
Numerical solution of the modified and
non-Newtonian Burgers equations by

stochastic coded trees

Jiang Yu Nguwi∗ Nicolas Privault†

Division of Mathematical Sciences

School of Physical and Mathematical Sciences

Nanyang Technological University

21 Nanyang Link, Singapore 637371

December 13, 2023

Abstract

We present the numerical application of a meshfree algorithm for the solution of
fully nonlinear PDEs by Monte Carlo simulation using branching diffusion trees coded
by the nonlinearities appearing in the equation. This algorithm is applied to the
numerical solution of modified and non-Newtonian Burgers equations, and to a problem
with boundary conditions in fluid dynamics, by the computation of a Poiseuille flow.
Our implementation uses neural networks that yield a functional space-time domain
estimation, and includes numerical comparisons with the deep Galerkin (DGM) and
deep backward stochastic differential equation (BSDE) methods.

Keywords: Fully nonlinear PDEs, Monte Carlo method, branching process, random tree,

Burgers equation, modified Burgers equation, non-Newtonian Burgers equation, Poiseuille

flow, power law, deep neural network.

Mathematics Subject Classification (2020): 35G20, 60H30, 60J85, 76M35, 65C05.

1 Introduction

This paper presents an application of the stochastic branching method of [NPP23b] to the

numerical solution of nonlinear partial differential equations (PDEs) such as the modified

∗nguw0003@e.ntu.edu.sg
†nprivault@ntu.edu.sg

1

mailto:nguw0003@e.ntu.edu.sg
mailto:nprivault@ntu.edu.sg

and non-Newtonian Burgers equation, and to a fluid dynamics boundary problem using a

Poiseuille flow.

Standard numerical schemes for the solution of partial differential equations (PDEs) by

e.g. finite differences or finite elements, which generally suffer from the curse of dimensional-

ity. Deep learning methods for the solution of high dimensional PDEs have been introduced

in [SS18] using the deep Galerkin method (DGM), see [LZCC22] for recent improvements.

Probabilistic schemes, also provide a promising direction to overcome the curse of dimen-

sionality. Probabilistic representations for the solutions of nonlinear PDEs with first and

second order gradient nonlinearities can also be obtained using backward stochastic differen-

tial equation (BSDE), see [Pen91], [PP92], [CSTV07], and [HJE17, HJE18, BEJ19] for deep

learning implementations, see [CKSY23] for a recent survey.

Stochastic branching diffusion mechanisms [Sko64], [INW69], represent an alternative to

the DGM and BSDE methods, see [HL12, HLTT14, HLOT+19]. In [NPP23b], a stochastic

branching method that carries information on (functional) nonlinearities along a random

tree has been introduced, with the aim of providing Monte Carlo schemes for the numeri-

cal solution of fully nonlinear PDEs with gradients of arbitrary orders. In this paper, we

present a deep learning implementation of the method of [NPP23b] which relies on Monte

Carlo sampling, the law of large number and the universal approximation theorem. In this

framework,

i) the PDE solution is given by the conditional expectation of a functional of a random

coding tree via the fully nonlinear Feynman-Kac formula Theorem 3.2 in [NPP23b].

ii) The conditional expectation can be approximated by a neural network function through

the L2-minimality property and the universal approximation theorem.

This algorithm carries information on (possibly functional) nonlinearities along a random

tree for the numerical solution of fully nonlinear PDEs with gradients of arbitrary orders

by the Monte Carlo method. It has been implemented on Rd in [NPP23a] using a neural

network approach to efficiently approximate the PDE solution u(t, x) ∈ R over a bounded

domain in [0, T] × Rd, see also [NPP23c] for an application to the numerical solution of

the incompressible Navier-Stokes equation. This approach extends the stochastic branching

mechanisms [HLOT+19] and references therein, which applies only to first order gradient

2

nonlinearities. We note however that branching diffusion methods suffer in general from

a finite explosion time depending on the smoothness of the nonlinearities involved in the

equation, which is linked to the non-integrability of stochastic weight defined by a branching

process.

Other approaches to the solution of differential equations by carrying information on non-

linearities along trees include the use of B-series for ordinary differential equations (ODEs),

see [But10], Chapters 4-6 of [DB02] and references therein, with applications ranging to geo-

metric numerical integration and stochastic differential equations [HLW06], see also [Gub10],

and [BHZ19] for decorated trees and stochastic partial differential equations. On the other

hand, the stochastic branching method does not use series truncations, and it can be used

to estimate an infinite series, see [PP22] for an application to ODEs.

Numerical solutions of semilinear PDEs have also been obtained by the multilevel Picard

method [EHJK19, EHJK21, HJK22], and [BBH+20] for numerical experiments. We also

refer to [BBC+21, HPW20, PWG21] and [LLP23], for related deep learning-based numerical

algorithms.

Our method is applied to the Burgers and modified Burgers equations, as well as to the

generalized power-law Burger’s equation for non-Newtonian fluids, which has applications to

the study of aneurysms [BLS18]. We also provide comparisons of our results to the outputs

of the deep Galerkin algorithm of [SS18], and to the deep BSDE method of [HJE18, BEJ19],

and consider an application to a fluid dynamics boundary problem by the computation of

a Poiseuille flow. We note that all three methods considered in this paper are providing a

functional estimation of PDE solutions using neural networks.

After a summary of our stochastic coded tree approach in Section 2, we consider in

Sections 3-4 the Burgers and modified Burgers equations

∂tu(t, x) +
ν

2
∂xxu(t, x)− up(t, x)∂xu(t, x) = 0,

for p = 1, 2, 3, which incorporate nonlinearity and diffusive dissipation, where ν > 0 is the

viscosity parameter.

The numerical solution of the (modified) Burgers equation has been the object of several

studies using time and space splitting methods, see e.g. [RED05] and [SD08] for the use of

quintic splines, and [Bra10] for a fourth-order finite difference method.

3

We note in Figures 1 and 3-4 that the Galerkin, BSDE and branching methods perform

similarly up to time T = 1 in dimension d = 1, and up to time T = 0.2 in dimension

d = 3. On the other hand, for the version (3.3) of the multidimensional Burgers equation,

the deep branching method is more stable than the deep Galerkin and deep BSDE methods

in dimension d = 20, see Figure 2-b).

