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Abstract

We derive conditional Edgeworth-type expansions for Skorohod and Itô in-
tegrals with respect to Brownian motion, based on cumulant operators defined
by the Malliavin calculus. As a consequence we obtain conditional Stein ap-
proximation bounds for multiple stochastic integrals and quadratic Brownian
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1 Introduction

Let (Bt)t∈[0,T ] be a d-dimensional Brownian motion generating the filtration (Ft)t∈[0,T ]

on the Wiener space Ω. It has been shown in Theorem 2.1 of [4], that given BT ,

the stochastic integral
∫ T

0
ABsdBs is Gaussian N

(
0,
∫ T

0
|ABs|2 ds

)
-distributed given∫ T

0
|ABs|2 ds when the d×d matrix A is skew-symmetrix, as an extension of results of

[14] in the case of Lévy’s stochastic area with A =

(
0 1
−1 0

)
. On the other hand, it
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has recently been shown in [12] that the distribution of
∫ T

0
ABsdBs given

∫ T

0
|ABs|2 ds

is also Gaussian N
(

0,
∫ T

0
|ABs|2 ds

)
when A is a 2-nilpotent d × d matrix, in con-

nection with results of [13] showing that the filtration (Fk
t )t∈[0,T ] of t 7→

∫ t

0
ABsdBs

is generated by k independent Brownian motions, where k is the number of distinct

eigenvalues of A>A.

More generally, this type of result has been shown to hold in [12] for stochastic inte-

grals of the form
∫ T

0
utdBt where (ut)t∈[0,T ] is an (Ft)-adapted process, under condi-

tions formulated in terms of the Malliavin calculus, based on the cumulant-moment

formulas of [9], [10]. Namely, sufficient conditions on the process (ut)t∈[0,T ] have been

given for
∫ T

0
utdBt to be Gaussian N

(
0,
∫ T

0
|ut|2dt

)
-distributed given

∫ T

0
|ut|2dt, cf.

Theorem 2 therein.

In this paper, using the Malliavin-Stein method on the Wiener space we derive con-

ditional estimates on the distance between the law of
∫ T

0
utdBt and the Gaussian

N
(

0,
∫ T

0
|ut|2dt

)
distribution given

∫ T

0
|ut|2dt. For this, we rely on conditional Edge-

worth type expansions for random variables represented as the Itô stochastic integral

of (ut)t∈[0,T ] with respect to (Bt)t∈[0,T ], extending results of [11] to a conditional set-

ting. This approach relies on properties of the Skorohod integral operator δ, which

coincides with the Itô stochastic integral with respect to d-dimensional Brownian mo-

tion on the square-integrable adapted processes.

Letting H = L2(R+;Rd), we consider the standard Sobolev spaces of real-valued, resp.

H-valued, functionals IDp,k, resp. IDp,k(H), p, k ≥ 1, for the Malliavin gradient D on

the Wiener space, cf. § 1.2 of [7] for definitions. Recall that the Skorohod operator

δ is the adjoint of the gradient D through the duality relation

E[Fδ(v)] = E[〈DF, v〉H ], F ∈ ID2,1, v ∈ ID2,1(H), (1.1)

and we have the commutation relation

Dtδ(u) = u(t) + δ(Dtu), t ∈ R+, (1.2)
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provided that u ∈ ID2,1(H) and Dtu ∈ ID2,1(H), dt-a.e., cf. Proposition 1.3.2 of [7].

In the sequel we let 〈h, h〉 := 〈h, h〉H and ‖h‖ := ‖h‖H , h ∈ H.

First order conditional duality and expansion

The duality relation (1.1) shows that we have

E [Fδ(u)f(δ(u))] = E [F 〈u, u〉f ′(δ(u))]+E [〈u,DF 〉f(δ(u))]+E [Ff ′(δ(u))〈u, δ(Du)〉] ,

for f ∈ C1b (R), provided that u ∈ ID2,2(H). Applying this relation to F = g(〈u, u〉)
where g : (0,∞) → (0,∞) is in C1b ((0,∞)), under the condition 〈u, (Du)u〉 = 0 we

have

E [Fδ(u)f(δ(u))]

= E [F 〈u, u〉f ′(δ(u))] + E [〈u,D〈u, u〉〉f(δ(u))g′(〈u, u〉)] + E [Ff ′(δ(u))〈u, δ(Du)〉]

= E [F 〈u, u〉f ′(δ(u))] + 2E [〈u, (Du)u〉〉f(δ(u))g′(〈u, u〉)] + E [F 〈u, δ(Du)〉f ′(δ(u))]

= E [F 〈u, u〉f ′(δ(u))] + E [F 〈u, δ(Du)〉f ′(δ(u))] ,

which yields

E|u|[δ(u)f(δ(u))− 〈u, u〉f ′(δ(u))] = E|u|[〈u, δ(Du)〉f ′(δ(u))] , (1.3)

for u ∈ ID2,1(H), F ∈ ID2,1 and f ∈ C1b (R), where

E|u|[F ] := E[F | 〈u, u〉]

denotes the conditional expectation given 〈u, u〉.

