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Abstract

Markovian bridges driven by Lévy processes are constructed from the data
of an initial and a final distribution, as particular cases of a family of time
reversible diffusions with jumps. The processes obtained in this way are es-
sentially the only (not necessarily continuous) Markovian Bernstein processes.
These processes are also characterized using the theory of stochastic control for
jump processes. Our construction is motivated by Euclidean quantum mechan-
ics in momentum representation, but the resulting class of processes is much
bigger than the one needed for this purpose. A large collection of examples is
included.
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1 Introduction

Euclidean quantum mechanics yields a probabilistic approach to Schrödinger equa-

tions, which relies on the construction of time reversible stochastic processes. A

probabilistic counterpart of a quantum system with symmetric (more precisely, self-

adjoint) Hamiltonian H is provided by considering positive solutions of two heat

∗This work has been initiated during a visit of the first author to the GFM (Group of Mathematical
Physics) under a Grant conceded by the FCT in the “Programatico” framework.
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equations which are adjoint with respect to the time parameter:

−~∂η
∗
t

∂t
(q) = Hη∗t (q) and ~

∂ηt
∂t

(q) = Hηt(q), t ∈ [r, v], q ∈ IRd, (1.1)

where [r, v] is a fixed interval, and by postulating that the density of the law at

time t of the system is given by the product ηt(q)η
∗
t (q), instead of the product of

the solution of the Schrödinger equation with its complex conjugate. This approach

allows moreover to construct time reversible diffusion processes which precisely have

the law ηt(q)η
∗
t (q)dq at time t, see [29], [7], [2] when the Hamiltonian is a self-adjoint

Schrödinger operator of the form H = −~2
2

∆ + V (q) and V is a scalar potential in

Kato’s class. We refer the reader to [6] for a detailed survey of the relations between

this method, and in particular the Feynman path integral approach to quantum me-

chanics, when the processes have continuous trajectories.

In this paper we generalize this construction in the case where the above Schrödinger

operator is replaced by a pseudo-differential operator. Our motivations are of two

types: the first one is the study of the probabilistic counterpart of quantum mechan-

ics in the momentum representation and its relation with the one of the position

representation, the link between these representations being given by the Fourier

transform which maps position operators to momentum operators, and scalar poten-

tials to a pseudo-differential operators. This illustrates the more general aim of this

program of construction of quantum-like reversible measures. They provide (through

their Hilbert space analytical models) fresh structural relations between stochastic

processes generally regarded as unrelated. Our second motivation is to treat relativis-

tic Hamiltonians along the line of [15], but in a fully time reversible framework.

Lévy bridges have been studied and constructed by several authors, see e.g. [12]

and Section VIII.3 in [4]. However, an absolute continuity condition with respect

to Lebesgue measure is generally imposed on the law of the process, thus excluding

simple Poisson bridges and many other more complex processes. Our construction

of reversible diffusions with jumps provides, in particular, a general construction of

Markovian bridges with given initial and final distributions πr and πv. For this we

use a result of Beurling [5] which, under the assumption of existence of densities with

respect to a fixed reference measure, asserts the existence of initial and final con-

2



ditions ηr and η∗v for (1.1) such that πr = ηrη
∗
r and πv = ηvη

∗
v . This allows us to

construct forward and backward Lévy processes with Dirac measures as initial, resp.

final, laws. In this case we extend existing results on the martingale representation

of time-reversed processes, cf. e.g. [19]. We also show how time reversible processes

can be constructed from non-symmetric Lévy processes and generators.

We use the term “bridge” in the wide sense, i.e. a process which is determined from

its initial and final laws (which are not necessarily Dirac measures) will be called a

bridge. Bridges and more generally diffusions with jumps, reversible on [r, v], are

constructed via the forward and backward Markov semi-groups

p(t, k, u, dl) =
ηu(l)

ηt(k)
h(t, k, u, dl),

and

p∗(s, dj, t, k) =
η∗s(j)

η∗t (k)
h†(s, dj, t, k),

for s ≤ t ≤ u in [r, v], j, k, l ∈ IRd, where p(t, k, u, dl) and p∗(s, dj, t, k) are the kernels

associated to exp(−(u − t)H) and exp(−(t − s)H†). In the time homogeneous case

(i.e. when η, η∗ depend trivially on time) this construction of Markov semi-groups

in relation to time reversal seems to go back to [14] (see also [10] where it is applied

to conditioned processes), but does not seem to have been the object of systematic

studies when ηt and η∗t are given as the solutions of “heat equations” for general H.

This also provides a construction of Bernstein process [3] in the jump case, i.e. we

construct stochastic processes (zt)t∈[r,v] that satisfy the relation

P (zt ∈ dk | Ps ∨ Fu) = P (zt ∈ dk | zs, zu), r ≤ s < t < u ≤ v,

where (Pt)t∈[r,v], resp. (Ft)t∈[r,v], denotes the increasing, resp. decreasing, filtration

generated by (zt)t∈[r,v]. When their paths are continuous, as we said such processes

have been constructed in the framework of Euclidean quantum mechanics. We also

show that the general processes constructed in this paper are essentially the only

Markovian Bernstein processes.

We proceed as follows. After recalling some notation on Lévy processes and their

generators in Section 2, the main results of the paper are presented in Section 3. The
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construction of Bernstein processes with jumps is given in Section 5. In Section 6,

we compute the generators of Markovian bridges and derive the associated stochastic

differential equations driven by Lévy processes. The uniqueness of Markovian Bern-

stein processes with jumps is discussed in Section 7. A variational characterization is

obtained in Section 8, and the associated almost-sure equations of motion encoding

all the dynamical properties of these processes are stated in Section 9. In particular,

the construction provides time reversible jump diffusions whose law is given in terms

of positive solutions of “heat equations” associated to the Schrödinger operator in the

momentum representation.

2 Notation - Lévy processes and generators

We refer to the survey [17] and to the references therein for the notions recalled in

this section. Let V : IRd −→ C such that V (0) ≥ 0 and exp (−tV (q)) is continuous in

q and positive definite. The function V admits the Lévy-Khintchine representation

V (q) =
1

~

(
a+ i〈c, ~q〉+

1

2
〈~q, ~q〉B −

∫
IRd

(e−i〈~q,y〉 − 1 + i〈~q, y〉1{|~y|≤1})ν(dy)

)
,

where a, r ∈ IRd, B is a positive definite d × d matrix, 〈q, q〉B = 〈Bq, q〉, ν is a Lévy

measure on IRd\{0} satisfying
∫

IRd
(|y|2∧1)ν(dy) <∞, and ~ is a fixed strictly positive

parameter which will be, later on, identified with Planck’s constant. In the following

we assume that a = 0, i.e. V (0) = 0. Then the Lévy process is conservative (i.e. it

has an infinite life time). We will write

V (q) = i〈c, q〉+
1

2
〈q, q〉~B −

∫
IRd

(e−i〈q,y〉 − 1 + i〈q, y〉1{|y|≤1})ν~(dy),

where ν~ is ~−1 times the image measure of ν by y 7→ ~y. Let ξt denote the Lévy

process with characteristic exponent V (q), i.e. such that

E
[
e−i〈ξt,q〉

]
= e−tV (q), q ∈ IRd, t ∈ IR,

or

E

[
exp

(
− i
~
〈ξt, q〉

)]
= exp

(
− t
~

(
i〈c, q〉+

1

2
〈q, q〉B
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−
∫

IRd
(e−i〈q,y〉 − 1 + i〈q, y〉1{|~y|≤1})ν(dy)

))
,

q ∈ IRd, t ∈ IR, i.e. the physically meaningful potential is ~V (q/~). The process

(ξt)t∈[r,v] admits the (forward) Lévy-Itô decomposition with respect to the filtration

(Pt)t∈[r,v]:

ξt = Wt +

∫ t

0

∫
{|y|≤1}

y(µ(dy, ds)− ν~(dy)ds) +

∫ t

0

∫
{|y|≥1}

yµ(dy, ds) + ct,

where Wt is a Brownian motion with covariance matrix ~B, and µ(dy, ds) is the

Poisson random measure

µ(dy, ds) =
∑

∆ξs 6=0

δ(∆ξs,s)(dy, ds)

with compensator E[µ(dy, ds)] = ν~(dy)ds. Let µt denote the law of ξt, and let

µt(dk) = µ−t(−dk) when t < 0. The (forward) generator of (ξt)t∈[r,v] is the following

pseudo-differential operator

−V (∇)f(k) (2.1)

= 〈c,∇f(k)〉+
1

2
∆~Bf(k) +

∫
IRd

(f(k + y)− f(k)− 〈y,∇f(k)〉1{|y|≤1})ν~(dy),

where ∆~B = ~divB∇. We shall also need the reversed Lévy process (ξ∗t )t∈[0,v] =

(−ξv−t)t∈[0,v] whose backward generator is

V̄ (∇)f(k) = V (−∇)f(k) (2.2)

= 〈c,∇f(k)〉 − 1

2
∆~Bf(k)−

∫
IRd

(f(k − y)− f(k) + 〈y,∇f(k)〉1{|y|≤1})ν~(dy).

Note that when V (∇) is not symmetric (i.e. V is not real-valued), the reversal of

(ξt)t∈[0,v] is both in space and time, whereas in the symmetric (e.g. Brownian) case a

time reversal suffices.

In view of our applications to mathematical physics we consider a perturbation of the

generator of (ξt)t∈[r,v] by a potential U : IRd → IR, continuous and bounded below:

Definition 2.1 Let H = U + V (∇), i.e. for u ∈ S(IRd):

Hf(k) = U(k)f(k)− 〈c,∇f(k)〉 − 1

2
∆~Bf(k)

−
∫

IRd
(f(k + y)− f(k)− 〈y,∇f(k)〉1{|y|≤1})ν~(dy), k ∈ IRd.
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The operator V (∇) is obtained from the potential V by considering (Euclidean) mo-

mentum ∇ as a variable. The potential U is symmetrically deduced from a differential

operator, e.g. the quadratic potential ~U(k/~) = k2/2 in momentum representation

correspond to the Laplacian ∆ in position representation. The adjoint H† of H with

respect to dk is given by H† = U + V̄ (∇) with V̄ (q) = V (−q), i.e.

H†f(k) = U(k)f(k) + 〈c,∇f(k)〉 − 1

2
∆~Bf(k)

−
∫

IRd
(f(k − y)− f(k) + 〈y,∇f(k)〉1{|y|≤1})ν~(dy), k ∈ IRd,

where ν~(−dy) denotes the image measure of ν~ under y 7→ −y. If c = 0, the operator

H is symmetric when V is real-valued, that is when ν is symmetric with respect to

y 7→ −y.

Let Tt,u, t < u, resp. T †s,t, s < t, denote the positive operator defined through the

Feynman-Kac formula

Tt,uf(k) = E
[
f(ξu)e

−
∫ u
t U(ξτ )dτ | ξt = k

]
= E

[
f(k + ξu−t)e

−
∫ u−t
0 U(k+ξτ )dτ

]
, t < u,

respectively

T †s,tf(k) = E
[
f(ξ∗s )e

−
∫ t
s U(ξ∗τ )dτ | ξ∗t = k

]
= E

[
f(k + ξ∗s−t)e

−
∫ t−s
0 U(k+ξ∗τ )dτ

]
, s < t.

Since −V (∇) is the generator of (ξt)t∈[0,u] and V̄ (∇) = V (−∇) is the generator of the

reversed Lévy process (ξ∗s )s∈[0,t] = (−ξt−s)s∈[0,t], we have

∂

∂u
Tt,u = −Tt,uH, and

∂

∂s
T †s,t = T †s,tH

†,

for Tt,u = exp(−(u− t)H) and T †s,t = exp(−(t− s)H†), i.e. these semi-groups are time

homogeneous since V and U are independent of time.

We denote by h†(s, dj, t, k) and h(t, k, u, dl), 0 < s < t < u, j, k, l ∈ IRd, the “integral

kernels” of exp(−(t− s)H†) and exp(−(u− t)H), defined by

exp(−(t− s)H†)f(k) =

∫
IRd
f(j)h†(s, dj, t, k),

and

exp(−(u− t)H)f(k) =

∫
IRd
f(l)h(t, k, u, dl).

Examples
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1) Deterministic process.

Here, U does not necessarily vanish. Then B = 0 and ν~ = 0 but c 6= 0. So

V (q) = icq and

Hf(k) = −c∇f(k), H†f(k) = c∇f(k),

with integral kernels

h†(s, dj, t, k) = δk−c(t−s)(dj)e
−

∫ t
s U(k+c(τ−t))dτ ,

h(t, k, u, dl) = δk+c(u−t)(dl)e
−

∫ u
t U(k+c(τ−t))dτ .

2) Poisson process (U = 0).

The kinetic term U vanishes, as well as B, and c = 1. Moreover ν~ = δ1, so

V (q) = −(e−iq − 1) and we have

−Hf(k) = f(k + 1)− f(k), −H†f(k) = f(k − 1)− f(k).

The associated integral kernels reduce to

h(t, k, u, dl) =
∞∑
p=0

e−(u−t) (u− t)p

p!
δk+p(dl),

and

h†(s, dj, t, k) =
∞∑
p=0

e−(t−s) (t− s)p

p!
δk−p(dj).

3) Lévy case (U = 0).