Next, in Section 5 we consider the one-dimensional non-Newtonian Burgers equation

∂tu(t, x) + n
ν

2
|∂xu(t, x)|n−1∆u(t, x)− u(t, x)∂xu(t, x) = 0,

(t, x) ∈ [0, T] × R, where n ∈ (0,∞). We note that while all three methods perform

comparably for n = 2, 3, see Figure 5, it turns out that the deep branching method is more

stable than the deep Galerkin and deep BSDE methods for the fractional orders n = 1/2

and n = 1/3, see Figure 6. Indeed, dealing with functional nonlinearities appears to be

challenging for the BSDE and Galerkin algorithms, which perform better for polynomial

nonlinearities in Sections 3 and 4. On the other hand, the deep branching method is natively

designed to handle a class of general nonlinearities, by propagating them along a random

tree.

In Section 6 we consider the case of boundary conditions with application to a fluid

dynamics problem using the equation of a Poiseuille flow.

The codes and executions of our numerical experiments are available at https://github.

com/nguwijy/deep_branching_jjiam. In order to ensure a fair performance comparison,

our numerical experiments are tuned to have comparable runtimes, while ensuring that

the deep branching method takes the shortest time, see Table 1 which lists the respective

computation times in the figures of Sections 3 to 5. The numerical outputs of the deep BSDE

and deep Galerkin may be improved by further increasing their runtimes.

Method \ Figure 1a 1b 2a 2b 3a 3b 4a 4b 5a 5b 6a 6b
Deep branching 34 92 126 241 38 37 38 38 36 55 54 55
Deep Galerkin [SS18] 87 140 155 598 83 84 85 87 83 91 87 87
Deep BSDE [BEJ19] 142 145 137 145 141 142 143 141 150 157 148 157

Table 1: Comparison of runtimes in minutes for Figures 1a to 6b.

We proceed as follows. In Section 2 we recall the framework of [NPP23a] for the proba-

bilistic representation of fully nonlinear PDE solutions using branching trees coded by non-

linearities. This is followed by numerical experiments for the modified and non-Newtonian

4

https://github.com/nguwijy/deep_branching_jjiam
https://github.com/nguwijy/deep_branching_jjiam

Burgers equations in Sections 3-5, and by an application to PDE problems with boundary

domain conditions in Section 6. The appendix contains technical derivations that are used

in Section 2.

2 Stochastic coded trees

In this section, we summarize the construction of the stochastic branching solver of [NPP23b],

and we extend it from one real variable to d-dimensional variables, d ≥ 1, for nonlinear PDEs

of the form
∂u

∂t
(t, x) +

ν

2
∆u(t, x) + f

(
u(t, x),

∂u

∂x1

(t, x), . . . ,
∂u

∂xd

(t, x),
∂2u

∂x2
1

(t, x), . . . ,
∂2u

∂x2
d

(t, x)

)
= 0,

u(T, x) = ϕ(x), (t, x) ∈ [0, T]× Rd,

(2.1)

where ν > 0, ∆ =
∑d

k=1 ∂
2
xk

is the standard Laplacian on Rd, and f(z0, z1, . . . , z2d) is

a smooth functional nonlinearity involving the partial derivatives ∂u/∂xk, ∂
2u/∂xk

2, k =

1, . . . , d.

For this, we start by rewriting (2.1) in Duhamel integral representation, as

u(t, x) =

∫
Rd

φ(T − t, y − x)ϕ(y)dy (2.2)

+

∫ T

t

∫
Rd

φ(s− t, y − x)f

(
u(t, y),

∂u

∂y1
(t, y), . . . ,

∂u

∂yd
(t, y),

∂2u

∂y21
(t, y), . . . ,

∂2u

∂y2d
(t, y)

)
dyds,

where φ(t, x) := e−x2/(2ν2t)/
√
2πν2t is the Gaussian kernel with variance ν2 > 0 and (t, x) ∈

[0, T]× Rd. Next, using the notation

g∗(u)(t, y) := g

(
u(t, y),

∂u

∂y1
(t, y), . . . ,

∂u

∂yd
(t, y),

∂2u

∂y21
(t, y), . . . ,

∂u2

∂y2d
(t, y)

)
, (2.3)

y = (y1, . . . , yd) ∈ Rd, for any function g : R2d+1 → R, we consider the set C of operators

from C0,∞([0, T]× Rd) to C0,∞([0, T]× Rd), defined as

C :=
{
Id,

(
a∂λf

)∗
, ∂µ : λ ∈ N2d+1, µ ∈ Nd, a ∈ R \ {0}

}
,

where Id denotes the identity on C0,∞([0, T]× Rd), and

∂λ := ∂λ0
z0
· · · ∂λ2d

z2d
, ∂µ := ∂µ1

x1
· · · ∂µd

xd
, λ = (λ0, . . . , λ2d) ∈ N2d+1, µ = (µ1, . . . , µd) ∈ Nd.

5

We also consider the mechanism M, which is a mapping defined on C by M(Id) := {f ∗}
and

M(g∗) :=

{(
f ∗,

(
∂g

∂z0

)∗)}
(2.4)

⋃
1≤p≤2d, 1≤s≤|λp|
1≤ν0+···+ν2d≤|λp|

1≤|k1|,...,|ks|,
0≺l1≺···≺ls

ki
1+···+ki

s=νi, i=0,...,2d

|k1|l1j+···+|ks|lsj=λp
j , j=0,...,2d


(∂1pg)

∗,

d∏
i=1

λp
i !(∂νf)

∗

∏
1≤r≤s
1≤q≤2d

kq
r ! (lr1! · · · lrd!)

kqr

 ⋃
1≤r≤s
1≤q≤2d

(
∂lr+λq , . . . , ∂lr+λq︸ ︷︷ ︸

kqr times

)


⋃ ⋃
i,j=1,...,2d
k=1,...,d

{(
−ν

2
(∂1i+1j

g)∗, ∂λi+1k
, ∂λj+1k

)}
, g∗ ∈ C,

g∗ ∈ C, where we let λ0 = (0, . . . , 0) ∈ N2d+1, λi = 1i ∈ N2d+1 for i = 1, . . . , d, and

