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Abstract

We derive conditional Edgeworth-type expansions for Skorohod and It6 in-
tegrals with respect to Brownian motion, based on cumulant operators defined
by the Malliavin calculus. As a consequence we obtain conditional Stein ap-
proximation bounds for multiple stochastic integrals and quadratic Brownian
functionals.
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1 Introduction

Let (Bt)ico,m be a d-dimensional Brownian motion generating the filtration (F;):cjo 1
on the Wiener space 2. It has been shown in Theorem 2.1 of [4], that given Br,
the stochastic integral fOT AB,dB; is Gaussian N/ (O, fOT |AB,|? ds) -distributed given

fOT |AB,|? ds when the d x d matrix A is skew-symmetrix, as an extension of results of

0 1). On the other hand, it

[14] in the case of Lévy’s stochastic area with A = (_1 0



has recently been shown in [12] that the distribution of fOT AB;dB; given fOT |AB,|” ds
is also Gaussian N (0, fOT |ABS|2 ds) when A is a 2-nilpotent d X d matrix, in con-
nection with results of [13] showing that the filtration (FF)icjo) of ¢ — fg AB,dB,
is generated by k independent Brownian motions, where k is the number of distinct

eigenvalues of AT A.

More generally, this type of result has been shown to hold in [12] for stochastic inte-
grals of the form fOT uydBy where (ug)eo,r) is an (F;)-adapted process, under condi-
tions formulated in terms of the Malliavin calculus, based on the cumulant-moment
formulas of [9], [10]. Namely, sufficient conditions on the process (u¢):cjo,r] have been
given for fOT usdB; to be Gaussian N (O, fOT \ut|2dt> -distributed given fOT |ug|?dt, cf.

Theorem 2 therein.

In this paper, using the Malliavin-Stein method on the Wiener space we derive con-
ditional estimates on the distance between the law of fOT uwdB; and the Gaussian
N (O, fOT |ut|2dt> distribution given fOT |u¢|>dt. For this, we rely on conditional Edge-
worth type expansions for random variables represented as the 1t6 stochastic integral
of (ut)iepo,m with respect to (By)iejo,r], extending results of [11] to a conditional set-
ting. This approach relies on properties of the Skorohod integral operator §, which
coincides with the Ito stochastic integral with respect to d-dimensional Brownian mo-

tion on the square-integrable adapted processes.

Letting H = L*(R,;R%), we consider the standard Sobolev spaces of real-valued, resp.
H-valued, functionals D, resp. D, (H), p,k > 1, for the Malliavin gradient D on
the Wiener space, cf. § 1.2 of [7] for definitions. Recall that the Skorohod operator
0 is the adjoint of the gradient D through the duality relation

E[F&(U)] :EKDF,U)H], FEDQJ, (% €D271(H>, (11)
and we have the commutation relation

Dyd(u) = u(t) + 6(Dyu), teR,, (1.2)



provided that v € IDy;(H) and Dyu € IDy;(H), dt-a.e., cf. Proposition 1.3.2 of [7].
In the sequel we let (h,h) := (h,h)y and ||h|| := ||h||g, h € H.

First order conditional duality and expansion
The duality relation (1.1) shows that we have
E[Fo(u) f(6(w))] = E [F(u,u) f'(6(w)]+E [{u, DF) f(6(u))]+E [Ff(d(u)){u, 6(Du))],

for f € CL(R), provided that u € IDyo(H). Applying this relation to F' = g((u,u))
where g : (0,00) — (0,00) is in C{((0,00)), under the condition (u, (Du)u) = 0 we

have
E[Fo(u)f(6(u))]
= EF(u, u) f'(0(u))] + E [{u, D{u, u)) f(5(u))g'((u, u))] + E[Ff((u))(u, 6(Du))]
= EF(u, u) f'(0(u))] + 2E [(u, (Du)u)) f(6(w))g' ((u, u))] + E [F(u, 6(Du)) f'(d(u))]
= E[F(u,u) f'(6(u))] + E [F(u, 6(Du)) f'(0(u))],
which yields
Ep[6(u) f(3(u) = (u, w) f'(0(u))] = Eju[(u, 6(Du)) f'(6(w))] (1.3)

for u € Dy (H), F € Doy and f € CL(R), where
BlF] = BF | {u )]

denotes the conditional expectation given (u,u).

