 The connection ∇̃Γ has ΩΓ for curvature tensor, its torsion vanishes,

and it is Riemannian:

D̃h〈u, v〉L2(M,dσ) = 〈u, ∇̃Γ
hv〉L2(M,dσ) + 〈∇̃Γ

hu, v〉L2(M,dσ), u, v, h ∈ U1
c (M). (7.6)

Proof. The vanishing of torsion and (7.6) are obvious from Prop. 7.1 and (7.5).

Concerning the curvature we have for u, v, h ∈ U∞c (M):

∇̃Γ
u∇̃Γ

vh(x) = ∇̃Γ
u(∇Γ

vh(x)− 1

2
h(x)v(x))

= ∇Γ
u∇Γ

vh(x)− 1

2
h(x)∇Γ

uv(x)− 1

2
v(x)∇Γ

uh(x)

−1

2
u(x)∇Γ

vh(x)− 1

4
h(x)u(x)v(x),

and

∇̃Γ
v ∇̃Γ

uh(x) = ∇Γ
v∇Γ

uh(x)− 1

2
h(x)∇Γ

vu(x)− 1

2
u(x)∇Γ

vh(x)

−1

2
v(x)∇Γ

uh(x)− 1

4
h(x)u(x)v(x),

hence

∇̃Γ
v ∇̃Γ

uh(x)− ∇̃Γ
u∇̃Γ

vh(x) = (ΩΓ(u, v)h)(x) +∇Γ
{u,v}h(x)− 1

2
h(x)(∇Γ

uv(x)−∇Γ
vu(x))

= (ΩΓ(u, v)h)(x) +∇Γ
{u,v}h(x)− 1

2
h(x){u, v}(x)

= (ΩΓ(u, v)h)(x) + ∇̃Γ
{u,v}h(x), x ∈M.

�

We have

2〈∇̃Γ
hu, v〉L2(M,dσ) = D̃h〈u, v〉L2(M,dσ) + D̃u〈h, v〉L2(M,dσ) − D̃v〈h, u〉L2(M,dσ)

+〈{h, u}, v〉L2(M,dσ) + 〈{v, h}, u〉L2(M,dσ) − 〈{u, v}, h〉L2(M,dσ),
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u, v, h ∈ U∞c (M), and

〈∇̃Γ
hu, v〉L2(M,dσ) =

1

2
(H(h, u, v)−H(u, v, h)−H(v, h, u)), u, v, h ∈ U∞c (M).

However, unlike the Markovian connection ∇Γ, the Levi-Civita connection ∇̃Γ will not

be used in the sequel because it does not possess suitable commutation properties with

the stochastic integral, cf. Prop. 9.1.

8 Exterior derivative

The exterior derivative dΓF of F ∈ S is the 1-differential form defined as

〈dΓF, h〉L2(M,dσ) = D̃hF, h ∈ C∞c (M).

We identify L2(M) to its dual L2(M)∗ via the scalar product, let

h1 ∧ h2 = (h1 ⊗ h2 − h2 ⊗ h1), h1, h2 ∈ L2(M,dσ),

and let L2(M) ∧ L2(M) denote the space of continuous antisymmetric bilinear forms

on L2(M)⊗ L2(M). The above Lemma allows to set the following definition.

Definition 8.1 Let u ∈ U∞c (M) be a smooth vector field.

i) The exterior product dΓF ∧ u, F ∈ S, is defined from

〈dΓF ∧ u, h1 ∧ h2〉L2(M)∧L2(M) = (D̃h1F )〈u, h2〉L2(M) − (D̃h2F )〈u, h1〉L2(M),

h1, h2 ∈ U∞c (M).

ii) The exterior derivative dΓu of u ∈ U∞c (M) is defined as

〈dΓu, h1 ∧ h2〉L2(M)∧L2(M) = 〈∇Γ
h1
u, h2〉L2(M) − 〈∇Γ

h2
u, h1〉L2(M),

h1, h2 ∈ U∞c (M).

If u, h1, h2 ∈ C∞c (M) do not depend on the random element γ, then

〈dΓu, h1 ∧ h2〉L2(M)∧L2(M) = −〈u, {h1, h2}〉L2(M).