λi = 21i ∈ N2d+1 for i = d+1, . . . , 2d, where 1i denotes the vector made of 1 at the position

q ∈ {1, . . . , 2d} and 0 elsewhere, and by

M(∂µ) (2.5)

:=
⋃

1≤s≤|µ|, 1≤η0+···+ηd≤|µ|
1≤|k1|,...,|ks|, 0≺l1≺···≺ls

ki
1+···+ki

s=ηi, i=0,...,d

|k1|l1j+···+|ks|lsj=µj , j=1,...,d




d∏
p=1

µp!∏
1≤r≤s
1≤q≤d

kq
r ! (lr1! · · · lrd!)

kqr
(∂ηf)

∗

 ⋃
1≤r≤s
1≤q≤d

(
∂lr+1qu, . . . , ∂lr+1qu︸ ︷︷ ︸

kqr times

)
 ,

µ ∈ Nd. The elements of C are called codes, and from the calculations presented in appendix

we note that the application c(u) of c ∈ C to u(t, x) satisfies the system of equations

c(u)(t, x) =

∫
Rd

φ(T − t, y−x)c(u)(T, y)dy+
∑

Z∈M(c)

∫ T

t

∫
Rd

φ(s− t, y−x)
∏
z∈Z

z(u)(s, y)dyds,

(2.6)

(t, x) ∈ [0, T]×Rd, see also Lemma 2.3 of [NPP23b]. Next, we rewrite (2.6) as the recursive

relation

c(u)(t, x) = E

[
1{τ1>T−t}

c(u)(T, x+Wν(T−t))

F (T − t)
(2.7)

+ 1{τ1≤T−t}
∑

Z∈M(c)

∫ T

t

1{Ic=Z}

∏
z∈Z z(u)(s, x+Wν(s−t))

q(Ic)ρ(τ1)
ds

]
,

where (τ1,Wσ2 , Ic) is a triple of independent random variables, such that

6

i) τ1 is a random time with probability density function ρ : R+ → (0,∞) and tail distri-

bution function F ,

ii) Wσ2 is a d-dimensional N (0, σ2) independent centered normal random sample with

variance σ2, and

iii) Ic is a random variable with uniform distribution qc(b) := P(Ic = b) onM(c), b ∈M(c).

Given an initial code c and initial condition (t, x) ∈ [0, T]×Rd, we build a random tree Tt,x,c
which branches at random time intervals whose lengths are independent copies of τ1. In

addition, a code in C and a Brownian path are assigned to every branch of Tt,x,c. Namely, after

branching at the node k ∈ Tt,x,c, a branch with code ck ∈ C generates a sequence of offsprings

with corresponding code sequence Ick chosen in M(ck) with the probability distribution

(qck(b))b∈M(ck)
, and every new branch develops an independent Brownian random evolution

over the random branch time τk. The creation of new branches from a node k ∈ Tt,x,c stops
when the new branching time exceeds T . In this case, the last branching time is denoted by

Tk− and the corresponding terminal Brownian value is denoted by X k̄
T,x. Finally, the set of

leaves of the random tree Tt,x,c is denoted by T ∂
t,x,c, and we let T ◦

t,x,c = Tt,x,c \ T ∂
t,x,c.

As in Definition 4.1 of [NPP23b], we consider the random functional

H(t, x, Id) :=
∏
k∈K◦

1

qck(Ick)ρ(τk)

∏
k∈K∂

ck(u)
(
T,X k̄

T,x

)
F (T − Tk−)

of the random coding tree Tt,x,c started at time t ∈ [0, T], location x ∈ R and code c = Id.

The functional H(t, x, c) is constructed by recursion in Algorithm 1 along the random tree

Tt,x,c started at (t, x, c) ∈ [0, T]× Rd × C.

7

Algorithm 1 Coding tree algorithm TREE(t, x, c)

Input: t ∈ [0, T], x ∈ Rd, c ∈ C
Output: H(t, x, c) ∈ R
H(t, x, c)← 1
τ ← a random variable drawn from the distribution of ρ
if t+ τ > T then

W ← a random vector drawn from N (0, ν(T − t))
H(t, x, c)← H(t, x, c)× c(u)(T, x+W)/F (T − t)

else
q ← the size of the mechanism setM(c)
I ← a random element drawn uniformly fromM(c)
H(t, x, c)← H(t, x, c)× q/ρ(τ)
for all cc ∈ I do

W ← a random vector drawn from N (0, ντ)
H(t, x, c)← H(t, x, c)× TREE(t+ τ, x+W, cc)

end for
end if

Under suitable regularity conditions on f and ϕ, see Assumption (A) in [NPP23b], taking

c = Id we obtain the probabilistic representation

u(t, x) := E
[
H(t, x, Id)

]
, (t, x) ∈ [0, T]× Rd, (2.8)

for the solution u(t, x) of (2.1) as a consequence of (2.7), see Theorem 1 in [NPP23b].

Instead of performing a Monte Carlo evaluation (2.8) at given points (t, x) ∈ [0, T]×Rd,

we use the L2-minimality property of expectation to obtain a functional estimation of u =

(u1, . . . , ud) as u(·, ·) = v∗(·, ·) on the support of a random vector (τ,X) on [0, T]× Rd such

that H(τ,X, Idi) ∈ L2, where

v∗ = argmin
{v:Rd+1→Rd : v(τ,X)∈L2}

d∑
i=1

E
[
(H(τ,X, Idi)− vi(τ,X))2

]
. (2.9)

To evaluate (2.9) on [0, T] × Ω, where Ω is a bounded domain of Rd, we can choose (τ,X)

to be a uniform random vector on [0, T]× Ω.

We note that the complexity of the algorithm increases linearly with the dimension d, as d

trees are used to generate a d-dimensional solution, whereas the complexity of finite difference

methods is generally polynomial in the dimension d. Time complexity can be estimated from

the mean number of leaves of a branching tree with exponential interbranching times, which

8

grows exponentially as a function of the terminal time t > 0 when the number of branches

is fixed, see [PP22].

