A concentration inequality on Riemannian path
space

Christian Houdré and Nicolas Privault

Abstract. The covariance representations method to obtain concentration in-
equalities is applied to functionals of Riemannian Brownian motion. This
recovers, in particular, tail estimates for Brownian motion on a manifold.

1. Introduction and Background

Concentration and deviation inequalities have been obtained on the Wiener and
Poisson spaces and for discrete random walks in [7] using the method of covariance
representations ([1], [6]). In this note we present an application of this method to
concentration inequalities on path space. The concentration results for the laws
of general random variables presented here on Riemannian path space are slightly
weaker than the ones obtained from logarithmic Sobolev inequalities (see [8]).
Nevertheless they allow us to recover some classical bounds such as the one for
the law of the supremum of the distance of Riemannian Brownian motion to the
origin. The covariance representation method relies on the Clark formula on path
space, a short proof of which is obtained by showing that the damped and flat
gradients have the same adapted projections, as a consequence of an intertwining
formula using Skorohod integrals.

In [7] we showed that the use of semi-groups for covariance representations
allows us to recover the concentration and deviation inequalities obtained from log-
arithmic Sobolev inequalities and the Herbst method [8]. In particular, it turned
out that covariance representations written in terms of the Clark formula gen-
erally yield weaker results than covariance representations written in terms of
semi-groups. In the path case, however, covariance representations using Ornstein-
Uhlenbeck type semi-groups are unknown to the authors. If available, they would
allow us to recover the concentration results that follow from the Herbst method
and the logarithmic Sobolev inequalities of [2].
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2. Preliminaries and notation

Let ((t))¢eo,7) denote the R?-valued Brownian motion on the Wiener space W
with Wiener measure u, generating the filtration (F¢);cpo,17- Let M be a Rieman-
nian manifold of dimension d whose Ricci curvature is uniformly bounded from
below, and let O(M) denote the bundle of orthonormal frames over M. The Levi-
Civita parallel transport defines d canonical horizontal vector fields A;,..., A4 on
O(M), and the Stratonovich stochastic differential equation

{ dr(t) = Y21 Ai(r(t)) 0 da(t), ¢ €[0,T],
r(0) = (mo,mo) € O(M),
defines an O(M )-valued process (r(t))¢c[o,77- Let m : O(M) — M be the canonical

projection, let v(t) = w(r(t)), t € [0,T], be the Brownian motion on M and let
the It6 parallel transport along (y(t)):c[o,7] be defined as

treo =) : TneM ~R* — T, (y M, t€0,T].

Let Co([0,T);R?) denote the space of continuous R?-valued functions on [0,7]
vanishing at the origin. Let also P(M) denote the set of continuous paths on M
starting at myg, let

I : Co([0,T);R¢) — P(M)
(w(t))tepo,r) = I(w) = (7(t))ejo,

be the It6 map, and let v denote the image measure on P(M) of the Wiener
measure y by I. Let Q, denote the curvature tensor of M, and let ric, : R¢ — R¢
be the Ricci tensor at the frame r € O(M). Given an adapted process (2¢):ejo, 1
with absolutely continuous trajectories, we let (2(t)):c[o,77 be defined by

2.1) A() = 5(t) + %ricr(t)z(t), te[0,7], (0)=0.

We recall that z — £ can be inverted, i.e. there exists a process (Z¢)¢c[o,7] such
that Z = z, cf. Sect. 3.7 of [5]. Finally, let Q;, : R* — R%, be defined as

d 1.
3;’8 = _irlcr(t)Qt,sa Qs,s = IdTm07 0<s<H,

and let
t
a(t,2) = — / Q) (oda(s), 2(s)), ¢ € [0,T],

where odz(s) denotes the Stratonovich differential. Let Q7 , be the adjoint of Qy,s,
let H = L%([0,T], R?), and let H = L>°(P (M), H; dv). Let finally C>°(M™) denote
the space of infinitely differentiable functions with compact support in M™.

