Conditionally Gaussian stochastic integrals
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Abstract - We derive conditional Gaussian type identities of the form

T T 1 /7
E [exp <z/ utdBt) / \ut|2dt] = exp <—/ ]ut|2dt>,
0 0 2 Jo

for Brownian stochastic integrals, under conditions on the process (ut).c[o,7) specified us-

ing the Malliavin calculus. This applies in particular to the quadratic Brownian integral
fg ABydBg under the matrix condition ATA% = 0, using a characterization of Yor [6].

Intégrales stochastiques conditionnellement gaussiennes

Résumé - Nous obtenons des identités gaussiennes conditionnelles de la forme

T T 1 (T
E [exp (z/ utdBt> / \ut|2dt] = exp <—/ ]ut|2dt>,
0 0 2 Jo

pour les intégrales stochastiques browniennes, sous des conditions sur le processus (Ut)te[o,T]

exprimées a l'aide du calcul de Malliavin. Ces résultats s’appliquent en particulier a
Iintégrale brownienne quadratique fg AB,dB; sous la condition matricielle ATA%2 = 0, en
utilisant une caractérisation de Yor [6].
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1 Introduction

Let (By)teo,r) be a d-dimensional Brownian motion generating the filtration (F3)scpo,r)-
When A is a d x d skew-symmetric matrix, the identity

E [exp (z /OT ABSdBS) ‘Btl —F [exp (—%/OT ]ABS|2ds> ‘Bt} , (1)

0 <t < T, has been proved in Theorem 2.1 of [1], extending a formula of [7] for the
computation of the characteristic function of Lévy’s stochastic area in case d = 2.

This approach is connected to a result of Yor [6] stating that when ATA? = 0, the
filtration (F})ieor) of t — fg AB,dB; is generated by k independent Brownian mo-
tions, where k is the number of distinct eigenvalues of ATA.

In this Note we derive conditional versions of the identity (1) for the stochastic in-
tegral fOT udB; of an (F;)-adapted process (u)icpo,r) in Theorem 1, under condi-
tions formulated in terms of the Malliavin calculus, using the cumulant-moment for-

T
mula of [3], [4]. In particular we provide conditions for / udB; to be Gaussian
0

T T
N (O, / |ut|2dt) -distributed given / |lu;|2dt, cf. Theorem 2. This holds for exam-
0 0
ple when (u¢)icor) = (AB;)icp,r under Yor’s condition ATA% = 0, cf. Corollary 3.

We also consider a weakening of this condition to AfA? skew-symmetric, provided
that ATA is proportional to a projection, cf. Corollary 6.
2 Conditional characteristic functions

Let D denote the Malliavin gradient with domain /D, ; on the d-dimensional Wiener
space, cf. § 1.2 of [2] for definitions. Taking H = L*([0,T]; R?) for some T' > 0 and u
in the domain Dy 1(H) of D in L*(Q; H), we let

DU Ut —/ / Dtkut Dtk 1Utk) (Dtlutz) uhdtl dtk, t e [O,T], k 2 1.

Theorem 1. Let u € (5, Dr1(H) be an (F;)-adapted process such that
(g, (Du)*ug)ga = 0, tel0, 7], k>1.

E {exp (z /0 TutdBt) ’(|ut\)t€[0ﬂ} — exp (-% /0 T\utIth), 2)

1 /T
provided that 3 / |ug|*dt is exponentially integrable.
0

We have
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Proof. For any F' € IDy; and k > 1, let

T T
F;;F = ﬂ{kZQ}F/ <Ut, (DU)k_2ut>Rddt + / <DtF, (DU)k_lut>Rddt.
0 0

Recall that for any u € IDg;(H) such that I'! --- T 1 has finite expectation for all
li+-+1l<n,k=1,...,n, by Theorem 1 of [3] or Proposition 4.3 of [4] we have

