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Abstract We present a self-contained account of recent results on moment iden-
tities for Poisson stochastic integrals with random integrands, based on the use of
functional transforms on the Poisson space. This presentation relies on elementary
combinatorics based on the Faa di Bruno formula, partitions and polynomials, which
are used together with multiple stochastic integrals, finite difference operators and
integration by parts.
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1 Introduction

The cumulants (kX ),>1 of a random variable X have been defined in [33] and were
originally called the “semi-invariants” of X due to the property kXY = kX + k!,
n>1,when X and Y are independent random variables. Precisely, given the moment

generating function
© .n

B[] = ¥, S E[x"), (1)
n=0"""

of a random variable X, where ¢ is in a neighborhood of 0, the cumulants of X
are defined to be the coefficients (kX),>; appearing in the series expansion of the
logarithmic moment generating function of X, i.e. we have

log(E[e*) = ¥ kX, @
n=1 :

where 7 is in a neighborhood of 0. In relation with the Faa di Bruno formula, (1) and
(2) yield the classical identity

E[ n]:Z Z K\}ff’l\.ux\};a\’ neN, 3)

a=0pPU---UP,={1,...,n}

which links the moments (E[X"]),>; of a random variable X with its cumulants
(K‘X)nzl, cf. e.g. Theorem 1 of [16], and also [15] or § 2.4 and Relation (2.4.4) page

n

27 of [17].

The summation in (3) runs over the partitions P, ..., P, of the set {1,...,n}, i.e.
each sequence Pj,...,P, is a family of nonempty and nonoverlapping subsets of
{1,...,n} whose union is {1,...,n}, and |P;| denotes the cardinal of P, cf. § 2.2 of
[21] for a complete review of the notion of set partition. For example when X is
centered Gaussian we have K’,i( =0, n # 2, and (3) reads as Wick’s theorem for the
computation of Gaussian moments of X counting the pair partitions of {1,...,n},
cf. [10].

In this survey we derive moment identities for Poisson stochastic integrals with
random integrands, cf. Theorem 1 below, with application to invariance of Poisson
random measures. Our method relies on the tools from combinatorics appearing in
[3], i.e. the Faa di Bruno formula and related Stirling numbers, partitions and poly-
nomials, in relation with Poisson random measures, integration by parts on Poisson
probability spaces and multiple stochastic integrals. Such moment identities have
been recently extended to point processes with Papangelou intensities in [6] for the
moments and in [5] for the factorial moments of such point processes.

The outline of this survey is as follows. Section 2 starts with preliminaries on
combinatorics and the Faa di Bruno formula, providing the needed combinatorial
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background to rederive the classical identity (3). Then in Section 3 we introduce the
Poisson random measures and integration by parts on Poisson probability spaces,
along with the tools of . and % transforms in view of applications to moment
identities. Single and joint moment identities themselves are then detailed in Sec-
tion 4, in relation with set-indexed adaptedness and invariance of Poisson measures.

Our computation of Poisson moments will proceed from the Bismut-Girsanov
approach to the stochastic calculus of variations (Malliavin calculus), via the use of
functional . and % -transforms, cf. Sections 3.3 and 3.4. As an illustration we start
with some informal remarks on that approach in the framework of the Malliavin cal-
culus on the Wiener space. Given (B;),cr, a standard Brownian motion and F(®)
is a random functional of the Brownian path B;(®) = @(¢), r € R, we start from
the Girsanov identity

EIFE(] =2 |F (00)+ [ 1(50s) . @

where f € L*(R, ) and &(f) = X.. is the terminal value of the (martingale) solution
of the stochastic differential equation

dX; = f(t)X:dB, reRy. (5)
By iterations the solution of (5) can be written as the series

E(f) = Xeo
— 14 / F(0)X,dB,

1+Z/ /t" % (1) -+ f(tn)dB, ---dB,

n=1""

of multiple stochastic integrals

In
f®”—n'// ft1 < f(t)dB,, ---dB,,  n>1.

We can then rewrite (4) as

E[F&(f)] = E[F]+ Z E [FL(f*")] (6)

[ (o004 0
Fl+ i nl‘ ;:n [F (w(-)+8/0'f(S)dS)L=O
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By successive differentiations this yields the iterated integration by parts formula
E[FI,(f*")] = E[V}F], )

where V is the gradient operator defined by

1
VF =1 € ) -
it (F(o0)+e [ 769as) - Fo()
On the other hand, on the Wiener space the above Girsanov shift acts on the paths
(@(1))ier, of the underlying Brownian motion (B;),cr, as

o()— o) +£/0‘ Sf(s)ds

which yields

E[V!F] = [/ /fs1 (su)Ds, -+ Dy, Fdsi--dsy |, (8)

where D, F is the Malliavin gradient which satisfies

V¢F = /OstFf(s)ds

hence by (7) and (8) we obtain the iterated integration by parts identity

E|L(f*)F f(s1) f(s)Ds, -+~ Dy Fdsy--+dse |, k>1,
2| “s [ k
©)

which will be the basis for our computation of moments. On the Wiener space the
operator D also satisfies the identity

Diy(g°") = ng(t)l,-1 ("), reRy, (10)

which can be used to recover (9) as the Stroock [32] formula, cf. Corollary 1 below
for the Poisson case.

However, when carrying over this approach to the probability space of a Poisson
random measure it turns out that there is no differential operator V that can satisfy
both relations (8) and (10) above. In the sequel we will develop the above approach
on the Poisson space via the use of finite difference operators.
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2 Combinatorics

In this section we provide the necessary combinatorial background for the deriva-
tion of cumulant-type moment identities. We refer the reader to [21] and references
therein, cf. also [22], for additional background on combinatorial probability and
for the relationships between the moments and cumulants of random variables.

2.1 Faa di Bruno formula and Bell polynomials

Faa di Bruno formula

The Faa di Bruno formula plays a fundamental role in the combinatorics of mo-
ments, cumulants, and factorial moments. Namely, instead of the multinomial iden-
tity

=

n k X?l Zn
Yx)| =k ) RRAPAL (11)
=1 dy+-t+dp=k “1° n:

d1>0,....dp>0

S

we will use the combinatorial identity

k
(Z%) =Y Y xx, (12)

n=1 n=k dy+-+dy=n
A= di>1

or

(Zan) (ZXk,n> = Z Z X1dy Xk, - (13)
n=1 n=1

n=k dyj++dy=n
A >1dy>1

The above identity (12) is equivalent to the Faa di Bruno formula, i.e. given g(x)
and f(y) two functions given by their series expansions

al

with g(0) =0 and
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S
Y Yy Z RRREAT (14)

In the sequel we will often rewrite (12) using sums over partitions PJ',..., P of

{1,...,n} into subsets of cardinals |P}'|,...,|P|, as
n! bdl bdk
I VR AR X A DR (R
k di d
dyptetdg=n C1 ki prueUPP={L,. 0}

di>1,dy>1

Bell polynomials

The Faa di Bruno formula (14) can be rewritten as

=

F80) =Y 5 Y aBui(br.....bu i), (15)
n=0"" k=0

n

where B, x(b1,...,b,—k11) is the Bell polynomial of order (n,k) defined by

n!

