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Abstract. We consider a complete market model with jumps, using a mar-
tingale constructed from a Brownian motion and a Poisson process that are
mutually excluding each other. The chaotic calculus relative to this martingale
is developed, and applications to the computation of hedging strategies are
presented via a Clark formula and the method of partial differential equations.

1. Introduction

In this paper we present a complete market model that considers jumps in dy-
namics of asset prices. The sum of a Brownian motion and a Poisson process has
been used to model discontinuous asset prices, cf. [9], however it does not have the
predictable representation property, thus it does not yield market completeness.
A model having market completeness with jumps has been presented in [4] using
the standard Azéma martingale studied in [6].
We suggest to use a modification (Mt)t∈R+ of another martingale also introduced
in [6], which switches between a Brownian motion and a Poisson process accord-
ing to a deterministic schedule. This process does have the chaos representation
property because its Brownian part vanishes whenever it jumps. The martingale
considered in [6] is constrained to have jump sizes linked to the intensity of the
Poisson component. For this reason we use a modification of this process by regu-
lating the intensity and jumps sizes of the Poisson part according to deterministic
functions of time. As a consequence, the predictable quadratic variation of our
process is no longer equal to dt. The Poisson process and Brownian motion are
included as particular cases in our approach, as well as the representation formu-
las obtained in [8] using the Wiener chaos associated to a continuous martingale
with deterministic angle bracket. Our model contains a part of determinism in the
switches between different regimes. This can be used to represent certain events
and announcements that occur at dates known in advance, but whose effects are
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not predicted with certainty.
In Sect. 2 we define the martingale (Mt)t∈R+ which is a deterministic combination
of a Poisson process and a Brownian motion. Sect. 3 presents the chaos represen-
tation property. Sect. 4 deals with the predictable representation property and the
Clark formula with simplified proofs, using a gradient operator that plays a role
in the computation of hedging strategies. Changes of probability and the Girsanov
theorem for the process (Mt)t∈R+ are considered in Sect. 5, with applications to
the pricing of European options in Sect. 6.
We close this introduction with some notation. Given a martingale (Mt)t∈R+

, let
([Mt,Mt])t∈R+

denote its quadratic variation, defined by

[Mt,Mt] =M2
t − 2

∫ t

0

Mt−dMt,

and let (⟨Mt,Mt⟩)t∈R+
denote its conditional quadratic variation, or angle bracket,

such that ([Mt,Mt]− ⟨Mt,Mt⟩)t∈R+ is a martingale. If (Mt)t∈R+ is in L4 and has
the predictable representation property then there exists a predictable process
(ϕt)t∈R+

such that

[Mt,Mt]− ⟨Mt,Mt⟩ =
∫ t

0

ϕs−dMs. (1)

If the martingale (Mt)t∈R+
is normal (cf. [3]), that is if ⟨Mt,Mt⟩ = t, t ∈ R+, then

(1) can be written as

d[Mt,Mt] = dt+ ϕsdMs.

This type of equation has been called a structure equation in [6].

2. Solution of a deterministic structure equation

Let ϕ : R+ −→ R and α : R+ −→]0,∞[ be two deterministic functions, with
ϕ ∈ ∩p≥1L

p(R+, α
2
tdt). Let it = 1{ϕt=0}, and

λt = (1− it)α
2
t /ϕ

2
t =

{
α2
t /ϕ

2
t if ϕt ̸= 0,

0 if ϕt = 0, t ∈ R+.

Let (Bt)t∈R+
be a standard Brownian motion, and (Nt)t∈R+

a Poisson process with

intensity νt =
∫ t

0
λsds, t ∈ R+, i.e. (νt)t∈R+

is the unique continuous deterministic
function such that (Nt − νt)t∈R+ is a martingale. We assume that the processes
(Bt)t∈R+

and (Nt)t∈R+
are independent and that limt→∞ νt = ∞ and νt < ∞,

∀t ∈ R+. Let (Xt)t∈R+
denote the process defined as

dXt = itdBt +
ϕt
αt

(dNt − λtdt) , t ∈ R+, X0 = 0, (2)

which satisfies the structure equation

d[X,X]t = dt+
ϕt
αt
dXt. (3)
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It is known from [6] that (Xt)t∈R+
is in fact the unique solution of (3). Relation (3)

implies that the process (Xt)t∈R+ has predictable quadratic variation d⟨X,X⟩t =
dt. From (Xt)t∈R+ we construct a martingale (Mt)t∈R+ with predictable quadratic
variation d⟨M,M⟩t = α2

tdt, as

dMt = αtdXt, t ∈ R+, M0 = 0, (4)

i.e.

dMt = itαtdBt + ϕt (dNt − λtdt) , t ∈ R+, M0 = 0. (5)

We are using (Mt)t∈R+ instead of (Xt)t∈R+ because the parameters (ϕt)t∈R+ and
(αt)t∈R+ have independent roles in the definition of (Mt)t∈R+ : (ϕt)t∈R+ controls
the height of jumps, and (αt)t∈R+

is relative to the continuous part of (Mt)t∈R+
.