Let now N (0, g(||u||)) denote a centered Gaussian random variable with variance
g(|lul]), where g : (0,00) — (0,00) is a measurable function. Applying the above

relation (1.3) to the solution f, of the Stein equation

Lcooa](2) = Py () = g([ul) f(2) — 2fal2), 2 €R, (1.4)

satisfying the bounds || f;|lco < V27/4 and ||fl||c < 1/4/9(]|u||), cf. Lemma 2.2-(v)

of [3], yields the conditional expansion

P(u) < x| ull) = Poguy () +Epu(g(lull) = (u, ) £,(6(u)]=E [(u, (D)) (5 (w))],
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r € R, around the Gaussian cumulative distribution function @4, (x), with v €

Dg,l (H)

In Section 2 we will expand this approach to Edgeworth type expansion of all orders,
based on a family of cumulant operators that are associated to the process (u¢):cfo77-
We refer to [1], [5], [2] for other approaches to Edgeworth expansions via the Stein

method and the Malliavin calculus.

In Section 3, we derive conditional Stein approximation bounds for the distance be-
tween d(u) and the Gaussian distribution with variance g (||u||) Section 4 treats the
case of double stochastic integrals, which includes the quadratic functional fOT AB,dB,

as a particular case.

2 Conditional Edgeworth type expansions

Given u € Dy (H) and k > 1, we define the operator composition (Du)* in the
sense of matrix powers with continuous indices, namely, (Du)* denotes the random

operator on H almost surely defined by

(DU)khs = / s / (DtkusDtkilutk e Dtlut2)htldt1 R dtk, S € R+, h c H,
" " (2.1)
cf. e.g. § 7 of [10], [9], [8] for details. The adjoint D*u of Du on H satisfies

((Du)v,h) = (v, (D*u)h), h,v € H,
with (-, -} = (-, )y, and is given by
(D*u)vs = / (Dsuy)vdt, seR,, wveLl*(W;H).
0

The next proposition reformulates Proposition 2.1 of [11] in a conditional setting
given the random value of (u,u), whereas the case where (u,u) is deterministic
(random isometries) has been treated in [11] based on the relation (u, (Du)*u) =

((Du)*u, D{u,u))/2, uw € Dy121(H), k > 1.



Proposition 2.1 Let n > 1 and assume that w € Dyo(H) for all k =1,..., n+2
and {u, (Du)*u) =0 fork =1,..., n+1. Then for all f € C]7(R) we have

Blul6(u) f(5(w))] = Eju[ ({1, u} + trace(Du)?) f(5(u))] (2.2)
+ 37 E[(Du, DD w)) ¥ (3(w)] + B [((Du)"u, 6(Du)) £V (5(u)]

Proof. From Proposition 2.1 of [11] we have

E[F5(u) ZE [0 (S(u)TL,, F + E[F((Du)"u, 5(Du) o (8(w))]

where

FZ : D2,1 — LQ(Q), k Z 1,

is defined for u € Dy »(H), by I'YF := (u, DF’) and
TLF = F{(Du)*2u,u) + F(D*u, D((Du)*"?u)) + ((Du)*'u, DF), k> 2.
Next, for F of the form F = g (fOT |ut|2dt>, g € CL(R) and k > 1 we have:
U f
T T
= 10y (u, u)g (/ |ut|2dt) +4d (/ \ut|2dt) / / |ug|*ds, (Du)* ) gadt
0 0

+g </0T |ut|2dt> (D*u, D((Du)*%u))

T T T
= 1p—oy (U, u)g (/ \utIth) + 24’ (/ ]ut|2dt> / (us, (DU)kUS>RddS
0 0 0

TP ( / \mﬁdt) (D*u, D(Du)*u))
= 1=y (u, ) F + Loy (D*u, D((Du)*2u)) F. (2.4)

Hence from (2.3) we find

[F5( )f(5(u))} = E[F ((u,u) + trace(Du)Q) f’(5(u))]

+ZE (D%, D((Dw)*~u)) F¥(6(w)] + E[F((Du)u, 6(Du)) £ (5(u))].



where we used the relation

51 = (u,u) + (D*u, Du) gou = {u,u) + trace (Du)>. (2.5)

Proposition 2.1 also covers the following particular settings.