1
Bn,k(bla-'wbnfkle) = E Z m

todytetdg=n
di>1,di>1

ba, by

k

= X bmpebp
PIU-UPI={1,...n}

n—k+1 1 b ]
1
— n! E I I — | =
P2y (ke )y gy =n 1=1 I :

r +’2+"'+’n—k+1:k
P20,y 120

_n y k! (bl ) " ( bp—g+1 ) kel
= - | = e ,
k! 2 (k1)1 gy =n r !"'rn7k+1! 1! (l’l—k—|— 1)'

rytrp ety g =k
11204120

cf. e.g. Definition 2.4.1 of [21], with B, o(by,...,b,) =0,n> 1, and Byp = 1. In
particular when f(y) = ¢’ we have a; = 1, k > 0, and (15) rewrites as

> by |
exp (Z m) = ;)EA,,(bl,...7bn). (16)

n=1

where
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n

An(bi,...,b,) = ZBn,k(b1,-~~,bn—k+1) a7
=0
n

= Y b
k=0 PlU--UP={1,...n}

n n—k+1 1 b\
= n! Z el
ANT
k=0 ri+2ry++n—k+)ry_pp1=n [=1

ritryteetr, =k
P20,y 1 20

n 1 bl Y
o x )
r +2r2;+nrn:n lI=Il rl! l‘

r12>0,...,7p >0

is the (complete) Bell polynomial of degree n. Relation (16) is a common formula-
tion of the Faa di Bruno formula and it will be used in the proof of Proposition 5
below on the %/ -transform on the Poisson space.

2.2 Stirling inversion

The Stirling numbers will be used for the construction of multiple stochastic inte-
grals and their relations to the Charlier polynomials in Section 3.2. Let

- {-Ar ()

i=0
1 n!
=— - (18)
k! dﬁ_,zﬂ,k,n dil-dy!
di>1,..di>1
= 1’

PlU--UP!={1,...,n}

denote the Stirling number of the second kind with §(n,0) =0, n > 1, and $(0,0) =
1, cf. page 824 of [1], i.e. S(n, k) is the number of partitions of a set of n objects into
k nonempty subsets, cf. also Relation (3) page 59 of [3], with

Bux(x,...,x) =x*S(n,k),  0<k<n.

-] (s

denote the (signed) Stirling number of the first kind, cf. e.g. page 824 of [1], i.e.
(—1)"*s(n,k) is the number of permutations of n elements which contain exactly k

Let also
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permutation cycles.
The following Stirling transform Lemma 1, cf. e.g. Relation (3) page 59 of [3],
also relies on the Faa di Bruno formula applied to
£k
f(l‘) = E and a,= l{n:k}

and
g(t)=log(1+1) and by=1p,_p.

Lemma 1. Assume that the function f(t) has the series expansion

o n

f(t) = Z;“m teR.
n=0""
Then we have .
gy
f(etil)zzi,clﬂ IERv
= k!

with

n
=) aS(nk),
k=0

and the inversion formula

a, = Z cks(n,k), neN.
k=0

Proof. Applying the Faa di Bruno identity (14) to g(¢) = ¢’ — 1 and using (18) we
have

o d_1k = =
fe-0=Ya' "oy ay Csmn
k=0 : k=0 n=k"™
o tn n o tn
= Z—'ZakS(n,k): Z—'cn, t € R,
n=0"" k=0 n=0""
with
n
Cn = Z arS(n,k)
k=0
Conversely we have
= ¢ o o
f) = Y og(1+0) = ¥ e ¥ sn.)
k=0 =0 n=k"
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with
n
a, = Z cks(n,k).
k=0

(|
As a consequence of Lemma 1, the Stirling transform
n
a, = Z cxs(n,k), neN,
k=0
can be inverted as
n
cn:ZakS(n,k), neN,
k=0
i.e. we have the inversion formula
n
Y S(n,k)s(k,l) ==y, nl€N, (19)

k=l

for Stirling numbers, cf. e.g. page 825 of [1]. As particular cases of the Stirling
transform of Lemma 1 we find that

k
RPN Y A LA R n!
—( =1k = — A I -
PSR (Z n!> k! & ! L G

n=1 dy+-tdy=n
dy>1,...dp>1
oo A{n e )yn
=) —B,(l,...,1) =) —S(n,k k>1. 20
Y Bl )= ES0R, k21 20

n=1 n
o .n 1 1 (_1)n7k+1
= (-1 k 7Bn 1a77_ ) )
( )nzz‘;(v ”‘( 23 k1
(fl)k > " n!
- (-
k! ,,Z:k ! d1+-;dk:n dy---dy
A2 1di>1

n! (1) *
s(n,k) = — . 21
s(nk) = MMZMH ad @21



10 Nicolas Privault
In particular, taking ¢; = x* and letting a, = X(y) defined by the falling factorial

Xy =x(x—=1)-- (x—n+1), k,n >0,

ie. .
=k
S = =et= 3t
and by Lemma 1 we get
o
Ft) = (142" =}, ), (22)
n=0"""

which will be used in Lemma 2 below on the Charlier polynomials.

By Stirling inversion we also find the expansion of the falling factorial
n
x<n)=x(x—1)---(x—n+1):Zs(n,k)xk (23)
k=0

and

X' = iS(n,k) x(x—=1)---(x—k+1),
k=0

cf. e.g. [9] or page 72 of [8].

2.3 Charlier and Touchard polynomials

Charlier polynomials

The Charlier polynomials C,,(x,A) or order n € N with parameter A > 0 are essential
in the construction of multiple Poisson stochastic integrals in Section 3.2. They can
be defined through their generating function

oo n

yalnn) =Y, SGlot) =e MI+A), xreRy, (24)

n=0 """
A€ (—1,1), cf. e.g. § 4.3.3 of [30].
Lemma 2. We have
n X n n nel
Co(x,A) = k;ox Eé l (=A)"'s(l,k), x,A€R. (25)

Proof. We check that defining C,,(x,7) by (25) yields
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"Vk(x:t) = Z :lcn(xat)

n=0 """

-y i‘ Y 4y (")( £y ls(1, k)
n=0 k=0 [=k l
oo ),”

=Y 23 () o ptstn
n=0 " =0 =0
o e -

— ;)x(”ng‘lm(n—l)'l'( !
o Al oo n

=Y xo7r Loy
=0 n=0 """

A,t >0, x € N, where we applied (22) and (23).