We also have the relations

〈dΓ(Fu), h1∧h2〉L2(M)∧L2(M) = F 〈dΓu, h1∧h2〉L2(M)∧L2(M)+〈dΓF∧u, h1∧h2〉L2(M)∧L2(M),
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F ∈ S, h1, h2, u ∈ U∞c (M), and

〈dΓu, (Fh1) ∧ h2〉L2(M)∧L2(M) = F 〈dΓu, Fh1 ∧ h2〉L2(M)∧L2(M),

F ∈ S, h1, h2, u ∈ U∞c (M). The following relation relies on the symmetry of the

trilinear form (u, v, h) 7→ K(u, v, h) =
∫
M
uvhdσ, u, v, h ∈ U∞c (M).

Proposition 8.1 We have for h1, h2, u ∈ U∞c (M):

〈dΓu, h1 ∧ h2〉L2(M)∧L2(M) = D̃h1〈u, h2〉L2(M) − D̃h2〈u, h1〉L2(M) − 〈u, {h1, h2}〉L2(M).

Proof. We apply Relation (7.5):

D̃h1〈u, h2〉L2(M) = 〈∇Γ
h1
u, h2〉L2(M)+〈u,∇Γ

h1
h2〉L2(M)+

∫
M

h1h2udσ, h1, h2, u ∈ U∞c (M),

and the fact that ∇Γ has no torsion. �

The exterior derivative dΓu can be written in terms of the kernel ∇Γ
xu(y) of Def. 7.3 as

〈dΓu, h1 ∧ h2〉L2(M)∧L2(M) =
1

2

∫
M

∫
M

(∇Γ
xu(y)−∇Γ

yu(x))(h1 ∧ h2)(x, y)σ(dx)σ(dy).

=

∫
M

∫
M

(∇Γ
xu(y)−∇Γ

yu(x))h1(x)h2(y)σ(dx)σ(dy),

u, h1, h2 ∈ U∞c (M). The following Lemma is valid only in dimension one due to the

integrability property of the gradient of the Green kernel.

Lemma 8.1 We have

‖dΓu‖2
L2(M)∧L2(M) =

1

2

∫
M

∫
M

(∇Γ
yu(x)−∇Γ

xu(y))2σ(dx)σ(dy), (8.1)

u ∈ U∞c (M), the right hand side being finite if dim M = 1.

Proof. Using the relation

‖h1 ∧ h2‖L2(M)∧L2(M) = ‖h1‖L2(M)‖h2‖L2(M) =
1√
2
‖h1 ∧ h2‖L2(M2),

we have

‖dΓu‖2
L2(M)∧L2(M) = sup

‖h1∧h2‖L2(M)∧L2(M)≤1

∣∣〈dΓu, h1 ∧ h2〉L2(M)∧L2(M)

∣∣
= sup

‖h1∧h2‖L2(M2)≤
√

2

∣∣〈dΓu, h1 ∧ h2〉L2(M)∧L2(M)

∣∣
=

1

2

∫
M

∫
M

(∇Γ
yu(x)−∇Γ

xu(y))2σ(dx)σ(dy).

�

As a consequence of this Lemma we obtain for u ∈ U∞c (M):

‖dΓu‖2
L2(M)∧L2(M) =

∫
M

∫
M

(∇Γ
yu(x))2σ(dx)σ(dy)−

∫
M

∫
M

∇Γ
yu(x)∇Γ

xu(y)σ(dx)σ(dy).
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9 Commutation relation and energy identity

In this section we obtain energy identities on configuration space and in particular

a bound for the damped anticipating stochastic integral operator δ̃. The following

result follows from Relation (5.4) applied to the first chaos random variable F = δ̃(h),

h ∈ C∞c (M). A direct proof is available in this particular case.

Proposition 9.1 We have the commutation relation

D̃uδ̃(v) = δ̃(∇Γ
uv) + 〈u, v〉L2(M,dσ), u, v ∈ C∞c (M). (9.1)

Proof. We have

D̃uδ̃(v) = D̃u

∫ ∞
0

v(x)γ(dx) =

∫
M

ũvdγ = δ̃(ũv) +

∫
M

ũv(x)σ(dx)

= δ̃(ũv) +

∫
M

v(x)divM ũ(x)σ(dx)

= δ̃(ũv) +

∫
M

u(x)v(x)σ(dx) = δ̃(∇Γ
uv) + 〈u, v〉L2(M,dσ).

�

Given two vector fields U, V ∈ C∞0 (M ;TM), the usual bracket [U, V ] satisfies

D̂[U,V ] = D̂UD̂V − D̂V D̂U ,

however this bracket can not be used to state a commutation relation such as (9.1),

since here, Poisson integrals are naturally defined as integrals of real-valued functions

on M , not of vector fields on M , cf. also Prop. 9.1 above.