(i) Quasi-nilpotent processes. Given n > 0, when trace(Du)* = 0 for all k =

2,...,n+ 1, under the conditions of Proposition 2.1 we have

Eyu[6(u) f(5(w))] = (u, w) Bl (0(w))] + By [V (0 (w)){(Du)"u, 6(Du))] .

When trace(Du)® = 0 for all k& > 2, this recovers the conditional Gaussian

integration by parts formula
Eju[0(u) f((u))] = (u, u) By [f'(6(w))],

T T

showing that d(u) has the distribution A/ (O, / |ut|2dt) given / |lug|?dt. This
0 0

setting includes the particular cases where (u;)cr, is an (F;)er, -adapted pro-

cess, cf. e.g. Lemma 3.5 of [8] and references therein, in which case §(u) coincides

with the It6 integral of u, cf. Proposition 1.3.11 of [7].

(ii) Multiple stochastic integrals. Taking u; := I,—1(fn(*,t)), where m > 1 and f,,

is a symmetric square-integrable function on R, we have §(u) = I,,,(f,) and
(D) = (m — 1) L1 (frn (%, 1)) = (m — D)uy, t € R;. (2.6)

Hence, under the conditions of Proposition 2.1 applied to u; = L,—1(fim(*,1)),

we get

Elu\[IM(fm)f(Im(fm>>]
= (w, W Epf (Ln(fn))] + Y E[(D*u, D((Dw)* ")) f O (L ()] -

k=1

Remark 2.2 By replacing F' in Equation (2.4) of the proof of Proposition 2.1 with
F' of the form

b; by
F—g</ ]ut|2dt,...,/ |ut]2dt), 0<a; <b; <T, i=1,...,d,
a; aq
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where g € CH(R?), we can rewrite (2.2) by conditioning with respect to (ui)ep.r,

under the stronger condition (u;, (Du)*u;)ga =0, t € [0,T], k=1,...,n+ 1.

3 Conditional Stein approximation

From now on we work with d = 1 and a one-dimensional Brownian motion (B);cr, -
Given h : R — R an absolutely continuous function with bounded derivative, the

functional equation

h(z) — Epy [h (Ng(HuH))] = g([lul) f'(2) — 2f(2), z € R, (3.1)

has a solution f, € C}(R) which is twice differentiable and satisfies the bounds

1 fnllse < 1B lloo/ v/ g(llull) and [ fllee < 2[R lec/g(llull), = €R,

cf. Lemma 1.2-(v) of [6]. Let
A (F, G) = sup | Epu[h(F)] = EuR(G)]

denote the Wasserstein distance between the conditional laws of F' and G given ||ul|,
where £ denotes the class of 1-Lipschitz functions.

3
Proposition 3.1 Let u € m Dy.2(H), such that (u, (Du)u) = (u, (Du)?*u) = 0. We

k=1
have

lull) = Vary[6(u)]] + —— B[ ((Du)u, d(Du))]].

diag (8(11), Ny(pupy) < %T g <|| D

Proof. Applying Proposition 2.1 with n = 1 shows that

Eju[d(u) f((u))] = Epy [((u, ) + trace(Du)?) f'(8(w))]+Epu[((Du)u, d(Du)) f*(3(w))],

hence for any continuous function h : R — [0, 1], denoting by f, the solution to (3.1)

we have

| Eu[h(6(w))] = Epu[R(WNgqup)] |



B8 £u(6(u)) — gllull) £ ()]
B[l ) — g(lull) £4(0(u)) + trace (D) £(5(w) + ((Duju, 6(Dw)) £1(6(w))] |
Ml 1l 1 Duya, 5D

\/ g([lul g(l[ull)

which ylelds (3.2) by (2.5) and the conditional Skorohod isometry

‘ — g(|lull) + Eju | trace (Du)?[]| + 2

Var, [0(u)] = Ejyl [(5(u)2} = (u,u) + E|u|[trace (Du)Q] , (3.3)
that follows from (2.2) with f(z) =2 and n = 1. O

When (u;)ier, is a quasi-nilpotent processes, and in particular when (u)icr, is

(Ft)ier, -adapted process, we obtain the following corollary.