11

O

As a consequence of Lemma 2 and (23), the Charlier polynomial C,(x,A) can be

rewritten in terms of the falling factorial x,) as

n

Ca(x, 1) = Z (’Z) (—l)”lké)xks(l,k) -y (’;) (—2)"xy, xAER. (26)

=0 1=0

Lemma 3. We have the orthogonality relation

oo A,k
et kMG, 2) = A Ly
k=0 "
Proof. We have
rab _ —A(l+arh) v A k k
e = ZF(I—FG) (1+b)
k=0 ™"

e AK
=e lkg,oﬁ"l/u(kal)wb(lgl)

P Ak o o a1 pin
=e lkgoﬁ Z Z Eﬁcn(kal)cm(lqlh

n=0m=0

which shows that

@7
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_oaavw ( A" 2
with
oo A,k
Y Z=Cu(k,2)C(k,A) =0
k!
k=0
for n # m, and
n — - Ak
nia" = et Y TGk ),
k=0
for n = m. O

Touchard polynomials

The Touchard polynomials can be used to express the moments of a Poisson ran-
dom variable as a function of its intensity parameter. They can be defined by their
generating function

_y Y k=Y AkS(nb), (28)
k=1

PrU-UPP={1,...n} k=0

cf. e.g. Proposition 2 of [4] or § 3.1 of [20]. Relation (28) above will be used in the
proof of the combinatorial Lemma 7 below.

2.4 Moments and cumulants of random variables
Given the identity (1) defining the moment generating function of X, we can write
2
E[e”] = 1 +/E[X] + EIE[XZ] +o(r%),

which allows us to rewrite the cumulant generating function (2) as

2
log(E[e'X]) = log (l +1E[X] + E]E[X2] —|—0(t2)>
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2
= (E[X] + gE[XZ] — % <tE[X] + t;]E[XZ]> +o(r%)
= tE[X] + %E[xz] - g(E[X])z +o(r?)
= (E[X]+ gvar[X] +o(1?),

hence kf = E[X] and k¥ = var[X]. More generally, as a consequence of (16), the
moment generating function of X expands using the complete Bell polynomials
An(by,...,by) of (17) as

E[e] = exp(log(E[¢]))

which shows by comparison with (1) that

E[Xn] = An(’({(a KZX”KI)E()

n -
kL, A d!
di>1,..di>1

 Kipal, 29

k=0 PU-UPR!={1,...,n}

and allows us to recover (3).

The identity (29) can also be recovered from the Thiele [33] recursion formula

n—1 n—1)! n n_
B = X s B = B Ee ) 60

between moments and cumulants of random variables, cf. e.g. § 1.3.2 of [22]. In-
deed, assuming at the order n > 1 that

My S
11>1 ‘‘‘‘‘ s

and using (30), we have, at the order n+ 1,
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n+1 n
E[Xn-H] _ (k 1) K‘,i(E[XVH_l_k}
k=1 \"7
ntl KXnH_k 1 Kl)f KX
_ a
_ ; - L B
k=1 (k_ 1)‘ a=0 a! I+ +Hlg=n+1-k ll! la!
n=1,0a>1
n+1 n n+1—k
= (k_ 1> K Kppsi=t) " Koty
k=1 a=0  prl=ky ypptI=k={1 nt1-k}
n n+l—a n
ap) <k_ 1)"5 L Koy g1y
a=0 k=1 PPk P R = (11— k)
n
= Z Z K‘};){l+l| e K‘lf))H»H (31)
a=0 Pln+1U_..Upﬁl‘:{1,_,.,n+1} “r
n+1
=Y > Ko K
a=1 prtly upit ={1,..n41}
n+1 X X
:Z(n+1)! i...KI“
)
a=0 al I+ +lag=n+1 ll' la!
=21 la>1

where in (31) the set P2/ of cardinal |P| = k is built by combining {n+ 1} with

k—1 elements of {1,...,n}.

The cumulant formula (29) can also be inverted to compute the cumulant Kf
from the moments pX of X by the inversion formula

n
= Y@= Y by, =1 (32)
a=1 P{U--UPI={1,...,n}
where the sum runs over the partitions Py, ..., P7 of {1,...,n} with cardinal |P"|

by the Faa di Bruno formula, cf. Theorem 1 of [16], and also [15] or § 2.4 and
Relation (2.4.3) page 27 of [17].

Example - Gaussian cumulants

When X is centered we have k¥ = 0 and x§ = E[X?] = var[X], and X becomes
Gaussian if and only if kY =0,n >3, i.e. K} = 1,2} ox,n>1,or

(K{(Jé(, Kg{v Kfa) = (0’6270707"')'

When X is centered Gaussian we have K,f =0,n#2, and (29) can be read as Wick’s
theorem for the computation of Gaussian moments of X ~ .4'(0,62) by counting
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the pair partitions of {1,...,n}, cf. [10], as

o"(n—1)!!, neven,

n
E[Xn] :an Z K\)I(:'m P = (33)
k=1 plnu...uPI?:{l _____ n} Oa n Odd’
Pl =2,.... [Pl =2

where the double factorial

n!
(n—1)!1 = (2k—1)=27"2
! glz_kIgn (n/2)!
counts the number of pair-partitions of {1,...,n} when n is even.

Example - Poisson cumulants

In the particular case of a Poisson random variable Z ~ 47(A) with intensity A > 0
we have

oo ol t\n
Ele?] =Y ¢"P(Z=n)= et Y @A)y _ Sl teRy,
n=0

hence k? =A,n> 1, or

i.e. the n-th Poisson moment with intensity parameter A > 0 is given by 7,,(1) where
T, is the Touchard polynomial of degree n.

In the case of centered Poisson random variables we note that Z and Z — E[Z]
have same cumulants of order k > 2, hence in case Z — E[Z] is a centered Poisson
random variable with intensity A > 0 we have

E[(Zz-E[2)"] =Y Y A=Y AS(nk),  n>0,
a=1 PlU-URf={1,....n} k=0
\Pf’|227..,.\P{1’\22
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where S, (n,k) is the number of ways to partition a set of n objects into k nonempty
subsets of size at least 2, cf. [25].