Proposition 9.2 Let u be a process of the form u =
∑i=n

i=1 uiFi and assume that for

all i, j = 1, . . . , n, either i) Fi is σ(Fj)-measurable, or ii) ΩΓ(ui, uj) = 0. Then

E[δ̃(u)2] + E

[∫
M

∫
M

D̃yu(x)D̃xu(y)σ(dy)σ(dx)

]
= E[‖u‖2

L2(M,dσ)] + 2E

[∫
M

∫
M

∇Γ
yu(x)D̃xu(y)σ(dy)σ(dx)

]
. (9.2)

Proof. We will show that as in the proof of Th. 4.3 of [7] or Th. 3.3. of [12],

E[δ̃(u)2] = E[‖u‖2
L2(M,dσ)] + 2E

[
n∑

i,j=1

FiD̃∇Γ
uj
uiFj

]
+ E

[
n∑

i,j=1

D̃ujFiD̃uiFj

]
.

The proof of this identity relies on the use of the damped gradient D̃ and on the relation

E[Fi(D̃ujD̃ui − D̃uiD̃uj)Fj] = E[FiD̃{uj ,ui}Fj], (9.3)
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if σ(Fi) = σ(Fj), or D̃ujD̃ui − D̃uiD̃uj = D̃{uj ,ui}, if ΩΓ(uj, ui) = 0, cf. Prop. 7.2. We

have

E[δ̃(uiFi)δ̃(ujFj)] = E[FiD̃ui δ̃(ujFj)]

= E[FiD̃ui(Fj δ̃(uj)− D̃ujFj)]

= E[FiFjD̃ui δ̃(uj) + Fiδ̃(uj)D̃uiFj − FiD̃uiD̃ujFj]

= E[FiFj〈ui, uj〉L2(M,dσ) + FiFj δ̃(∇Γ
ui
uj) + Fiδ̃(uj)D̃uiFj − FiD̃uiD̃ujFj]

= E[FiFj〈ui, uj〉L2(M,dσ) + D̃∇Γ
ui
uj(FiFj) + Fiδ̃(uj)D̃uiFj − FiD̃uiD̃ujFj]

= E[FiFj〈ui, uj〉L2(M,dσ) + D̃∇Γ
ui
uj(FiFj) + D̃uj(FiD̃uiFj)− FiD̃uiD̃ujFj]

= E[FiFj〈ui, uj〉L2(M,dσ) + D̃∇Γ
ui
uj(FiFj) + D̃ujFiD̃uiFj + Fi(D̃ujD̃uiFj − D̃uiD̃ujFj)]

= E[FiFj〈ui, uj〉L2(M,dσ) + D̃∇Γ
ui
uj(FiFj) + D̃ujFiD̃uiFj + FiD̃{uj ,ui}Fj]

= E[FiFj〈ui, uj〉L2(M,dσ) + D̃∇Γ
ui
uj(FiFj) + D̃ujFiD̃uiFj + FiD̃∇Γ

uj
ui−∇Γ

ui
ujFj]

= E[FiFj〈ui, uj〉L2(M,dσ) + FjD̃∇Γ
ui
ujFi + FiD̃∇Γ

uj
uiFj + D̃ujFiD̃uiFj].

On the other hand we have

n∑
i,j=1

(
D̃ujFiD̃uiFj + FjD̃∇Γ

ui
ujFi + FiD̃∇Γ

uj
uiFj

)
=

n∑
i,j=1

D̃ujFiD̃uiFj + 2Fi

∫
M

D̃xFj∇Γ
uj
ui(x)σ(dx)

=
n∑

i,j=1

∫
M

∫
M

D̃yFiui(x)D̃xFjuj(y)σ(dy)σ(dx)

+2
n∑

i,j=1

∫
M

∫
M

FiD̃xFjuj(y)∂x(y)ui(x)σ(dx)σ(dy)

= 2

∫
M

∫
M

∇Γ
yu(x)D̃xu(y)σ(dy)σ(dx)−

∫
M

∫
M

D̃yu(x)D̃xu(y)σ(dy)σ(dx).

�

The following proposition is valid in particular if dim M = 1.

