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Abstract

This paper is concerned with the Monte Carlo numerical computation of
the Laplace transform of exponential Brownian functionals. In addition to
the implementation of standard integral formulas, we investigate the use of
various probabilistic representations. This involves in particular the simulation
of the hyperbolic secant distribution and the use of several variance reduction
schemes. The performance of those methods and their conditions of application
are compared.
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1 Introduction

Exponential Brownian functionals of the form

Aτ =

∫ τ

0

eσBs+ρσ
2s/2ds, ρ ∈ IR, τ ≥ 0, (1.1)

∗nprivault@ntu.edu.sg
†wa0001uy@e.ntu.edu.sg

1



where (Bs)s∈IR+ is a standard Brownian motion, play an important role in the sta-

tistical physics of disordered systems where Aτ is the partition function and logAτ
represents the free energy of the system. They are also used in financial mathematics

for the pricing of Asian options and of bonds in interest rate models, cf. e.g. [2], [13],

and references therein.

The Laplace transform

Fρ(τ, x) = E

[
exp

(
−x
∫ τ

0

eσBs+ρσ
2s/2ds

)]
, ρ ∈ IR, x ∈ IR+, (1.2)

of Aτ , τ ≥ 0, can be shown to satisfy the PDE
∂Fρ
∂τ

(τ, x) =
1

2
σ2x2∂

2Fρ
∂x2

(τ, x) + λx
∂Fρ
∂x

(τ, x)− xFρ(τ, x)

Fρ(0, x) = 1, x ∈ IR+,

(1.3)

whose solution has been computed in [14] using spectral expansions as

Fρ(τ, x)

=
σρ

2π2(2x)ρ/2

∫ ∞
0

sin

(√
8x

σ
sinh a

)∫ ∞
0

ue−σ
2(ρ2+u2)τ/8 cosh

(πu
2

) ∣∣∣Γ(ρ
2

+ i
u

2

)∣∣∣2 sin(ua)duda

− σρ

(2x)ρ/2

∑
0≤k<−ρ/2

2(ρ+ 2k)

k!Γ(1− ρ− k)
eσ

2k(k+ρ)τ/2K−ρ−2m

(√
8x

σ

)
, (1.4)

where

Kw(t) =

∫ ∞
0

e−t coshx cosh(wx)dx, t ∈ IR,

is the modifed Bessel function of the second kind with parameter w ∈ C. This ex-

pression is commonly used in the mathematical physics literature, cf. e.g. [3], as well

as in mathematical finance [10].

On the other hand, the probability density of At has been computed for z > 0 as

Ψρ(τ, z) =
σ

2z
e−ρ

2σ2τ/8−2σ−2/z

∫ ∞
−∞

exp

(
ρσ

2
y − 2

σ2

eσy

z

)
θ

(
4eσy/2

σ2z
,
σ2τ

4

)
dy, (1.5)

in [16], Proposition 2, cf. also [11], where θ(v, τ) is the positive function

θ(v, τ) =
veπ

2/(2τ)

√
2π3τ

∫ ∞
0

e−ξ
2/(2τ)e−v cosh ξ sinh(ξ) sin (πξ/τ) dξ, v, τ > 0, (1.6)
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which leads to various integral representations of Fρ(τ, x), cf. (2.1), (2.2), (2.3) below.

Numerical computations of the density (1.5) of At have been presented in [7], based

on the evaluation of the function θ(v, τ) by the Fast Fourier Transform (FFT). It has

been noted in particular in [7] that the numerical evaluation of θ(τ, x) is difficult for

small values of x, see for example Figure 2 therein for τ = 0.5 in which the FFT can

yield negative values for the positive function x 7→ θ(0.5, x).

The solution Fρ(τ, x) can also be computed by the Monte Carlo method and simulation

of Brownian paths in (1.2). Another expression suitable for Monte Carlo simulation

is

Fρ(τ, x) = Γ(ρ)

(
σ√
8x

)ρ
e−σ

2τρ2/8E
[
Z2
ρe
−σ2τZ2

ρ/8sinhc(Zρ)KiZρ(
√

8x/σ)
]
, (1.7)

x > 0, τ > 0, where Zρ is a random variable having the generalized hyperbolic secant

(GHS) distribution with parameter ρ > 0, and sinhc is the hyperbolic sine cardinal

function, cf. Corollary 3.3 of [13].