Let now N (0, g(‖u‖)) denote a centered Gaussian random variable with variance

g(‖u‖), where g : (0,∞) → (0,∞) is a measurable function. Applying the above

relation (1.3) to the solution fx of the Stein equation

1(−∞,x](z)− Φg(‖u‖)(x) = g(‖u‖)f ′x(z)− zfx(z), z ∈ R, (1.4)

satisfying the bounds ‖fx‖∞ ≤
√

2π/4 and ‖f ′x‖∞ ≤ 1/
√
g(‖u‖), cf. Lemma 2.2-(v)

of [3], yields the conditional expansion

P (δ(u) ≤ x | ‖u‖) = Φg(‖u‖)(x)+E|u|[(g(‖u‖)− 〈u, u〉)f ′x(δ(u))]−E [〈u, δ(Du)〉f ′x(δ(u))] ,
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x ∈ R, around the Gaussian cumulative distribution function Φg(‖u‖)(x), with u ∈
ID2,1(H).

In Section 2 we will expand this approach to Edgeworth type expansion of all orders,

based on a family of cumulant operators that are associated to the process (ut)t∈[0,T ].

We refer to [1], [5], [2] for other approaches to Edgeworth expansions via the Stein

method and the Malliavin calculus.

In Section 3, we derive conditional Stein approximation bounds for the distance be-

tween δ(u) and the Gaussian distribution with variance g (‖u‖) Section 4 treats the

case of double stochastic integrals, which includes the quadratic functional
∫ T

0
ABsdBs

as a particular case.

2 Conditional Edgeworth type expansions

Given u ∈ ID2,1(H) and k ≥ 1, we define the operator composition (Du)k in the

sense of matrix powers with continuous indices, namely, (Du)k denotes the random

operator on H almost surely defined by

(Du)khs =

∫ ∞
0

· · ·
∫ ∞
0

(DtkusDtk−1
utk · · ·Dt1ut2)ht1dt1 · · · dtk, s ∈ R+, h ∈ H,

(2.1)

cf. e.g. § 7 of [10], [9], [8] for details. The adjoint D∗u of Du on H satisfies

〈(Du)v, h〉 = 〈v, (D∗u)h〉, h, v ∈ H,

with 〈·, ·〉 = 〈·, ·〉H , and is given by

(D∗u)vs =

∫ ∞
0

(Dsut)vtdt, s ∈ R+, v ∈ L2(W ;H).

The next proposition reformulates Proposition 2.1 of [11] in a conditional setting

given the random value of 〈u, u〉, whereas the case where 〈u, u〉 is deterministic

(random isometries) has been treated in [11] based on the relation 〈u, (Du)ku〉 =

〈(Du)k−1u,D〈u, u〉〉/2, u ∈ IDk+2,1(H), k ≥ 1.
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Proposition 2.1 Let n ≥ 1 and assume that u ∈ IDk,2(H) for all k = 1, . . . , n + 2

and 〈u, (Du)ku〉 = 0 for k = 1, . . . , n+ 1. Then for all f ∈ Cn+1
b (R) we have

E|u|[δ(u)f(δ(u))] = E|u|
[(
〈u, u〉+ trace(Du)2

)
f ′(δ(u))

]
(2.2)

+
n∑

k=2

E|u|
[
〈D∗u,D((Du)k−1u)〉f (k)(δ(u))

]
+ E|u|

[
〈(Du)nu, δ(Du)〉f (n+1)(δ(u))

]
.

Proof. From Proposition 2.1 of [11] we have

E
[
Fδ(u)f(δ(u))

]
=

n∑
k=0

E
[
f (k)(δ(u))Γu

k+1F
]

+ E
[
F 〈(Du)nu, δ(Du)〉f (n+1)(δ(u))

]
,

(2.3)

where

Γu
k : ID2,1 −→ L2(Ω), k ≥ 1,

is defined for u ∈ IDk,2(H), by Γu
1F := 〈u,DF 〉 and

Γu
kF := F 〈(Du)k−2u, u〉+ F 〈D∗u,D((Du)k−2u)〉+ 〈(Du)k−1u,DF 〉, k ≥ 2.