3 Multidimensional Burgers equation

In this section, we consider the standard multidimensional Burgers equation

∂tu(t, x) +
ν

2
∆u(t, x)− u(t, x)

d∑
k=1

∂xk
u(t, x) = 0, x = (x1, . . . , xd) ∈ Rd, t ∈ [0, T], (3.1)

where ∆ =
∑d

k=1 ∂
2
xk

denotes the standard Laplacian on Rd, d ≥ 1. Equation (3.1) is known

to admit the traveling wave solution

u(t, x) = u2 +
u1 − u2

1 + exp
(
(u1 − u2)

(∑d
i=1 xi − (u1 + u2)(T − t)d/2

)
/ν
) , (3.2)

(t, x) ∈ [0, T]× Rd, where u1 < u2, see [WB11]. Figure 1 presents estimates of the solution

of the Burgers equation (3.1) with solution (3.2) in dimensions d = 1 and d = 3, with

comparisons with the outputs of the deep Galerkin method [SS18] and of the deep BSDE

method [HJE18].

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

-5 -4 -3 -2 -1 0 1 2 3 4 5
x1

Terminal condition
Exact solution

Deep branching
Deep Galerkin

Deep BSDE

(a) Dimension d = 1 with T = 1.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-5 -4 -3 -2 -1 0 1 2 3 4 5

x1

Terminal condition
Exact solution

Deep branching
Deep Galerkin

Deep BSDE

(b) Dimension d = 3 with T = 0.2.

Figure 1: Numerical solution of (3.1) and comparison to (3.2) with ν = 1.

In Figure 1-b) and in Figure 2 below we set (x2, . . . , xd) = (0, . . . , 0) and plot u(t, x) as

a function of x1, with x = (x1, 0, . . . , 0). Next, we consider the multidimensional Burgers

equation

∂tu(t, x) +
d2

2
∆u(t, x) +

(
u(t, x)− 2 + d

2d

)(
d

d∑
k=1

∂xk
u(t, x)

)
= 0, (3.3)

9

with traveling wave solution

u(t, x) =
exp

(
t+ d−1

∑d
i=1 xi

)
1 + exp

(
t+ d−1

∑d
i=1 xi

) , x = (x1, . . . , xd) ∈ Rd, t ∈ [0, T], (3.4)

see § 4.5 of [HJE17], and § 4.2 of [Cha13]. Figure 2 presents estimates of the solution of the

Burgers equation (3.3) with solution (3.4) in dimensions d = 5 and d = 20, with comparisons

with the outputs of the deep Galerkin method [SS18] and of the deep BSDE method [HJE18].

 0.3

 0.4

 0.5

 0.6

 0.7

-5 -4 -3 -2 -1 0 1 2 3 4 5
x1

Terminal condition
Exact solution

Deep branching
Deep BSDE

Deep Galerkin

(a) Dimension d = 5 with T = 0.2.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

-5 -4 -3 -2 -1 0 1 2 3 4 5

x1

Terminal condition
Exact solution

Deep branching
Deep Galerkin

Deep BSDE

(b) Dimension d = 20 with T = 0.1.

Figure 2: Numerical solution of (3.3) and comparison to (3.4) with ν = d2.

We note in Figure 2−b) that the deep branching method is more stable than the deep

Galerkin and deep BSDE methods in dimension d = 20.

4 Modified Burgers equation

We note that in dimension d = 1 the standard Burgers equation (3.1) also admits the

traveling wave solution

u(t, x) =
x

1 + T − t

(
1 + α

√
1 + T − t exp

(
x2

2ν(1 + T − t)

))−1

, (4.1)

(t, x) ∈ [0, T]× R, for any α > 0, see Section 8.3 of [Deb12]. Figure 3 presents estimates of

the solution of the Burgers equation (3.1) with solution (4.1).

10

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

-4 -3 -2 -1 0 1 2 3 4

x

Terminal condition
Approximate solution

Deep branching
Deep Galerkin

Deep BSDE

(a) Time T = 0.5.

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

-4 -3 -2 -1 0 1 2 3 4

x

Terminal condition
Approximate solution

Deep branching
Deep Galerkin

Deep BSDE

(b) Time T = 1.

Figure 3: Numerical solution of (3.1) and comparison to (4.1) with α = 1, and ν = 1.

We consider the modified Burgers equations

∂tu(t, x) +
ν

2
∂xxu(t, x)− up(t, x)∂xu(t, x) = 0, x ∈ R, p = 2, 3, (4.2)

which incorporate nonlinearity and diffusive dissipation, and are known to admit (4.1) as

approximate solution when α = 2, see [Har96], [RED05], [SD08], [Bra10]. Figure 4 presents

estimates of the solution of the modified Burgers equation (4.2).

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

-4 -3 -2 -1 0 1 2 3 4

x

Terminal condition
Approximate solution

Deep branching
Deep Galerkin

Deep BSDE

(a) MBE2 at time T = 1, p = 2.

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

-4 -3 -2 -1 0 1 2 3 4

x

Terminal condition
Approximate solution

Deep branching
Deep Galerkin

Deep BSDE

(b) MBE3 at time T = 1, p = 3.

Figure 4: Numerical solution of the Burgers equation (4.2) with α = 2 and ν = 1.

5 Non-Newtonian Burgers equation

In this section, we consider the non-Newtonian Burgers equation in dimension d = 1

∂tu(t, x) +
ν

2
∂x
(
|∂xu(t, x)|n−1∂xu(t, x)

)
− u(t, x)∂xu(t, x) = 0, (5.1)

11

with n > 0, i.e. when ∂xu(t, x) > 0 we have

∂tu(t, x) + n
ν

2
(∂xu(t, x))

n−1∆u(t, x)− u(t, x)∂xu(t, x) = 0,

(t, x) ∈ [0, T]×R. In order to apply the algorithm described in Section 2 and the deep BSDE

method to (5.1), we further rewrite the equation as

∂tu(t, x) +
ν

2
∆u(t, x) + n

ν

2
(∂xu(t, x))

n−1∆u(t, x)− ν

2
∂2
xu(t, x)− u(t, x)∂xu(t, x) = 0, (5.2)

i.e. the nonlinearity f in (2.1) is given by

f(u, v, w) = n
ν

2
wvn−1 − ν

2
w − uv.