In this paper we focus on the implementation of (1.7) by the Monte Carlo method,

in addition to the numerical computation of Fρ(τ, x) using integral representations

based on (1.4) and (1.5), cf. [9] for a preliminary approach. The performance of

Monte Carlo estimators is compared by their respective root mean square errors. The

performance of the integral method versus that of Monte Carlo algorithms is more

difficult to compare since the two methods are different in nature and have distinct

advantages.

In Section 2 we consider the computation of the Laplace transform from the point

of view of integral representations. In particular we compare the performance of the

integral representations (2.1), (2.2), (2.3), obtained from the probability density of

Aτ and from heat kernels, cf. (1.4), (2.6). In Section 3 we consider several com-

putations of the Laplace transform by the Monte Carlo method via Relations (1.2)

and (1.7). In particular we investigate the numerical implementation of the Monte

Carlo method using the generalized hyperbolic secant distribution, to which variance

reduction schemes are applied.
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2 Integral method

Density approach

The Laplace transfom Fρ(τ, x) can be computed for all ρ ∈ IR by applying (1.5) to

the computation of the expectation (1.2), as follows:

Fρ(τ, x) = e−σ
2ρ2τ/8

∫ ∞
0

∫ ∞
0

e−ux exp

(
−2 (1 + z2)

σ2u

)
θ

(
4z

σ2u
,
σ2τ

4

)
du

u

dz

z1−ρ . (2.1)

The above formula involves a triple integral which can be difficult to evaluate in

practice. The next formula provides an alternative expression for the solution Fρ(τ, x)

using a double integral, which is however valid only for ρ > −1, cf. Corollary 2.3 of

[13]:

Fρ(τ, x) = 2e−σ
2ρ2τ/8

∫ ∞
0

(
v2 + 8x/σ2

)−ρ/2
θ

(
v,
σ2τ

4

)
K−ρ

(√
v2 + 8x/σ2

) dv

v1−ρ .

(2.2)

In Figure 2.1 below we present an implementation of (2.2) using the composite Simp-

son rule. The values obtained for τ < 5 were out of the [0, 1] range, and are not shown

in the graph.
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Figure 2.1: F1(τ, x) computed with x = 0.06 and σ = 0.3.

The numerical evaluation of (2.2) involves the function θ(τ, x) which is difficult to

evaluate in practice, especially for small values of x and t, cf. [7]. The use of the FFT
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for the computation of θ(τ, x) did not significantly improve the precision and in this

respect we only confirmed the results of [7], cf. Figure 2 therein.

The next formula

Fρ(τ, x) =
8

σ2π3/2

√
x

τ
e−σ

2ρ2τ/8+2π2/(σ2τ) (2.3)∫ ∞
0

zρ
∫ ∞

0

e−2ξ2/(σ2τ) sinh(ξ) sin (4πξ/(σ2τ))√
(z + ξ)(z + ξ−1)

K1

(√
8x
√

(z + ξ)(z + ξ−1)/σ
)
dξdz

is an alternative representation formula that involves only double integrals and special

functions for all ρ ∈ IR, cf. Corollary 2.2 of [13]. We attempted to compute (2.3) by

numerical quadrature and using the composite midpoint rule for the outer dz-integral

as the integrand is not defined at the end points. However, most of the computed

values of Fρ(τ, x) are outside of the [0, 1] range, suggesting that more sophisticated

quadrature rules have to be implemented.

The density Ψρ(τ, z) can also be computed by inversion of its Laplace transform,

using Whittaker functions and generalized Laguerre polynomial, cf. Proposition 2.3

of [12]. Another integral representation has been obtained in [6] using hypergeometric

functions, however both expressions are difficult to compute numerically due to the

presence of hypergeometric functions.