Proposition 9.3 Under the assumptions of Prop. 9.2 we have

E[δ̃(u)2] + E

[∫
M

∫
M

∂x(y)u(x)∂y(x)u(y)σ(dy)σ(dx)

]
= E[‖u‖2

L2(M,dσ)] + E

[∫
M

∫
M

∇Γ
yu(x)∇Γ

xu(y)σ(dy)σ(dx)

]
,
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and

E[δ̃(u)2] + E

[∫
M

∫
M

∂x(y)u(x)∂y(x)u(y)σ(dy)σ(dx)

]
+ E

[
‖dΓu‖2

L2(M)∧L2(M)

]
= E[‖u‖2

L2(M)] + E
[
‖∇Γu‖2

L2(M)⊗L2(M)

]
, u ∈ U∞c (M).

Proof. We use the relation

2

∫
M

∫
M

∇Γ
yu(x)D̃xu(y)σ(dy)σ(dx)−

∫
M

∫
M

D̃yu(x)D̃xu(y)σ(dy)σ(dx) =∫
M

∫
M

∇Γ
yu(x)∇Γ

xu(y)σ(dy)σ(dx)−
∫
M

∫
M

∂x(y)u(x)∂y(x)u(y)σ(dy)σ(dx), (9.4)

and apply Lemma 8.1 and Prop. 9.2. �

If dim M > 1 however, (9.4) becomes an equality between finite terms that are can-

cellations of infinite terms since we only have g(x, ·) ∈ W 1,1(M ;TM), and Prop. 9.3

should be interpreted accordingly. Similarly we have

E[δ̃(u)2] + E

[∫
M

∫
M

(∇Γ
yu(x)− D̃yu(x))(∇Γ

xu(y)− D̃xu(y))σ(dy)σ(dx)

]
= E[‖u‖2

L2(M,dσ)] + E

[∫
M

∫
M

∇Γ
yu(x)∇Γ

xu(y)σ(dy)σ(dx)

]
.

If dim M = 1 we obtain a bound on the anticipating stochastic integral operator δ̃:

E[δ̃(u)2] ≤ E[‖u‖2
L2(M)]+3E

[
‖∇Γu‖2

L2(M)⊗L2(M)

]
+2E

[
‖D̃u‖2

L2(M)⊗L2(M)

]
, u ∈ U∞c (M).

There is a possible formal axiomatization of this construction in order to include simul-

taneously the path group and configuration space cases. For this one needs a damped

gradient written as

D̃uF = DuF + δ(q(u)DF ),

where q(u) is a deterministic differential operator. In the configuration space case,

q(u)f will be the application of the vector field u to the function f on M . In the path

or loop group case, q(u)v will be the bracket [u, v] of two vector fields u, v ∈ L2(R+,G),

see [1], [12], [13], where G denotes the Lie algebra of the Lie group G. In both cases

the determinism of q(u) is linked to the triviality of the tangent bundle. On the path

space on a Riemannian manifold, q(u) involves a stochastic integral of the curvature

tensor on M , cf. [9], [20], hence a different and more complex framework is needed.
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10 De Rham-Hodge-Kodaira operator and Weitzenböck

type identity

In this section we give again a particular attention to the one-dimensional case which

appears to be more closely related to the setting of Lie group valued Brownian paths of

[12]. We consider M = R+ with σ the Lebesgue measure and the integration by parts∫∞
0
u(t)ṽ(t)dt = −

∫∞
0
ũ(s)v(s)ds, u, v ∈ C∞c (R+). The Green function associated to

the problem − d2

dt2
u = f , u(0) = 0, is g(t, s) = −t ∨ s. We have ∂t(s) = −1[0,t](s), and

ũ is the function defined as ũ(t) = −
∫ t

0
u(s)ds, t ∈ R+, u ∈ C∞c (R+). From (5.2) we

have

D̃tF = −
i=n∑
i=1

∞∑
k=1

u̇i(Tk)1[0,Tk](t)∂if

(∫ ∞
0

u1dγ, . . . ,

∫ ∞
0

undγ

)
, t ∈ R+,

where Tk, k ≥ 1, is the position of the k-th particle in the Poisson sample γ. In other

terms, on cylindrical functionals of the form f(T1, . . . , Tn), f ∈ C∞b (Rn), n ∈ N, we

have

D̃tf(T1, . . . , Tn) = −
i=n∑
i=1

1[0,Ti](t)∂if(T1, . . . , Tn), t ∈ R+,

In the one-dimensional case, D̃ is a modification of the gradient of [6], see also [11], and

Sobolev spaces ID2,1 of real-valued functionals are defined by completion of S under

the norm

‖F‖2
2,1 = ‖D̃F‖2

L2(Γ×R+) + ‖F‖2
L2(Γ) = E

[
F (δ̃D̃ + Id)F

]
, F ∈ S.