Next, for F of the form F = g
(∫ T

0
|ut|2dt

)
, g ∈ C1b (R) and k ≥ 1 we have:

Γu
kF

= 1{k=2}〈u, u〉g
(∫ T

0

|ut|2dt
)

+ g′
(∫ T

0

|ut|2dt
)∫ T

0

〈Dt

∫ T

0

|us|2ds, (Du)k−1ut〉Rddt

+ g

(∫ T

0

|ut|2dt
)
〈D∗u,D((Du)k−2u)〉

= 1{k=2}〈u, u〉g
(∫ T

0

|ut|2dt
)

+ 2g′
(∫ T

0

|ut|2dt
)∫ T

0

〈us, (Du)kus〉Rdds

+ 1{k≥2}g

(∫ T

0

|ut|2dt
)
〈D∗u,D((Du)k−2u)〉

= 1{k=2}〈u, u〉F + 1{k≥2}〈D∗u,D((Du)k−2u)〉F. (2.4)

Hence from (2.3) we find

E
[
Fδ(u)f(δ(u))

]
= E

[
F
(
〈u, u〉+ trace(Du)2

)
f ′(δ(u))

]
+

n∑
k=2

E
[
F 〈D∗u,D((Du)k−1u)〉f (k)(δ(u))

]
+ E

[
F 〈(Du)nu, δ(Du)〉f (n+1)(δ(u))

]
,
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where we used the relation

Γu
21 = 〈u, u〉+ 〈D∗u,Du〉H⊗H = 〈u, u〉+ trace(Du)2. (2.5)

�

Proposition 2.1 also covers the following particular settings.

(i) Quasi-nilpotent processes. Given n ≥ 0, when trace(Du)k = 0 for all k =

2, . . . , n+ 1, under the conditions of Proposition 2.1 we have

E|u|[δ(u)f(δ(u))] = 〈u, u〉E|u|[f ′(δ(u))] + E|u|
[
f (n+1)(δ(u))〈(Du)nu, δ(Du)〉

]
.

When trace(Du)k = 0 for all k ≥ 2, this recovers the conditional Gaussian

integration by parts formula

E|u|[δ(u)f(δ(u))] = 〈u, u〉E|u|[f ′(δ(u))] ,

showing that δ(u) has the distribution N
(

0,

∫ T

0

|ut|2dt
)

given

∫ T

0

|ut|2dt. This

setting includes the particular cases where (ut)t∈R+ is an (Ft)t∈R+-adapted pro-

cess, cf. e.g. Lemma 3.5 of [8] and references therein, in which case δ(u) coincides

with the Itô integral of u, cf. Proposition 1.3.11 of [7].

(ii) Multiple stochastic integrals. Taking ut := Im−1(fm(∗, t)), where m ≥ 1 and fm

is a symmetric square-integrable function on Rm
+ , we have δ(u) = Im(fm) and

δ(Dtu) = (m− 1)Im−1(fm(∗, t)) = (m− 1)ut, t ∈ R+. (2.6)

Hence, under the conditions of Proposition 2.1 applied to ut = Im−1(fm(∗, t)),
we get

E|u|[Im(fm)f(Im(fm))]

= 〈u, u〉E|u|[f ′(Im(fm))] +
n∑

k=1

E|u|
[
〈D∗u,D((Du)k−1u)〉f (k)(Im(fm))

]
.

Remark 2.2 By replacing F in Equation (2.4) of the proof of Proposition 2.1 with

F of the form

F = g

(∫ bi

ai

|ut|2dt, . . . ,
∫ bd

ad

|ut|2dt
)
, 0 ≤ ai ≤ bi ≤ T, i = 1, . . . , d,
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where g ∈ C1b (Rd), we can rewrite (2.2) by conditioning with respect to (ut)t∈[0,T ],

under the stronger condition 〈ut, (Du)kut〉Rd = 0, t ∈ [0, T ], k = 1, . . . , n+ 1.

3 Conditional Stein approximation

From now on we work with d = 1 and a one-dimensional Brownian motion (Bt)t∈R+ .