In this case, e−(u−t)H and e−(t−s)H† are respectively given by the convolutions

with the law µt of the Lévy process∫
IRd
η∗s(dj)h(s, j, t, dk) = η∗s ∗ µt−s(dk), s < t,

and ∫
IRd
ηu(dl)h

†(t, dk, u, l) = ηu ∗ µt−u(dk), t < u.

If moreover η∗s(dj) = η∗s(j)λ(dj) and ηu(dl) = ηu(l)λ(dl), are absolutely contin-

uous with respect to λ, then

e−(t−s)H†η∗s(k)λ(dk) =

∫
IRd
η∗s(j)h

†(s, dj, t, k)λ(dk)
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=

∫
IRd
η∗s(dj)h(s, j, t, dk) = η∗s ∗ µt−s(k)λ(dk), s < t,

and

e−(u−t)Hηu(k)λ(dk) =

∫
IRd
ηu(l)h(t, k, u, dl)λ(dk)

=

∫
IRd
ηu(dl)h

†(t, dk, u, l) = ηu ∗ µt−u(k)λ(dk), t < u,

hence

e−(t−s)H†η∗s(k) = η∗s ∗ µt−s(k), s < t,

and

e−(u−t)Hηu(k) = ηu ∗ µt−u(k), t < u,

where the convolution of functions is with respect to λ(dk). The formulas for

h(t, k, u, dl) and h†(s, dj, t, k) are given in Relations (2.3) and (2.4) below.

4) General case (U 6= 0).

We have, by definition∫
IRd
h(t, k, u, dl)f(l) = e−(u−t)Hf(k)

= E
[
f(ξu)e

−
∫ u
t U(ξτ )dτ | ξt = k

]
= E

[
f(ξu−t + k)e−

∫ u−t
0 U(k+ξτ )dτ

]
=

∫
IRd
E
[
f(ξu−t + k)e−

∫ u−t
0 U(k+ξτ )dτ | ξu−t = l

]
µu−t(dl)

=

∫
IRd
f(k + l)E

[
e−

∫ u−t
0 U(k+ξτ )dτ | ξu−t = l

]
µu−t(dl)

=

∫
IRd
f(l)E

[
e−

∫ u−t
0 U(k+ξτ )dτ | ξu−t = l − k

]
µu−t(k + dl),

where µu−t(k + dl) denotes the image measure of µu−t under l 7→ k + l. Conse-

quently we obtain

h(t, k, u, dl) = α(u− t, l − k)µu−t(k + dl), (2.3)

with

α(u− t, l − k) = E
[
e−

∫ u−t
0 U(k+ξτ )dτ | ξu−t = l − k

]
.
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Similarly we have∫
IRd
h†(s, dj, t, k)f(j) = e−(t−s)H†f(k)

= E
[
f(ξ∗s )e

−
∫ t
s U(ξ∗τ )dτ | ξ∗t = k

]
= E

[
f(k − ξt−s)e−

∫ t
s U(k−ξt−τ )dτ

]
=

∫
IRd
E
[
f(k − ξt−s)e−

∫ t−s
0 U(k−ξt−s−τ )dτ | ξt−s = j

]
µt−s(dj)

=

∫
IRd
f(k − j)E

[
e−

∫ t−s
0 U(k−ξτ )dτ | ξt−s = j

]
µt−s(dj)

=

∫
IRd
f(j)E

[
e−

∫ t−s
0 U(k−ξτ )dτ | ξt−s = j − k

]
µt−s(k + dj),

Hence

h†(s, dj, t, k) = α†(t− s, k − j)µt−s(k + dj), (2.4)

where

α†(t− s, k − j) = E
[
e−

∫ t−s
0 U(k−ξτ )dτ | ξu−t = j − k

]
.

We end this section with a lemma that will be useful in Section 3.2.

Lemma 2.2 We have, for all k ∈ IRd;∫
IRd
y
µt(k − y)

µt(k)
ν~(dy) =

k

t
− c+ ~B∇ log µt(k) +

∫
IRd
y1{|y|≤1}ν~(dy),

and∫
IRd
y
µt−v(k + y)

µt−v(k)
ν~(dy) = − k

v − t
− c− ~B∇ log µt−v(k) +

∫
IRd
y1{|y|≤1}ν~(dy).

Proof. We have for k, q ∈ IRd:

−i
∫

IRd
ke−ikqµt(k)dk = ∇qe

−tV (q) = −t∇V (q)e−tV (q)

= −t
∫

IRd
e−ikqµt(k)dk

(
ic+ ~Bq + i

∫
IRd
y(e−iqy − 1{|y|≤1})ν~(dy)

)
= −it

∫
IRd

∫
IRd
e−ikqµt(k − y)dkν~(dy)

−t(ic+ ~Bq)
∫

IRd
e−ikqµt(k)dk + itµt(k)

∫
IRd
y1{|y|≤1}ν~(dy)

= −it
∫

IRd
e−ikq

∫
IRd
µt(k − y)dkν~(dy)− ict

∫
IRd
e−ikqµt(k)dk

9



+it

∫
IRd
e−ikq~B∇µt(k)dk + itµt(k)

∫
IRd
y1{|y|≤1}ν~(dy).

For the second relation we have µt−v(k) = µv−t(−k) and

[∇ log µv−t](−k) = −∇ log µv−t(−k) = −~B∇ log µt−v(k),

hence∫
IRd
y
µt−v(k + y)

µt−v(k)
ν~(dy) =

∫
IRd
y
µv−t(−k − y)

µv−t(−k)
ν~(dy)

= − k

v − t
− c+ ~B[∇ log µv−t](−k) +

∫
IRd
y1{|y|≤1}ν~(dy)

= − k

v − t
− c− ~B∇ log µt−v(k) +

∫
IRd
y1{|y|≤1}ν~(dy).

�

3 Construction of Markovian bridges - main re-

sults

Among the objectives of this paper is the proof of Prop. 3.1 below. Assume that

h†(s, dj, t, k) = h†(s, j, t, k)λ(dj) and h(t, k, u, dl) = h(t, k, u, l)λ(dl) are absolutely

continuous with respect to λ,

H and H† are mutually adjoint under λ, i.e. h†(s, j, t, k) = h(s, j, t, k),

h†(s, j, t, k) = h(s, j, t, k) is continuous in (j, k) and strictly positive for all 0 < s < t.

Let zt− denotes the left limit of z at t ∈ [r, v]. The following proposition holds under

the assumptions A and B of Section 3.2, before Prop. 3.5.

Proposition 3.1 Let πr(dk) and πv(dk) be two given probability measures on IRd,

which are assumed to be absolutely continuous with a.e. strictly positive densities with

respect to a fixed reference measure λ. There exists a IRd-valued process (zt)t∈[r,v] with

initial distribution πr(dk) and final distribution πv(dk), driven by (ξt)t∈[r,v], i.e. such

that (zt)t∈[r,v] solves in the weak sense the stochastic integro-differential equation

dzt = cdt+ dWt +

∫
IRd
y

(
µ(dy, dt)− ηt(zt− + y)

ηt(zt−)
1{|y|≤1}ν~(dy)dt

)
(3.1)
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+

∫
IRd
y

(
ηt(zt− + y)− ηt(zt−)

ηt(zt−)

)
1{|y|≤1}ν~(dy)dt+ ~B∇ log ηt(zt−)dt,

and the law of zt at time t is ηt(k)η∗t (k)λ(dk), where

W is a Brownian motion with covariance ~B,

the canonical point process µ(dy, dt) has compensator
ηt(zt−+y)

ηt(zt− )
ν~(dy)dt,

ηt = e−(v−t)Hηv, r ≤ t ≤ v,

η∗t = e−(t−r)H†η∗r , r ≤ t ≤ v,

and η∗r , ηv are two positive initial and final conditions which are determined from πr

and πv.

Moreover the process (zt)t∈[r,v] in question is a Bernstein process, i.e.

P (zt ∈ dk | Ps ∨ Fu) = P (zt ∈ dk | zs, zu),

and the joint law P (zr ∈ A, zv ∈ B), for A,B two borelians of IRd, is of the form

P (zr ∈ A, zv ∈ B) =

∫
A×B

η∗r(i)h(r, i, v,m)ηv(m)λ(di)λ(dm).

Conversely we will also prove a uniqueness result, i.e. if (zt)t∈[r,v] is a Markovian

Bernstein process with Bernstein kernel h(s, j, t, dk, u, l) = P (zt ∈ dk | zs = j, zu = l)

such that

h(s, j, t, dk, u, l)h(s, j, u, dl) = h(s, j, t, dk)h(t, k, u, dl),

or

h(s, j, t, dk, u, l)h†(s, dj, u, l) = h†(s, dj, t, k)h†(t, dk, u, l),

s ≤ t ≤ u, j, k, l ∈ IRd, then there exists positive density functions η∗r(i) and ηv(m)

such that

P (zr ∈ A, zv ∈ B) =

∫
A×B

η∗r(i)h(r, i, v,m)ηv(m)λ(di)λ(dm),

cf. Th. 7.1. These results will be precisely stated in different forms and under weaker

assumptions in the following section. Proofs will be provided afterwards in several

steps, which consist of more refined statements.
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3.1 Existence of Markovian bridges

In the following result, h(t, k, u, dl) and h†(s, dj, t, k) need not be absolutely continuous

with respect to a fixed reference measure λ.

Theorem 3.2 Let λ be a fixed reference measure such that H and H† are adjoint

with respect to λ, and let η∗r , ηv : IRd → IR+ be two λ-a.e. strictly positive initial and

final conditions such that for some t ∈ [r, v] (and therefore for any such t),∫
IRd
η∗t (k)ηt(k)λ(dk) = 1,

where

η∗t (k) = e−(t−r)H†η∗r(k) =

∫
IRd
η∗r(i)h

†(r, di, t, k),

and

ηt(k) = e−(v−t)Hηv(k) =

∫
IRd
ηv(m)h(t, k, v, dm), r ≤ t ≤ v.

Then there exists a IRd-valued process (zt)t∈[r,v] whose density at time t with respect

to λ is ρt(k) = η∗t (k)ηt(k), which is forward and backward Markovian, with forward

transition kernel

p(t, k, u, dl) =
ηu(l)

ηt(k)
h(t, k, u, dl), (3.2)

and backward transition kernel

p∗(s, dj, t, k) =
η∗s(j)

η∗t (k)
h†(s, dj, t, k). (3.3)

In particular, the initial and final laws of (zt)t∈[r,v] are πr(di) = ηr(i)η
∗
r(i)λ(di) and

πv(dm) = ηv(m)η∗v(m)λ(dm).

The above functions η∗t (k) and ηt(k) satisfy the partial integro-differential equations

−∂η
∗
t

∂t
(k) = H†η∗t (k) and

∂ηt
∂t

(k) = Hηt(k), t ∈ [r, v]. (3.4)

The proof of Th. 3.2 follows from Prop. 5.1 and Prop. 5.2 below. Once Th. 3.2 is

proved, Prop. 3.1 follows from Prop. 3.5 and Th. 3.3 below which states that given

two probability measures πr(di) = πr(i)λ(di) and πv(dm) = πv(m)λ(dm), absolutely

continuous with respect to λ, it is possible to determine two positive initial and final
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functions η∗r , ηv : IRd → IR+ from the data of the initial and final laws πr, πv of the

process, such that

πr(i) = η∗r(i)ηr(i), πv(m) = ηv(m)η∗v(m),

where

ηr(i) =

∫
IRd
ηv(m)h(r, i, v, dm),

and

η∗v(m) =

∫
IRd
η∗r(i)h

†(r, di, v,m),

provided h(s, k, t, dj) and h†(s, dj, t, k) are absolutely continuous with respect to λ:

h(s, k, t, dj) = h(s, k, t, j)λ(dj), (3.5)

h†(s, dj, t, k) = h†(s, j, t, k)λ(dj), (3.6)

with h(s, k, t, j) = h†(s, k, t, j) since H is adjoint of H† with respect to λ. More

precisely we have the following result, cf. Th. 1 of [5], Th. 3.2 of [20], and Th. 3.4 of

[29]:

Theorem 3.3 Let πr and πv be two probability measures. Assume that h(s, j, k, t) is

a continuous in (j, k) and strictly positive function. Then there exist two measures

η∗r(di) and ηv(dm) such that

πr(di) = η∗r(di)

∫
IRd
h(r, i, v,m)ηv(dm),

and

πv(dm) = ηv(dm)

∫
IRd
h(r, i, v,m)η∗r(di).

We present several families of processes satisfying the above hypothesis, starting with

the simplest examples. Note that in the first example, the mutual adjointness of H

and H† with respect to the (Lebesgue) measure λ is satisfied without requiring the

absolute continuity of h(t, k, u, dl) and h†(s, dj, t, k) with respect to λ. Also we will

present some examples where the initial and final laws can not be arbitrarily chosen,

when the hypothesis of Th. 3.3 are not fulfilled. This list of examples includes the
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classical Brownian bridges. However the aim of this paper is not to focus on the

Brownian case which has already been the object of several studies, cf. [20], [2], [29],

[7].

Examples

1. Deterministic process.

The adjoint relation between H and H† is satisfied in the deterministic case for

λ the Lebesgue measure, i.e.

h†(s, dj, t, k) = e−
∫ t
s U(k+c(τ−t))dτδk−c(t−s)(dj), r ≤ s < t ≤ v,

h(t, k, u, dl) = e−
∫ u
t U(k+c(τ−t))dτδk+c(u−t)(dl), r ≤ t < u ≤ v.