Example - compound Poisson cumulants

Consider the compound Poisson random variable

51205,- +ee ﬁpztx,, (34)
with Lévy measure

0i8p, + -+ B,

where Bi,...,B, € R are constant parameters and Zg, , . .. s Za, 1s a sequence of in-
dependent Poisson random variables with respective parameters a,...,0, € R,.
The moment generating function of (34) is given by

R [o! B Zy 4B Za )] — oo (P —1) -y (P 1)

)

which shows that the cumulant of order k > 1 of (34) is given by
0 Bf + -+ + o By

As a consequence of the identity (29) the moment of order n of (34) is given by

E[<imam)] (39)
i=1

n pn pn pn pn
=Y X @B BT (B a8
m=0 PPU--UPL={1,...,n}
n P
[P P!
Z Z Z B, ' "'ﬁ,-‘mm‘aim,

m=0 P{1U~~UP,2={17,,,7n} i yeensim=1

where the above sum runs over all partitions P,..., P, of {1,...,n}.

Example - infinitely divisible camulants
On the other hand, in case X is the infinitely divisible Poisson stochastic integral
X = / h(t)dN,
Jo

with respect to a standard Poisson process (N;);cr. with intensity A >0 and & €
Mp=1 LF (R.), the logarithmic generating function
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oo

log & {exp (/Owh(t)dzv,ﬂ - l/om(eh(ﬁ D=2 i l'/:hn(t)dz =) KX%

n=1" n=1

shows that the cumulants of [, 4(¢)dN; are given by
KX :l/ wnd, >, (36)
0

and (29) becomes the moment identity

()]

Ak /wh‘Pln‘(t)dr--/whlpm(t)dt, (37)
1 0 0

PlU--UP!={1,...,n}

where the sum runs over all partitions PJ',..., P! of {1,...,n}, cf. [2] for the non-
compensated case and [28], Proposition 3.2 for the compensated case.

3 Analysis of Poisson random measures

In this section we introduce the basic definitions and notations relative to Poisson
random measures, and we derive the functional transform identities that will be
useful for the computation of moments in Section 4.

3.1 Poisson point processes

From now on we consider a Poisson point process 1) on the space Ng(X) of all
o-finite measures on a measure space (X,.2") equipped with a o-finite intensity
measure (L(dx), see [12] and [13] for further details and additional notation. The
random measure 1) in N (X) will be represented as

n(X)
n= Z 5)6,17
n=1
where (xn)gg) is a (random) sequence in X, J, denotes the Dirac measure at x € X,

and 1(X) € NU {eo} denote the cardinality of 7 identified with the sequence (x;,),.

Recall that the probability law [P of 1) is the Poisson probability measure with
intensity ((dx) on X is the only probability measure on N (X) satisfying

i) For any measurable subset A € 2 of X such that t(A) < oo, the number 1 (A) of
configuration points contained in A is a Poisson random variable with intensity

U(A), ie.



18 Nicolas Privault

Po({n €N (X) : (d) =n}) =e k@ BA oy

n!
ii) In addition, if Aj,...,A, are disjoint subsets of X with p(A;) < oo, k=1,...,n,
the N"-valued random vector

n— (N(A1),...,1n(An)), n € Ns(X),

is made of independent random variables for all n > 1.

When (X)) < o the expectation under the Poisson measure P, can be written as
B = O % L[ () cu(m) 68
for a random variable F of the form
Z Liny=npfa (X1, ) (39)

where for each n > 1, f;, is a symmetric integrable function of 1 = {x1,...,x,} when
N(X) =n, cf. e.g. § 6.1 of [24].
The next lemma is well known.

Lemma 4. Given [ and v two intensity measures on X, the Poisson random mea-
sure Ny 4y With intensity L+ vV decomposes into the sum

Nu+v = NMu DNy, (40)
of a Poisson random measure 1My, with intensity p(dx) and an independent Poisson
random measure 1y with intensity v(dx).

Proof. Taking F a random variable of the form (39) we have

T W) I CERA) § (MCRERCONE

]
n= On
and

n

Salfs1osa ) TT(r(dse) + v(ds)

k=1

I 13
s =)~

T

n

lf( ) [ o) (0@ -vids)

0" =0

=

n

Y. i o 15 () () V(i) ()

:0

HMS EMg

1 &
72 fl+m {S17 S --alerm}).u(dsl)'".u'(dsl)v(dlerl)"'v(dsH»m)
m =0 X!tm
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=1
= H(X) mgoﬁ/me [8;}:(”“)] v(dsy)---v(dsy) “1
= et TVEE[F (n, @ ny)),

where 8;; is the addition operator defined on any random variable F : N5 (X) — R
by

&f F(M)=F(N+8, +--+86,), NeENsX), s1,...,smeX, (42)

and
Sm = (S1,...,8m) €X", m>1.

In the course of the proof of Lemma 4 we have shown in (41) that

BIF ()] = # Y [ B[l F0)] vids)) -+ v(dsn) = BIF(nee )]

|
=0 m.

where sst is defined in (42).

In particular, by applying Lemma 4 above to p(dx) and v(dx) = f(x)u(dx) with
f(x) >0 p(dx)-a.e. we find that the Poisson random measure 1 with intensity (1 +
f)du decomposes into the sum

N1+£)dp = Mdu D Nfdus

of a Poisson random measure 7)q,, with intensity 1 (dx) and an independent Poisson
random measure 7)yq, With intensity f(x)u(dx).

In addition we have, using the shortand notation [E;, to denote the Poisson prob-
ability measure with intensity U,

|
F Fl= e X))y
(+paulFl=e Eom! .

By (&5 F) f(s1) - f(sa)u(dsy) - p(dsp). (43)
The above identity extends to f € L?>(X) with f > —1, and when f(x) € (—1,0),
Relation (43) can be interpreted as a thinning of 11 £)qy-

Mecke identity

The following version of Mecke’s identity [19], cf. also Relation (7) in [12], allows
us to compute the first moment of the first order stochastic integral of a random
integrand. In the sequel we use the expression “measurable process” to denote a
real-valued measurable function from X x N (X) into R.
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Proposition 1. For u : X X Ng(X) — R a measurable process we have

Ey [ /. u(xm)n(dx)] —E, [ [ uten +6x)u(dx)} 7 (44)

provided
B[ e + 8)lutan)] <o

Proof. The proof is done when 11 (X) < co. We take u(x,7n) written as
I/L(}C, 77) - Z l{n(X)zn}fn(X;xl s ,Xn),
n=0

where (x1,...,X,) — fu(x;x1,...,x,) is @ symmetric integrable function of n =
{x1,...,x,} when n(X) = n, for each n > 1. We have

B | [ atenin(a]

3.2 Multiple stochastic integrals

In this section we define the multiple Poisson stochastic integral using Charlier poly-