We now recall various notions of gradient developed for the analysis on path
space. The following definitions are found in [5]. The notation VM denotes the
gradient on M applied to the i-th variable of f.
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: i) (flat gradient) Given F = f(x(t1),...,z(t,)), f € C((R?)"), let

DiF =3 1104 ()VE f(a(tr), ..., 2(ta)), te€[0,T].
i=1
: ii) (intrinsic gradient) Given F = f(v(t1),...,7(tn)), f € C(M™), let:

D/F = ZtOFtiVyf(V(tl), (&), (8),  t€[0,T].
i=1

: iii) (damped gradient) Given f € C°(M™), let:

=n
DtF = Z 1[0,ti](t)QZ',tt0<—ti Viwf(’Y(tl)a HE ;’Y(tn))a te [05 T]
i=1
Let Dom(D), Dom(D) and Dom(D) denote the respective domains of D, D and
D as closable operators.

Still developing our background, let us recall the intertwining formula be-
tween D and D (Th. 2.6 of [3]). This can be written as

T T T
/ z(t)-(f)tF)oIdt:/ () - Dy(F o) dt—/ (DF) o I -q(t,2) ® da(t),
0 0 0

where ©dz(t) is the Stratonovich differential. We use a different intertwining for-
mula which is stated in terms of the It6-Skorohod differential dz(t) instead of the
Stratonovich integral ®dz(t), cf. Cor. 5.2.1 and Cor. 5.4.1 of [9].

Proposition 2.1. ([9]) Let z : W x[0,T] — R? be adapted with absolutely continuous
trajectories and 2 € L*(W x [0,T]). For F = f(y(t1),...,7v(tn)), f € C°(M™) we
have:

: 1) (intrinsic gradient)
T T T
(2.2)/0 #(t)-(DF)ol dt:/o 2(t)- Dy(Fol) dt+/0 q(t,z)Dy(FoI)-dx(t),

: i) (damped gradient):

(2.3) /TZ(t) (DyF)oI dt = /T,é(t) -Dt(FoI)dt+/T q(t,Z2)Dy(F o I)-dx(t).
0 0 0
The intertwining formula will now lead us to a Clark type formula. Indeed,
since E, [fOT q(t,2)Dy(F o I) -da:(t)] = 0, it follows directly from (2.2) and (2.3)
that the processes DF and DF have the same adapted projections:
(2.4) E,[Dy(Fol)| F =E,[(DiF)oI|F], tel0,T],
F = f(y(t1),...,7(tsn)). Using this relation and the classical Clark formula on

Wiener space

Fol = Eu[FoI]+/TEu[Dt<FoI)|ft]-dw<t),
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we obtain the expression of the Clark formula on path space:

Proposition 2.2. ([5]) Let F' € Dom(D), then

Fol = E,,[F]+/TE“[(1~)tF)oI|]—'t]-dx(t).

3. Concentration inequalities on Riemannian path space

Let Cov,(F,G) = E,[FG] — E,[F)E,[G] for F,G € L*(P(M),v). The following
covariance identity is an immediate consequence of the Clark formula.

Proposition 3.1. Let F,G € Dom(D), then
T
(3.1) Cov,(F,G) = E, [ / (DiF)oI-E,[(D;G)oI|F] dt‘| :
0

Next, we apply this covariance representation to the proof of a concentration
inequality on path space.

Lemma 3.2. Let F € Dom(f)). If ||.DF||L2([0,T],L00(P(M))) < C, for some C > 0,
then

72
3.2 v(iF—-—E,F|>x Sexp<—~7>, z > 0.
52 (F - EIF) 2 2) LT

In particular, E[e’"] < oo, for A < (2C||DF||a)~".

Proof. We first consider a bounded random variable F' € Dom(D). The general
case follows by approximating F' € Dom(D) by the sequence (max(—n, min(F,n)))n>1-
Let

nr(t) = E[(DF) oI | F], telo,T).
Assuming first that E,[F] = 0, we have

T
B[Fe’] = B, [/ <ﬁuesF)oI-nF<u)d“]
0

Il

sE,

esFel /T(f)uF) ol- np(u)du]
0

IN

$Ey [eT° | DFlli o T llnrls]

sB, [e*"] || DF |lullngll Lo w,m
sCE, [e*F] |DF||a.