For any u1, u2 ∈ R with u1 < u2, the non-Newtonian Burgers equation (5.1) is known to

admit a solution of the form

u(t, x) = h−1

(
x− (u1 + u2)

T − t

2

)
, (t, x) ∈ [0, T]× R, (5.3)

with

lim
x→−∞

u(t, x) = u2, lim
x→∞

u(t, x) = u1, and lim
|x|→∞

∂xu(t, x) = 0,

where

h(x) :=

∫ (u1+u2)/2

x

(
ν

(v − u1)(u2 − v)

)1/n

dv

= −ν1/n n

n− 1

(x− u1)

(u2 − u1)1/n(x− u1)1/n
2F1

(
1

n
, 1− 1

n
, 2− 1

n
;
u1 − x

u1 − u2

)
,

u1 < x < u2, and 2F1 is the Gaussian hypergeometric function, see [WB11], [WH12]. When

n = 1, (5.1) coincides with the standard Burgers equation (3.1) with

h(u) =
ν

u2 − u1

log

(
u2 − u

u− u1

)
,

which recovers the traveling wave solution (3.4) in dimension d = 1.

When the inverse function of h is not available in closed form, we use the library ‘pynverse‘

to obtain pointwise samples of h−1 in (5.3). Then, we use a neural network coded in PyTorch

to learn from the pointwise samples of h−1 in order to gain full knowledge of the derivatives

of the terminal condition ϕ(x) = u(T, x) = h−1(x), for use by the deep branching solver.

12

Figure 5 presents estimates of the solution of the non-Newtonian Burgers equation (5.1) with

explicit solution given by (5.3) with n = 2 and n = 3.

 0

 0.2

 0.4

 0.6

 0.8

 1

-2.5 -2 -1.5 -1 -0.5
x

Terminal condition
Exact solution

Deep branching
Deep Galerkin

Deep BSDE

(a) Equation (5.1) with n = 2 and T = 0.2.

 0

 0.2

 0.4

 0.6

 0.8

 1

-1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2
x

Terminal condition
Exact solution

Deep branching
Deep Galerkin

Deep BSDE

(b) Equation (5.1) with n = 3 and T = 0.2.

Figure 5: Numerical solution of (5.1) with T = 10 and ν = 1.

When n = 1/2, we have

h(u) =
ν2

(u2 − u1)2

(
u1 + u2 − 2u

(u− u1)(u2 − u)
+

2

u2 − u1

log
u2 − u

u− u1

)
,

and when n = 1/3, we find

h(u) = ν3

(
(u2 − u1)

−3

2

(
1

(u− u1)2
− 1

(u2 − u)2

)
+3(u2 − u1)

−4

(
1

u− u1

− 1

u2 − u

)
+ 6(u2 − u1)

−5 log

(
u2 − u

u− u1

))
, u1 < u < u2.

Figure 6 presents estimates of the solution of the non-Newtonian Burgers equation (5.1) with

explicit solution given by (5.3) with parameters n = 1/2 and n = 1/3. We note that in this

fractional order setting, the deep branching method is more stable than the deep Galerkin

and deep BSDE methods at comparable runtimes.

13

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

-10 -8 -6 -4 -2 0 2 4 6 8 10 12

x

Terminal condition
Exact solution

Deep branching
Deep Galerkin

Deep BSDE

(a) Equation (5.1) with n = 1/2 and T = 3.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

-80 -60 -40 -20 0 20 40 60 80
x

Terminal condition
Exact solution

Deep branching
Deep BSDE

(b) Equation (5.1) with n = 1/3 and T = 10.

Figure 6: Numerical solution of the non-Newtonian equation (5.1) with T = 10 and ν = 1.

No data or graph are available for the deep Galerkin method in Figure 6−b) as the numerical

output is NaN.

6 Domains with boundary conditions

In this section, we add a Dirichlet domain condition of the form

u(t, x) = 0, (t, x) ∈ [0, T]× ∂Ω, (6.1)

to the system (2.1), on the boundary ∂Ω of a domain Ω ⊂ Rd. In this case, the recursive

Relation (2.7) is modified into

c(u)(t, x) = E

[
1{τ1>T−t}1{(x+Wu)u∈[0,ν(T−t)]⊂Ω}

c(u)(T, x+Wν(T−t))

F (T − t)
(6.2)

+ 1{τ1≤T−t}
∑

Z∈M(c)

∫ T

t

1{Ic=Z}1{x+Wu∈Ω, ∀0≤u≤ν(s−t)}

∏
z∈Z z(u)(s, x+Wν(s−t))

q(Ic)ρ(τ1)
ds

]
,

where the indicators 1{(x+Wu)u∈[0,ν(T−t)]
and 1{x+Wu∈Ω, ∀0≤u≤ν(s−t)} account for the presence of

the boundary condition (6.1).

Path discretization approach

The first approach to implementing the indicator 1{x+Wu∈Ω, ∀0≤u≤ν(s−t)} in (6.2) is to dis-

cretize the Brownian path over m ≥ 1 time steps as

{x+Wu : u = 0, ν(s− t)/m, 2ν(s− t)/m, . . . , ν(s− t)},

14

and to check the indicator conditions at discrete times. This can be achieved by passing the

parameter bm_discretization_steps=m to the deep branching solver. Such an approach

allows us to deal with arbitrary domains Ω, however it may require a longer runtime and

may lose accuracy close the boundary ∂Ω.

Survival probability approach

The second approach is to estimate explicitly the conditional survival probability

P
(
{x+Wu ∈ Ω, ∀0 ≤ u < ν(s− t)} ∩ {x+Wν(s−t) ∈ Ω} | Wν(s−t)

)
(6.3)

and to pass the corresponding formula to the deep branching solver via the parameter

conditional_probability_to_survive. This approach results into a shorter runtime and

a higher accuracy over the whole domain. Its drawback is that a closed-form expression may

not be available for arbitrary domains.

In case Ω is the hyperrectangle Ω =
din−1∏
i=0

[ai, bi], the probability (6.3) can be written in

closed form as

din−1∏
i=0

1√
2πν(s− t)

∞∑
k=−∞

(
exp

((
W

(i)
ν(s−t)

)2 − (W (i)
ν(s−t) + 2k(bi − ai)

)2
2ν(s− t)

)
(6.4)

− exp

((
W

(i)
ν(s−t)

)2 − (2x+W
(i)
ν(s−t) − 2ai + 2k(bi − ai)

)2
2ν(s− t)

))
,

see e.g. Relation (4.44) in [Bor17].