[P

nomials. We denote by “o” the symmetric tensor product of functions in L?(X), i.e.
given fi,...,fs € L*(X) and ky,... kg > 1,

ok ok,
fl lo...ofd d

denotes the symmetrization in n = kj + - - - + k4 variables of

@k @kq

cf. Relation (26) in [12].
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Definition 1. Consider Aj,...,A; mutually disjoint subsets of X with finite -
measure and n = k; +- - - + kg, where k1, ..., kg > 1. The multiple Poisson stochastic
integral of the function

oky oky
IA1 o---olAd

is defined by

I~

LN @ @ 1) () = [ [ G (n(A), 1 (A1) (45)

i=1

Note that by (26), Relation (45) actually coincides with Relation (25) in [12] and
this recovers the fact that

n®A) = #{(i1,....i) €{1,....nAY iy Fim, 1 <I#m<k})

defined in Relation (9) of [12] coincides with the falling factorial (1(A))) for
A € Z such that u(A) < oo,

See also [31] and [7] for a more general framework for the expression of multi-
ple stochastic integrals with respect to Lévy processes based on the combinatorics
of the Mobius inversion formula.

From (27) and Definition 1 it can be shown that the multiple Poisson stochastic
integral satisfies the isometry formula

E[ln(fn)lm(gm)] = 1{n=m} <fnagm>L2(xn)7 (46)

cf. Lemma 4 in [12], which allows one to extend the definition of /, to any symmet-
ric function f, € L?(X"), cf. also (51) below.

The generating series

i)n:lc,,(n(A),u(A)) = A1 2)1 =y (n(A), u(A)),

cf. (24), admits a multivariate extension using multiple stochastic integrals.

Proposition 2. For f € L*>(X)NL! (X) we have

=

8= X ™) =exp (= [ rnian) [T0+ 5. @)

k=0 XEN

Proof. From (46) and an approximation argument it suffices to consider simple
functions of the form

m
=Y aly,
k=1

by the multinomial identity (11) we have
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> 1 n' d dm ®d ®dm
=Y L ar “ml"(lAlo o1y )
n=0""" dy+-+dm=n '
> 1 n! A dn T
=) n! )y dil g1 [1Ca(n(A), u(A))
n=0"" dy+-"Fdu=n 41 i=1

|
s s
S
[l aoki
‘__Q
5(2 :
=
>
=
2

The relation between &(f) in (47) and the exponential functional in Lemma 5 of
[12] is given by

exp ([ (") Duaan) ) &(e! 1) =exp [ fCIm(@n)

provided e/ — 1 € L'(X) NL*(X).

3.3 S-transform

Given f € L'(X,u) NL*(X,u) with f(x) > —1 u(dx)-a.e. we define the measure
Qy by its Girsanov density

;%; =&(f) =exp (—./%f(xw(dxo [T+ £, (48)

xeX

where Py, is the Poisson probability measure with intensity p(dx). From (38), for F
a bounded random variable we have the relation

Eu[FE(f) = Ey [Fexp (- [ reoutan) [T+ 5

xen
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— exp (— / (1+f<x>>u<dx>) Y o [ FCsts D TTO+ fs)u(@s) - pas)

=0 ! k=1
= E[F(N(14f)au)];
which shows the following proposition.

Proposition 3. Under the probability Qy defined by (48), the random measure 1 is
Poisson with intensity (1+ f)dy, i.e.

Eu[FE(f)] = E(14p)aulF]
for all sufficiently integrable random variables F.

The .-transform (or Segal-Bargmann transform, see [14] for references) on the
Poisson space is defined on bounded random variables F by

)

[ SF(f) = By F] = By [FE()] = B [Fexp (- [ reoutan) [T+ 50

xen

for f bounded and vanishing outside a set of finite c-measure in 2" and Lemma 4
and Proposition 3 show that

SF(f) =E[F(Nay © Nyau)] (49)

= e SR [F] 4 ¢~ M i % / F(s1)-+- f(s1)Ey [eg F] p(dst) -+~ p(dsy),
k=1 K Xk

where 1)¢q, is a Poisson random measure with intensity fdu independent of 1gqy,
by Lemma 4. In the next proposition we use the finite difference operator

Dx::e‘;—l, xeX,
ie.
DF(n) =F(n+8)-F(n),
and apply a binomial transformation to get rid of the exponential term in (49). In the
next proposition we let

k
DY =Dy Dy,  s1,....5€X,

and
el =¢ef-..ef

s, — S50 Cspo Sl,...,SkEX,

as in (42), where
S = (81,--+,5) GXk, k>1.

Proposition 4. For any bounded random variable F and f bounded and vanishing
outside a set of finite Ll-measure in X we have
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oo

SEW) =Bl FER] = ¥ g [ A1) S50 [P F] (dst) - m(as).
e (50)

Proof. We apply a binomial transformation to the expansion (49). We have

LF(f)
— o xfdu Z i'/kf(n)...f(sk)Eu e F]pa(dsy)--- p(dsy)

rg) nl (/f ”) Zk‘/ F(s1) - f(s0)Ey 5 F] p(dst) - p(dsy)
i i( Sl ]: </fd“) kv/ f(s1) -+ f (1) By [£g F] p(dsy) - p(dsy)

m=0k=0 (m k

© 1M
n;o%;;o <k> xm Fls1)---flsm)Ey [€5, F] u(ds1) -~ p(dsm)
=1

mz—"o '/Xm flsm)Ey [D F} p(dsy) - p(dsy).

O

By identification of terms in the expansions (47) and (50) we obtain the following
result, which is equivalent by (46) and duality to the Stroock [32] formula, cf. also
Theorem 2 in [12].

Corollary 1. Given F a bounded random variable, for alln > 1 and f bounded and
vanishing outside a set of finite (-measure in 2 we have

L(f*F / f(s1)-+ f(sn)Ep [D2 Flu(dsy)---u(dsy). (5D
Proof. We note that (47) yields

SF) = Bpu [Fl = Bu[FE(P)] = ¥ BalFI (£,

n=0
and by Proposition 4 we have
SF(f)=Epau[F Z o s1) - f(sn)Eu [D5, F] i (dst) - u(dsn),
and identify the respective terms of orders n > 1 in order to show (51). (|

When k = 1 we have the integration by parts formula

Bl (F1 =By | [ FDFu(es)].
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Note that with the pathwise extension I ((Ff)®K) = F*I,(f®*) of the multiple
stochastic integral, (51) can be rewritten as the identity

BN =B | [ 7651)-F50D D (@) - atd)]

cf. also Proposition 4.1 of [26].