Given h : R → R an absolutely continuous function with bounded derivative, the

functional equation

h(z)− E|u|
[
h
(
Ng(‖u‖)

)]
= g(‖u‖)f ′(z)− zf(z), z ∈ R, (3.1)

has a solution fh ∈ C1b (R) which is twice differentiable and satisfies the bounds

‖f ′h‖∞ ≤ ‖h′‖∞/
√
g(‖u‖) and ‖f ′′h‖∞ ≤ 2‖h′‖∞/g(‖u‖), x ∈ R,

cf. Lemma 1.2-(v) of [6]. Let

d|u|(F,G) = sup
h∈L
|E|u|[h(F )]− E|u|[h(G)] |

denote the Wasserstein distance between the conditional laws of F and G given ‖u‖,
where L denotes the class of 1-Lipschitz functions.

Proposition 3.1 Let u ∈
3⋂

k=1

IDk,2(H), such that 〈u, (Du)u〉 = 〈u, (Du)2u〉 = 0. We

have

d|u|(δ(u),Ng(‖u‖)) ≤
1√

g(‖u‖)
∣∣g(‖u‖)− Var|u|[δ(u)]

∣∣+
2

g(‖u‖)
E|u|[|〈(Du)u, δ(Du)〉|] .

(3.2)

Proof. Applying Proposition 2.1 with n = 1 shows that

E|u|[δ(u)f(δ(u))] = E|u|
[(
〈u, u〉+ trace(Du)2

)
f ′(δ(u))

]
+E|u|[〈(Du)u, δ(Du)〉f ′′(δ(u))] ,

hence for any continuous function h : R→ [0, 1], denoting by fh the solution to (3.1)

we have

|E|u|[h(δ(u))]− E|u|
[
h(Ng(‖u‖))

]
|
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= |E|u|[δ(u)fh(δ(u))− g(‖u‖)f ′h(δ(u))] |

= |E|u|
[
(〈u, u〉 − g(‖u‖)) f ′h(δ(u)) + trace(Du)2f ′h(δ(u)) + 〈(Du)u, δ(Du)〉f ′′h (δ(u))

]
|

≤ ‖h′‖∞√
g(‖u‖)

∣∣〈u, u〉 − g(‖u‖) + E|u|[|trace(Du)2|]
∣∣+ 2

‖h′‖∞
g(‖u‖)

E|u|[|〈(Du)u, δ(Du)〉|] ,

which yields (3.2) by (2.5) and the conditional Skorohod isometry

Var|u|[δ(u)] = E|u|
[
δ(u)2

]
= 〈u, u〉+ E|u|

[
trace(Du)2

]
, (3.3)

that follows from (2.2) with f(x) = x and n = 1. �

When (ut)t∈R+ is a quasi-nilpotent processes, and in particular when (ut)t∈R+ is

(Ft)t∈R+-adapted process, we obtain the following corollary.

Corollary 3.2 Let u ∈
3⋂

k=1

IDk,2(H), such that 〈u, (Du)2u〉 = 〈u, (Du)u〉 = 0 and

trace(Du)2 = 0. We have

d|u|(δ(u),Ng(‖u‖)) ≤
1√

g(‖u‖)
|〈u, u〉 − g(‖u‖)|+ 2

g(‖u‖)
E|u|[|〈(Du)u, δ(Du)〉|] .

Proof. This follows from Proposition 3.1 and the isometry (3.3). �

Note that from Proposition 2.1 we have

d|u|(δ(u),Ng(‖u‖)) = |
√
〈u, u〉 −

√
g(‖u‖)| ≤ 1√

g(‖u‖)
|〈u, u〉 − g(‖u‖)|

if, in addition to trace(Du)2 = 0, the condition 〈u, (Du)ku〉 = 0 holds for all k ≥ 1.

Regarding multiple stochastic integrals, we have the following corollary.

Corollary 3.3 Given fm ∈ L2(Rm
+ ) a symmetric function in m ≥ 1 variables, let

ut := Im−1(fm(∗, t)), t ∈ R+, and assume that 〈u, (Du)2u〉 = 〈u, (Du)u〉 = 0. Then

we have

d|u|(Im(fm),Ng(‖u‖)) ≤
1√

g(‖u‖)
∣∣g(‖u‖)− Var|u|[Im(fm)]

∣∣ . (3.4)

Proof. We have 〈(Du)u, δ(Du)〉 = (m − 1)〈(Du)u, u〉 = 0, hence the conclusion

follows from Proposition 3.1. �

In particular, Corollary 3.3 shows that, given ‖u‖, the multiple stochastic integral

Im(fm) is Gaussian distributed with mean 0 and variance g(‖u‖) := Var|u|[Im(fm)].
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4 Double stochastic integrals

In this section we take (ut)t∈R+ of the form ut = I1(f2(∗, t)), t ∈ R+, where the

function f2 ∈ L2(R2
+) may not be symmetric in its two variables. In this case we

have δ(u) = I2(f̃2), where f̃2 is the symmetrization of f2, with Dsut = f2(s, t) and

δ(Dsu) = I1(f2(s, ∗)), s, t ∈ R+.