Heat kernel approach

The Laplace transform Fρ(τ, x) can be written for all ρ ∈ IR as

Fρ(τ, x) =
21−ρσρ

π(
√

2x)ρ
e−ρ

2σ2τ/8

∫ ∞
0

eρy
∫ ∞

0

u2sinhc(u)e−u
2σ2τ/8Kiu(

√
8x/σ)Kiu(e

y)dudy,

(2.4)

x > 0, τ > 0, cf. Proposition 3.1 of [13], where sinhc is the hyperbolic sine cardinal

function

sinhcx =
sinh(πx)

πx
, x ∈ IR,

and

Kiu(x) =
1

sinh (πu/2)

∫ +∞

0

sin(x sinh a) sin(ua)da, x ∈ IR+, u ∈ IR, (2.5)
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cf. e.g. [15] pp. 182-183.

From a computational point of view the above formula actually involves a triple

integral of a Bessel function, which can be simplified to a double integral of a Gamma

function, as

Fρ(τ, x) =
σρ

2π(2x)ρ/2

∫ ∞
0

u2e−σ
2(ρ2+u2)τ/8sinhc(u)

∣∣∣Γ(ρ
2

+ i
u

2

)∣∣∣2Kiu

(√
8x

σ

)
du

− σρ

(2x)ρ/2

∞∑
k=0

2(2k + ρ)−

k!Γ(1− ρ− k)
eσ

2k(k+ρ)τ/2K−ρ−2k

(√
8x

σ

)
, (2.6)

for all ρ ∈ IR, x > 0, and τ > 0, which recovers (1.4) under (2.5).

We computed the above integrals by the composite Simpson rule. The complex

Gamma function was computed in the <complex> class from [17]∗, and the mod-

ified Bessel function Kv of the second kind, v ∈ IR, was computed using the Irregular

Modified Bessel Functions of Fractional Order gsl sf bessel Knu function of the GNU

Scientific Library (GSL).†

We used 20 as the upper bound in the du-integral in (2.6). Concerning the integral

(2.5) for Kiu we note that Fρ(τ, x) is more sensitive to changes in the upper bound A

when approximating (2.5) by

Kiu(x) ' 1

sinh (πu/2)

∫ A

0

sin(x sinh a) sin(ua)da, x ∈ IR+, u ∈ IR.

This is due to the fact that the integrand in (2.5) is oscillating while u2e−u
2

in (2.6)

decreases at a fast rate to 0.

∗https://www.crbond.com/math.htm
†https://www.gnu.org/software/gsl/manual/html_node/Irregular-Modified-Bessel-Functions-_

002d-Fractional-Order.html
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Figure 2.2: F1(τ, x) computed with x = 0.06 and σ = 0.3.

Figure 2.2 above shows the graph of the values obtained from (2.6) for different values

of the upper bound A in (2.5), and shows that using A = 40 yields satisfying values

for Fρ(τ, x). In addition it solves the divergence problem encountered in the imple-

mentation of (2.2) for small values of τ in Figure 2.1.

In applications to bond pricing, Fρ(τ, x) can be interpreted as the price

Fρ(τ, r0) = E

[
exp

(
−
∫ τ

0

rsds

)]
, τ ≥ 0, (2.7)

of a bond in the Dothan geometric short rate model rs = r0e
σBs+ρσ2s/2, s ∈ IR+,

cf. [13]. Here, τ represents the maturity time of a bond, rs is the underlying inter-

est rate value at time s ∈ IR+, and Fρ(τ, r0) is the bond price under the condition

Fρ(0, r0) = $1, which means that the bond can be redeemed at its face value at the

date of maturity τ .