3.4 % -transform

The Laplace transform on the Poisson space (also called % -transform, cf. e.g. § 2
of [11]), is defined using the exponential functional of Lemma 5 of [12] by

f— WF(f) =E, [Fefxfdn} = e DR [FE(S 1)),

for f bounded and vanishing outside a set of finite p-measure in 2", and will be
useful for the derivation of general moment identities in Section 4.

Proposition 5. Let F' a bounded random variable. We have

2EO=Y Y X[ B (e ] () s,

(52)
feLl (X, ).

Proof. Using the Faa di Bruno identity (13) or (16) we have
o n ;o

— — Jefan] _ fx(ef~1)d F
gn!Eu{F(/denﬂ u [Pele/in] = elile/=VME, [FE (el — 1)

. e N 1 s s

S [ (1) () = ) [P F ) a9
1 & ;
) ( )/ W= 1) (e — DBy [ DA F| u(dsy) - p(dsy)

(/) —1)Ey [ef F] u(dst) - p(dsy)

( L S1>“<an(Sk)>Eu[ F] u(dsy)--- p(ds)

=1 n!

Fis) )
ko dyp! d!

I
s

3
Il
=

I
agk
x|~
%i\

=

T
[}

I
s
x| -
;ﬁ\

T
(=)

Il
agk
T =
s
™
S

T
[}
S
Il
=
=
+
i
@-
3
PR

EIJ [E;F] ,u(dsl) .. /.L(dsk)

dl ..... dkzl
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sl BN | n! di d
= — ) — _— s1) - f%(sp)Ey [ef Flu(dsy)--- u(dsy),
n:on!/;) 'd1+»“z+dk:n d1!~~~dk!/xkf (s1)--- 4 s) u[ ok ]ﬂ( 1) pdsi)
dyyedp>1
where we applied the Faa di Bruno identity (13). (|

In particular, by (53) we have

Ey [lm(gm)ejxj‘dfl} (54)
1

= — / (/6 — 1) () — 1)Ey, [DE Ln(gm)] e(dsi)--- 1t(ds)

/m(ef(s]) - 1) T (ef(sm> - ]>gm(s1a"'7sm)”(ds1) "'u(dsm)’

cf. Proposition 3.2 of [11].

4 Moment identities and invariance

The following cumulant-type moment identities have been extended to the Poisson
stochastic integrals of random integrands in [28] through the use of the Skorohod
integral on the Poisson space, cf. [23], [27]. These identities and their consequences
on invariance have been recently extended to point processes with Papangelou in-
tensities in [6], via simpler proofs based on an induction argument.

4.1 Moment identities for random integrands

The moments of Poisson stochastic integrals of deterministic integrands have been
derived in [2] by direct iterated differentiation of the Lévy-Khintchine formula or
moment generating function

B [exe ([ smtan) | =eso ([ ("~ ucan).

for f bounded and vanishing outside a set of finite -measure in .2". We can also
note that

g oo ([ reomi@n)| e ([ @ - hutan)

-y % (A(ef(x) - l)u(dx>>”

n=0

-

YL =) ) D) ()
n=0"""*
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© . ,
-y ;/Xn(eﬂxl)_1)...(ef<xn)_1)“(dxl)...u(dxn)
n=0"""
Cy (R L) (L) g
B ng()n! /Xn (kzll k! ) (1;1 k! >,U.(dx1) p(dx,)
y Ly fh) )
= - dxr) - u(dx
ngbn'kzad;r;;{,;lk/” dl' dn' ‘U“( 1) »LL( k)
:ilii L fdl( )~-f”(x)/.L(dx)~~[.L(dx)
kiok!n=0n! dy+-tdp=k dy!---d,! Jxn n 1 1),

where we applied the Faa di Bruno identity (13), and shows that

Ey K/}gf(x)n(dx))n] P,l;’Pn/aflpm(sl)/‘L(dsl)”’/XaflP‘;ll(Sa)M(dSa), (55)

which recovers in particular (37).
The next Lemma 5 is a moment formula for deterministic Poisson stochastic inte-
grals applies in particular under a change of measure given by a density F.

Lemmas5. Letn>1, f € ﬂ;zl LP(X, ), and consider F a bounded random vari-
able. We have

olr (/xfdnﬂ

i / fIP\ (s1) IP \( ) E [gi...g;;F]'u(dsl)...’u(dsk).

=1 PJU- uP" {1,...,n}

Proof. We apply Proposition 5 on the % -transform, which reads

= Z*Z* Z N (s1) - fU(sp)E [&F el F]u(dsy) - p(dsk).
DI g "" X" o

O

Lemma 5 with F = 1 recovers the identity (37), and associated with the complete
Bell polynomials A, (b1, ... ,by,) as in (29) it can be used to compute the moments of
stochastic integrals of deterministic integrands with respect to Lévy processes, cf.
[18] for the case of subordinators.

Relation (54) yields
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n

E[FZ"] = ZS(n,k)/ Ee) e Flp(ds)--u(ds), neN,  (56)
=0 Ak

and when f is a deterministic function, Relation (53) shows that

Ey K/Xf(x)n(dx))"] _ P”;Pn./xaf‘})ﬁ(Sl)“(dm'“,/Xaf‘Pg‘(S“)”(dS“)’

which recovers (55).

Based on the following version of (56)

n
B [Fn(a)") = 3 S0 | [ &+ efFLats)- - su(asn) - taso)
k=0
(57)
and an induction argument we obtain the following Lemma 6, which can be seen as
an elementary joint moment identity obtained by iteration of Lemma 57.

Lemma 6. For Ay,...,A, mutually disjoint bounded measurable subsets of X and
Fi,...,F, bounded random variables we have

By [(Fin(An)™ - (Fpn(Ap))™]

p
Z Z S(nhkl)---S(np,kp)
k=0  kp=0

n n
xEy |:/Xk|+~~+kp 8;"'8)1]+---+kp (F] 1 "'FPP(IA’I‘I ®"'®1A1;17)(x1""’xkl+"‘+kp)
p(dxr) - p(dog 4t ) | -

Lemma 6 allows us to recover the following moment identity, which can also be used
for the computation of moments under a probability with density F* with respect to
Py,.

n

Theorem 1. Given F a random variable and u : X x Ng(X) — R a measurable
process we have

E, [F ( /X u(x,n)n(dx)ﬂ (58)

Pﬂ P}l
= Y E kaesfwe;:(Fu'ss~~u's:'>u<ds1>~~u<dsk> ,
PIU—UPP={1,...n}

provided all terms in the above summations are Py ® u®k- integrable, k=1,...,n.