Proposition 4.1 The condition 〈u, (Du)u〉 = 0 implies 〈u, (Du)2u〉 = 0 and is equiv-

alent to (Du)2 = 0, i.e. to the vanishing of the contraction

(f2 ⊗1 f2)(t1, t2) :=

∫ ∞
0

f2(t1, s)f2(s, t2)ds = 0, t1, t2 ∈ R+, (4.1)

and in this case, we have

d|u|(I2(f̃2),Ng(‖u‖)) ≤
1√

g(‖u‖)
|g(‖u‖)− 〈u, u〉| .

In particular, I2(f̃2) is Gaussian N‖u‖2-distributed given 〈u, u〉.

Proof. By Itô calculus we have

〈u, (Du)u〉 =

∫ ∞
0

∫ ∞
0

I1(f2(∗, s))f2(s, t)I1(f2(∗, t))dsdt (4.2)

=

∫ ∞
0

∫ ∞
0

∫ ∞
0

f2(r, s)f2(s, t)f2(r, t)drdsdt+

∫ ∞
0

∫ ∞
0

f2(s, t)I2(f2(∗, s)⊗ f2(∗, t))dsdt,

hence the condition 〈u, (Du)u〉 = 0 is equivalent to the vanishing∫ ∞
0

∫ ∞
0

f2(t1, s)f2(s, t)f2(t2, t)dsdt = 0, t1, t2 ∈ R+, (4.3)

i.e. ∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

h(t1)f2(t1, s)f2(s, t)f2(t2, t)g(t2)dsdtdt1dt2 = 0,

and taking

g(t2) :=

∫ ∞
0

f2(r, t2)h(r)dr,

we get∫ ∞
0

∫ ∞
0

∫ ∞
0

(∫ ∞
0

f2(t1, s)f2(s, t)h(t1)dt1

)(∫ ∞
0

f2(r, t2)f2(t2, t)h(r)dr

)
dsdtdt2
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=

∫ ∞
0

(∫ ∞
0

∫ ∞
0

f2(r, s)f2(s, t)h(r)drds

)2

dt = 0,

hence the condition ∫ ∞
0

f2(r, s)f2(s, t)ds = 0, r, t ∈ R+,

which becomes equivalent to (4.3). Consequently we have trace(f2)
2 = 0, hence by

(3.3) we get Var|u|
[
I2(f̃2)

]
= 〈u, u〉. Moreover, we note that

〈(Du)u, δ(Du)〉 =

∫ ∞
0

∫ ∞
0

usDsutδ(Dtu)dsdt

=

∫ ∞
0

∫ ∞
0

I1(f2(∗, s))f2(s, t)I1(f2(t, ∗))dsdt

=

∫ ∞
0

∫ ∞
0

∫ ∞
0

f2(r, s)f2(s, t)f2(t, r)drdsdt

+
1

2
I2

(∫ ∞
0

∫ ∞
0

f2(s, t)(f2(∗, s)f2(t, ·) + f2(·, s)f2(t, ∗))dsdt
)

= 0,

and we conclude by Proposition 3.1. �

Examples of functions satisfying (4.1) can be given by choosing (ek)k≥1 an orthonormal

system in L2([0, T ]) and letting

f2(s, t) :=
d∑

i,j=1

ai,jei(s)ej(t), s, t ∈ [0, T ],

where A = (ai,j)1≤i,j≤d is a 2-nilpotent d × d matrix. Note that the vanishing (4.1)

of the contraction f2 ⊗2 f2 implies f2 = 0 if the function f2 is symmetric in its two

variables, similarly we have A = 0 if A is symmetric and 2-nilpotent.