For example, assuming a volatility coefficient of σ = 30%, and a drift value of ρσ2/2 =

0.045 per year in (1.1), the price of a zero-coupon bond ten years before maturity

equals $0.43 in this model when the underlying short term interest rate is at 6%.
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3 Monte Carlo method

The Laplace transform Fρ(τ, x) can be computed by Monte Carlo estimation of the

expression

Fρ(τ, x) = E

[
exp

(
−x
∫ τ

0

eσBs+ρσ
2s/2ds

)]
, τ ≥ 0, (3.1)

after discretization of the stochastic integral over [0, τ ]. As noted in the introduction,

it can also be computed for ρ > 0 by the relation

Fρ(τ, x) = Γ(ρ)

(
σ√
8x

)ρ
e−σ

2τρ2/8E
[
Z2
ρe
−σ2τZ2

ρ/8sinhc(Zρ)KiZρ(
√

8x/σ)
]
, (3.2)

x > 0, τ > 0, cf. (1.7) above. The proof of (3.2) follows directly from (2.6) and the

expression

fρ(x) =
2ρ−2

πΓ(ρ)

∣∣∣Γ(ρ
2

+ i
x

2

)∣∣∣2 , x ∈ IR, (3.3)

of the generalized hyperbolic secant (GHS) density of Zρ with characteristic function

u 7→ (coshu)−ρ, ρ > 0, see also the proof of Proposition 3.1 below.

Among other advantages, the Monte Carlo method allows for the reuse of stored sam-

ples for different values of the parameters, and for the randomization of parameters

inside the integral. In applications to finance the initial condition r0 in in the Dothan

geometric short rate model rs = r0e
σBs+ρσ2s/2 can be made random, e.g. when pric-

ing default bonds via (2.7). In this case the implementation of the Monte Carlo can

be preferred to the integral discretization due to the possibility of reusing the same

samples of Zρ when simulating different values of r0. In addition, in comparison with

(1.2) and (3.1), Formula (3.2) also allows for the reuse of stored random samples of

Zρ for different values of both x > 0 and τ > 0 as the law of Zρ depends only on ρ,

cf. e.g. Figure 3.4 below.

Next we discuss the generation of random samples of Zρ for the Monte Carlo compu-

tation of (3.1) and (3.2).
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Simulation of the generalized hyperbolic secant distribution

(i) Inverse function method

When ρ = 1 the expression (3.3) simplifies to the hyperbolic secant density

f1(x) =
1

2
sech

(π
2
x
)

=
1

2 cosh (πx/2)
, x ∈ IR, (3.4)

with distribution function

x 7−→ 2

π
arctan (exp(πx/2)), x ∈ IR. (3.5)

In this case, samples of Z1 can be generated from a uniform random variable U as

Z1 =
2

π
log tan(πU/2)

by the inverse function method based on (3.4) and (3.5). The U(0, 1) generator‡ of

[8] has been used in the simulations.

(ii) Rejection method

When ρ 6= 1 the inversion method can no longer be applied, and we have used the

rejection algorithm of [4] for log-concave probability densities when ρ >> 0.5, as the

GHS density appears to be log-concave in this parameter range. We also tested the

rejection algorithms of [5] based on (3.3). In that case the rejection with perfect

asymptotic fit, which is valid for ρ ≥ 1, has been preferred to the direct rejection

method of [5] which is valid for all ρ > 0, and whose performance was found to be

lower.

In Figure 3.1 we compare the results of (3.1) and (3.2) for ρ = 4. In Figure 3.1, 2500

samples were used for (3.1) with a root mean square error of 4.24E-5, while 25000

samples were used for (3.2) with a root mean square error of 5.55E-7 and a similar

computation time. This shows that for large values of τ in (3.1), the expression (3.2)

yields a better result than (3.1), i.e. a root mean square error reduced by a factor 76.

‡https://cg.scs.carleton.ca/~luc/rng.html
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The algorithm of Figure 2.2 was used as a reference when computing the above root

mean square errors for the Monte Carlo method.
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Figure 3.1: Computation of F4(τ, x) by (3.1) and (3.2) with x = 0.06 and σ = 0.3.

In Figure 3.2 the expression (3.1) is simulated using 10000 samples with a root mean

square error of 1.70E-3, while (3.2) is simulated with 65000 samples and yields a root

mean square error of 0.47 for a similar computation time.
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Figure 3.2: Computation of F1(τ, x) by (3.1) and (3.2) with x = 0.06 and σ = 0.3.