Proof. We use the argument of Proposition 4.2 in [5] in order to extend Lemma 6 to
(58). We start with u : X x Ng(X) — R a simple measurable process of the form
u(x,n) =Yr | F(n)1s,(x) with disjoint sets Ay,...,A,. Using Lemma 6 we have
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(

e
>
3
=

~

3

|
= T Elemar )]
1y >0
| ] np
- E: _nyle-n 2: S(ny,ky)---S(np,kp)
ny+etnp=n ! g k=0

+ e + nl . e np . e
E[.L |:/Xk1+~--+kp le gxk1+“~+kp <Fl Fp lAI;l X ® lAl;p (X] goos ’xkl+”'+kp))

p(dxy)- - H(dxk1+~~+kp)]

u n!
-y Y Y Stuk)eSlnpky)
m=0 ny+-tnp=n ML Np: ky+-tkp=m
nyye.ip >0 1<k <ny,..1<kp<np

E}l |:/Xm8;8;n (Flnl ,..F;PIAIII ®...®1A£p(xl7_”’xm)) ,u(dxl)”(dxm)]

“3 T s T sulnhestay )

l... |
=0 ny+-+np=n ny: np' I U-Ulp={1,~,m}
MY yeeey np>0 \11\<n1 _____ \Ip\Snp
+ ... ot nl . ”P ..
By || elel [T 2y Cx) - TT 1, () | () - ()
X jen Jjel,

(59)

3 b et (pP) I
-y y Y E, / e et (R, ), (o)

m=0 PU-UPg={1,...n} il ooesim=1

u(der) ()] (60)

where in (59) we made changes of variables in the integral and, in (60), we used the
combinatorial identity of Lemma 7 below with o j = 14,(x;), 1 <i< p,1 < j<m,
and f; = F,. The proof is concluded by using the disjunction of the A;’s in (62), as
follows:

pK;EAMWHW01

n
=Y ) Ey
m=0 P{1u...UPr"'1:{l,..4,n}

ulder) -+ p(dxn)|

Il
-
I
-

l@qmg«f@”hmg f@”1(»>
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. , T )
£ xm| e ((Ene) (£
i=1 i=1

m=0 P{U--UP}={1,....n}
it (62)

The general case is obtained by approximating u(x,n) with simple processes. [

The next lemma has been used above in the proof of Theorem 1, cf. Lemma 4.3 of
[5], and its proof is given for completeness.

Lemma 7. Let m,n,p € N, (0 j)1<i<p,i<j<m and PBi,..., B, € R. We have

n!
et X S Ihl)- St 1)) <
nptetnp=n P* L U-Ulp={1,...m}
ny,.np>0 Iy [0 oo | <np
|11|‘ n
P (I es)Bo" (I o
Jjeh jel,
- gl Zil o
= )3 )y Bi, ' ety By, Cliym- (63)

PIU-UPR={1,...n} i1 ,..clm=
Proof. Observe that (18) ensures
soiB ([Mes) = X TT(eB™)
Jel Uaer Pa={1,...,n} j€l

forall aj, j€1, B € R, n e N. We have

n!
—— Y S(ulnl)S(np. (1))
ny+Anp=n n1.~~.n[7- U-Ulp={1,...m}
nyyeestip >0 1yl <
|11|' "
- 0 HO‘IJ By Hap,j
jeh jGII;
- " -
ny+etnp=n ni ' e np! LU-Ulp={1,...m} m'
n,enp>0 1 |<n ool Ip| <np
gl 77|
H( Ulﬁl ) Z H ( pjpﬁp )
U“Ell Fitleom} 1l UaelpPa ={1,..,, np}jpefp
n!
rlll VVVV npp>0 \}1 \Snlpii{’17|<2;} Uaery Pa={1,-m} Uael, PY={1,...np}
|11|' |1 |‘ ‘ I‘

TTI1 («

=1ji€]
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o npleenp!

nytetnp= 1 U-Ulp={1,....m} Pl={1,...n PY={1,...,
y5eesttp 20 [y [<ny . |Ip|<np UUEI} a={1om} U“EIF @ ={1np}
L) II ! 17|
Hsz]Hﬁ
=1ji€l; =1ji€l;

n! P
T S 3
npt-tnp=n . g2 ky4-+kp=m i1yeeyim=1
Y ey np20 1<ky<ny,..., lgkpgnp

I ) T (o877

p i—
PlU- qu ={1,..,n1} Pk1+~-+kp,1+1u” uP,‘lJr H\pf{l,.,.,nl,}] 1

P
P P
Y Y ﬁ‘ g, 1B ot

PU-UBy={1,....n} i1,e.sim=1

by a reindexing of the summations and the fact that the reunions of the parti-
tions Pf,...,P"”, 1 < j < p, of disjoint p subsets of {1,...,m} run the partition
J

of {1,...,m} when we take into account the choice of the p subsets and the possible
length k;, 1 < j < p, of the partitions. O

As noted in [5], the combinatorial identity of Lemma 7 also admits a probabilis-
tic proof. Namely given Z; 4, ,...,Z; ¢, independent Poisson random variables with
parameters A ¢, ..., Ao, we have

n Y n np
YA Y Y Stk S(np k) Bl ol By

m=0  ny+-rnp=n 11 eenp! ky+-tkp=m
nysenp>0 ky<np,... kp<’1p
| ny n,,
= Z 7n | Z S(n1,ky)(Aoy ) Z S(np,ky)(Aay) B - B,”
n1+~~~+n[;:n 1
A peeey npz()
n! " n n
— 1.7 pn . R
o Z ny!---n VE[ZMZ] Zloc ] ﬁl’
ny+-+np=n . p*
nyyeesfip >0
» n
=E|| Y BZrqy
i=1
n p
_ m ‘Pl ) [P )
=2 Y Y BBy, (64)
m= PlU- UPE={1,...,n} i1,e.sim=

since the moment of order n; of Z , is given by (28) as

E|Z},] = ZSW (Aa)t.
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The above relation (64) being true for all A, this implies (63). Next we specialize
the above results to processes of the form u = 14 where A(n) is a random set.

Proposition 6. For any bounded variable F and random set A(1) we have

n

Ey [F (n(A))"] :IgS(n,k)E” [ /X et (L (1) Ly ()i (dsr) - “(dsk)} .

Proof. We have

Ey [F (n(4))"] = B, {F (/X 1A<n>(x)"(d“‘))n}

= ) Ey [/Xk e e (Flagy(s1) -+ Lag) (sw) ) (ds1) - 'H(dsk)}
PlU--UP!={1,...,n}

n

- ¥ S0 s s a0 Ly (0)a(dsn) - (as) .