The Sobolev spaces ID2,1(l2(N)) of l2(N)-valued functionals of [21] rely on a discrete

parameter. In order to define Sobolev spaces of L2(R+)-valued functionals, we need

the notion of covariant derivative. We have

∇Γ
uv(t) =

i=n∑
i=1

hi(t)D̃uFi − Fiḣi(t)
∫ t

0

u(s)ds = D̃uv(t)− v̇(t)

∫ t

0

u(s)ds, t ∈ R+,

and

∇Γ
s v(t) =

i=n∑
i=1

hi(t)D̃sFi − Fiḣi(t)1[0,t](s) = D̃sv(t)− v̇(t)1[0,t](s), s, t ∈ R+,

where v ∈ U∞c (R+) is a smooth vector field as in (2.3): in one dimension, the Poisson

case and the Brownian path group case are formally very close, see [12], although their

geometrical aspects are quite different.
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Corollary 10.1 We have the energy identity

E[δ̃(u)2] = E[‖u‖2
L2(R+)] + E

[∫ ∞
0

∫ ∞
0

∇Γ
su(t)∇Γ

t u(s)dsdt

]
, u ∈ U∞c (R+),

and the Weitzenböck type identity

E
[
δ̃(u)2

]
+ E

[
‖dΓu‖2

L2(R+)∧L2(R+)

]
= E

[
‖∇Γu‖2

L2(R+)⊗L2(R+)

]
+ E

[
‖u‖2

L2(R+)

]
.

Proof. These formulas follow from Props. 9.2, 9.3 and Lemma 7.2, since the relation

∂t(s) = −1[0,t](s) implies ∂t(s)∂s(t) = 0, σ ⊗ σ(ds, dt)-a.e. �

Consider the quadratic form

q(u) = E
[
δ̃(u)2

]
+ E

[
‖dΓu‖2

L2(R+)∧L2(R+)

]
, u ∈ U∞c (R+).

We have

q(u)− E
[
‖∇Γu‖2

L2(R+)⊗L2(R+)

]
= E

[
‖u‖2

L2(R+)

]
.

The interpretation of this relation is that the Ricci tensor RΓ : U∞c (R+) −→ U∞c (R+)

of Γ under the Poisson measure is identity. We define the Sobolev space ID2,1(L2(R+))

of Hilbert-valued functionals to be the completion of U∞c (R+) under the norm

‖u‖2
2,1 = q(u) = E

[
‖u‖2

L2(R+)

]
+ E

[
‖∇Γu‖2

L2(R+)⊗L2(R+)

]
, u ∈ U∞c (R+),

and deduce the following bound for the anticipating stochastic integral operator δ̃:

E
[
δ̃(u)2

]
≤ ‖u‖2

2,1, u ∈ U∞c (R+).

Proposition 10.1 The de Rham-Hodge-Kodaira operator 2 = dd∗+d∗d is self-adjoint

on U∞c (R+), it can be written as 2 = ∇∗∇+ Id, with

(2u)(t) =
i=n∑
i=1

hi(t)δ̃D̃Fi + ḣi(t)

∫ t

0

D̃sFids− ḣi(t)δ̃(Fi1[0,t])

−Fitḧi(t)− Fiḣi(t) + hi(t)D̃tFi + Fihi(t), t ∈ R+,

if u ∈ U∞c (R+) is of the form (2.3). The eigenvalues of 2 are greater than one.

Proof. We have

E[〈∇(Fh),∇(Gv)〉L2(R2
+)]

= E

[∫ ∞
0

∫ ∞
0

(h(t)D̃sF − Fḣ(t)1[0,t](s))(v(t)D̃sG−Gv̇(t)1[0,t](s))dsdt

]
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= E

[
Gδ̃D̃F

∫ ∞
0

h(t)v(t)dt−G
∫ ∞

0

h(t)v̇(t)

∫ t

0

D̃sFdsdt

−F
∫ ∞

0

v(t)ḣ(t)

∫ t

0

D̃sGdsdt+ FG

∫ ∞
0

tḣ(t)v̇(t)dt

]
= E

[
Gδ̃D̃F

∫ ∞
0

h(t)v(t)dt+G

∫ ∞
0

h(t)v(t)D̃tFdt

+G

∫ ∞
0

ḣ(t)v(t)

∫ t

0

D̃sFdsdt−G
∫ ∞

0

v(t)ḣ(t)δ̃(1[0,t]F )dt

−FG
∫ ∞

0

ḧ(t)v(t)tdt− FG
∫ ∞

0

tḣ(t)v(t)dt

]
, F,G ∈ S, h, v ∈ C∞c (R+).