(L) ]-% 3 e O

a=1 Ui+ +la=n
11>1,.,lg>1

for F' € IDy;. Next, for any f € C}(R) and k > 1 we have

b
s ([ )
‘ T b b T b
= tueay [ s ([Cpupae) g ([ ata) [C(00 [ lnPis 0wt o
0 a a 0 a R4
T b b b
— ]l{kZQ}/ || ?dt f </ |ut|2dt) +2f (/ |ut|2dt) / (g, (Du)*ug)gads,
0 a a a
T b
= ]l{lcQ}/ |Ut|2dtf (/ ]ut|2dt) 3 0 S a S b.
0 a

By induction this yields

T a
F;Ll . FZF = ]l{l1:~":la:2} (/ \ut|2dt> F, ll, ey la 2 ]., a 2 ]., (4)
0

for any random variable F' of the form

b1 bm
F:f(/ |ut|2dt,...,/ |ut|2dt>, 0<a; <b; <T, i=1,...,m,

al am

where f € C}(R™), and by (3) and (4) we find
2n)! T "
= (2;;)' E K/O |ut|2dt) F} : (5)

=0 for all n € N. O

T 2n
(/ UtdBt) F
0

2n+1

(/OT utdBt> F

The following result is obtained by an argument similar to the proof of Theorem 1.

E

and F




Theorem 2. Let u € (5, Dr1(H) be an (F;)-adapted process such that

(u, (Du)*u) g = 0, k> 1.

T T 1 T
E {exp (z/ utdBt) / |ut|2dt} = exp (——/ |ut|2dt),
0 0 2 Jo

A
provided that 5/ |ug|*dt is exponentially integrable.
0

We have

In the particular case where w, = Rih, t € [0,T], h € H, where R is a random,
adapted (or quasi-nilpotent) isometry of H, we find that fOT lug|2dt = fOT |(t)|2dt is
deterministic, hence

(u, (Du)u) g — %<(Du)k1u, Diw,wdu =0,  k>1,

T
and Theorem 2 shows that / (R:h)dB; has a centered Gaussian distribution with
0

variance fOT |h(t)|?dt, as in Theorem 2.1-(b) of [5].

T
Theorems 1 and 2 also apply when / |ug|?dt is random, for example when (ut)eefo,m)
0

takes the form w; = g(B;), t € [0,T], where g € C}(R? R?) satisfies the condition
(g(x), (Vg(z))Nrg(x))ga = 0, x € RY, k > 1. Next, we check that this condition is
satisfied on concrete examples based on [6], when g is a linear mapping of the form
g(x) = Az, z € R

Vanishing of AfA?

Applying Theorem 1 to the adapted process (us)icpo,r) := (AB¢)iejo,r) under Yor’s [6]
condition ATA% = 0, by the relation D;B; = 1 4(t)Iza we obtain the vanishing

T T
(u, (Du)*ug)pe = / / (u, (Dyyue) (D, )T+ (Dyyugy ) g, Ypadty - - - dty,
0 0

t tr to
= // / (ABy, (AN AB,)gadt, - - - dty,
0 0 0
0, 0,77

k> 1.

This yields the next corollary of Theorem 1, in which the condition ATA? = 0 includes
2-nilpotent matrices as a particular case.



Corollary 3. Assume that ATA2 = 0. We have

E {exp (z /0 ' ABtdBt) '(|ABt|)te[0,T]} — exp (—% /0 ' |ABt|2dt). (6)

Note that the filtration of (JAB;|)seor) coincides with the filtration (Ff)epo.r] gener-
ated by k independent Brownian motions where k is the number of nonzero eigenvalues
of ATA, cf. Corollary 2 of [6].