Example - Heat equation with boundary condition

As an example, letting Ω := [lo, hi], we consider the heat equation
∂tuA(t, x) +

ν

2
∆uA(t, x) = 0, (t, x) ∈ [0, T]× Ω,

uA(t, x) = 0, (t, x) ∈ [0, T]× ∂Ω,

uA(T, x) = 1{x∈A}, x ∈ Ω,

(6.5)

in dimension d = 1, where A = [a, b] ⊂ Ω, which admits the closed-form solution

uA(t, x) =
∞∑

k=−∞

Φ

(
b− x+ 2k(hi− lo)√

ν(T − t)

)
−

∞∑
k=−∞

Φ

(
a− x+ 2k(hi− lo)√

ν(T − t)

)

−
∞∑

k=−∞

Φ

(
b+ x− 2lo + 2k(hi− lo)√

ν(T − t)

)
+

∞∑
k=−∞

Φ

(
a+ x− 2lo + 2k(hi− lo)√

ν(T − t)

)
,

15

(t, x) ∈ [0, T]×∂Ω. Figure 7 presents the output of the deep branching solver for the equation

(6.5) with Ω = [−2, 2] and A = [−1, 1], using either path discretization or (6.4).

 0

 0.2

 0.4

 0.6

 0.8

 1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x

Terminal condition
Exact solution

Deep branching

(a) Heat equation (5.1) by discretization.

 0

 0.2

 0.4

 0.6

 0.8

 1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x

Terminal condition
Exact solution

Deep branching

(b) Heat equation (5.1) by (6.4).

Figure 7: Numerical solution of the heat equation (6.5) with boundary.

Example - Poiseuille flow

Next, we consider the time-independent and time-dependent Poiseuille flows modeled by the

two-dimensional Navier-Stokes equation on the square [−L,L]2, i.e.

∂tu(t, x, y) +
ν

2
∆u(t, x, y) = ∇p(t, x, y) + u(t, x, y) · ∇u(t, x, y), (6.6)

(x, y) ∈ [−L,L]2, t ∈ [0, T], with boundary conditions on the walls y = L and y = L, and an

inlet at x = −L flowing to the direction x = L, with the divergence-free condition div u = 0.

Using the pressure function

p(t, x, y) := αv20 −
νv0
L2

x, (x, y) ∈ [−L,L]2, t ∈ [0, T],

it can be checked that the velocity flow u(t, x, y) := (g(t, y), 0) with

g(t, y) := v0

(
1− y2

L2

)
+

∞∑
n=0

(−1)n+132v0
π3(2n+ 1)3

e−
(2n+1)2π2ν(T−t)

8L2 cos
(2n+ 1)πy

2L
, (6.7)

solves the Navier-Stokes equation (6.6), see e.g. Eq. (16) in [SKS+03]. Figure 8 presents

the output of the deep branching solver using (6.4) for the equation (6.6), for the station-

ary solution u(t, x, y) = (v0(1 − y2/L2), 0) and for the time-dependent solution series (6.7)

truncated with 100 terms.

16

 0

 2x10-6

 4x10-6

 6x10-6

 8x10-6

 1x10-5

 1.2x10-5

 1.4x10-5

-0.004 -0.002 0 0.002 0.004

y

Terminal condition
Exact solution

Deep branching

(a) Stationary solution (v0(1− y2/L2), 0).

 0

 5x10-9

 1x10-8

 1.5x10-8

 2x10-8

 2.5x10-8

 3x10-8

-0.004 -0.002 0 0.002 0.004

y

Terminal condition
Exact solution

Deep branching

(b) Time-dependent solution (6.7) with t = 10.

Figure 8: Numerical solutions u(t, x, y) of the Poiseuille equation (6.6).

A Appendix

In this appendix, we show how the system of equations (2.6) can be obtained as a consequence

of the Duhamel identity (2.2) and the Faà di Bruno formula. For simplicity of exposition,

we restrict ourselves to the case where (2.1) takes the form
∂u

∂t
(t, x) +

ν

2
∆u(t, x) + f

(
u(t, x),

∂u

∂x1

(t, x), . . . ,
∂u

∂xd

(t, x)

)
= 0,

u(T, x) = ϕ(x), (t, x) ∈ [0, T]× Rd,

(A.1)

and refer to [NPP23a] for the general case. In the setting of (A.1), the writing ofM(g∗) in

(2.4) simplifies to

M(g∗) :=

{(
f ∗,

(
∂g

∂z0

)∗)}
(A.2)

d⋃
p=1

d⋃
i=0

{((
∂g

∂xp

)∗

,

(
∂f

∂xi

)∗

,
∂1+λi

∂y1+λi
p

)}⋃ ⋃
i,j=0,...,d
k=1,...,d

{(
−ν

2
(∂zi∂zjg)

∗,
∂λi+1u

∂yλi
i ∂yk

,
∂λj+1u

∂y
λj

j ∂yk

)}
,

g∗ ∈ C, where (λ0, . . . , λd) := (0, 1, . . . , 1), and using the notation (2.3) we have

∂tg
∗(u) +

ν

2
∆g∗(u)

=
d∑

p=0

∂λp

∂y
λp
p

(
∂tu+

ν

2
∆u
)(∂g

∂zp

)∗

(u) +
ν

2

d∑
i=0

d∑
j=0

d∑
k=1

(
∂λi+1u

∂yλi
i ∂yk

)(
∂λj+1u

∂y
λj

j ∂yk

)(
∂2g

∂zi∂zj

)∗

(u)

= −
d∑

p=0

(
∂g

∂zp

)∗

(u)
∂λp

∂y
λp
p

f ∗(u) +
ν

2

d∑
i=0

d∑
j=0

d∑
k=1

(
∂λi+1u

∂yλi
i ∂yk

)(
∂λj+1u

∂y
λj

j ∂yk

)(
∂2g

∂zi∂zj

)∗

(u)

17

= −
(

∂g

∂z0

)∗

(u)f ∗(u)−
d∑

p=1

(
∂g

∂zp

)∗

(u)
∂

∂yp
f ∗(u)