Corollary 3.2 Let u € ﬂ Dy.2(H), such that (u,(Du)?*u) = (u,(Du)u) = 0 and
k=1
trace (Du)? = 0. We have

1
W (0(w), Ny(pup) < ———=|{u, 1) — g(Jju
iy (6(w), Ny(la)) < g(Hu”)l( ) = g(llulll + (|| 0

Proof. This follows from Proposition 3.1 and the isometry (3.3). O

— = Eu[[((Du)u, 6(Du))|]

Note that from Proposition 2.1 we have

iy (8(w), Nyrapp) = [v/{u, ) = Vg(llul))] < |, = g(lull)
g([[ull)

if, in addition to trace (Du)? = 0, the condition (u, (Du)*u) = 0 holds for all k > 1.

Regarding multiple stochastic integrals, we have the following corollary.

Corollary 3.3 Given f, € L*(RT) a symmetric function in m > 1 variables, let
g = L1 (fin(,1)), t € Ry, and assume that (u, (Du)*u) = (u, (Du)u) = 0. Then

we have
Ay (L (fin), Ng(ul))) \/T‘g (lull) = Vary[Ln(fm)]] - (3.4)

Proof.  We have ((Du)u,d(Du)) = (m — 1){(Du)u,u) = 0, hence the conclusion

follows from Proposition 3.1. 0

In particular, Corollary 3.3 shows that, given ||u||, the multiple stochastic integral

I, (fm) is Gaussian distributed with mean 0 and variance g(||u||) := Var)y[lm(fm)].
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4 Double stochastic integrals

In this section we take (u;)ier, of the form u, = I(fa(x,t)), t € Ry, where the
function f, € L*(R2) may not be symmetric in its two variables. In this case we
have §(u) = Ig(fg), where fy is the symmetrization of fp, with Dyu, = fa(s,t) and
0(Dsu) = Li(f2(s, %)), s, T € Ry.

Proposition 4.1 The condition (u, (Du)u) = 0 implies (u, (Du)?*u) = 0 and is equiv-

alent to (Du)? = 0, i.e. to the vanishing of the contraction

(fg ®1 fg)(tl, tg) = /OO fg(tl, S)fQ(S, tg)dS = 07 tl,tg - R+, (41)
0

and in this case, we have

. 1
A (I2(f2), Ny(ul)) < —F——= ul]) — (u, u)l.
ot (L2 (f2)s Ny(up)y) < el lg(llull) = (u,u)]|

In particular, I,(fs) is Gaussian N2 -distributed given (u,u).
Proof. By Ito6 calculus we have
(u, (Du)u) = /OO /OO I (fa(x, 9)) fa(s, t) 1 (fa(x, t))dsdt (4.2)
o Jo
= / / / fa(r, s) fo(s, t) fa(r, t)drdsdt —|—/ / fa(s, ) Io(fa(x,5) ® fo(x,t))dsdt,
o Jo Jo o Jo

hence the condition (u, (Du)u) = 0 is equivalent to the vanishing

/Ooo /OOO Folts, $) fols ) folto, dsdt — 0, thoty € R, (4.3)
i.e. e e
/0 /0 /0 /0 h(t1) fo(t1, 8) fa(s,t) fo(ta, t)g(te)dsdtdt,dty = 0,
and taking o
g(ts) == /0 fa(r, ta)h(r)dr,

we get

/Ooo /OOO /Ooo </OOO fz(tl,S)f2(8,t)h(t1)dt1> </Ooo fg(r,tg)fQ(tg,t)h('r’)dr) dsdtdt,



_ Am<lmlmﬁm@ﬁ@¢m&mm§2ﬁ:m

hence the condition

/ fa(r,s)fa(s,t)ds = 0, r,t e Ry,
0

which becomes equivalent to (4.3). Consequently we have trace(f,)? = 0, hence by

(3.3) we get Vary, [.[2(.];2)} = (u,u). Moreover, we note that
(Du)u, 5(Du)) = /“u/ o Doy (Dyu)dsdt
o Jo