Proposition 2.1. The martingale (Mt)t∈R+
satisfies the deterministic structure

equation

d[M,M ]t = α2
tdt+ ϕtdMt, t ∈ R+, (6)

with d⟨M,M⟩t = α2
tdt, t ∈ R+.

Proof. Using the relations d[B,N ]t = 0 and itϕt = 0, t ∈ R+, we have:

d[M,M ]t = itα
2
tdt+ ϕ2tdNt

= itα
2
tdt+ ϕt

(
dMt − itαtdBt + (1− it)

α2
t

ϕt
dt

)
= α2

tdt+ ϕtdMt, t ∈ R+.

□

At first it could seem more general to set dMt = βtdXt, however this is not
the case, because the functions (ϕt)t∈R+ and (αt)t∈R+ are sufficient to completely
characterize (Mt)t∈R+ as a solution of (6).

3. Chaos representation property

Let (Ft)t∈R+
be the filtration generated by (Mt)t∈R+

which is the same as the
filtration generated by (Xt)t∈R+

, since α is deterministic and does not vanish. This
filtration is smaller than the filtration generated by the pair Brownian motion -
Poisson process. We assume that we are working on a probability space (Ω,F , P )
with F = F∞. We denote by L2(R+, α

2
tdt)

◦n the space of symmetric functions on
Rn

+ that are square-integrable with respect to α2
t1 · · ·α

2
tndt1 · · · dtn, equipped with

the L2(Rn
+, α

2
t1 · · ·α

2
tndt1 · · · dtn)-norm. Given f1, . . . , fn ∈ L2(R+, α

2
tdt), let also

f1 ◦ · · · ◦ fn : Rn
+ −→ R

denote the symmetrization in n variables of the function

(t1, . . . , tn) 7→ f1(t1) · · · fn(tn).
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It is known, cf. [6], that the process (Xt)t∈R+
has the chaos representation property,

i.e. any F ∈ L2(Ω,F , P ) has a unique decomposition

F = E[F ] +

∞∑
n=1

n!

∫ ∞

0

∫ tn

0

· · ·
∫ t2

0

gn(t1, . . . , tn)dXt1 · · · dXtn , (7)

with gn ∈ L2({0 ≤ t1 < · · · < tn}). Obviously a similar property holds for
(Mt)t∈R+ .
Let In(fn) denote the multiple stochastic integral of fn ∈ L2(R+, α

2
tdt)

◦n with
respect to (Mt)t∈R+ , defined as

In(fn) = n!

∫ ∞

0

∫ tn

0

· · ·
∫ t2

0

fn(t1, . . . , tn)dMt1 · · · dMtn , n ≥ 1,

with the convention I0(f0) = f0, f0 ∈ R. The multiple stochastic integrals satisfy
the isometry and orthogonality properties

E[In(fn)Im(gm)] =

{
(fn, gn)L2(R+,α2

tdt)
◦n n = m,

0, n ̸= m,
(8)

fn ∈ L2(R+, α
2
tdt)

◦n, gm ∈ L2(R+, α
2
tdt)

◦m.

Proposition 3.1. The martingale (Mt)t∈R+ has the chaos representation property:
any F ∈ L2(Ω,F , P ) has a unique decomposition

F = E[F ] +

∞∑
n=1

In(fn), fn ∈ L2(R+, α
2
tdt)

◦n, n ≥ 1.

Proof. It suffices to consider the expansion (7) of F ∈ L2(Ω,F , P ) and to define
fn ∈ L2(R+, α

2
tdt)

◦n as

fn(t1, . . . , tn) = (αt1 · · ·αtn)
−1gn(t1, . . . , tn), t1, . . . , tn ∈ Rn

+, n ≥ 1.