+
ν

2

d∑
i=0

d∑
j=0

d∑
k=1

(
∂λi+1u

∂yλi
i ∂yk

)(
∂λj+1u

∂y
λj

j ∂yk

)(
∂2g

∂zi∂zj

)∗

(u)

= −
(

∂g

∂z0

)∗

(u)f ∗(u)−
d∑

p=1

d∑
i=0

(
∂g

∂zp

)∗

(u)
∂1+λiu

∂y1+λi
p

∂f

∂zi

(
u(t, y),

∂u

∂y1
(t, y), . . . ,

∂u

∂yd
(t, y)

)

+
ν

2

d∑
i=0

d∑
j=0

d∑
k=1

(
∂λi+1u

∂yλi
i ∂yk

)(
∂λj+1u

∂y
λj

j ∂yk

)(
∂2g

∂zi∂zj

)∗

(u).

Rewriting the above equation in the Duhamel integral form yields

g∗(u)(t, x) =

∫
Rd

φ(T − t, y − x)g(ϕ(y))dy

+

∫ T

t

∫
Rd

φ(s− t, y − x)

(
−ν

2

d∑
i=0

d∑
j=0

d∑
k=1

∂λi+1u

∂yλi
i ∂yk

∂λj+1u

∂y
λj

j ∂yk

(
∂2g

∂zi∂zj

)∗

(u)

+

(
∂g

∂x0

)∗

(u)f ∗(u) +
d∑

p=1

d∑
i=0

(
∂g

∂xp

)∗

(u)
∂1+λiu

∂y1+λi
p

∂f

∂zi

(
u(s, y),

∂u

∂y1
(s, y), . . . ,

∂u

∂yd
(s, y)

))
dyds,

which shows (2.6) for codes c ∈ C of the form c = g∗, g ∈ C0,∞([0, T]×Rd), from the definition

(A.2) ofM. Similarly, for µ ∈ Nd, using the Faà di Bruno formula, see Theorem 2.1 in [CS96],

denoting by 1q the vector made of 1 at the position q ∈ {1, . . . , d} and 0 elsewhere, we have

∂µu(t, x) =

∫
Rd

φ(T − t, y − x)∂µu(T, y)dy

+

∫ T

t

∫
Rd

∑
1≤η0+···+ηd≤|µ|

1≤s≤|µ|

∑
1≤|k1|,...,|ks|, 0≺l1≺···≺ls

ki
1+···+ki

s=ηi, i=0,...,d

|k1|l1j+···+|ks|lsj=µj , j=1,...,d

d∏
i=1

µi!∏
1≤r≤s
1≤q≤d

kq
r ! (lr1! · · · lrd!)

kqr
(∂ηf)

∗
∑
1≤r≤s
1≤q≤d

(∂lr+1qu(s, y))
kqrdyds,

which yields (2.6) for codes c ∈ C of the form c = ∂µ = ∂µ1
x1
· · · ∂µd

xd
, µ ∈ Nd, from the

definition (2.5) ofM. The dimension-free argument of Theorem 3.2 in [NPP23b] then shows

that (2.8) holds provided that H(t, x, Id) is integrable and the solution of (2) is unique.

References

[BBC+21] C. Beck, S. Becker, P. Cheridito, A. Jentzen, and A. Neufeld. Deep splitting method for
parabolic PDEs. SIAM J. Sci. Comput., 43(5):A3135–A3154, 2021.

18

[BBH+20] S. Becker, R. Braunwarth, M. Hutzenthaler, A. Jentzen, and Ph. vonWurstemberger. Numerical
simulations for full history recursive multilevel Picard approximations for systems of high-
dimensional partial differential equations. Commun. Comput. Phys., 28(5):2109–2138, 2020.

[BEJ19] C. Beck, W. E, and A. Jentzen. Machine learning approximation algorithms for high-
dimensional fully nonlinear partial differential equations and second-order backward stochastic
differential equations. J. Nonlinear Sci., 29(4):1563–1619, 2019.

[BHZ19] Y. Bruned, M. Hairer, and L. Zambotti. Algebraic renormalisation of regularity structures.
Invent. Math., 215:1039–1156, 2019.

[BLS18] M. Badgaish, J.E. Lin, and P. Seshaiyer. Mathematical analysis and simulation of a coupled
nonlinear fluid structure interaction model with application to aneurysms. Communications in
Applied Analysis, 22:637–661, 2018.

[Bor17] A.N. Borodin. Stochastic processes. Probability and its Applications. Birkhäuser/Springer,
Cham, 2017. Original Russian edition published by LAN Publishing, St. Petersburg, 2013.

[Bra10] A.G. Bratsos. A fourth-order numerical scheme for solving the modified Burgers equation.
Comput. Math. Appl., 60(5):1393–1400, 2010.

[But10] J.C. Butcher. Trees and numerical methods for ordinary differential equations. Numerical
Algorithms, 53:153–170, 2010.

[Cha13] J.F. Chassagneux. Linear multi-step schemes for BSDEs. Preprint arXiv:1306.5548v1, 2013.

[CKSY23] J. Chessari, R. Kawai, Y. Shinozaki, and T. Yamada. Numerical methods for backward stochas-
tic differential equations: A survey. Probab. Surv., 20, 2023.

[CS96] G.M. Constantine and T.H. Savits. A multivariate Faa di Bruno formula with applications.
Trans. Amer. Math. Soc., 348(2):503–520, 1996.

[CSTV07] P. Cheridito, H.M. Soner, N. Touzi, and N. Victoir. Second-order backward stochastic differen-
tial equations and fully nonlinear parabolic PDEs. Comm. Pure Appl. Math., 60(7):1081–1110,
2007.

[DB02] P. Deuflhard and F. Bornemann. Scientific Computing with Ordinary Differential Equations,
volume 42 of Texts in Applied Mathematics. Springer-Verlag, New York, 2002.

[Deb12] L. Debnath. Nonlinear partial differential equations for scientists and engineers. Basel:
Birkhäuser, 3rd revised edition, 2012.