Therefore, for any r < s < t < u < v,

η∗t (k) = η∗s(k − c(t− s))e−
∫ t
s U(k+c(τ−t))dτ , (3.7)

ηt(k) = ηu(k + c(u− t))e−
∫ u
t U(k+c(τ−t))dτ . (3.8)

Applying (3.7) and (3.8) successively in t = s and t = u we obtain several

expressions for the density of zt at time t with respect to the Lebesgue measure

λ:

η∗t (k)ηt(k) = η∗s(k − c(t− s))ηu(k − c(t− u))e−
∫ u
s U(k−c(t−τ))dτ

= η∗s(k − c(t− s))ηs(k − c(t− s))

= η∗u(k − c(t− u))ηu(k − c(t− u)),

Note that here h(s, k, t, dl) is not absolutely continuous with respect to the

Lebesgue measure λ(dl) and that it is clearly not possible to choose indepen-

dently the initial and final laws.

2. Poisson bridge starting from a ∈ IN at time r and ending at b ∈ IN at time v.

The standard Poisson bridge provides another example where the initial and final

laws cannot be chosen arbitrarily, this time because h(t, k, u, l) is not everywhere

strictly positive. Take U = 0, a reference measure

λ =
+∞∑

n=−∞

δn,
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c = 1, ν~ = δ1, and

h(t, k, u, dl) = e−(u−t) (u− t)l−k

(l − k)!
1[0,l](k)λ(dl),

h†(s, dj, t, k) = e−(t−s) (t− s)k−j

(k − j)!
1[0,k](j)λ(dj).

The simple Poisson bridge with zr = a and zv = b is constructed from the

boundary conditions

η∗r = C(r, v, a, b)1{a}, ηv = 1{b},

where C(r, v, a, b) is a normalization constant. Then

η∗t (k) =

∫
IR

η∗r(i)h
†(r, di, t, k)

= C(r, v, a, b)e−(t−r)
∫

IR

1{a}(i)
(t− r)k−i

(k − i)!
1[0,k](i)λ(di)

= C(r, v, a, b)e−(t−r) (t− r)k−a

(k − a)!
1{k≥a}

= C(r, v, a, b)h(r, a, t, k) = C(r, v, a, b)µt−r(k − a),

ηt(k) =

∫
IR

ηv(m)h(t, k, v, dm)

= e−(v−t)
∫

IR

1{b}(m)
(v − t)m−k

(m− k)!
1{m−k≥0}λ(dm)

= e−(v−t) (v − t)b−k

(b− k)!
1[0,b](k)

= h(t, k, v, b) = µv−t(b− k),

with the convention 00 = 1. The resulting density at time t with respect to λ

is, therefore,

η∗t (k)ηt(k) = 1[a,b](k)C(r, v, a, b)er−v
(t− r)k

(k − a)!

(v − t)b−k

(b− k)!
.

Taking the normalization constant C(r, v, a, b) equal to ev−r (b−a)!

(v−r)(b−a) we obtain

η∗t (k)ηt(k) = 1[a,b](k)

(
b− a
k − a

)(
t− r
v − r

)k−a(
v − t
v − r

)b−k
, r ≤ t ≤ v,
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which is the expected binomial law on {a, . . . , b}, with parameter (t−r)/(v−r).
Note that here, h(t, k, u, l) = e−(u−t) (u−t)l−k

(l−k)!
1[0,l](k) is not (λ⊗ λ)(dl, dk)-strictly

positive, and the initial and final laws cannot be chosen arbitrarily, e.g. one

cannot have b < a. Also this setting is not directly relevant to physics in the

momentum representation since U = 0.

3. Brownian bridge.

The Brownian bridge starting at a ∈ IR and ending at b ∈ IR is constructed by

taking U = 0, µt(k) = 1√
2πt
e−

1
2
k2/(~t), and

η∗t (k) =
1√

2π(t− r)
e−

1
2

(k−a)2/(~(t−r)), ηt(k) =
1√

2π(v − t)
e−

1
2

(b−k)2/(~(v−t)).

4. Lévy bridges from a ∈ IRd to b ∈ IRd.

Take U = 0, and assume that µt(dk) has a density with respect to a fixed

reference measure λ, i.e. µt(dk) = µt(k)λ(dk). Then

η∗t (k) = µt−r(k − a), ηt(k) = µv−t(b− k) = µt−v(k − b).

The resulting density at time t with respect to λ is

η∗t (k)ηt(k) = µt−r(k − a)µv−t(b− k).

This example includes the Poisson and Brownian bridges seen above. Note that

the absolute continuity of ηt(dk) with respect to λ at the origin t = r = 0 is

satisfied for the Poisson bridge but not for the Brownian bridge.

5. Forward and backward Brownian motions (U = 0).

Let U = 0, ν~ = 0, c = 0, B = 1 with d = 1 and λ the Lebesgue measure.

Taking η∗0(di) = δ0(di), ηv(m) = 1, we have

η∗t (dk) = η∗r ∗ µt−r(dk) = µt(dk) =
1√
2πt

e−
1
2
k2/(~t)dk, ηt(k) = 1, r < t < v,

hence (zt)t∈[r,v] = (Wt)t∈[r,v] is a (forward) Brownian motion.

If ηv(dm) = δ0(dm) and η∗r(i) = 1, we have

ηt(dk) = ηv ∗ µt−v(dk) = µt−v(dk) =
1√

2π(v − t)
e−

1
2
k2/(~(v−t))dk, η∗t (k) = 1,
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0 < r ≤ t ≤ v, hence (zt)t∈[r,v] is the backward Brownian motion (W ∗
t )t∈[r,v] with

final condition W ∗
v = 0.

6. Forward and backward Poisson processes (U = 0 and the absolute continuity of

µt(dk) with respect to a fixed reference measure is not required.)

Let U = 0, B = 0, c = 0 with d = 1, and let λ =
∑+∞

n=−∞ δn. In the forward

Poisson case we have ν~(dy) = δ1. If η∗r(di) = 1{0}(i)λ(di) and ηv(m) = 1, then

η∗t (dk) = η∗r ∗ µt−r(dk) = µt(dk) and

η∗t (k) = e−(t−r) (t− r)k

k!
1{k≥0}, ηt(k) = 1, r < t < v,

in this case (zt)t∈[r,v] = (Nt)t∈[0,v] is the (forward) standard Poisson process.

The backward Poisson process (N∗t )t∈[r,v] with final condition N∗v = 0 is con-

structed with ν~(dy) = δ−1, ηv(dm) = 1{0}(m)λ(dm) and η∗r(i) = 1, i.e. ηt(dk) =

ηv ∗ µt−v(dk) = µt−v(dk) and

ηt(k) = e−(v−t) (v − t)−k

(−k)!
1{k≤0}, η∗t (k) = 1, r < t < v.

7. Forward and backward Lévy processes (U = 0).

This example includes the forward and backward Wiener and Poisson processes

as particular cases. Taking η∗r(di) = µr(di) and ηv(m) = 1, we have

η∗t (dk) = η∗r ∗ µt−r(dk) = µt(dk), ηt(k) = 1, r < t < v,

hence (zt)t∈[r,v] is the (forward) Lévy process (ξt)t∈[r,v]: zt = ξt, r < t < v.

If ηv(dm) = µ0(dm) and η∗r(i) = 1, we have

ηt(dk) = ηv ∗ µt−v(dk) = µt−v(dk), η∗t (k) = 1, r < t < v,

hence (zt)t∈[r,v] is a backward Lévy process. This is an example of process with

initial law µr−v(dk) and final condition zv = 0, resp. initial law µr(dk) and final

law µv(dk).

8. Processes with densities with respect to the Lebesgue measure.

Here, U does not necessarily vanish. From (2.3) and (2.4), the absolute con-

tinuity conditions (3.5) and (3.6) are satisfied if the law of ξt, t > 0, has a
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density with respect to the Lebesgue measure, e.g. in the case of stable pro-

cesses (namely such that V (q) = c|q|α for some α ∈ (0, 2] and c > 0), and for

Lévy processes with Brownian component (B 6= 0). Moreover H is adjoint of

H† with respect to λ when λ is the Lebesgue measure.

9. General case (U 6= 0).

The condition U 6= 0 is necessary in the context of Euclidean quantum mechan-

ics. If λ is a given measure (not necessarily the Lebesgue measure), we may

work under the absolute continuity hypothesis

h(t, k, u, dl) = h(t, k, u, l)λ(dl), λ(dk)− a.e., (3.9)

h†(s, dj, t, k) = h†(s, j, t, k)λ(dj), λ(dk)− a.e. (3.10)

which imply that H and H† are also adjoint with respect to λ if h(s, j, t, k) =

h†(t, k, s, j):

h(s, j, t, dk)λ(dj) = h(s, j, t, k)λ(dk)λ(dj)

= h†(s, j, t, k)λ(dk)λ(dj) = h†(s, dj, t, k)λ(dk).

In view of (2.3) and (2.4), the conditions (3.9) and (3.10) are satisfied in partic-

ular if µt−s(j + dk) has a density with respect to λ(dk), λ(dj)-a.e. This relation

will hold e.g. if λ is absolutely continuous under the translation j 7→ j + k,

λ(dj)-a.e., and µt−s is absolutely continuous with respect to λ:

µt−s(dk) = µt−s(k)λ(dk).

This hypothesis is satisfied, in particular, for the Poisson bridge, cf. Example 2

above, with µt−s(k) = e−(t−s) (t−s)k
k!

1{k≥0} and λ =
∑k=∞

k=−∞ δk.

3.2 Stochastic differential equations and generators

In this section we present the description of Markovian bridges of Th. 3.2 in terms

of forward and backward stochastic integro-differential equations driven by (ξt)t∈[r,v].

Let for f ∈ S(IRd) and g : IRd 7→]0,∞[:

Lgf(k) = 〈c,∇f(k)〉+
1

2
∆~Bf(k)
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+

∫
IRd

(f(k + y)− f(k)− 〈y,∇f(k)〉1{|y|≤1})
g(k + y)

g(k)
ν~(dy)

+

∫
IRd

g(k + y)− g(k)

g(k)
〈y,∇f(k)〉1{|y|≤1}ν~(dy) + 〈∇ log g(k),∇f(k)〉~B,

and

L∗gf(k) = 〈c,∇f(k)〉 − 1

2
∆~Bf(k)

−
∫

IRd
(f(k − y)− f(k) + 〈y,∇f(k)〉1{|y|≤1})

g(k − y)

g(k)
ν~(dy)

+

∫
IRd

g(k − y)− g(k)

g(k)
〈y,∇f(k)〉1{|y|≤1}ν~(dy)− 〈∇ log g(k),∇f(k)〉~B.

The following result is a consequence of Prop. 6.2, which will be proved in Section 6.

Proposition 3.4 The process (zt)t∈[r,v] constructed in Th. 3.2 has the forward in-

finitesimal generator, for f ∈ S(IRd):

Lηtf(k) = 〈c,∇f(k)〉+
1

2
∆~Bf(k)

+

∫
IRd

(f(k + y)− f(k)− 〈y,∇f(k)〉1{|y|≤1})
ηt(k + y)

ηt(k)
ν~(dy)

+

∫
IRd

ηt(k + y)− ηt(k)

ηt(k)
〈y,∇f(k)〉1{|y|≤1}ν~(dy) + 〈∇ log ηt(k),∇f(k)〉~B,

and the backward infinitesimal generator

L∗η∗t f(k) = 〈c,∇f(k)〉 − 1

2
∆~Bf(k)

−
∫

IRd
(f(k − y)− f(k) + 〈y,∇f(k)〉1{|y|≤1})

η∗t (k − y)

η∗t (k)
ν~(dy)

+

∫
IRd

η∗t (k − y)− η∗t (k)

η∗t (k)
〈y,∇f(k)〉1{|y|≤1}ν~(dy)− 〈∇ log η∗t (k),∇f(k)〉~B,

The knowledge of the generators of (zt)t∈[r,v] provides the forward and backward rep-

resentations of (zt)t∈[r,v] as weak solutions of stochastic integro-differential equations.

We assume that (cf. p. 434 of [18]):

A) the functions

(t, k) 7→
∫

IRd
(1 ∧ |y|2)ηt(k+y)

ηt(k)
ν~(dy),
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(t, k) 7→
∫
{|y|≤1} y

ηt(k+y)−ηt(k)
ηt(k)

ν~(dy),

(t, k) 7→ ∇ log ηt(k),

resp.

(t, k) 7→
∫

IRd
(1 ∧ |y|2)

η∗t (k−y)

η∗t (k)
ν~(dy),

(t, k) 7→
∫
{|y|≤1} y

η∗t (k−y)−η∗t (k)

η∗t (k)
ν~(dy),

(t, k) 7→ ∇ log η∗t (k),

are bounded on compacts of IR+ × IRd,

The next proposition is a representation result that follows from Prop. 3.4 and Th. 13.58,

Th. 14.80 of [18], p. 438 and p. 481, using the results on martingale problems for

discontinuous processes of [21], [22], [26].