□

The action of the conditional expectation with respect to Ft on multiple
stochastic integrals is

E[In(fn) | Ft] = In(fn(∗)1{∗≤t}), t ∈ R+, fn ∈ L2(R+, α
2
sds)

◦n, n ≥ 1,

since (Mt)t∈R+
is a martingale.

4. Gradient and divergence operators

In this section we introduce the gradient operator that will be used in the com-
putation of hedging strategies. We denote by Dom(D) the set of F ∈ L2(Ω,F , P )
whose decomposition F =

∑∞
n=0 In(fn) satisfies

∞∑
n=1

n(n!)∥fn∥2L2(R+,α2
tdt)

◦n <∞.
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We let

D : Dom(D) −→ L2(Ω× R+, dP × α2
tdt)

denote the unbounded gradient operator defined as

DtF =

∞∑
n=1

nIn−1(fn(∗, t)), dP × dt− a.e.,

if F ∈ Dom(D) is written as F =
∑∞

n=0 In(fn). We have

∥DF∥2L2(Ω×R+,dP×α2
tdt)

=

∫ ∞

0

E[(DtF )
2]α2

tdt

=

∫ ∞

0

∞∑
n=1

n2(n− 1)!∥fn(∗, t)∥2L2(R+,α2
tdt)

◦(n−1)α
2
tdt

=

∞∑
n=1

n(n!)∥fn∥2L2(R+,α2
tdt)

◦n .

We denote by Dom(δ) the set of u ∈ L2(Ω×R+, dP ×α2
tdt) whose decomposition

ut =
∑∞

n=0 In(un(∗, t)), t ∈ R+, satisfies

∞∑
n=0

(n+ 1)!∥ũn∥2L2(R+,α2
tdt)

◦(n+1) <∞,

where ũn denotes the symmetrization in n+ 1 variables of un. Let

δ : Dom(δ) −→ L2(Ω,F , P )

be the unbounded divergence operator defined as

δ(u) =

∞∑
n=0

In+1(ũn), dP − a.e.,

if u ∈ Dom(δ) has the expression ut =
∑∞

n=0 In(un(∗, t)), t ∈ R+. Let S denote the
vector space generated by multiple stochastic integrals of the form In(f1 ◦ · · ·◦fn),
f1, . . . , fn ∈ ∩p≥1L

p(R+, α
2
tdt), n ∈ N.

Proposition 4.1. The operators D and δ have the following properties:

1. D and δ are mutually adjoint in the following sense:

E[(DF, u)L2(R+,α2
tdt)

] = E[Fδ(u)], u ∈ Dom(δ), F ∈ Dom(D). (9)

2. δ coincides with the stochastic integral with respect to (Mt)t∈R+
on the

square-integrable adapted processes u ∈ L2(Ω× R+, dP × α2
tdt):

δ(u) =

∫ ∞

0

u(t)dMt.

Proof. We first note that for F and u of the form F = In(fn) and ut = htIm(gm),
(9) follows from the isometry relation (8). Hence by linearity, (9) holds on dense
vector subspaces of L2(Ω,F , P ) and L2(Ω×R+, dP ×α2

tdt). As a consequence, D
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and δ are closable hence (9) holds on Dom(D) and Dom(δ) by density. Concerning
(ii) we write

u(t) =

∞∑
n=0

In(un(∗, t)) =
∞∑

n=0

n!

∫ ∞

0

∫ tn

0

· · ·
∫ t2

0

un(t1, . . . , tn, t)dMt1 · · · dMtn ,

with un(∗, t) symmetric, t ∈ R+. We have un(∗, t) = un(∗, t)1{∗≤t}, t ∈ R+, since
u is Ft-adapted, hence the symmetrization ũn of un in n + 1 variables coincides
with 1

n+1un on {0 ≤ t1 < · · · < tn}. Consequently,

δ(u) =

∞∑
n=0

In+1(ũn)

=

∞∑
n=0

(n+ 1)!

n+ 1

∫ ∞

0

∫ tn+1

0

· · ·
∫ t2

0

un(t1, . . . , tn, tn+1)dMt1 · · · dMtn+1

=

∫ ∞

0

∞∑
n=0

n!

∫ t

0

∫ tn

0

· · ·
∫ t2

0

un(t1, . . . , tn, t)dMt1 · · · dMtndMt

=

∫ ∞

0

∞∑
n=0

In(un(∗, t))dMt =

∫ ∞

0

u(t)dMt.