[EHJK19] W. E, M. Hutzenthaler, A. Jentzen, and T. Kruse. On multilevel Picard numerical ap-
proximations for high-dimensional nonlinear parabolic partial differential equations and high-
dimensional nonlinear backward stochastic differential equations. Journal of Scientific Com-
puting, 79:1534–1571, 2019.

[EHJK21] W. E, M. Hutzenthaler, A. Jentzen, and T. Kruse. Multilevel Picard iterations for solving
smooth semilinear parabolic heat equations. Partial Differential Equations and Applications,
2, 2021.

[Gub10] M. Gubinelli. Ramification of rough paths. J. Differential Equations, 248(4):693–721, 2010.

[Har96] S.E. Harris. Sonic shocks governed by the modified Burgers’ equation. European Journal of
Applied Mathematics, 7:201–222, 1996.

[HJE17] J. Han, A. Jentzen, and W. E. Deep learning-based numerical methods for high-dimensional
parabolic partial differential equations and backward stochastic differential equations. Preprint
arXiv:1706.04702, 39 pages, 2017.

[HJE18] J. Han, A. Jentzen, and W. E. Solving high-dimensional partial differential equations using
deep learning. Proceedings of the National Academy of Sciences, 115(34):8505–8510, 2018.

19

[HJK22] M. Hutzenthaler, A. Jentzen, and T. Kruse. Overcoming the curse of dimensionality in the
numerical approximation of parabolic partial differential equations with gradient-dependent
nonlinearities. Found. Comput. Math., 22:905–966, 2022.

[HL12] P. Henry-Labordère. Counterparty risk valuation: a marked branching diffusion approach.
Preprint arXiv:1203.2369, 2012.

[HLOT+19] P. Henry-Labordère, N. Oudjane, X. Tan, N. Touzi, and X. Warin. Branching diffusion repre-
sentation of semilinear PDEs and Monte Carlo approximation. Ann. Inst. H. Poincaré Probab.
Statist., 55(1):184–210, 2019.

[HLTT14] P. Henry-Labordère, X. Tan, and N. Touzi. A numerical algorithm for a class of BSDEs via the
branching process. Stochastic Processes and their Applications, 124(2):1112–1140, 2014.

[HLW06] E. Hairer, C. Lubich, and G. Wanner. Geometric numerical integration, volume 31 of Springer
Series in Computational Mathematics. Springer-Verlag, Berlin, second edition, 2006.

[HPW20] C. Huré, H. Pham, and X. Warin. Deep backward schemes for high-dimensional nonlinear
PDEs. Math. Comp., 89(324):1547–1579, 2020.

[INW69] N. Ikeda, M. Nagasawa, and S. Watanabe. Branching Markov processes I, II, III. J. Math.
Kyoto Univ., 8-9:233–278, 365–410, 95–160, 1968-1969.

[LLP23] W. Lefebvre, G. Loeper, and H. Pham. Differential learning methods for solving fully nonlinear
PDEs. Digital Finance, 5:189–229, 2023.

[LZCC22] L. Lyu, Z. Zhang, M. Chen, and J. Chen. MIM: A deep mixed residual method for solving
high-order partial differential equations. Journal of Computational Physics, 452(1):110930,
2022.

[NPP23a] J.Y. Nguwi, G. Penent, and N. Privault. A deep branching solver for fully nonlinear partial dif-
ferential equations. Preprint arXiv:2203.03234, 17 pages, to appear in Journal of Computational
Physics, 2023.

[NPP23b] J.Y. Nguwi, G. Penent, and N. Privault. A fully nonlinear Feynman-Kac formula with deriva-
tives of arbitrary orders. Journal of Evolution Equations, 23:Paper No. 22, 29pp., 2023.

[NPP23c] J.Y. Nguwi, G. Penent, and N. Privault. Numerical solution of the incompressible Navier-
Stokes equation by a deep branching algorithm. Communications on Computational Physics,
34:261–289, 2023.

[Pen91] S. Peng. Probabilistic interpretation for systems of quasilinear parabolic partial differential
equations. Stochastics Stochastics Rep., 37(1-2):61–74, 1991.

[PP92] É. Pardoux and S. Peng. Backward stochastic differential equations and quasilinear parabolic
partial differential equations. In Stochastic partial differential equations and their applications
(Charlotte, NC, 1991), volume 176 of Lecture Notes in Control and Inform. Sci., pages 200–217.
Springer, Berlin, 1992.

[PP22] G. Penent and N. Privault. Numerical evaluation of ODE solutions by Monte Carlo enumeration
of Butcher series. BIT Numerical Mathematics, 62:1921–1944, 2022.

[PWG21] H. Pham, X. Warin, and M. Germain. Neural networks-based backward scheme for fully non-
linear PDEs. Partial Differ. Equ. Appl., 2(1):Paper No. 16, 24, 2021.

[RED05] M.A. Ramadan and T.S. El-Danaf. Numerical treatment for the modified Burgers equation.
Mathematics and computers in simulation, 70:90–98, 2005.

[SD08] B. Saka and İ Daǧ. A numerical study of the Burgers’ equation. Journal of the Franklin
Institute, 345:328–348, 2008.

20

[Sko64] A.V. Skorokhod. Branching diffusion processes. Teor. Verojatnost. i. Primenen., 9:492–497,
1964.

[SKS+03] L. Di G. Sigalotti, J. Klapp, E. Sira, Y. Meleán, and A. Hasmy. SPH simulations of time-
dependent Poiseuille flow at low Reynolds numbers. Journal of Computational Physics,
191(2):622–638, 2003.

[SS18] J. Sirignano and K. Spiliopoulos. DGM: A deep learning algorithm for solving partial differential
equations. Journal of Computational Physics, 375:1339–1364, 2018.

[WB11] D. Wei and H. Borden. Traveling wave solution of Burger’s equation for power-law non-
Newtonian flows. Appl. Math. E-Notes, 11:133–138, 2011.

[WH12] D. Wei and K. Holladay. Travelling wave solutions of Burgers’ equation for Gee-Lyon fluid
flows. Appl. Math. E-Notes, 12:129–135, 2012.

21

	Introduction
	Stochastic coded trees
	Multidimensional Burgers equation
	Modified Burgers equation
	Non-Newtonian Burgers equation
	Domains with boundary conditions
	Appendix