We also have
Eu[F(n(A))"]

= 3500 T B | [ DolFLagy(on) -+ Lagy (el -l
k=0 ,

= 3 500 % ($)8a [ [, DD (P 500 gy o)) -t

k=0 =0

When 1 (A(n)) is deterministic this yields

£, (7(4))] = Ex K/X 1A<n)(x)n(dx)>n]

- ¥ sl 0, i L o0 Ly s
= 3500 T B | [ DoLuyo0)+ gy se)wlasy) s
k=0 oc(I....k}

= 3 500 Y ()| [ DD i 5 L i) <)

n k k
- ,;)S(n’k) (l)E“ [('U(A))kl/kaSl "'Dsz(lAm)(Sl)"'1A(n)(sl))li(d81)"'H(dsl)} ~
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4.2 Joint moment identities

In this section we derive a joint moment identity for Poisson stochastic integrals with
random integrands, which has been applied to mixing of interacting transformations
in [29].

Proposition 7. Let u : X X Ng(X) — R be a measurable process and let n =n; +
~+np, p> 1. We have

B[ ([mtmmn@) " ([wtmn@) ] (©5)

n k p
=) Y  E l/ ..... (HHu,’x,, > dX1)~~~u(dxk)1,
k=1 PIU-UP=(1,...n}

.....

where the sum runs over all partitions P{,..., P of {1,...,n} and the power li”j is
the cardinal

l” '—| N+ +ni—1,n +-+nj], i=1,....,k, j=1,...,p,

for any n > 1 such that all terms in the right hand side of (65) are integrable.
Proof. We will show the modified identity

[ (fantmnten) ([ menina) ] (66)

] k p
=) E, V i (FHH”l i ) dxl)“'“(ka)]7
k=1 PPU-UP'={1,....n} =

for F a sufficiently integrable random variable, where n = ny +---+n,. For p =1
the identity is Theorem 1. Next we assume that the identity holds at the rank p > 1.
Replacing F with F ([ up11(x,n)n(dx))"7*! in (66) we get

B[ (@) [upatmmnen) |

—ki y () - p(d)

1 PlU--UPP={1,...n}

E, [e <F () upmx,n)n(dx))"”“ fIH’ (x;»n))]
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n np-‘rl! / (/ n )ao
= ———— | E € , dx
k;l P{’u...UPkZi{l Z, ao!---ay! Jxk “[ ) G syt (5,1)71 ()

= ,...,n} ag+-+ag=npy|

n

k . p s
€ <FH (HZQl(x/,n)Huf”’(xfsnO)] p(dx)-- p(dx)
n +]! o
ao!}?..ak!/’:zl/xkﬁ»ao E#[ Z

anu uQa" {1,....a0}

k- k L
----- ktag HMPH xm) [T |« p+1 (ejom) [T (xjom p(dxr) - - p(dxeray)

q=k+1 Jj=1 i=1

[
D=
M

k=1 PlU-UPR!={l,...n} ao+-+ap=npi|

:Z: )

n+n
UL, P {1y}

k p+1 "+”p+l
[ (FHHu” (Mﬂ))ﬂ(dxl)“‘ﬂ(dxk)],

. . + +
where the summation over the partitions P{q Kt I 7PZ "of {1,...,n +npitts

is obtained by combining the partitions of {1,...,n} with the partitions 0%, ..., 0%
of {1,...,a0} and ai,...,a; elements of {1,...,n,,} which are counted according
to n,y1!/(ao!---ar!), with

l"+n/)+]

IVH’”[H—]
p+Lj

:llrf]"‘a], l§]§k7 p+1,j :l,’fj+|QZO‘, k+1§]§k+ao,

O

Note that when n = 1, (65) coincides with the classical Mecke [19] identity of Propo-
sition 1.

When ny =--- =n, =1 and p = n, the result of Proposition 7 reads

B | [ mnan)-- [ u(xmntan)

n k n
=Y ¥ E [ | TTTT wtojom) | s(@n)--- ()|

=1 PIU-UPI={1,...;n} j=liep}

where the sum runs over all partitions Pf',..., P of {1,...,n}, which coincides with
the Poisson version of Theorem 3.1 of [6].
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4.3 Invariance and cyclic condition

Using the relation € = Dy +1, the result

| ([ atemntan) |

-Y [ et ns]

k=1 PlU--UP!={1,...n}

of Theorem 1 can be rewritten as

| ([ utxninian) |

- ¥ f(f)Eu[/XDM sy u(as)|

PrU--UP!={1,...,n} =0

P" P Pn
xEy {/XIDSI ---Dy, ( P 1|/ ‘S,HIJ (dsi1)- /X”ka,u(dsk)> :u(dsl)"'l.t(dsl)} .

Next is an immediate corollary of Theorem 1.
Corollary 2. Suppose that

a) we have

D. -

S

-Dy, (ug, - -ug ) =0, Sty €X, k=1,...,n, 67)
b) [ ukp(ds) is deterministic for all k =1,...,n

Then / u(x,m)n(dx) has cumulants/ WF(x,m)p(dx), k=1,....n.
X X

Proof. We have

| ([ atemn@)) |

>]Eu [ [ Do Dy Fucasy) u(dsk)]

I
i)
C
-
o

=
|
—
=
=
™7
o _
N
~

3 ( Id L
- Z <l>]E” [/XleSl "'D“‘l< Uy =+ Sk 11 / ‘ d5>
n} =0

PU-UB={1,...,

uldst)--u(dser)].
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hence by a decreasing induction on k we can show that the formula

n n " Pl
“%K/“LWWMO}ZZ Y [T s
X k=0 PU--UPI={1,...n} 7 ¥

=) )y /Xufﬂu(dsl)-~-/XuLf5‘u(dsk)

k=0 PPU--UP}={1,...,n}

holds for the moment of order n and for the moments of lower orders 1,...,n—1.
(|

Note that from the relation

D@(”(xlan)"'”(xkan)): Z D(al”(xlaﬂ)"‘D@k“(xk,ﬂ), (68)
O1U---UB,=0
where the above sum runs over all (possibly empty) subsets @y,...,0; of O, in

particular when ® = {1,... ,k} we get

Dy, Dy (ulxy, 1) -t ) = Do (u(xr, m) -+, )

= ) De,u(x1,Mm) Do u(xr, M),
01U U ={1,...k}
where the sum runs over the (possibly empty) subsets 0y, ..., 0 of {1,...,k}. This
shows that we can replace (67) with the condition

D@lu(xl,n)---D@ku(xk,T])=(), (69)

forall xp,...,x; € X and all (non empty) subsets @y, ..., 0 C {xi,...,x,}, such that
O, U---UB,={1,...,n},k=1,2,...,n. See Proposition 3.3 of [5] for examples of
random mappings that satisfy Condition (69).
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