□

The next result states that (Mt)t∈R+
has the predictable representation prop-

erty, as a consequence of the chaos representation property.

Proposition 4.2. Any F ∈ Dom(D) ⊂ L2(Ω,F , P ) has a representation

F = E[F ] +

∫ ∞

0

E[DtF | Ft]dMt. (10)

Proof. We write the chaos expansion of F :

F = E[F ] +

∞∑
n=1

n!

∫ ∞

0

∫ tn

0

· · ·
∫ t2

0

fn(t1, . . . , tn)dMt1 · · · dMtn

= E[F ] +
∞∑

n=1

n

∫ ∞

0

In−1(fn(∗, t)1{∗≤t})dMt

= E[F ] +

∫ ∞

0

E[DtF | Ft]dMt.

□

This formula is called the Clark formula in the case of Brownian motion, cf.
[2], [11]. Combining Prop. 4.2 with (ii) of Prop. 4.1 we can also write

F = E[F ] + δ(E[D·F | F·]).
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Instead of the adapted projection (E[DtF | Ft])t∈R+
we may also use the pre-

dictable projection (E[DtF | Ft− ])t∈R+ defined by

E[DtIn(fn) | Ft− ] = In(fn(∗)1{∗<t}), fn ∈ L2(R+, α
2
sds)

◦n, t > 0, n ≥ 1,

in fact this leads to the same representation since the adapted and predictable
projections coincide in L2(Ω×R+, dP ×α2

tdt). The following proposition gives the
product rule for the operator D, which can be useful in practice for the computa-
tion of hedging strategies.

Proposition 4.3. We have the product rule

Dt(FG) = FDtG+GDtF + ϕtDtFDtG, t ∈ R+, (11)

for any F and G in the vector space S.

Proof. Rewriting the multiplication formula for multiple stochastic integrals with
respect to (Xt)t∈R+

, we obtain

In(f
◦n)I1(g) (12)

= In+1(g ◦ f◦n) + n(f, g)L2(R+,α2
tdt)

In−1(f
◦(n−1)) + nIn((ϕfg) ◦ f◦n−1).

Consequently, (11) can be proved by replicating the proof of Prop. 1 in [12]. □

From the duality between D and δ, relation (12) implies

Fδ(hF ) = δ(hF ) + (h,DF )L2(R+,α2
tdt)

+ δ(ϕhDF ),

h ∈ ∩p≥1L
p(R+, α

2
tdt), F ∈ S, which can be seen as a reformulation of (12).

Remark 4.4. Although D : L2(Ω,F , P ) −→ L2(Ω× R+, dP × α2
tdt) is unbounded,

the representation formula (10) of Prop. 4.2 can be extended from F ∈ Dom(D)
to F ∈ L2(Ω,F∞, P ) using the fact that the operator F 7→ E[D·F | F·] has a
continuous extension from L2(Ω,F , P ) into the space of square-integrable adapted
processes, cf. [10], [14].

Proof. We prove the continuity of the composition of the adapted projection
operator withD. Let F =

∑∞
n=0 In(fn) ∈ Dom(∇) and u(·) =

∑∞
n=0 In(un(∗, ·)) ∈

L2(Ω× R+, dP × α2
tdt). Let

∆n = {(t1, . . . , tn) ∈ Rn
+ : 0 ≤ t1 < · · · < tn}, n ≥ 1.
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We have, using the symmetry of fn+1:∣∣∣(E[D·F | F·], u)L2(Ω×R+,dP×α2
tdt)

∣∣∣
=

∣∣∣∣∣
∞∑

n=0

(n+ 1)

∫ ∞

0

n!(fn+1(∗, t)1{∗<t}, un(∗, t))L2(R+,α2
tdt)

◦nα2
tdt

∣∣∣∣∣
≤

∞∑
n=0

(n+ 1)!

∣∣∣∣∫ ∞

0

(fn+1(∗, t)1{∗<t}, un(∗, t))L2(R+,α2
tdt)

◦nα2
tdt

∣∣∣∣
≤

∞∑
n=0

(n+ 1)!

∣∣∣∣∫ ∞

0

∥(fn+1(∗, t)1{∗<t}∥L2(R+,α2
sds)

◦n∥un(∗, t)∥L2(R+,α2
sds)

◦nα2
tdt

∣∣∣∣
≤

∞∑
n=0

(n+ 1)!
√
n!