3 Skew-symmetric ATA?

When AfA has only one nonzero eigenvalue, i.e. AfA is proportional to a projection,
the condition ATA% = 0 can be relaxed using stochastic calculus, by only assuming
that AA? is skew-symmetric. We start with the following variation of Corollary 2 of

[6]-

Lemma 4. Assume that A'A? is skew-symmetric and ATA has a unique nonzero
eigenvalue \i. Then the processes

1 t AB
Y!.= * dAB;,
"V Jo |AB]

are independent standard Brownian motions.

Proof.  Since A'A is symmetric it can be written as ATA = R'CR, where R is
orthogonal and C'is diagonal, therefore since (RB;).c(o,1] is also a standard Brownian
motion we can assume that A A has the form ATA = (AL fi<k=i<r})1<ki<qa With A; > 0,
1 <i <r. Clearly (Y}*)iepo1) is a standard Brownian motion, and

(ATA2B,, By)

dYY?), =X —— gt = 0.
< )i |AB2v/ )\

' AB,
o |AB]

and Y72 = dBs, tel0,T], (7)

-1/2 r
In addition we have dY;' = |)\/i B Z \:B/dB} and
i=1
2 T
d<Y1 Y1>t = (MB))" +-+ (M B )2
’ ML (B + -+ A (B)))

hence (Y')ieo.77 is also a standard Brownian motion when A\; = -+ = \,. O

bl

The following result relaxes the vanishing hypothesis of Corollary 3.

Corollary 5. Assume that ATA? is skew-symmetric and ATA has a unique nonzero
eigenvalue A\1. Then we have

E {exp (z /0 ' ABtdBt) '(|ABt|)te[o,T]} = exp (-% /0 ' |ABt\2dt). (8)
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Proof. Welet S, := |AB,|*, t € [0, T], and note that by Corollary 2 of [6], the filtration
generated by (JAB;|)ep,r) coincides with the filtration (F})sepo,r) of (Y;')iepo,r- Next,
It6’s formula shows that

t t
S = 2/ ABdAB, + Tr (ATA) t = 2/ VS dY 4+ gt t €[0,77,
0 0

hence (JABy|)iepr is (F})iepm-adapted and therefore independent of (Y?).eqo17,
hence

T T
/ ABtdBt = / |ABt‘ dY?
0 0

is centered Gaussian with variance fOT |AB,|* dt given F}, which yields (8). O

Commutation with orthogonal matrices

Under the assumptions of Corollaries 3 or 5 it follows that

E [exp (z /OT ABtdBt> ‘|ABt|} —F [exp (—%/OT |ABt|2dt) ‘ |ABt|} . (9)

since (|AB|)tejor) and (Y;')epo,r) generate the same filtration on (F}')eejo 7).

Corollary 6. Assume that either ATA? =0, or ATA? is skew-symmetric and ATA has
a unique nonzero eigenvalue. If in addition A commutes with orthogonal matrices,
then we have

E {exp (z /OT ABSdBS) 'ABt] =’ [exp <—%/OT \ABS|2ds) 'ABt} : (10)

0<t<T.
Proof. We check that for any d x d orthogonal matrix R we have

T T
E |:eXp (’l/ ABtdBt) ‘ ABt = R$:| =F {exp <Z/ ABtdBt> ’ ABt = .Z’:| N
0 0

x € R, which shows that

T T
0 0

and similarly for the right hand side, and we conclude by (9). O



Skew-symmetric orthogonal A

We note that when A is skew-symmetric and orthogonal the condition ATA? skew-
symmetric is satisfied as in this case we have (ATA%)T = ATATA = AT = —A = —ATA%
and (10) can be written as

E [exp (z /OT ABSdBS) ‘Btl =F lexp (—%/OT]ABSFds) ‘Bt} , (11)

_01 (1)), in which case ATA = Ip.

has the unique eigenvalue \; = 1 and ATA? = A is skew-symmetric, in which case
we recover the result of [7] which has been used to show that (11) holds when A is
skew-symmetric and not necessarily orthogonal in Theorem 2.1 of [1].

0 <t <T. This holds in particular when A = (
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