Proposition 3.5 The process (zt)t∈[r,v] is solution, in the weak sense and with respect

to the forward filtration (Pt)t∈[r,v], of

dzt = cdt+ dWt +

∫
IRd
y

(
µ(dy, dt)− ηt(zt− + y)

ηt(zt−)
1{|y|≤1}ν~(dy)dt

)
+

∫
IRd
y
ηt(zt− + y)− ηt(zt−)

ηt(zt−)
1{|y|≤1}ν~(dy)dt+ ~B∇ log ηt(zt−)dt,

under a probability P for which Wt is a (forward) Brownian motion with covariance

~B, and µ(dy, ds) is the canonical point process with compensator
ηt(zt−+y)

ηt(zt− )
ν~(dy)dt. In

terms of backward differentials we have as well, with respect to the decreasing filtration

(Ft)t∈[r,v],

d∗zt = cdt+ d∗W
∗
t +

∫
IRd
y

(
µ∗(dy, dt)−

η∗t (zt+ − y)

η∗t (zt+)
1{|y|≤1}ν~(dy)dt

)
+

∫
IRd
y
η∗t (zt+ − y)− η∗t (zt+)

η∗t (zt+)
1{|y|≤1}ν~(dy)dt− ~B∇ log η∗t (zt+)dt,

where W ∗
t denotes a backward Brownian motion with covariance ~B, and µ∗(dy, dt)

is the backward Poisson random measure with compensator
η∗t (zt−−y)

η∗t (zt− )
ν~(dy)dt.
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This also provides the (Pt)t∈[r,v]-decomposition

zt = zr + c(t− r) +Mt

+

∫ t

r

∫
IRd
y

(
ηs(zs− + y)

ηs(zs−)
− 1{|y|≤1}

)
ν~(dy)ds+ ~

∫ t

r

B∇ log ηs(zs−)ds,

where (Mt)t∈[0,v] is a (Pt)t∈[r,v]-martingale, and the (Ft)t∈[r,v]-decomposition

zt = zv − c(v − t) +M∗
t

+

∫ v

t

∫
IRd
y

(
η∗s(zs+ − y)

η∗s(zs+)
− 1{|y|≤1}

)
ν~(dy)ds− ~

∫ v

t

B∇ log η∗s(zs+)ds,

where (M∗
t )t∈[0,v] is a (backward) (Ft)t∈[r,v]-martingale.

Examples and particular cases of Prop. 3.5.

1. Deterministic process.

In this case (zt)t∈[r,v] satisfy the ordinary differential equation

dzt = dξt = cdt,

both in forward and backward cases, hence

zt = zr + c(t− r) = zv + c(v − t), r < t < v,

with random initial condition zr and final condition zv. The influence of U lies

in the initial and final laws, not in the dynamics.

2. Poisson bridge starting at a ∈ IN at time r and ending at b ∈ IN at time v.

If U = 0, the forward (i.e. (Pt)t∈[r,v]-) stochastic equation (3.1) satisfied by the

Poisson bridge is written

dzt = dNη
t , zr = a,

where (Nη
t )t∈[r,v] is a point process starting from 0 at time r, with compensator

d〈Nη
t 〉 =

ηt(zt− + 1)

ηt(zt−)
dt =

b− a−Nη
t−

v − t
dt.
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This means (see e.g. Th. 7.4. p. 93 of [16] and references therein) that (zt)t∈[r,v]

can be constructed by a time change on a standard Poisson process (N(t))t∈IR+ ,

i.e. the sequence of jump times (T ηk )1≤k≤m−i of (zt)t∈[r,v] = (a+Nη
t )t∈[r,v] can be

obtained by induction from the jump times (Tk)k≥1 of (N(t))t∈IR+ , as

Tk =
k∑
i=1

∫ T ηi

T ηi−1

b− a− (i− 1)

v − s
ds, 1 ≤ k ≤ b− a.

The backward equation satisfied by (zt)t∈[r,v] is

d∗zt = d∗N
η∗

t , zv = b,

where (Nη∗

t )t∈[r,v] = (−Nη
v−t)t∈[r,v] is a point process starting from 0 at time v,

with backward compensator

d∗〈Nη∗

t 〉 =
η∗t (zt+ − 1)

η∗t (zt+)
dt = −

Nη∗

t+ + (b− a)

r − t
dt.

3. Brownian bridge.

We have µt(k) = 1√
2πt
e−

1
2
k2/(~t), hence the forward and backward stochastic

differential equations satisfied by (zt)t∈[r,v] are

dzt = dWt −
zt − b
v − t

dt, zr = a,

and

d∗zt = d∗W
∗
t +

zt − a
t− r

dt, zv = b.

4. Lévy bridges.

Take U = 0, and assume that µt(dk) = µt(k)λ(dk) has a density with respect to

a fixed reference measure λ. The forward stochastic integro-differential equation

satisfied by (zt)t∈[r,v] is

dzt = cdt+ dWt +

∫
IRd
y

(
µ(dy, dt)− µt−v(zt− + y − b)

µt−v(zt− − b)
1{|y|≤1}ν~(dy)dt

)
+

∫
IRd
y
µt−v(zt− + y − b)− µt−v(zt− − b)

µt−v(zt− − b)
1{|y|≤1}ν~(dy)dt

−~B∇ log µt−v(zt− − b)dt,
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i.e. using the Lemma 2.2:

dzt = dWt +

∫
IRd
y

(
µ(dy, dt)− µt−v(zt− + y − b)

µt−v(zt− − b)
ν~(dy)dt

)
− zt− − b

v − t
dt.

The backward stochastic differential equation satisfied by the same process

(zt)t∈[r,v] is:

d∗zt = cdt+ d∗W
∗
t +

∫
IRd
y

(
µ∗(dy, dt)−

µt−r(zt+ + y − a)

µt−r(zt+ − a)
1{|y|≤1}ν~(dy)dt

)
+

∫
IRd
y
µt−r(zt+ + y − a)− µt−r(zt+ − a)

µt−r(zt+ − a)
1{|y|≤1}ν~(dy)dt

−~B∇ log µt−r(zt+ − a)dt,

i.e. by Lemma 2.2:

d∗zt = d∗W
∗
t +

∫
IRd
y

(
µ∗(dy, dt)−

µt−r(zt+ + y − a)

µt−r(zt+ − a)
ν~(dy)dt

)
+
zt+ − a
t− r

dt.

5. Forward and backward Brownian motions (U = 0).

The forward Brownian motion (zt)t∈[0,v] = (Wt)t∈[0,v] satisfies the forward “equa-

tion”

dzt = dWt, z0 = 0,

and the backward (Ft)t∈[r,v]-equation

d∗zt = d∗W
∗
t +

zt
t
dt,

where (W ∗
t )t∈[r,v] is a backward Brownian motion (starting from 0 at time v).

The backward Brownian motion (zt)t∈[r,v] = (W ∗
t )t∈[r,v] satisfies the forward

equation

dzt = dWt −
zt

v − t
dt,

and the backward “equation”

d∗zt = d∗W
∗
t , zv = 0.

6. Forward and backward Poisson processes (U = 0).

In the standard Poisson case, µt(k) = e−(t−r)(t − r)k/k!, and we can compute
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directly the backward compensator of the standard forward Poisson process

(zt)t∈[0,v] = (Nt)t∈[0,v] as

d∗〈zt〉 =
η∗t (zt+ − 1)

η∗t (zt+)
=
µt(zt+ − 1)

µt(zt+)
=
zt+

t
dt.

The forward compensator of the backward Poisson process (zt)t∈[r,v] = (N∗t )t∈[r,v] =

(−Nv−t)t∈[r,v] is similarly given as

d〈zt〉 =
ηt(zt− + 1)

ηt(zt−)
=
µv−t(−zt− − 1)

µv−t(−zt−)
= − zt−

v − t
dt.

This structure remains in the forward and backward Lévy cases described next.

7. Forward Lévy processes (U = 0).

Assuming that µt(dk) = µt(k)λ(dk) is absolutely continuous with respect to

λ(dk) we have

dzt = cdt+ dWt +

∫
IRd
y
(
µ(dy, dt)− 1{|y|≤1}ν~(dy)dt

)
, zr = ξr,

i.e. zt = ξt, r < t < v. Besides the forward generator −V (∇) of (ξt)t∈[r,v] (see

(2.1)) we obtain the backward generator

L∗η∗t f(k) = 〈c,∇f(k)〉 − 1

2
∆~Bf(k)

−
∫

IRd
(f(k − y)− f(k) + 〈y,∇f(k)〉1{|y|≤1})

µt(k − y)

µt(k)
ν~(dy)

+

∫
IRd

µt(k − y)− µt(k)

µt(k)
〈y,∇f(k)〉1{|y|≤1}ν~(dy)− 〈∇ log µt(k),∇f(k)〉~B,

or by Lemma 2.2 above:

L∗η∗t f(k) = −1

2
∆~Bf(k)−

∫
IRd

(f(k − y)− f(k) + 〈y,∇f(k)〉)µt(k − y)

µt(k)
ν~(dy)

+
1

t
〈k,∇f(k)〉.

The backward stochastic differential equation satisfied by (ξt)t∈[r,v] is:

d∗zt = cdt+ d∗W
∗
t +

∫
IRd
y

(
µ∗(dy, dt)−

µt(zt+ − y)

µt(zt+)
1{|y|≤1}ν~(dy)dt

)
+

∫
IRd
y
µt(zt+ − y)− µt(zt+)

µt(zt+)
1{|y|≤1}ν~(dy)dt− ~B∇ log µt(zt+)dt,
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i.e. from Lemma 2.2:

d∗zt = d∗W
∗
t +

∫
IRd
y

(
µ∗(dy, dt)−

µt(zt+ − y)

µt(zt+)
ν~(dy)dt

)
+
zt+

t
dt.

In other terms we have the backward martingale decomposition

zt = M∗
t +

∫ v

t

zs
s
ds, r < t < v,

which allows to recover and extend some results in [19].

8. Backward Lévy processes.

Taking ηv(dm) = µ0(m)λ(dm) = µ0(dm) and η∗r(i) = 1, we have ηt(k) = ηv ∗
µt−v(k) = µt−v(k) = µv−t(−k), and η∗t (k) = 1, r < t < v, hence (zt)t∈[0,v] is the

backward Lévy process given by

d∗zt = cdt+ d∗W
∗
t +

∫
IRd
y
(
µ∗(dy, dt)− 1{|y|≤1}ν~(dy)dt

)
,

which has same law as the reversed Lévy process (ξ∗s )s∈[0,v] = (−ξv−s)s∈[0,v]. The

forward generator of (zt)t∈[0,v] is

Lηtf(k) = 〈c,∇f(k)〉+
1

2
∆~Bf(k)

+

∫
IRd

(f(k + y)− f(k)− 〈y,∇f(k)〉1{|y|≤1})
µt−v(k + y)

µt−v(k)
ν~(dy)

+

∫
IRd

µt−v(k + y)− µt−v(k)

µt−v(k)
〈y,∇f(k)〉1{|y|≤1}ν~(dy) + 〈∇ log µt−v(k),∇f(k)〉~B,

or from Lemma 2.2:

Lηtf(k) =
1

2
∆~Bf(k) +

∫
IRd

(f(k + y)− f(k)

−〈y,∇f(k)〉)µt−v(k + y)

µt−v(k)
ν~(dy)− 1

v − t
〈k,∇f(k)〉.

The forward stochastic differential equation satisfied by (zt)t∈[0,v] is, therefore,

dzt = cdt+ dWt +

∫
IRd
y

(
µ(dy, dt)− µt−v(zt− + y)

µt−v(zt−)
1{|y|≤1}ν~(dy)dt

)
−
∫

IRd
y
µt−v(zt−)− µt−v(zt− + y)

µt−v(zt−)
1{|y|≤1}ν~(dy)dt+ ~B∇ log µt−v(zt−)dt,
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where Wt is a forward Brownian motion with covariance ~B, and µ(dy, dt)

is the forward Poisson random measure with compensator
µt−v(zt−+y)

µt−v(zt− )
, i.e. by

Lemma 2.2:

dzt = dWt +

∫
IRd
y

(
µ(dy, dt)− µt−v(zt− + y)

µt−v(zt−)
ν~(dy)dt

)
− zt−

v − t
. (3.11)

and we have the forward martingale decomposition

zt = Mt −
∫ t

r

zs
v − s

ds, r < t < v,

to compare to [19] (note that here we have zv = 0). The forward compensator

of (zt)t∈[0,v] is again

d〈zt〉 = − zt−

v − t
dt.

4 Girsanov theorem

The next proposition shows that the law of the process (zt)t∈[r,v] of Prop. 3.1 is abso-

lutely continuous with respect to the law of the Lévy process (ξt)t∈[r,v].

Proposition 4.1 Assume that c = 0, ν~({|y| ≥ 1}) = 0 and either B = 0 or ν~ = 0,

i.e. we are in the Brownian case or in the jump case. Under the hypothesis of Th. 3.2,

the law Q of (zt)t∈[r,v] is absolutely continuous with respect to P , with density given by

dQ

dP
|Pt =

ηt(zt)

ηr(zr)
e−

∫ t
r U(zτ )dτ , r ≤ t ≤ v,

i.e. under Q, (zr + ξt)t∈[r,v] has the law of (zt)t∈[r,v] under P . Similarly we have

dQ

dP
|Ft =

η∗t (zt)

η∗v(zv)
e−

∫ v
t U(zτ )dτ , r ≤ t ≤ v,

i.e. (zv − ξv−t)t∈[r,v] has the law of (zt)t∈[r,v] under P .

Proof. Let

Lt =
ηt(zt)

ηr(zr)
e−

∫ t
r U(zτ )dτ , t ∈ [r, v].