This shows that for small values of τ , (3.1) yields a better precision than (3.2) by
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improving the root mean square error by a factor 275. Indeed, the variance of the

estimator in (3.2) is greater for small values of τ > 0, and this tends to degrade the

performance of the Monte Carlo estimator. This problem will be tackled by employing

various variance reduction schemes.

When calculating Kiu(x) in Monte Carlo simulations, we opted for the series repre-

sentation

Kz(x) =
π

2 sin(πz)
(I−z(x)− Iz(x)), x ∈ R, z ∈ C,

where

Iz(x) =
∞∑
l=0

1

l!(l + z)!

(x
2

)z+2l

, x ∈ R, z ∈ C, (3.6)

The factorial in the series representation (3.6) was computed using the C codes for

the complex Gamma function based on [17].§

Next we implement various algorithms in order to solve the problem of increasing

variance for small values of τ in (3.2).

Variance reduction

(i) Importance sampling

We start by applying importance sampling, based on the fact that for ρ∗ > ρ > 0 the

likelihood ratio

x 7→ fρ(x)

fρ∗(x)
= 2ρ−ρ

∗ Γ(ρ∗)

Γ(ρ)

∣∣Γ (ρ
2

+ ix
2

)∣∣2∣∣Γ (ρ∗
2

+ ix
2

)∣∣2
=

2ρ−ρ
∗
Γ(ρ∗)

Γ(ρ)|Γ((ρ∗ − ρ)/2)|2

∣∣∣∣B(ρ2 + i
x

2
,
ρ∗

2
− ρ

2

)∣∣∣∣2
decreases to 0 as |x| becomes large, where B(x, y) = Γ(x)Γ(y)/Γ(x + y) denotes the

Beta function, therefore reducing the importance of large sample values of Zρ∗ .

In the next Proposition 3.1, Zρ∗ denotes a GHS random variable with parameter

ρ∗ > ρ > 0.

§https://www.crbond.com/math.htm
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Proposition 3.1 For all ρ∗ > ρ > 0 we have

Fρ(τ, x) =
2−ρ

∗
Γ(ρ∗)

Γ((ρ∗ − ρ)/2)2

(
σ√
2x

)ρ
(3.7)

×E

[
Z2
ρ∗e
−σ2(ρ2+Z2

ρ∗ )τ/8

∣∣∣∣B(ρ2 + i
Zρ∗

2
,
ρ∗ − ρ

2

)∣∣∣∣2 sinhc(Zρ∗)KiZρ∗ (
√

8x/σ)

]
,

x > 0, τ > 0.

Proof. For all ρ∗ > ρ > 0 we have

Fρ(τ, x)

= Γ(ρ)

(
σ√
8x

)ρ
e−σ

2τρ2/8E
[
Z2
ρe
−σ2τZ2

ρ/8sinhc(Zρ)KiZρ(
√

8x/σ)
]

=
1

2π

(
σ√
8x

)ρ ∫ ∞
0

u2e−σ
2(ρ2+u2)τ/8sinhc(u)

∣∣∣Γ(ρ
2

+ i
u

2

)∣∣∣2Kiu

(√
8x

σ

)
du

=
1

2π

(
σ√
8x

)ρ ∫ ∞
0

u2e−σ
2(ρ2+u2)τ/8sinhc(u)

∣∣∣∣Γ(ρ∗2 + i
u

2

)∣∣∣∣2
∣∣Γ (ρ

2
+ iu

2

)∣∣2∣∣Γ (ρ∗
2

+ iu
2

)∣∣2Kiu

(√
8x

σ

)
du

=
Γ(ρ∗)

2ρ∗

(
σ√
8x

)ρ
e−σ

2ρ2τ/8E

Z2
ρ∗e
−σ2τZ2

ρ∗/8

∣∣∣Γ(ρ2 + i
Zρ∗

2

)∣∣∣2∣∣∣Γ(ρ∗2 + i
Z∗
ρ

2

)∣∣∣2 sinhc(Zρ∗)KiZρ∗ (
√

8x/σ)

 ,
x > 0, τ > 0, ρ∗ > ρ > 0. �

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20

F 1
(τ

,x
)

τ

(3.1)
(3.7)

Figure 3.3: Computation of F1(τ, x) by (3.1) and (3.7) with x = 0.06, σ = 0.3, and ρ∗ = 50.
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A comparison of the graphs obtained by (3.1) and (3.7) is presented in Figure 3.3

with ρ∗ = 50, a root mean square error of 0.960392 for (3.7) and a root mean square

error of 8.81E-3 for (3.1), representing an improvement by a factor 110, for a similar

computation time.