VANVAN

In the general case, letting L(s) = E,[e*F ~P»[FD] we obtain:

L)y [ Bl = BuF)et B
log(E, [e!F-Ev[FD])  — / < / v v
Og( [6 ]) 0 L(S) ds = Jo E, [es(F—Eu[F])] ds
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1 .
= St°ClIDFlla, 0<t<T.
We now have for all z € R, and t € [0,7]:

1 .
UF = BIF) 2 2) < BB < exp (3ECIDF I —12).

which yields (3.2) after minimization in ¢ € [0, 7. O
Since ||DF”H < ||15F||L2([0’T],L00(P(M))), the inequality (3.2) is weaker than:
33) (P~ EJF] > 2 ( i )
3.3 v(F-E,F]|>z)<exp|——=—= 1|, x>0,
2IDF|I%

which follows (via the Herbst method [8]) from the logarithmic Sobolev inequalities
of [2], whose proof relies on the It6 formula and the Clark formula (see also [4]).
The method presented in this paper is, somehow, simpler, and moreover (3.2) is
sufficient to recover some classical tail estimates for functionals of (y(t))¢cr.,, see
[8] and references therein. Below, let p denote the distance on M.

Corollary 3.3. Let the Ricci tensor be bounded from below by a constant —K € R.
Then,
(3.4)

x2 )
v| su t),mg) > E, | su t),ymo)| +z | <expl——-=], x>0,
(05t£Tp(7( ),mg) > OSthp(v( ) 0)] ) p ( ST KT

Proof. Let f(mq,...,my) = maxi<i<n p(m;, mo) and
F=fy(t),---,7(ta)) = max p(y(t:), mo),

where 0 < t; < -+ < t, < T determines a partition of [0,T]. Following the
argument of [8], p. 196, we obtain for a certain partition (4;)i1<;<n of P(M):

i=n j=n i=n j=n
|DtF| < Z ]‘(ti—lqti](t) Z eK(tjit)/2|V§'Mf| < eKT/2 Z 1(ti—lati](t) Z 1AJ‘ < eKT/27
i=1 Jj=i i=1 Jj=i

hence || DF|| 20,17, (p(ary)) < TeKT, which gives (3.4) by monotone convergence
as the mesh of the partition goes to zero. O

The Herbst method applied to the logarithmic Sobolev inequalities of [2]
would yield the same estimate as (3.4), since here the bound on || D;F|| is uniform
in ¢.

When K = 0 this leads to the known estimate (cf. [8] and references therein):

2
(o002 B s o] ) <o (-2), 230
0<t<T 0<t<T 2T

In the following we assume that the Ricci tensor of M is bounded from above
and below.
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Theorem 3.4. Assume that the Ricci tensor of M is boynded by K > 0, i.e.
[lricy|| < K, u € O(M), and let F € Dom(D) be such that || DF||p2(j0, 17,1 (p(M))) <
C, for some C > 0. Then

2
v(F—E,F]>z)<exp|— A - , >0
2eK/2(C + (X = D||IDF|lu)|IDF|la
Proof. Again, we may start by assuming that F' is bounded. We have the bound
N . Ty 4a R 2
DFP < (IDF|+ [ | S0i| 1DFlds
¢
. 1 T . ?
< (1BeF+ 5K [ eKC-0%1D, Flds
¢
. 1 . 2
< (1Dl + /K00~ DIDF]: )
N N N 1 .
< DF + /K (eXT=0 — 1)|DyF|||DF|la + 3 K ("~ = 1)[| DF|

(see p. 75 of [2]), which implies

IDFIE < (1+ VKT KT - 1)2 IDFI < 5T DF |,
and
IDF|L2(o,rp,epary) < WDFlL2(o,ry,p(ary)) + %V eKT — KT — 1||DF||u
< C+ (eXT2 —1)||DF||n.

It remains to apply Lemma 3.2. O
As a corollary we obtain
72
(3.5) v(F—E,F]>z)<exp|—-————=—|, z2>0.
2eKTC||DF||u

A damped gradient satisfying a Clark formula can also be defined for diffusion
processes on Riemannian manifolds, and in this case similar bounds hold between
DiF and DyF, cf. Sect. 3 of [2] and the references therein. Hence the argument of
Th. 3.4 will also be valid on the space of a diffusion process on a manifold.

For the finite dimensional random variable F = f(y(t)) we have DF =
Lio,gtoet VM f(7(t)) and

IDF |7 0,7y,00= e (aryy) = HV™ Fl2 = IDF 34,
hence both norms coincide and (3.5) becomes:
2

B 0) - BU60)] 20 <o (- gmongr )+ 220
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