Assume that under P , µ(dy, dt) is the random measure with compensator ν~(dy)dt in

the Poisson case, with

dzt =

∫
IRd
y
(
µ(dy, dt)− 1{|y|≤1}ν~(dy)dt

)
,
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or that (zt)t∈[r,v] is a standard Brownian motion in the Brownian case, with dWt =

dzt − ~B∇ log ηt(zt−)dt, i.e.

dzt = dWt + ~B∇ log ηt(zt−)dt.

Let us compute

dηt(zt) = ηt(zt−)

∫
|y|≤1

ηt(zt− + y)− ηt(zt−)

ηt(zt−)

(
µ(dy, dt)− ηt(zt− + y)

ηt(zt−)
ν~(dy)dt

)
+ηt(zt−)〈∇ log ηt(zt−), dWt〉~B + Lηtηt(zt)dt+

∂ηt
∂t

(zt)dt

= U(zt−)ηt(zt−)dt+ ηt(zt−)

∫
|y|≤1

ηt(zt− + y)− ηt(zt−)

ηt(zt−)
(µ(dy, dt)− ν~(dy)dt)

+ηt(zt−)〈∇ log ηt(zt−), dWt〉~B + 〈∇ log ηt(zt−),∇ηt(zt−)〉~B,

where we used equation 6.1 and the forward infinitesimal generator

Lηtηt(k) = −Hηt(k) + U(k)ηt(k) + 〈∇ log ηt(k),∇ηt(k)〉~B

+

∫
IRd

(
η2
t (k + y)

ηt(k)
− ηt(k)

)
ν~(dy)dt+

∂ηt
∂t

(zt).

Hence (Lt)t∈[r,v] satisfies the (forward) stochastic integro-differential equation

dLt = Lt− ·
∫
|y|≤1

ηt(zt− + y)− ηt(zt−)

ηt(zt−)
(µ(dy, dt)− ν~(dy)dt)

+Lt− · 〈∇ log ηt(zt−), dWt +∇ log ηt(zt−)dt〉~B, t ∈ [r, v].

Under P we have

1

Ls−
d〈Ls, zs〉 =

∫
|y|≤1

ηt(zt− + y)− ηt(zt−)

ηt(zt−)
ν~(dy)dt+ ~B∇ log ηt(zt−),

and from the Girsanov theorem,

zt −
∫ t

r

1

Ls−
d〈Ls, zs〉 = Wt −Wr + ~

∫ t

r

B∇ log ηs(zs−)ds

+

∫ t

r

∫
{|y|≤1}

y(µ(dy, ds)− ν~(dy)ds)−
∫ t

r

1

Ls−
d〈Ls, zs〉

= Wt +

∫ t

r

∫
{|y|≤1}

y

(
µ(dy, ds)− ηs(zs− + y)

ηs(zs−)
ν~(dy)ds

)
,
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for t ∈ [r, v], is a (Pt)t∈[r,v]-martingale under the probability Q defined by

dQ

dP
|Pt = Lt, r ≤ t ≤ v,

hence under Q, Wt is a Brownian motion (in the Brownian case) and µ(dy, ds) has

the compensator
ηs(zs−+y)

ηs(zs− )
ν~(dy) (in the pure jump case), i.e. (zr + ξt−r)t∈[r,v] has the

law of (zt)t∈[r,v] under P .

The proof in the backward case is similar and relies on the following calculations.

Using the definition of the backward infinitesimal generator,

L∗η∗t η
∗
t (k) = H†η∗t (k) + U(k)η∗t (k) + 〈∇ log η∗t (k),∇η∗t (k)〉~B

+

∫
IRd

(
(η∗t )

2(k + y)

ηt(k)
− η∗t (k)

)
ν~(dy)dt+

∂η∗t
∂t

(zt)

= −∂η
∗
t

∂t
(k) + U(k)η∗t (k) +∇ log η∗t (k),∇η∗t (k)〉~B

+

∫
IRd

(
(η∗t )

2(k + y)

η∗t (k)
− η∗t (k)

)
ν~(dy)dt+

∂η∗t
∂t

(k),

we have

dη∗t (zt) = η∗t (zt−)

∫
|y|≤1

η∗t (zt+ − y)− η∗t (zt+)

η∗t (zt+)

(
µ∗(dy, dt)−

η∗t (zt+ − y)

η∗t (zt+)
ν~(dy)dt

)
+η∗t (zt+)〈∇ log η∗t (zt+), dW ∗

t 〉~B + L∗η∗t η
∗
t (zt)dt−

∂η∗t
∂t

(zt)dt

= U(zt+)ηt(zt+)dt+ η∗t (zt+)

∫
|y|≤1

η∗t (zt+ − y)− η∗t (z∗t+)

η∗t (zt+)
(µ∗(dy, dt)− ν~(dy)dt)

+η∗t (zt+)〈∇ log η∗t (zt+), dW ∗
t 〉~B + 〈∇ log η∗t (zt+),∇ log η∗t (zt+)〉~B.

Hence

d∗L
∗
t = L∗t+ ·

∫
|y|≤1

η∗t (zt+ − y)− η∗t (zt+)

η∗t (zt+)
(µ∗(dy, dt)− ν~(dy)dt)

+L∗t+ · 〈∇ log η∗t (zt+), dW ∗
t +∇ log η∗t (zt+)dt〉~B, t ∈ [r, v].

Under P we have

1

L∗s+
d∗〈L∗s, zs〉 =

∫
|y|≤1

η∗t (zt+ − y)− η∗t (zt+)

η∗t (zt+)
ν~(dy)dt+ ~B∇ log η∗t (zt+),

hence

W ∗
t + ~

∫ v

t

B∇ log η∗s(zs+)ds+

∫ v

t

∫
{|y|≤1}

y(µ∗(dy, ds)− ν~(dy)ds)−
∫ v

t

1

L∗s+
d∗〈L∗s, zs〉
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= W ∗
t +

∫ v

t

∫
{|y|≤1}

y

(
µ∗(dy, ds)−

η∗s(zs+ − y)

η∗s(zs+)
ν~(dy)ds

)
,

for t ∈ [r, v], is a backward martingale under the probability Q defined by

dQ

dP
|Ft = L∗t , r ≤ t ≤ v.

We also use the (backward, i.e. (Ft)t∈[r,v]-) representations

d∗zt =

∫
IRd
y
(
µ∗(dy, dt)− 1{|y|≤1}ν~(dy)dt

)
in the Poisson case, and

d∗zt = d∗W
∗
t − ~B∇ log η∗t (zt+)dt

in the Brownian case. �

Examples for Prop. 4.1.

1. Deterministic process. In this case we have Q = P . More precisely, ηt(zt) =

ηr(zr), η
∗
t (zt) = η∗v(zv), r ≤ t ≤ v, and in fact (zt)t∈[r,v] = (zr)t∈[r,v].

2. Poisson bridge from a ∈ IN to b ∈ IN, a ≤ b.

In this case the law of (zt)t∈[r,v] is absolutely continuous with respect to P , with

dQ

dP
|Pt =

ηt(zt)

ηr(zr)
= et−r

(v − t)b−zt
(v − r)b−a

(b− a)!

(b− zt)!
1[a,b](zt), r ≤ t ≤ v,

hence
dQ

dP
= ev−r

(b− a)!

(v − r)b−a
1{zv=b},

with zr = a, i.e. under Q, the standard Poisson process (a + ξt−r)t∈[r,v] has the

law of the Poisson bridge (zt)t∈[r,v]. We also have

dQ

dP
|Ft =

η∗t (zt)

η∗v(zv)
= e−(t−v) (t− r)zt

zt!

(b− a)!

(v − r)(b−a)
1[a,b](zt), r ≤ t ≤ v,

hence
dQ

dP
= e−(r−v) (b− a)!

(v − r)(b−a)
1{zr=a},

with zv = b, i.e. under Q, (b− ξv−t)t∈[r,v] has the law of the Poisson bridge.
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3. Brownian bridge.

The law of the Brownian bridge starting from a ∈ IR at time r and ending at

b ∈ IR is not absolutely continuous with respect to the Wiener measure, since

µr(di) = δa(di) and µv(dm) = δb(dm).

4. Lévy bridges starting at a ∈ IRd and ending at b ∈ IRd.

Take U = 0, and assume that µt(dk) = µt(k)λ(dk) has a density with respect

to λ. We have
dQ

dP
|Pt =

µv−t(b− zt)
µv(b− zr)

, r ≤ t ≤ v,

and
dQ

dP
|Ft =

µt−r(zt − a)

µv−r(zv − a)
, r ≤ t ≤ v.

5. Forward and backward Brownian motion (U = 0).

We have either Q = P or Q is not absolutely continuous with respect to P .

6. Forward and backward Poisson processes (U = 0).

In the standard Poisson case, backward Lévy processes give examples of jump

processes with zv = 0 and initial Poisson distribution ρr(k)λ(dk), k ≤ 0, on −IN.

We have µt−v(k) = e−(v−t)(v − t)−k/(−k)!, t ≤ v, and

dQ

dP
|Pt =

µt−v(zt)

µr−v(zr)
= e−(r−t) (v − t)−zt

(−zt)!
(−zr)!

(v − r)−zr
,

hence
dQ

dP
= ev−r

(−zr)!
(v − r)−zr

1{zv=0}.

It follows from Prop. 4.1, under Q the process (zr + ξt−r)t∈[r,v] has the law of

(zt)t∈[r,v], where (ξt)t∈[0,+∞[ is the canonical Lévy process. Similarly we have, if

(zt)t∈[r,v] is a standard Poisson process under P :

dQ

dP
|Ft =

µt(zt)

µv(zv)
= e−(t−v) (t− r)zt

zt!

zv!

(v − r)zv
,

hence
dQ

dP
= ev−r

zv!

(v − r)zv
1{zr=0}, r ≥ 0,

i.e. under Q, (zv + ξ∗t )t∈[r,v] = (zv − ξv−t)t∈[r,v] has same the law as the standard

(forward) Poisson process (ξt)t∈[r,v].
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7. Forward Lévy processes (U = 0 and µr, µv are absolutely continuous with

respect to λ).

Here the probability Q is naturally equal to P , and the process (zt)t∈[r,v] has

same law as the forward Lévy process (ξt)t∈[r,v]. If (ξ∗t )t∈[r,v] = (−ξv−t)t∈[r,v] is a

backward Lévy process under P , the density dQ
dP
|Ft is given by

dQ

dP
|Ft =

µt(zt)

µv(zv)
,

and
dQ

dP
=
µr(zr)

µv(zv)
,

i.e. (zv + ξ∗t )t∈[r,v](zv − ξv−t)t∈[r,v] is a forward Lévy process under Q.

8. Backward Lévy processes (U = 0 and µr, µv are absolutely continuous with

respect to λ).

The process (zt)t∈[r,v] has the same law as the backward Lévy process (ξ∗t )t∈[r,v] =

(−ξt−v)t∈[r,v]. The density dQ
dP
|Pt is given by

dQ

dP
|Pt =

µt−v(zt)

µr−v(zr)
,

and
dQ

dP
=

µ0(zv)

µr−v(zr)
.

From Prop. 4.1, under Q the process (zr+ξt−r)t∈[r,v] has the law of the canonical

Lévy process (ξt)t∈[r,v].

5 Reversible diffusion processes with jumps

In this section we prove Th. 3.2 and some extensions. This provides a construction

of Markovian “bridges” with given initial and final laws since from Th. 3.3, η∗r and

ηv can be chosen so that the products η∗rηr and η∗vηv equal any positive initial and

final distribution densities fixed in advance. Define the forward and backward Markov

semi-groups for s ≤ r ≤ t ≤ u and j, k, l ∈ IRd:

p(t, k, u, dl) =
ηu(l)

ηt(k)
h(t, k, u, dl), (5.1)

31



and

p∗(s, dj, t, k) =
η∗s(j)

η∗t (k)
h†(s, dj, t, k). (5.2)

The adjointness relation between H and H†:

h(s, j, t, dk)λ(dj) = h†(s, dj, t, k)λ(dk)

shows that the following reversibility condition holds

η∗s(dj)ηs(j)p(s, j, t, dk) = η∗s(dj)h(s, j, t, dk)ηt(k) (5.3)

= η∗s(j)h
†(s, dj, t, k)ηt(dk)

= p∗(s, dj, t, k)η∗t (dk)ηt(k).

Let us stress that this property generalizes the one understood, since Kolmogorov,

as defining the reversibility of a probability measure (cf., for example, [9]). More

generally we have

η∗t1(dk1)ηt1(k1)p(t1, k1, t2, dk2) · · · p(tn−1, kn−1, tn, dkn)

= η∗t1(dk1)h(t1, k1, t2, dk2) · · ·h(tn−1, kn−1, tn, dkn)ηtn(kn).

= η∗t1(k1)h†(t1, dk1, t2, k2) · · ·h†(tn−1, dkn−1, tn, kn)ηtn(dkn).

= p∗(t1, k1, t2, dk2) · · · p∗(tn−1, dkn−1, tn, kn)η∗tn(kn)ηtn(dkn),

hence the forward Markov process with transition p(s, j, t, dk) and initial law η∗s(dj)ηs(j)

has the same law η∗t (dk)ηt(k) as the backward Markov process with transition p∗(t, dk, u, l)

and final law η∗u(dl)ηu(l), s ≤ t ≤ u.