∣∣∣∣∫ ∞

0

∥fn+1(∗, t)1∆n
(∗)1{∗<t}∥L2(R+,α2

sds)
◦n

×∥un(∗, t)∥L2(R+,α2
sds)

◦nα2
tdt
∣∣

≤
∞∑

n=0

(n+ 1)!
√
n!

(∫ ∞

0

∥(fn+1(∗, t)1∆n
(∗)1{∗<t}∥2L2(R+,α2

sds)
◦nα2

tdt

)1/2

×
(∫ ∞

0

∥un(∗, t)∥2L2(R+,α2
sds)

◦nα2
tdt

)1/2

≤
∞∑

n=0

(n+ 1)!
√
n!∥fn+11∆n+1

∥L2(R+,α2
sds)

◦(n+1)∥un∥L2(R+,α2
sds)

◦(n+1)

≤
∞∑

n=0

√
(n+ 1)!

√
n!∥fn+1∥L2(R+,α2

sds)
◦(n+1)∥un∥L2(R+,α2

sds)
◦(n+1)

≤

( ∞∑
n=0

(n+ 1)!∥fn+1∥2L2(R+,α2
tdt)

◦n

)1/2( ∞∑
n=0

n!∥un∥2L2(R+,α2
tdt)

◦(n+1)

)1/2

≤ ∥F∥L2(Ω)∥u∥L2(Ω×R+,dP×α2
tdt)

.

□

5. Change of probability

Let Q be a probability measure which is equivalent to P . Then

Lt = E

[
dQ

dP
| Ft

]
, t ∈ R+, (13)

is a strictly positive Ft-martingale under P . Due to the predictable representation
property of (Xt)t∈R+

and (Mt)t∈R+
(Prop. 4.2), there exists a predictable process

(ψt)t∈R+
such that

dLt = Lt−ψtdMt, t ∈ R+, L0 = 1.
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We have

Lt = exp

(∫ t

0

isαsψsdBs −
1

2

∫ t

0

isα
2
sψ

2
sds+

∫ t

0

λsψsds

) ∏
Tk≤t

(1 + ϕTk
ψTk

) ,

where (Tk)k≥1 denotes the sequence of jump times of (Nt)t∈R+
, hence the process

(ψt)t∈R+
satisfies 1 + ϕtψt > 0, t ∈ R+.

Proposition 5.1. Under the probability Q, the process

Zt =Mt −
∫ t

0

α2
sψsds, t ∈ R+, (14)

is a martingale which satisfies the structure equation

d[Z,Z]t = α2
t (1 + ϕtψt)dt+ ϕtdZt. (15)

In particular, if (ψt)t∈R+
is deterministic, then (Zt)t∈R+

has the chaos represen-
tation property under Q.

Proof. From the classical Girsanov theorem, cf. [7], the canonical decomposition
of (Mt)t∈R+

under Q is

dMt =

(
dMt −

1

Lt−
d⟨L,M⟩t

)
+

1

Lt−
d⟨L,M⟩t, t ∈ R+,

i.e. dZt = dMt− 1
Lt−

d⟨L,M⟩t is a martingale underQ, with d⟨L,M⟩t = Lt−α
2
tψtdt.

(Under Q, the process dZ̃t = dMt− 1
Lt
d[L,M ]t is also a martingale). We also have

dZt = itαtdB̃t + ϕtdNt − λtϕt(1 + ϕtψt)dt.

Under the probability Q,

dB̃t = dBt −
1

Lt−
d⟨L,B⟩t = dBt − itψtαtdt

is a standard Brownian motion, and

dNt − λtdt−
1

Lt−
d⟨Lt, Nt −

∫ t

0

λsds⟩ = dNt − λt(1 + ϕtψt)dt,

is a martingale under Q, i.e. (Nt)t∈R+ is a Poisson process with intensity γtdt, with

γt = λt(1 + ϕtψt), t ∈ R+.

Writing

dZt = iαtdB̃t + ϕt(dNt − λt(1 + ϕtψt)dt),

we have

d[Z,Z]t = itα
2
tdt+ ϕ2tdNt

= itα
2
tdt+ ϕt(dZt − itαtdB̃t + λtϕt(1 + ϕtψt)dt)

= itα
2
tdt+ (1− it)α

2
t (1 + ϕtψt)dt+ ϕtdZt

= α2
t (1 + ϕtψt)dt+ ϕtdZt.
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From the above discussion, if (ψt)t∈R+
is deterministic, then the process (Zt)t∈R+

has the chaos representation property since it is a martingale that satisfies the
deterministic structure equation (15). □

Prop. 5.1 can be obtained in a different way, applying separately the Gir-
sanov theorem on the Wiener and Poisson spaces. The process dBt − itψtαtdt is a
standard Brownian motion under the probability

exp

(∫ ∞

0

isψsαsdBs −
1

2

∫ ∞

0

isψ
2
sα

2
sds

)
dP.

let (ν−1
t )t∈R+

denote the right-continuous inverse of (νt)t∈R+
.