A significant variance reduction can be observed in (3.7) when ρ∗ becomes larger,

although ρ∗ cannot be taken too large as the variance

E[Z2
ρ∗ ] = − ∂2

∂u2
(coshu)−ρ

∗

u=0 = ρ∗

of Zρ∗ grows linearly with ρ∗.

(ii) Control variate method

Using the relation

1 = Γ(ρ)

(
σ√
8x

)ρ
E
[
Z2
ρsinhc(Zρ)KiZρ(

√
8x/σ)

]
, x > 0,

that follows from (3.2) for τ = 0, we obtain the following proposition.

Proposition 3.2 For all functions f : IR+ × IR→ IR we have

Fρ(τ, x) = f(τ, x)e−σ
2τρ2/8

+Γ(ρ)

(
σ√
8x

)ρ
e−σ

2τρ2/8E
[
Z2
ρ(e−σ

2τZ2
ρ/8 − f(τ, x))sinhc(Zρ)KiZρ(

√
8x/σ)

]
.

x > 0, τ > 0.

Proof. We have

Fρ(τ, x) = Γ(ρ)

(
σ√
8x

)ρ
e−σ

2τρ2/8E
[
Z2
ρe
−σ2τZ2

ρ/8sinhc(Zρ)KiZρ(
√

8x/σ)
]

= f(τ, x)Γ(ρ)

(
σ√
8x

)ρ
e−σ

2τρ2/8E
[
Z2
ρsinhc(Zρ)KiZρ(

√
8x/σ)

]
+Γ(ρ)

(
σ√
8x

)ρ
e−σ

2τρ2/8E
[
Z2
ρ(e−σ

2τZ2
ρ/8 − f(τ, x))sinhc(Zρ)KiZρ(

√
8x/σ)

]
= f(τ, x)e−σ

2τρ2/8

+Γ(ρ)

(
σ√
8x

)ρ
e−σ

2τρ2/8E
[
Z2
ρ(e−σ

2τZ2
ρ/8 − f(τ, x))sinhc(Zρ)KiZρ(

√
8x/σ)

]
,

x > 0, τ > 0. �
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The optimal value of f(τ, x) ∈ IR can be computed by a standard covariance argument,
cf. e.g. § 4.5.3 of [1], as

f∗(τ, x) =
Cov

(
Z2
ρe
−σ2τZ2

ρ/8sinhc(Zρ)KiZρ(
√

8x/σ), Z2
ρsinhc(Zρ)KiZρ(

√
8x/σ)

)
Var

[
Z2
ρsinhc(Zρ)KiZρ(

√
8x/σ)

]
=
E
[
Z4
ρe
−σ2τZ2

ρ/8sinhc2(Zρ)K
2
iZρ

(
√

8x/σ)
]
− 23ρ/2

x−ρ/2
π

σρΓ(ρ)E
[
Z2
ρe
−σ2τZ2

ρ/8sinhc(Zρ)KiZρ(
√

8x/σ)
]

E
[
Z4
ρsinhc2(Zρ)K2

iZρ
(
√

8x/σ)
]
− 23ρxρπ2σ−2ρ/(Γ(ρ))2

.

(3.8)

It can also be approximated by minimizing

E[(e−σ
2τZ2

ρ/8 − f(τ, x))2]

i.e.

f∗(τ, x) = E[e−σ
2τZ2

ρ/8] =
2ρ−1

πΓ(ρ)

∫ ∞
0

e−σ
2τx2/8

∣∣∣Γ(ρ
2

+ i
x

2

)∣∣∣2 dx, (3.9)

which can be approximated by

f∗(τ, x) = e−σ
2τE[Z2

ρ ]/8 ' e−σ
2τρ/8.