This argument is made precise in the next two propositions, without assuming that

η∗r(dk), resp. ηv(dk), has a density with respect to λ(dk).

Proposition 5.1 Let η∗r(di) and ηv : IRd → IR+ be initial and final conditions such

that for some t ∈ [r, v], ∫
IRd
η∗t (dk)ηt(k) = 1,

where

η∗t (dk) =

∫
IRd
η∗r(di)h(r, i, t, dk), ηt(k) =

∫
IRd
ηv(m)h(t, k, v, dm) = e−(v−t)Hηv(k),

(5.4)
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r < t < v, and let us define

p(t, k, u, dl) =
ηu(l)

ηt(k)
h(t, k, u, dl), (5.5)

Then

i) p(t, k, u, dl) is a forward Markov transition kernel,

ii) the inhomogeneous Markov process (zt)t∈[r,v] with forward transition kernel p(t, k, u, dl)

and initial distribution ηs(j)η
∗
s(dj) satisfies

P (zt ∈ dk | Ps ∨ Fu) = P (zt ∈ dk | zs, zu), r ≤ s < t < u ≤ v, (5.6)

i.e. it is a Bernstein (or reciprocal, or “local Markov”) process,

iii) the law at time t of zt is ρt(dk) = ηt(k)η∗t (dk), t ∈ [r, v].

If moreover H and H† are adjoint with respect to some fixed reference measure λ:

h(s, j, t, dk)λ(dj) = h†(s, dj, t, k)λ(dk), (5.7)

and η∗s(dj) = η∗s(j)λ(dj) is absolutely continuous with respect to λ, then

iv) for all t < u, η∗t (dk) is absolutely continuous with respect to λ, with density

η∗t (k) =

∫
IRd
η∗s(j)h

†(s, dj, t, k) = e−(t−s)H†η∗s(k), r ≤ s < t,

v) (zt)t∈[r,v] is also a backward Markov process with transition kernel

p∗(s, dj, t, k) =
η∗s(j)

η∗t (k)
h†(s, dj, t, k), r ≤ s < t, (5.8)

vi) the law of zt at time t is ηt(k)η∗t (k)λ(dk).

Proof. The fact (i) that p(s, j, t, dk) is a Markov transition kernel follows from the

definition of ηt(k) itself:∫
IRd
p(t, k, u, dl)p(u, l, v, dm) =

ηv(m)

ηt(k)

∫
IRd
h(t, k, u, dl)h(u, l, v, dm)

=
ηv(m)

ηt(k)
h(t, k, v, dm) = p(t, k, v, dm).
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The existence of the inhomogenous Markov process (zt)t∈[r,v] follows from e.g. Th. 4.1.1

of [11] applied on the (complete separable) space IRd. More precisely, [11] yields the

existence of the space-time homogeneous Markov process (t, zt)t∈[r,v] with transition

semigroup

p̃((t, k), s, (du, dl)) = p(t, k, u, dl)δt+s(du).

Let us show that (5.6) holds for this forward Markov process. We have, for r ≤ t1 <

t2 < · · · < tn ≤ v,

P (zt1 ∈ dk1, . . . , ztn ∈ dkn)

= η∗t1(dk1)ηt1(k1)p(t1, k1, t2, dk2) · · · p(tn−1, kn−1, tn, dkn)

= η∗t1(dk1)h(t1, k1, t2, dk2) · · ·h(tn−1, kn−1, tn, dkn)ηtn(kn).

In particular, using (5.5),

P (zs ∈ dj, zu ∈ dl) = η∗s(dj)ηs(j)p(s, j, u, dl) = η∗s(dj)h(s, j, u, dl)ηu(l),

and

P (zs ∈ dj, zt ∈ dk, zu ∈ dl) = η∗s(dj)h(s, j, t, dk)h(t, k, u, dl)ηu(l).

Hence P (zt ∈ dk | zs = j, zu = l) satisfies η∗s(dj)-a.e.:

P (zt ∈ dk | zs = j, zu = l)h(s, j, u, dl) = h(s, j, t, dk)h(t, k, u, dl).

This gives, with s1 < s2 < · · · < sn < t < u1 < · · · < um, and introducing the

Bernstein kernel h(sn, jn, t, A, u1, l1) = P (zt ∈ A | zsn = jn, zu1 = l1) of Sect. 3,

P (zs1 ∈ dj1, . . . , zsn ∈ djn, zt ∈ A, zu1 ∈ dl1, . . . , zum ∈ dlm)

=

∫
A

η∗s1(dj1)h(s1, j1, s2, dj2) · · ·h(sn, jn, t, dk)

h(t, k, u1, dl1) · · ·h(um−1, lm−1, um, dlm)ηum(lm)

= h(sn, jn, t, A, u1, l1)η∗s1(dj1)h(s1, j1, s2, dj2) · · ·h(sn−1, jn−1, sn, djn)h(sn, jn, u1, dl1)

h(u1, l1, u2, dl2) · · ·h(um−1, lm−1, um, dlm)ηum(lm)

= h(sn, jn, t, A, u1, l1)P (zs1 ∈ dj1, . . . , zsn ∈ djn, zu1 ∈ dl1, . . . , zum ∈ dlm),

hence

P (zt ∈ dk | Psn ∨ Fu1) = h(sn, zsn , t, dk, u1, zu1) = P (zt ∈ dk | zsn , zu1).
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Finally, under the condition (5.7) we have

η∗t (dk) =

∫
IRd
η∗s(dj)h(s, j, t, dk)

=

∫
IRd
η∗s(j)h(s, j, t, dk)λ(dj) =

∫
IRd
η∗s(j)h

†(s, dj, t, k)λ(dk).

The process (zt)t∈[r,v] being constructed from the forward kernel (3.2), we show that

its backward kernel is given by (3.3) when (5.7) holds; we have

P (zs ∈ A, zt1 ∈ dk1, . . . , ztn ∈ dkn)

=

∫
A

η∗s(k)h†(s, dj, t1, k1) · · ·h†(tn−1, dkn−1, tn, dkn)ηtn(dkn)

=

∫
A

p∗(s, dj, t1, k1) · · · p∗(tn−1, dkn−1, tn, kn)η∗tn(dkn)ηtn(kn)

= p∗(s, A, t1, k1)p∗(t1, dk1, t2, k2) · · · p∗(tn−1, dkn−1, tn, kn, )η
∗
tn(dkn)ηtn(kn)

= p∗(s, A, t1, k1)P (zt1 ∈ dk1, . . . , ztn ∈ dkn, ),

hence (zt)t∈[r,v] is also backward Markovian with transition kernel p∗(s, dj, t1, k1). �

Relation (5.4) can be written as

−∂η
∗
t (dk)

∂t
= H†η∗t (dk) and

∂ηt
∂t

(k) = Hηt(k), t ∈ [r, v].

The following similar proposition shows that Markovian bridges can also be con-

structed from backward Markov processes. Prop. 5.1 and Prop. 5.2 complete the

proof of Th. 3.2.

Proposition 5.2 Let η∗r : IRd → IR+ and ηv(dm) be initial and final conditions such

that for some t ∈ [r, v], ∫
IRd
η∗t (k)ηt(dk) = 1,

where

ηt(dk) =

∫
IRd
ηv(dm)h†(t, dk, v,m), η∗t (k) =

∫
IRd
η∗r(i)h

†(r, di, t, k) = e−(t−r)H†η∗r(k),

(5.9)

r < t < v, and

p∗(s, dj, t, k) =
η∗s(j)

η∗t (k)
h†(s, dj, t, k). (5.10)

Then
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i) p∗(s, dj, t, k) is a backward Markov transition kernel,

ii) the inhomogeneous backward Markov process (zt)t∈[s,u] with transition kernel p∗(s, dj, t, k)

and final distribution ηu(dl)η
∗
u(l) satisfies

P (zt ∈ dk | Ps ∨ Fu) = P (zt ∈ dk | zs, zu), (5.11)

i.e. it is a Bernstein process.

iii) the law at time t of zt is ρt(k) = ηt(k)η∗t (dk).

If moreover H and H† are adjoint with respect to a fixed reference measure, i.e.

h(t, k, u, dl)λ(dk) = h†(t, dk, u, l)λ(dl), (5.12)

and ηu(dl) = ηu(l)λ(dl) is absolutely continuous with respect to λ, then

iv) ηt(dk) is absolutely continuous with respect to λ, with density

ηt(k) =

∫
IRd
ηu(l)h(t, k, u, dl) = e−(u−t)Hηu(k), t < u ≤ v,

v) (zt)t∈[r,v] is a forward Markov process with transition kernel

p(t, k, u, dl) =
ηu(l)

ηt(k)
h(t, k, u, dl),

vi) the law at time t of zt is ηt(k)η∗t (k)λ(dk).

Proof. (similar to the proof of Prop. 5.1, and stated for completeness.) We have

P (zt1 ∈ dk1, . . . , ztn ∈ dkn)

= p∗(t1, dk1, t2, k2) · · · p∗(tn−1, dkn−1, tn, kn)η∗tn(kn)ηtn(dkn)

= η∗t1(k1)h†(t1, dk1, t2, k2) · · ·h†(tn−1, dkn−1, tn, kn)ηtn(dkn).

In particular,

P (zs ∈ dj, zu ∈ dl) = p∗(s, dj, u, l)η∗u(l)ηu(dl) = η∗s(j)h
†(s, dj, u, l)ηu(dl),

and

P (zs ∈ dj, zt ∈ dk, zu ∈ dk) = η∗s(j)h
†(s, dj, t, k)h†(t, dk, u, l)ηu(dl).
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Hence ηu(dl)-a.e.:

P (zt ∈ dk | zs = j, zu = l)h†(s, j, u, dl) = h†(s, dj, t, k)h†(t, dk, u, l).

This gives:

P (zs1 ∈ dj1, . . . , zsn ∈ djn, zt ∈ A, zu1 ∈ dl1, . . . , zum ∈ dlm)

=

∫
A

η∗s1(j1)h†(s1, dj1, s2, j2) · · ·h(sn, djn, t, k)

h(t, dk, u1, dl1) · · ·h(um−1, dlm−1, um, lm)ηum(dlm)

= h(sn, jn, t, A, u1, l1)η∗s1(j1)h†(s1, dj1, s2, j2) · · ·h†(sn−1, djn−1, sn, jn)

h†(sn, djn, u1, l1)h†(u1, dl1, u2, l2) · · ·h†(um−1, dlm−1, um, lm)ηum(dlm)

= h†(sn, jn, t, A, u1, l1)P (zs1 ∈ dj1, . . . , zsn ∈ djn, zu1 ∈ dl1, . . . , zum ∈ dlm),

hence (5.11) holds. Finally under (5.12) we have

ηt(dk) = e−(u−t)H†η∗u(dk) =

∫
IRd
ηu(dl)h

†(t, dk, u, l)

=

∫
IRd
η∗u(l)h

†(t, dk, u, l)λ(dl)

=

∫
IRd
η∗u(k)h(t, k, u, dl)λ(dk),

It remains to shows that if (zt)t∈[r,v] is constructed from the backward kernel (3.3),

then its forward kernel is given by (3.2): using again (5.12) we have

P (zt1 ∈ dk1, . . . , ztn ∈ dkn, zu ∈ C)

=

∫
C

η∗t1(k1)h†(t1, dk1, t2, k2) · · ·h†(tn−1, dkn−1, tn, kn)ηu(dl)

=

∫
C

η∗t1(k1)ηt1(dk1)p(t1, k1, t2, dk2) · · · p(tn−1, kn−1, tn, dkn)p(tn, kn, u, C)

= η∗t1(k1)ηt1(dk1)p(t1, k1, t2, dk2) · · · p(tn−1, kn−1, tn, dkn, )p(tn, kn, u, C)

= P (zt1 ∈ dk1, . . . , ztn ∈ dkn)p(tn, kn, u, C),

hence (zt)t∈[r,v] is Markovian with forward transition kernel p(tn, kn, t, C). �

Relation (5.9) can be written as

−∂η
∗
t

∂t
(k) = H†η∗t (k) and

∂ηt(dk)

∂t
= Hηt(dk) t ∈ [r, v].
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6 Generators

In this section we study the generators of Bernstein diffusions with jumps, solutions of

forward and backward stochastic integro-differential equations, under the assumptions

of Th. 3.2.

Definition 6.1 For f ∈ S(IRd) we define the forward generator (cf. Prop. 3.2) by

Lηtf(k) = 〈c,∇f(k)〉+
1

2
∆~Bf(k)

+

∫
IRd

(f(k + y)− f(k)− 〈y,∇f(k)〉1{|y|≤1})
ηt(k + y)

ηt(k)
ν~(dy)

+

∫
IRd

ηt(k + y)− ηt(k)

ηt(k)
〈y,∇f(k)〉1{|y|≤1}ν~(dy) + 〈∇ log ηt(k),∇f(k)〉~B,

and its backward counterpart by

L∗η∗t f(k) = 〈c,∇f(k)〉 − 1

2
∆~Bf(k)

−
∫

IRd
(f(k − y)− f(k) + 〈y,∇f(k)〉1{|y|≤1})

η∗t (k − y)

η∗t (k)
ν~(dy)

+

∫
IRd

η∗t (k − y)− η∗t (k)

η∗t (k)
〈y,∇f(k)〉1{|y|≤1}ν~(dy)− 〈∇ log η∗t (k),∇f(k)〉~B.