The process (Nν−1
t

)t∈R+ is Poisson with intensity 1 under P , and has intensity

(1 + ϕtψt)dt under the probability

lim
t→∞

exp

(∫ t

0

(ϕψ)(ν−1
s )ds

) k=Nt∏
k=1

(1 + (ϕψ)(ν−1(νTk
)))dP,

where (νTk
)k≥1 denotes the jumps of (Nν−1

t
)t∈R+ . Hence (Nt)t∈R+ is a Poisson

process with intensity

d

dt

(
νt +

∫ t

0

(1− is)
ψsα

2
s

ϕs
ds

)
= (1 + ϕtψt)λtdt

under the probability Q, and

itαtdBt − itψtαtdt+ ϕt(dNt − λt(1 + ϕtψt)dt) = dMt − ψtα
2
tdt

is a martingale under Q.

6. Application : European call

6.1. The model

Let (µt)t∈R+
be a deterministic process such that

∫ t

0
|µs|ds <∞, ∀t ∈ R+, and let

σ : R+ −→ R be a deterministic bounded function satisfying 1+σtϕt > 0, t ∈ R+.
Let (St)t∈R+ denote the solution of the equation

dSt = µtStdt+ σtSt−dMt, t ∈ R+,

with deterministic initial condition S0. We have

St = S0 exp

(∫ t

0

σsαsisdBs +

∫ t

0

(µs − ϕsλsσs)ds−
1

2

∫ t

0

isσ
2
sα

2
sds

)
×

k=Nt∏
k=1

(1 + σTk
ϕTk

) , t ∈ R+,

where (Tk)k≥1 denotes the jump times of (Nt)t∈R+
. We assume that (St)t∈R+

represents the price of a risky asset, and that (rt)t∈R+
is a deterministic non

negative function which models the spot rate of a risk-less asset.
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As it is well known, if there exists a probability Q equivalent to P such

that under Q,
(
St exp

(
−
∫ t

0
rsds

))
t∈R+

is a martingale, the market is arbitrage

free. Such probabilities are called equivalent martingale measure (EMM). Since
the market is complete (Prop. 4.2), the EMM given by Prop. 5.1 is unique, see e.g.
[13]. In the following we construct explicitly the probability Q via the Girsanov
theorem. Unlike in the continuous case, the law of (St)t∈R+

under Q will also
depend on (µt)t∈R+

by means of the intensity of the jump process.

Proposition 6.1. Let us assume that 1 + (rt − µt)ϕt/(σtα
2
t ) > 0, t ∈ R+, and let

(ψt)t∈R+
be defined as

ψt =
rt − µt

σtα2
t

, t ∈ R+.

Then, the unique EMM is the probability Q such that E
[
dQ
dP | Ft

]
= Lt, t ∈ R+,

where dLt = Lt−ψtdMt, t ∈ R+, L0 = 1.

Proof. We have dSt = St−
(
µtdt+ σtdZt + σtψtα

2
tdt
)
and

µt + σtψtα
2
t = rt, t ∈ R+,

hence dSt = St−(rtdt+σtdZt) where (Zt)t∈R+
, defined in Prop. 5.1, is a martingale

under Q. □

If (ψt)t∈R+
is defined as in Prop. 6.1, then

St = S0 exp

(∫ t

0

σsαsisdB̃s +

∫ t

0

(rs − ϕsλsσs(1 + ϕsψs))ds−
1

2

∫ t

0

isσ
2
sα

2
sds

)
×

k=Nt∏
k=1

(1 + σTk
ϕTk

) , t ∈ R+.

where B̃ is a standard Q-Brownian motion. In the following, the probability Q will
be the equivalent martingale measure constructed from the above proposition.

6.2. Pricing of a call

In order to price a European option we compute EQ

[
e−TRT (ST −K)+

]
, where

RT = 1
T

∫ T

0
rsds. (Given the uniqueness of the EMM, this is the only acceptable

price of such an option, both for the buyer and the seller). The process (St)t∈R+

is a (not time homogeneous) Markov process. The price at time t is given by

C(t, x) = EQ

[
exp

(
−
∫ T

t

rsds

)
(ST −K)+ | St = x

]
.