The relation

E[〈2u, u〉L2(R+)] = q(u) ≥ E[〈u, u〉L2(R+)], u ∈ U∞c (R+),

shows that the eigenvalues of 2 are greater than one. �

We also have

‖u‖2
2,1 = q(u) = E[〈u, (Id +∇∗∇)u〉L2(R+)], u ∈ U∞c (R+).

11 Vanishing of the Ricci tensor in Poisson numer-

ical models

A configuration on R+ × [−1, 1]d under the Lebesgue intensity measure can be con-

structed as a collection (τ k0 , τ
k
1 , . . . , τ

k
d ), k ∈ N, of R+×[−1, 1]d-valued random variables

with (τ k0 )k∈N being a family of i.i.d. exponentially distributed random variables rep-

resenting distances between first coordinates of configuration points, and τ k1 , . . . , τ
k
d ,

k ∈ N, denoting i.i.d. uniformly distributed random variables (the marks, or heights

of configuration points). In this manner, the Poisson space can be constructed as

the linear space of sequences RN with σ-field
⊗∞

k=0 B(R) and infinite product measure⊗∞
k=0 µk with either

µk(dt) = 1[0,∞[(t)e
−tdt or µk(dt) =

1

2
1[−1,1](t)dt,

depending on the values of k ∈ N. The k-th coordinate functional e∗k on RN is either

exponentially distributed on R+ or uniformly distributed on [−1, 1], depending whether

e∗k represents an interjump time or a “mark”. This space is a (non-Gaussian) numerical

model in the sense of [17], Ch. 1, Sects. 3 and 4. Let V a space of finite random sequences

(uk)k∈N satisfying suitable boundary conditions for integration by parts, i.e. uk(x) = 0
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for xk = 0 or xk ∈ {−1, 1}, x ∈ RN, according to whether µk is exponential or uniform.

We let ∂ denote the gradient on RN.

Proposition 11.1 We have the Weitzenböck type identity

E[(d∗u)2] + E
[
〈du, du〉l2(N)∧l2(N)

]
= E

[
〈∂u, ∂u〉l2(N)⊗l2(N)

]
, u ∈ V ,

i.e. the Ricci tensor vanishes under the Poisson measure.

Proof. We are in the setting of Ch. 1 of [17], integrating with respect to densities

of the form eϕ(t1,...,tl) =
∏i=l

i=1 e
ϕi(ti) with ϕi(t) = −t or ϕi(t) = 0, i = 1, . . . , l. Let

d0 denote the exterior derivative on Rl and let d∗ϕ = e−ϕ(d0)∗eϕ, 20 = d∗0d0 + d0d
∗
0,

and 2ϕ = d∗ϕdϕ + dϕd
∗
ϕ. Then, both in the exponential and uniform cases we have

Hess(ϕ) = 0 and

2ϕ = 20 + Hess(ϕ) = 20 = ∆.

Hence from Lemma 6.7.7 of [17],

〈d∗ϕ(u), d∗ϕ(u)〉L2(Rl,dµ) + 〈dϕu, dϕu〉L2(Rl,dµ;Rl∧Rl)

= 〈20u, u〉L2(Rl,dµ) = 〈∆u, u〉L2(Rl,dµ) = 〈∂u, ∂u〉L2(Rl,dµ;Rl⊗Rl).

�

We deduce the bound

E[(d∗u)2] ≤ E[‖∂u‖2
l2(N)⊗l2(N)], u ∈ V . (11.1)

Remark. The vanishing of the Ricci tensor in Prop. 11.1 is due to the vanishing of

the second derivative of ϕ, and can also be linked to the linearity of R∞ as a space of

sequences. On the other hand, the existence of curvature on Γ is due to the nonlinearity

of ϕ.

These identities can be rewritten as

E[(d∗u)2] +
1

2
E

[
∞∑

k,l=0

(∂kul − ∂luk)2

]
= E

[
∞∑

k,l=0

∂kul∂kul

]
,

and

E[(d∗u)2] = E
[
〈∂u, (∂u)∗〉l2(N)⊗l2(N)

]
= E

[
∞∑

k,l=0

(−ϕ′kul − ∂kul)(−ϕ′luk − ∂luk)

]
,

u ∈ U∞c (R+). The bound (11.1) has been used in the anticipating Girsanov theorem

on Poisson space, cf. Prop. 3 of [22].
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