Note that L∗η∗t is not the adjoint of Lηt , which will be denoted, when needed, by (Lηt)†.
The proof of Prop. 3.4 follows from the next proposition.

Proposition 6.2 The kernels p(t, k, u, dl) and p∗(s, dj, t, k) of Props. 5.1, 5.2, satisfy

the partial integro-differential equations

∂p

∂u
(t, k, u, dl) = (Lηu)†lp(t, k, u, dl) (6.1)

(Kolmogorov forward or Fokker-Planck equation), and

∂p∗

∂s
(s, dj, t, k) = (L∗η∗s )

†
jp(s, dj, t, k).

The notation (Lηu)†lp(t, k, u, dl), resp. (L∗η∗s )
†
jp(s, dj, t, k), means that Lηu , resp. L∗η∗s ,

acts on the variable l, resp. k, i.e. Prop. 6.2 states that

∂

∂u

∫
IRd
f(l)p(t, k, u, dl) =

∫
IRd
Lηuf(l)p(t, k, u, dl),
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resp.
∂

∂s

∫
IRd
f(j)p∗(s, dj, t, k) =

∫
IRd
L∗η∗sf(j)p(s, dj, t, k).

In order to prove Prop. 6.2 we will need the following.

Lemma 6.3 For f, g ∈ S(IRd), the carré du champ operators [24] associated to −H
and −H† are given respectively by

Γ(f, g)(k) = U(k)f(k)g(k)+〈∇f(k),∇g(k)〉~B+

∫
IRd

(f(k+y)−f(k))(g(k+y)−g(k))ν~(dy),

and

Γ†(f, g)(k) = U(k)f(kg(k)+〈∇f(k),∇g(k)〉~B+

∫
IRd

(f(k−y)−f(k))(g(k−y)−g(k))ν~(dy).

Proof. An elementary computation shows that

−H(fg) = −fHg − gHf + Γ(f, g),

and

−H†(fg) = −fHg − gHf + Γ†(f, g),

which is the definition of Γ(f, g) and Γ†(f, g). �

Let the operators Dt and D∗t be defined informally by

Dtf =
1

ηt

(
∂

∂t
−H

)
(ηtf)

and

D∗t f =
1

η∗t

(
∂

∂t
+H†

)
(η∗t f).

By an adaptation of the method of [1] one shows that Dt and D∗t are densely defined

operators in L2(IRd, η∗t (k)ηt(k)λ(dk)). They will be called afterwards, the forward and

backward derivatives, respectively.

The following Lemma provides a decomposition of Dt and D∗t which will be useful in

the proof of Prop. 6.2.

Lemma 6.4 We have

Dt =
∂

∂t
+ Lηt and D∗t =

∂

∂t
+ L∗η∗t .
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Proof. We have

Dtft(k) =

(
∂

∂t
−H

)
ft(k) +

ft(k)

ηt(k)

(
∂

∂t
−H

)
ηt(k) +

1

ηt(k)
Γ(ηt, ft)(k)

=
∂ft
∂t

(k)− V (∇)ft(k) + 〈∇ log ηt(k),∇ft(k)〉~B

+

∫
IRd

ηt(k + y)− ηt(k)

ηt(k)
(ft(k + y)− ft(k))ν~(dy)

=
∂ft
∂t

(k) + 〈c,∇ft(k)〉+
1

2
∆~Bft(k)

+

∫
IRd

(ft(k + y)− ft(k)− 〈y,∇ft(k)〉1{|y|≤1})ν~(dy)

+〈∇ log ηt,∇ft(k)〉~B +

∫
IRd

ηt(k + y)− ηt(k)

ηt(k)
(ft(k + y)− ft(k))ν~(dy)

=
∂ft
∂t

(k) + 〈c,∇ft(k)〉+
1

2
∆~Bft(k)

+

∫
IRd

(
ηt(k + y)

ηt(k)
(ft(k + y)− ft(k))− 〈y,∇ft(k)〉1{|y|≤1}

)
ν~(dy)

+〈∇ log ηt,∇ft(k)〉~B

=
∂ft
∂t

(k) + 〈c,∇ft(k)〉+ 〈∇ log ηt,∇ft(k)〉~B +
1

2
∆~Bft(k)

+

∫
IRd

(ft(k + y)− ft(k)− 〈y,∇ft(k)〉1{|y|≤1})
ηt(k + y)

ηt(k)
ν~(dy)

+

∫
IRd

ηt(k + y)− ηt(k)

ηt(k)
〈y,∇ft(k)〉1{|y|≤1}ν~(dy)

=

(
∂

∂t
+ Lηt

)
ft(k).

Concerning D∗t we have

D∗t ft(k) =

(
∂

∂t
+H†

)
ft(k) +

ft(k)

η∗t (k)

(
∂

∂t
+H†

)
η∗t (k)− 1

η∗t (k)
Γ†(η∗t , ft)(k)

=
∂ft
∂t

(k) + V̄ (∇)ft(k)− 〈∇ log η∗t (k),∇ft(k)〉~B

−
∫

IRd

η∗t (k − y)− η∗t (k)

η∗t (k)
(ft(k − y)− ft(k))ν~(dy)

=
∂ft
∂t

(k) + 〈c,∇ft(k)〉 − 1

2
∆~Bft(k)

−
∫

IRd
(ft(k − y)− ft(k) + 〈y,∇ft(k)〉1{|y|≤1})ν~(dy)

−〈∇ log η∗t ,∇ft(k)〉~B −
∫

IRd

η∗t (k − y)− η∗t (k)

η∗t (k)
(ft(k − y)− ft(k))ν~(dy)
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=
∂ft
∂t

(k) + 〈c,∇ft(k)〉 − 1

2
∆~Bft(k)

−
∫

IRd

(
η∗t (k − y)

η∗t (k)
(ft(k − y)− ft(k)) + 〈y,∇ft(k)〉1{|y|≤1}

)
ν~(dy)

−〈∇ log η∗t ,∇ft(k)〉~B

=
∂ft
∂t

(k) + 〈c,∇ft(k)〉 − 1

2
∆~Bft(k)

−
∫

IRd

η∗t (k − y)

η∗t (k)
(ft(k − y)− ft(k) + 〈y,∇ft(k)〉1{|y|≤1})ν~(dy)

+

∫
IRd

η∗t (k − y)− η∗t (k)

η∗t (k)
〈y,∇ft(k)〉1{|y|≤1}ν~(dy)− 〈∇ log η∗t ,∇ft(k)〉~B

=

(
∂

∂t
+ L∗η∗t

)
ft(k).

�

Now we can easily prove Prop. 6.2.

Proof We have for any f ∈ S(IRd), using the decompositions of Lemma 6.4:

ηt(k)
∂

∂u

∫
IRd
f(l)p(t, k, u, dl)

=
∂

∂u

∫
IRd
f(l)ηu(l)h(t, k, u, dl) =

∂

∂u

[
e−(u−t)H(fηu)(k)

]
=

∫
IRd
f(l)

∂ηu
∂u

(l)h(t, k, u, dl)−
∫

IRd
Hf(l)ηu(l)h(t, k, u, dl)

=

∫
IRd
ηt(l)Duf(l)h(t, k, u, dl)

=

∫
IRd
ηu(l)Lηuf(l)h(t, k, u, dl)

= ηt(k)

∫
IRd
Lηuf(l)p(t, k, u, dl)

= ηt(k)

∫
IRd
f(l)(Lηu)†lp(t, k, u, dl).

Concerning the dual statement we have

η∗t (k)
∂

∂s

∫
IRd
f(j)p∗(s, dj, t, k)

=
∂

∂s

∫
IRd
f(j)η∗s(j)h

†(s, dj, t, k) =
∂

∂s

[
e−(t−s)H†(fη∗s)(k)

]
=

∫
IRd
f(j)

∂η∗s
∂s

(j)h†(s, dj, t, dk) +

∫
IRd
H†(fη∗s)(j)h(s, dj, t, k)
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=

∫
IRd
η∗t (k)D∗sf(j)h†(s, dj, t, k)

=

∫
IRd
η∗t (k)L∗η∗sf(j)h(s, dj, t, k)

= η∗t (k)

∫
IRd
L∗η∗sf(j)p(s, dj, t, k)

= η∗t (k)

∫
IRd
f(j)(L∗η∗s )

†
jp(s, dj, t, k),

and so Prop. 6.2 holds. �

Proof of Prop. 3.4. Prop. 6.2 shows that f(zv)−
∫ v

0
Lηuf(zu)du, v ≥ 0, is a martingale

for f ∈ S(IRd):

E[f(zv)− f(zv) | Ft] =

∫ v

t

∂

∂u
E[f(zu) | Ft]du =

∫ v

t

E[Lηuf(zu) | Ft]du,

and f(zv) −
∫ v

0
Lηuf(zu)du, v ≥ 0, is a local martingale for f ∈ C2(IRd). A similar

argument holds in the backward case. �

7 Uniqueness of reversible diffusions

In this section we show that the processes constructed in this paper are essentially

the only Markovian reversible diffusions with jumps. As defined in Prop. 5.1 let us

recall that, more generally, a Bernstein process is a process (zt)t∈[r,v] such that

P (zt ∈ dk | Ps ∨ Fu) = P (zt ∈ dk | zs, zu), r ≤ s < t < u ≤ v, (7.1)

where (Pt)t∈[r,v], respectively (Ft)t∈[r,v], denotes the increasing, resp. decreasing, filtra-

tion generated by (zt)t∈[r,v]. Jamison’s construction of Bernstein processes [20] is still

valid in the jump case. It requires the data of a probability measure ν on IRd×IRd and

a Bernstein transition kernel, i.e. a kernel h(s, j, t, dk, u, l) satisfying the counterpart

of the Chapman-Kolmogorov equation:∫
A

h(s, j, t, B, u, l)h(s, j, u, dl, v,m) =

∫
B

h(s, j, t, dk, v,m)h(t, k, u, A, v,m), (7.2)

for A,B ∈ B(IRd). From [20] we know that there exists a unique (generally not

Markovian) Bernstein process (zt)t∈[r,v] such that
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a) P (zr ∈ B, zv ∈ C) = ν(B × C),

b) P (zt ∈ B | zs, zu) = h(s, zs, t, B, u, zu), r ≤ s < t < u ≤ v.

The finite dimensional distribution of (zt)t∈[r,v] is given by

P (zr ∈ A, zt1 ∈ B1, . . . , ztn ∈ Bn, zv ∈ C) (7.3)

=

∫
A×C

ν(dj, dl)

∫
B1

h(r, i, t1, dk1, v,m) · · ·
∫
Bn

h(tn−1, kn−1, tn, dkn, v,m),

cf. [20].

Our construction of Markovian Bernstein processes did not follow, however, the above

procedure. Instead, we started from the data of U and V , defining H = U + V (∇)

(Def. 2.1), i.e. from the Lévy process (ξt)t∈[r,v], and from boundary conditions η∗r and

ηv, allowing to construct a Markov transition kernels with the solutions of the adjoint

heat equations (3.4). Then we showed that the corresponding Markov process is a

Bernstein process.

Conversely, under the additional hypothesis (7.4), (7.5) on the kernel h(s, j, t, dk, u, l)

of a Bernstein process, it is possible to show that if a Bernstein process is Markovian

then it is the process described in Th. 3.2. This extends Th. 3.1 of [20] and Th. 3.3

of [29] to the case where h(t, dk, u, dl) and h†(s, dj, t, k) are not absolutely continuous

with respect to a reference measure.

Theorem 7.1 Assume that H and H† are adjoint with respect to a measure λ. Then

the conditions

h(s, j, t, dk, u, l)h(s, j, u, dl) = h(s, j, t, dk)h(t, k, u, dl), λ(dj)− a.e., (7.4)

and

h(s, j, t, dk, u, l)h†(s, dj, u, l) = h†(s, dj, t, k)h†(t, dk, u, l), λ(dl)− a.e., (7.5)

are equivalent. Moreover,

a) Let (zt)t∈[r,v] denote the Bernstein process with kernel h(s, j, t, dk, u, l) satisfying

(7.4). Then the following are equivalent:
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(i) the process (zt)t∈[r,v] is forward Markovian and p(t, k, u, dl) is absolutely

continuous with respect to h(t, k, u, dl),

(ii) there exists a measure η∗r(di) and a positive density function ηv(m) such

that

P (zr ∈ A, zv ∈ B) =

∫
A×B

η∗r(di)h(r, i, v, dm)ηv(m).

b) Assume that h(s, j, t, dk, u, l) satisfies (7.5). Then the following are equivalent:

(iii) there exists a positive density function η∗r(i) and a probability measure

ηv(dm) such that

P (zr ∈ A, zv ∈ B) =

∫
A×B

η∗r(i)h
†(r, di, v,m)ηv(dm).

(iv) the process (zt)t∈[r,v] is backward Markovian and p∗(s, dj, t, k) is absolutely

continuous with respect to h†(s, dj, t, k).

If η∗r(di) = η∗r(i)λ(di) and ηv(dl) = ηv(l)λ(dl) are absolutely continuous with

respect to a fixed measure λ, then (i), (ii), (iii) and (iv) are equivalent.