Let

BS(x, T ; r, σ2;K) = E[e−rT (xerT−σ2T/2+σWT −K)+]
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denote the classical Black-Scholes function, where WT is a Gaussian centered ran-
dom variable with variance T . In the case of deterministic volatility (σs)s∈R+ and
interest rate (rs)s∈R+ , the price of a call in the Black-Scholes model is

BS(x, T ;RT ,
1

T
ΣT ;K), with ΣT =

∫ T

0

σ2
sds.

Let Γσ
t =

∫ t

0
isα

2
sσ

2
sds denote the variance of

∫ t

0
isαsσsdBs, t ∈ R+, and Γt =∫ t

0
γsds, t ∈ R+, denote the intensity of (Nt)t∈R+

under Q, where γt = λt(1+ϕtψt),
t ∈ R+.

Proposition 6.2. The expectation EQ

[
exp

(
−
∫ T

0
rsds

)
(ST −K)+

]
can be com-

puted as

EQ

[
exp

(
−
∫ T

0

rsds

)
(ST −K)+

]
= exp (−ΓT )

∞∑
k=0

1

k!

∫ T

0

· · ·
∫ T

0

BS

(
S0 exp

(
−
∫ T

0

ϕsγsσsds

)
i=k∏
i=1

(1 + σtiϕti) , T ;RT ,
Γσ
T

T
;K

)
×γt1 · · · γtkdt1 · · · dtk.

Proof. We have

EQ

[
exp(−TRT )(ST −K)+

]
=

∞∑
k=0

EQ

[
exp(−TRT )(ST −K)+ | NT = k

]
Q(NT = k),

with Q(NT = k) = exp(−ΓT )(ΓT )
k/k!, k ∈ N. Conditionally to {NT = k}, the

jump times (T1, . . . , Tk) have the law

k!

(ΓT )k
1{0<t1<···<tk<T}γt1 · · · γtkdt1 · · · dtk,

since the process (NΓ−1
t
)t∈R+

is a standard Poisson process. Hence, conditionally to

{N(Γ−1(ΓT )) = k} = {NT = k}, its jump times (ΓT1 , . . . ,ΓTk
) have a uniform law

on [0,ΓT ]
k. We then use the fact that (B̃t)t∈R+

and (Nt)t∈R+
are also independent

under Q since (µt)t∈R+ is deterministic, and the identity in law

ST
law
= S0XT exp

(
−
∫ T

0

ϕsλs(1 + ϕsψs)σsds

)
k=NT∏
k=1

(1 + σTk
ϕTk

) ,

where

XT = exp

(
TRT − Γσ

T /2 +

(
Γσ
T

T

)1/2

WT

)
,

and WT is independent of N . □
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6.3. The hedging strategy

An important problem is to determine the hedging strategy, i.e. to compute the
processes (θ0t , θ

1
t ) such that

C(t, St) = θ0t exp

(∫ t

0

rsds

)
+ θ1tSt,

and

dC(t, St) = θ0t exp

(∫ t

0

rsds

)
rtdt+ θ1t dSt

(self-financing condition). It suffices to compute (θ1t )t∈R+
such that

d

[
exp

(
−
∫ t

0

rsds

)
C(t, St)

]
= θ1t d

[
exp

(
−
∫ t

0

rsds

)
St

]
(16)

We shall note S̃t = exp
(
−
∫ t

0
rsds

)
St, t ∈ R+, the discounted price process.

In the following proposition we still denote by D the gradient operator defined
relatively to the multiple stochastic integrals with respect to (Zt)t∈R+ instead of
(Mt)t∈R+ , ((Zt)t∈R+ also has the chaos representation property because (α2

t (1 +
ϕtψt))t∈R+ is deterministic). The hedging strategy is computed using the gradient
D from the representation formula (10).

Proposition 6.3. If (rs)s∈R+
= 0, the hedging strategy is given by

θ1t =
1

σtSt
E[Dt(ST −K)+ | Ft], t ∈ R+.