However the control variate method is difficult to implement alone due to the diffi-

culty in computing the optimal parameter f∗(τ, x) by (3.8).

(iii) Importance sampling and control variate

Here we implement the control variate method along with importance sampling, by

reusing stored samples for the computation of f∗(τ, x) in (3.8). For all ρ∗ > ρ > 0 we

have

Fρ(τ, x) = e−σ
2ρ2τ/8f(τ, x)

+
2−ρ

∗
Γ(ρ∗)

Γ((ρ∗ − ρ)/2)2

(
σ√
2x

)ρ
(3.10)

×e−σ2ρ2τ/8E

[
Z2
ρ∗(e−σ

2Z2
ρ∗τ/8 − f(τ, x))

∣∣∣∣B(ρ2 + i
Zρ∗

2
,
ρ∗ − ρ

2

)∣∣∣∣2 sinhc(Zρ∗)KiZρ∗ (
√

8x/σ)

]
,

where f(τ, x) is a parameter with optimal value

f∗(τ, x) =

E

[
Z4
ρ∗e
−σ2Z2

ρ∗τ/8
∣∣∣B(ρ2 + i

Zρ∗
2 , ρ

∗−ρ
2

)∣∣∣4 sinhc2(Zρ∗)K2
iZρ∗

(
√

8x/σ)

]
E

[
Z4
ρ∗

∣∣∣B(ρ2 + i
Zρ∗

2 , ρ
∗−ρ
2

)∣∣∣4 sinhc2(Zρ∗)K2
iZρ∗

(
√

8x/σ)

]
− Γ((ρ∗−ρ)/2)4

2−2ρ∗Γ(ρ∗)2

(√
2x
σ

)2ρ
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−

Γ((ρ∗−ρ)/2)2

2−ρ∗Γ(ρ∗)

(√
2x
σ

)ρ
E

[
Z2
ρ∗e
−σ2Z2

ρ∗τ/8
∣∣∣B(ρ2 + i

Zρ∗
2 , ρ

∗−ρ
2

)∣∣∣2 sinhc(Zρ∗)KiZρ∗ (
√

8x/σ)

]
E

[
Z4
ρ∗

∣∣∣B(ρ2 + i
Zρ∗

2 , ρ
∗−ρ
2

)∣∣∣4 sinhc2(Zρ∗)K2
iZρ∗

(
√

8x/σ)

]
− Γ((ρ∗−ρ)/2)4

2−2ρ∗Γ(ρ∗)2

(√
2x
σ

)2ρ

Finally in the next Figure 3.4 we present an implementation of (1.7) using importance

sampling and the control variate method, while reusing stored samples of Zρ∗ . We

note that the level of precision obtained is comparable to that of the Monte Carlo

method (3.1), cf. Figure 3.2, for a similar computation time.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20

F 1
(τ

,x
)

τ

(3.10)

Figure 3.4: Comparison of (3.1) and (3.10) with x = 0.06, ρ = 1, σ = 0.3, and ρ∗ = 50.

Conclusion

In this study, numerical simulations have been performed for the Laplace transform

Fρ(τ, x) of exponential Brownian functionals using both integral representations and

the Monte Carlo method. In the integral method, difficulties in computing (2.2) arose

from the function θ(τ, x) for which we have confirmed the findings of [7]. Equa-

tion (2.5), however, proved less difficult to compute numerically due using existing

codes for the evaluation of special functions.

Concerning the computation of Fρ(τ, x) by the Monte Carlo method when ρ > 0, it

has been noticed that for large values of τ , more fluctuations in the values of Fρ(τ, x)

are present in the standard expression (3.1) than in the hyperbolic secant estimator

(3.2), as evidenced by the respective root mean square errors. However, the opposite

15



holds true for small values of τ as the variance of the hyperbolic secant weight Zρ tends

to degrade the performance of (3.2) in that case. Variance reduction schemes such

as importance sampling and control variate method, along with the reuse of stored

samples of Zρ, have been found to significantly improve the Monte Carlo estimate.
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