- | ) / " L, 9)) fals, L (folt, )it
_ Amlwémﬁm@ﬁuﬂﬁ@ﬂm%ﬁ

+3h (/oo | a0t ) e )+ Rl *”‘“dt)
- 0,

and we conclude by Proposition 3.1. U

Examples of functions satisfying (4.1) can be given by choosing (ex)x>1 an orthonormal
system in L?([0,7]) and letting

d

fa(s.t) =Y aizes)e;(t), s, t€[0,T],

ij=1
where A = (a;;)1<ij<d 1S a 2-nilpotent d x d matrix. Note that the vanishing (4.1)
of the contraction fs ®s fo implies fo = 0 if the function f5 is symmetric in its two

variables, similarly we have A = 0 if A is symmetric and 2-nilpotent.

Next, given A = (a;,)1<ij<4 an d X d matrix, we note that the quadratic functional
fOT AW dW of the n-dimensional Brownian motion

Wy := (B, Byt — Br, ..., Bn—1yr4¢t — Bn—1y1), te 0,71,
can be represented as

B T
Ig(fz) - /0 AWdeS, (44)
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where f5 is the function

d
fa(s,t) = Z ai,j1[(j—l)T,(j—l)T+t—(z‘—1)T](S)l[(i—l)T,iT](t)a s,t € [0,nT],
ij=1
as we have
~ d T prt+(Gi—1)T
L(fa) = Zai,j/ / LG0T, G—iyT+t+—1)7) () d B dW
ij=1 0
t/\(zT
‘I’Zazj/ / (G— z)TJrs]( )stdBt
Py 1)T
t+(j—1)T

= > a”// dB, AW, + > a”/ / dB,dB,
1<5<i<n 1<i<j<n -7 J(E-1)T

= Y au/ /dWﬂdW“r > a”/ /dWJdWZ
1<5<i<n 1<i<j<n

T
= / AW dW,
0
with
nT d iT d 2
/ ([1(]02(*775))2(# — Z/( | (Zai,j(B(j1)T+t(i1)T_B(j1)T)> dt
0 o J 0T\

T
= / |AW,|? dt.
0

Note that here, the process (ut)icpor] = (J1(f2(*,1)))ico,r] is not (Fy)eepo,m-adapted.

As a consequence of Proposition 4.1 we have the following.

Corollary 4.2 The condition (u, (Du)u) = 0 is satisfied if and only if the dx d matrix

A is 2-nilpotent, and in this case we have

T
dyy, / AW dWy, N (i1 ) ‘ u AW, dt‘
Jul ( ; a(llull) \/T (JJull) — | Ak

Proof. We have

nT nT
/ / Faltr, ) fols, ) o (b, £)dsclt
0 0
d d d nT nT
= > > > /0 / [G-1T.G—)T+t—(i—1)T] (82) L(g-1) T (g— 1) T+s—(p—1)7] (£1) @i j Ak 1Cp g

i,j=1 k,l=1 p,q=1

11



L1y (8) Lge—vyrer) (8) L1y, -1y 7+t (i-1)7) (8) L(p—1y1 p1] (5 ) d 5t
i d d

/ / LiG-)r (-1 T+t—(i— 1)T}(t2)1[(q DT, (g—1)T+s—(p— 1)T](t1)a¢,jazzalq
ij=11=1 g=1 Y (=)TJ(@=1)T

1[(l DT, (1-1)T+t—(i—1)7)(5)dsdt

= Z / (G-DT,G—-1T+1 (12) Lg—1)7, (- 1)T+5) (£1) Lo (5 )dsdtzaw@uaz,q

J,q=1 il=1
d T T
= Z(ATAQ)M/ / LiG—1)1,(i—1)7+4 (t2) L (g1, (g—-1)7+5) (E1) L [0, (5) dsdt,
j,q=1 0 0

t1,to € [0,T], hence from (4.2), (u,(Du)u) = 0 implies AT A% = 0, which in turn
implies A% = 0 by the relation (A%x, A%2)pa = (Az, AT A%2)pa, x € RY O

In particular, taking g(z) = z?, Corollary 4.2 shows that, given fOT |AW,|? dt, the
quadratic functional fOT AW, dW, is Gaussian with variance fOT |AW,|? dt when A% = 0,

which recovers Corollary 3 in [12] under the condition of [13].
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