Proof. Let F = (ST −K)+. We have dZt = (σtSt−)
−1dSt, hence

F = E[F ] +

∫ ∞

0

E[DtF | Ft]dZt

= E[F ] +

∫ T

0

1

σtSt−
E[DtF | Ft]dSt,

since F is FT -measurable. □

From Remark 4.4, the only regularity property that should be assumed on
F = (ST −K)+ is its square-integrability, and this method can be applied to any
square integrable pay-off F .
As in the standard Black-Scholes model, it is possible to determine the hedging
strategy in terms of the “delta” of the price in the case (rt)t∈R+ is deterministic.
An application of Itô’s lemma leads to

dC(t, St) =

[
∂C

∂t
+ rtSt

∂C

∂x
+

1

2

∂2C

∂x2
itα

2
tS

2
t σ

2
t + λt(1 + ϕtψt)ΘC

]
(t, St)dt

+Stσt
∂C

∂x
(t, St)dZt +ΘC(t, St) [dNt − λt(1 + ϕtψt)dt] (17)

where

ΘC(t, St) = C(t, St(1 + σtϕt))− C(t, St)−
∂C

∂x
(t, St)Stσtϕt.



14 M. Jeanblanc and N. Privault

(Note that here no smoothness property is required on (ϕt)t∈R+
). The process

C̃t = C(t, St) exp
(
−
∫ t

0
rsds

)
is a Q-martingale, and dC̃t = θ1t dS̃t; therefore, by

identification of (16) and (17),

rtC(t, St) =

[
∂C

∂t
+ rtSt

∂C

∂x
+

1

2
itα

2
tS

2
t σ

2
t

∂2C

∂x2
+ λt(1 + ϕtψt)ΘC

]
(t, St),

θ1tStσtdZt = Stσt
∂C

∂x
(t, St)dZt +ΘC(t, St) [dNt − λt(1 + ϕtψt)dt] .

Therefore, by identification of the Brownian and Poisson parts, θ1tStσtit = Stσt
∂C
∂x (t, St)it

θ1tStσtϕt = Stσt
∂C
∂x (t, St)ϕt +ΘC(t, St).

(18)

On {t ∈ R+ : ϕt = 0} = {t : i(t) = 1}, the term ΘC(t, St) vanishes. Therefore,
(18) reduces to

θ1t =
∂C

∂x
(t, St) +

ΘC(t, St)

Stσtϕt
.

The process (θ1t )t∈R+ is equal to the usual “delta” on the set {t ∈ R+ : it = 1}
and to C(t,St(1+ϕtσt))−C(t,St)

Stϕtσt
on the set {t ∈ R+ : it = 0}.

The usual PDE for the price of a call splits into two parts. On {t : ϕ(t) = 0}, we
obtain the usual PDE

∂C

∂t
(t, x) + rtx

∂C

∂x
(t, x) +

1

2
α2
tx

2σ2
t

∂2C

∂x2
(t, x) = rtC(t, x),

whereas on the set {t ∈ R+ : ϕt ̸= 0} we have

∂C

∂t
(t, x) + rtx

∂C

∂x
(t, x) + λt(1 + ϕtψt)ΘC(t, x) = rtC(t, x).

Each equation has to be solved using a terminal condition, which is computed by
backward induction from the condition at maturity C(T, x) = (x−K)+.

6.4. The greeks

The price of the European call is still convex and increasing with respect to the
value of the underlying asset. Here a new ”greek” parameter has to be defined
to make precise the dependence w.r.t. the drift of the asset, under the historical
probability, i.e. Υ = ∂C

∂µ (t, x) in the case where this drift is constant.

However, it turns out that the sign of this term depends on all the parameters
of the model.

7. Conclusion

The predictable representation property and the existence of an EMM give to this
model the main properties for mathematical finance’s purpose. For example, it
is possible to solve a consumption/investment problem, and to use the backward
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stochastic differential equation tools. It remains to find a method to fit the pa-
rameters to some data. The continuous part of the driving martingale can have an
arbitrary (deterministic) quadratic variation. Concerning the discontinuous part,
its jumps as well as its intensity can be independently chosen as deterministic func-
tions of time. This allows to model different types of transitions from continuous
to discontinuous paths, for example starting with small jumps and great intensity.
Transition dates between different regimes need to be known in advance. Neverthe-
less the behavior of the model is still random, conditionally to such information.
A non-deterministic switching schedule is also possible, provided its randomness
is independent of (Mt)t∈R+

.

Remark 7.1. Explicit formulas for the hedging strategies of Prop. 6.3 have been
recently obtained in [1] in the Poisson case and in [5] for solutions of deterministic
structure equations and for the Azéma martingales.
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