Next, given A = (ai,j)1≤i,j≤d an d × d matrix, we note that the quadratic functional∫ T

0
AWsdWs of the n-dimensional Brownian motion

Wt := (Bt, BT+t −BT , . . . , B(n−1)T+t −B(n−1)T ), t ∈ [0, T ],

can be represented as

I2(f̃2) =

∫ T

0

AWsdWs, (4.4)
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where f2 is the function

f2(s, t) :=
d∑

i,j=1

ai,j1[(j−1)T,(j−1)T+t−(i−1)T ](s)1[(i−1)T,iT ](t), s, t ∈ [0, nT ],

as we have

I2(f̃2) =
d∑

i,j=1

ai,j

∫ T

0

∫ t+(i−1)T

0

1[(j−1)T,(j−i)T+t+(i−1)T ](s)dBsdW
i
t

+
d∑

i,j=1

ai,j

∫ nT

(j−1)T

∫ t∧(iT )

(i−1)T
1[(j−1)T,(j−i)T+s](t)dBsdBt

=
∑

1≤j≤i≤n

ai,j

∫ T

0

∫ t+(j−1)T

(j−1)T
dBsdW

i
t +

∑
1≤i<j≤n

ai,j

∫ jT

(j−1)T

∫ t

(i−1)T
dBsdBt

=
∑

1≤j≤i≤n

ai,j

∫ T

0

∫ t

0

dW j
s dW

i
t +

∑
1≤i<j≤n

ai,j

∫ T

0

∫ t

0

dW j
s dW

i
t

=

∫ T

0

AWsdWs,

with∫ nT

0

(I1(f2(∗, t))2dt =
d∑

i=1

∫ iT

(i−1)T

(
d∑

j=1

ai,j(B(j−1)T+t−(i−1)T −B(j−1)T )

)2

dt

=

∫ T

0

|AWt|2 dt.

Note that here, the process (ut)t∈[0,T ] = (I1(f2(∗, t)))t∈[0,T ] is not (Ft)t∈[0,T ]-adapted.

As a consequence of Proposition 4.1 we have the following.

Corollary 4.2 The condition 〈u, (Du)u〉 = 0 is satisfied if and only if the d×d matrix

A is 2-nilpotent, and in this case we have

d|u|

(∫ T

0

AWsdWs,Ng(‖u‖)

)
≤ 1√

g(‖u‖)

∣∣∣∣g(‖u‖)−
∫ T

0

|AWt|2 dt
∣∣∣∣ .

Proof. We have∫ nT

0

∫ nT

0

f2(t1, s)f2(s, t)f2(t2, t)dsdt

=
d∑

i,j=1

d∑
k,l=1

d∑
p,q=1

∫ nT

0

∫ nT

0

1[(j−1)T,(j−1)T+t−(i−1)T ](t2)1[(q−1)T,(q−1)T+s−(p−1)T ](t1)ai,jak,lap,q

11



1[(i−1)T,iT ](t)1[(k−1)T,kT ](t)1[(l−1)T,(l−1)T+t−(i−1)T ](s)1[(p−1)T,pT ](s)dsdt

=
d∑

i,j=1

d∑
l=1

d∑
q=1

∫ lT

(l−1)T

∫ iT

(i−1)T
1[(j−1)T,(j−1)T+t−(i−1)T ](t2)1[(q−1)T,(q−1)T+s−(p−1)T ](t1)ai,jai,lal,q

1[(l−1)T,(l−1)T+t−(i−1)T ](s)dsdt

=
d∑

j,q=1

∫ T

0

∫ T

0

1[(j−1)T,(j−1)T+t](t2)1[(q−1)T,(q−1)T+s](t1)1[0,t](s)dsdt
d∑

i,l=1

ai,jai,lal,q

=
d∑

j,q=1

(A>A2)j,q

∫ T

0

∫ T

0

1[(j−1)T,(j−1)T+t](t2)1[(q−1)T,(q−1)T+s](t1)1[0,t](s)dsdt,

t1, t2 ∈ [0, T ], hence from (4.2), 〈u, (Du)u〉 = 0 implies A>A2 = 0, which in turn

implies A2 = 0 by the relation 〈A2x,A2x〉Rd = 〈Ax,A>A2x〉Rd , x ∈ Rd. �

In particular, taking g(x) = x2, Corollary 4.2 shows that, given
∫ T

0
|AWt|2 dt, the

quadratic functional
∫ T

0
AWtdWt is Gaussian with variance

∫ T

0
|AWt|2 dt when A2 = 0,

which recovers Corollary 3 in [12] under the condition of [13].
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de Probabilités, XIII (Univ. Strasbourg, Strasbourg, 1977/78), volume 721 of Lecture Notes in
Math., pages 427–440. Springer, Berlin, 1979.

[14] M. Yor. Remarques sur une formule de Paul Lévy. In Seminar on Probability, XIV (Paris,
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