Proof. Under the adjointness hypothesis of H and H† with respect to λ:

h†(s, dj, t, k)λ(dk) = h(u, j, t, dk)λ(dj),

conditions (7.4) and (7.5) are equivalent since, then,

h(s, j, t, dk, u, l)h(s, j, u, dl)λ(dj) = h(s, j, t, dk, u, l)h†(s, dj, u, l)λ(dl),

and

h(s, j, t, dk)h(t, k, u, dl)λ(dj) = h†(s, dj, t, k)λ(dl)h†(t, dk, u, l).

The implications (ii)⇒ (i), (iv)⇒ (iii) follows from Propositions 7.4, 7.5, and (i)⇒
(ii), (iii) ⇒ (iv) will follow from Propositions 7.2, 7.3. Under the self-adjointness

assumption (5.7), the equivalence (i) ⇔ (iii) follows from Propositions 5.1 and 5.2.

which show that the Bernstein process (zt)t∈[r,v] is forward Markovian if and only if it

is backward Markovian. �
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Proposition 7.2 Assume that the Bernstein kernel h(s, j, t, dk, u, l) satisfies

h(s, j, t, dk, u, l)h(s, j, u, dl) = h(s, j, t, dk)h(t, k, u, dl), ρs(dj)− a.e., (7.6)

where ρs is the law of zs, r ≤ s ≤ v. If the Bernstein process (zt)t∈[r,v] is forward

Markovian and p(t, k, v, dm) is absolutely continuous with respect to h(t, k, v, dm),

then there exists a measure η∗r(di) and a positive density function ηv(m) such that

P (zr ∈ di, zv ∈ dm) = η∗r(di)h(r, i, v, dm)ηv(m), r < v. (7.7)

Moreover we have

p(r, i, t, dk) =
ηt(k)

ηr(i)
h(r, i, t, dk), (7.8)

with

ηt(k) =

∫
IRd
ηv(m)h(t, k, v, dm), η∗t (dk) =

∫
IRd
η∗r(di)h(r, i, t, dk), r ≤ t ≤ v.

(7.9)

Proof. Let us assume that (zt)t∈[r,v] is Markovian, with transition kernel p(t, k, u, dl).

Let ρr(di) denote an initial law of (zt)t∈[r,v]. We have

P (zr ∈ A, zt ∈ B, zv ∈ C) =

∫
A

ρr(di)

∫
B

p(r, i, t, dk)

∫
C

p(t, k, v, dm). (7.10)

On the other hand,

P (zr ∈ A, zt ∈ B, zv ∈ C) =

∫
A

ρr(di)

∫
C

p(r, i, v, dm)

∫
B

h(r, i, t, dk, v,m). (7.11)

Equating (7.10) and (7.11), we obtain

p(r, i, t, dk)p(t, k, v, dm) = p(r, i, v, dm)h(r, i, t, dk, v,m),

which, using (7.6), gives

p(r, i, v, dm) = h(r, i, v, dm)
p(r, i, t, dk)

h(r, i, t, dk)

p(t, k, v, dm)

h(t, k, v, dm)
, (7.12)

and

ν(A× C) =

∫
A

ρr(di)

∫
C

p(r, i, v, dm)
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=

∫
A×C

ρr(di)
p(r, i, t, dk)

h(r, i, t, dk)
h(r, i, v, dm)

p(t, k, v, dm)

h(t, k, v, dm)
.

Let us fix (t0, k0) ∈ IR+ × IRd, and define

ηv(m) = c(t0, k0)
p(t0, k0, v, dm)

h(t0, k0, v, dm)
, (7.13)

and

η∗r(di) =
1

c(t0, k0)

p(r, i, t0, dk0)

h(r, i, t0, dk0)
ρr(di), (7.14)

where c(t0, k0) is a normalization constant equal to ηt0(k0) after integrating in dm the

relation

ηv(m)h(t0, k0, v, dm) = c(t0, k0)p(t0, k0, v, dm).

From (7.10), (7.12), (7.13) and (7.14) we have

P (zr ∈ di, zv ∈ dm) = ρr(di)p(r, i, v, dm) = η∗r(di)h(r, i, v, dm)ηv(m),

i.e. (7.7) holds. Finally, from (7.3) and (7.6) we have

P (zr ∈ di, zt ∈ dk) =

∫
IRd
η∗r(di)h(r, i, v, dm)ηv(m)h(r, i, t, dk, v,m)

=

∫
IRd
η∗r(di)h(r, i, t, dk)h(t, k, v, dm)ηv(m)

= η∗r(di)h(r, i, t, dk)ηt(k),

and P (zr ∈ di) = η∗r(di)ηr(i), which proves (7.8). �

In the backward Markovian case we have the following result.

Proposition 7.3 Assume that the Bernstein kernel h(s, j, t, dk, u, l) satisfies

h(s, j, t, dk, u, l)h†(s, dj, u, l) = h†(s, dj, t, k)h†(t, dk, u, l), ρu(dl)− a.e., (7.15)

where ρu is the law of zu, r ≤ u ≤ v. If the Bernstein process (zt)t∈[r,v] is backward

Markovian and p∗(r, di, t, k) is absolutely continuous with respect to h†(r, di, t, k), then

there exists a positive density function η∗r(i) and a measure ηv(dm) such that

P (zr ∈ di, zv ∈ dm) = ηr(i)h
†(r, di, v,m)η∗v(dm).
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Moreover we have

p∗(t, dk, v,m) =
η∗t (k)

η∗v(m)
h†(t, dk, v,m), (7.16)

with

ηt(dk) =

∫
IRd
ηv(dm)h†(t, dk, v,m), η∗t (k) =

∫
IRd
η∗r(i)h

†(r, di, t, k), r ≤ t ≤ v.

Proof. (similar to the proof of Prop. 7.2, and stated for completeness.) Let us assume

that (zt)t∈[r,v] has the backward Markov transition kernel p∗(t, dk, u, l). Let ρv denote

the final law of (zt)t∈[r,v] at time v. We have

P (zr ∈ A, zt ∈ B, zv ∈ C) =

∫
A

p∗(r, di, t, k)

∫
B

p∗(t, dk, v,m)

∫
C

ρv(dm). (7.17)

On the other hand,

P (zr ∈ A, zt ∈ B, zv ∈ C) =

∫
A

h(r, i, t, dk, v,m)

∫
C

p∗(r, di, v,m)

∫
B

ρv(dm) (7.18)

Equating (7.17) and (7.18), we obtain

p∗(r, di, t, k)p∗(t, dk, v,m) = p∗(r, di, v,m)h(r, i, t, dk, v,m),

which from (7.15) gives

p∗(r, di, v,m) = h†(r, di, v,m)
p∗(r, di, t, k)

h†(r, di, t, k)

p∗(t, dk, v,m)

h†(t, dk, v,m)
,

and

ν(A× C) =

∫
A

p∗(r, di, v,m)

∫
C

ρv(dm)

=

∫
A×C

p∗(r, di, t, k)

h†(r, di, t, k)
h†(r, di, v,m)

p∗(t, dk, v,m)

h†(t, dk, v,m)
ρv(dm),

which leads to

η∗r(i) = c(t0, k0)
p∗(r, di, t0, k0)

h†(r, di, t0, k0)
, (7.19)

and

ηv(dm) =
1

c(t0, k0)

p∗(t0, dk0, v,m)

h†(t0, dk0, v,m)
ρv(dm),

where c(t0, k0) is equal to η∗t0(k0). This shows (7.16). Moreover we have

P (zr ∈ di, zv ∈ dm) =

∫
IRd
ρv(dm)p∗(r, di, v,m) = η∗r(i)h

†(r, di, v,m)η∗v(dm),
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Finally we have

P (zt ∈ dk, zv ∈ dm) =

∫
IRd
η∗r(i)h

†(r, di, v,m)ηv(dm)h(r, i, t, dk, v,m)

=

∫
IRd
η∗r(i)h

†(r, di, t, k)h†(t, dk, v,m)ηv(dm)

= η∗t (k)h†(t, dk, v,m)ηv(dm),

and P (zv ∈ dm) = η∗v(m)ηv(dm). �

The following is a converse to Prop. 7.2.

Proposition 7.4 Assume that there exists a measure η∗r(di) and a positive density

function ηv(m) such that

ν(A×B) = P (zr ∈ A, zv ∈ B) =

∫
A×B

η∗r(di)h(r, i, v, dm)ηv(m). (7.20)

Then the Bernstein process (zt)t∈[r,v] with kernel h(s, j, t, dk, u, l) satisfying the con-

ditions (7.4) or (7.5) is forward Markovian and p(t, k, u, dl) is absolutely continuous

with respect to h(t, k, u, dl), and given by (7.8).

Proof. From (7.3), (7.4) and (7.20) we have

P (zt1 ∈ dk1, . . . , ztn ∈ dkn, zu ∈ dl)

=

∫
IRd
η∗r(di)h(r, i, t1, dk1) · · ·h(tn, kn, u, dl)

∫
IRd
ηv(m)h(u, l, v, dm)

= P (zt1 ∈ dk1, . . . , ztn ∈ dkn)h(tn, kn, u, dl)

∫
IRd
ηv(m)h(u, l, v, dm)∫

IRd
ηv(m)h(tn, kn, v, dm)

,

hence

p(tn, kn, u, dl) =

∫
IRd
ηv(m)h(u, l, v, dm)∫

IRd
ηv(m)h(tn, kn, v, dm)

h(tn, kn, u, dl).

�

Of course, it is also true that

Proposition 7.5 Assume that there exists a positive density function η∗r(i) and a

measure ηv(dm) such that

P (zr ∈ A, zv ∈ B) =

∫
A×B

η∗r(i)h
†(r, di, v,m)ηv(dm). (7.21)
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Then the Bernstein process (zt)t∈[r,v] with kernel h(s, j, t, dk, u, l) satisfying (7.4) or

(7.5) is backward Markovian and p∗(s, dj, t, k) is absolutely continuous with respect to

h†(s, dj, t, k), and given by (7.16).

Proof. From (7.3), (7.5) and (7.21) we have

P (zs ∈ dj, zt1 ∈ dk1, . . . , ztn ∈ dkn)

=

∫
IRd
η∗r(i)h

†(r, di, s, j)h†(s, dj, t1, k1) · · ·h†(tn−1, dkn−1, tn, kn)

∫
IRd
ηv(dm)h†(tn, dkn, v,m)

= h†(s, dj, t1, k1)

∫
IRd
ηr(i)h

†(r, di, s, j)∫
IRd
ηr(i)h†(r, di, t1, k1)

P (zt1 ∈ dk1, . . . , ztn ∈ dkn),

hence

p∗(s, dj, t1, k1) =

∫
IRd
ηr(i)h

†(r, di, s, j)∫
IRd
ηr(i)h†(r, di, t1, k1)

h†(s, dj, t1, k1).

�

8 Variational characterization

In this section we use the approach to stochastic control for jump processes of [13],

[25], to obtain a variational characterization of the Markovian Bernstein processes

(or reversible diffusions) with jumps considered before. We consider the stochastic

control problem inff J(t, k; f) with action functional

J(t, k; f) = E(t,k)

[∫ v

t

L(z(s), f)ds− log ηv(z(v))

]
, (8.1)

where E(t,k) denotes the conditional expectation given {zt = k}, and the Lagrangian

L(k, f) is defined informally as

L(k, f) = Lf log f(k) +
1

f(k)
Hf(k), f ∈ S(IRd), f > 0,

where Lf is defined at the beginning of Sect. 3.2. We have explicitly

L(k, f) =

∫
IRd

(
f(k)− f(k + y)

f(k)
+
f(k + y)

f(k)
log

f(k + y)

f(k)

)
ν~(dy)

+
1

2
〈∇ log f(k),∇ log f(k)〉~B + U(k)
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=

∫
IRd
g

(
δf(k, y)

f(k)

)
ν~(dy) +

1

2
〈∇ log f(k),∇ log f(k)〉~B + U(k),

with g(x) = (1 +x) log(1 +x)−x and δf(k, y) = f(k+ y)− f(k). In particular, when

f = ηt,

L(k, ηt) = Lηt log ηt(k) +
1

ηt(k)
Hηt(k)

= Lηt log ηt(k) +
1

ηt(k)

∂

∂t
ηt(k)

= Lηt log ηt(k) +
∂

∂t
log ηt(k)

= Dt log ηt(k).

Proposition 8.1 The dynamic programming equation with final boundary condition

∂At
∂t

(k) + min
f

[LfAt(k) + L(k, f)] = 0, Av = − log ηv, (8.2)

associated to the action functional (8.1) has the solution At = − log ηt, the minimum

in f being attained on ft(k) = ηt(k), i.e. when At is solution of the Hamilton-Jacobi-

Bellman equation

∂At
∂t

(k) = U(k)− 1

2
(∆~BAt(k)− 〈∇At(k),∇At(k)〉~B) (8.3)

−
∫

IRd
(e−At(k+y)+At(k) − 1 + 1{|y|≤1}〈y,∇At(k)〉)dν~(y) + 〈c,∇At(k)〉.

Proof. We first show that for gt(k) > 0:

min
f

[−Lft log gt(k) + L(k, ft)] =
1

gt(k)
Hgt(k), (8.4)

and that the minimum is attained for ft = gt. Let us define

F (k, y) = −ft(k + y)

ft(k)
log

gt(k + y)

gt(k)
+
ft(k + y)

ft(k)
log

ft(k + y)

ft(k)
− ft(k + y)

ft(k)
+
gt(k + y)

gt(k)
.

We have

L(k, ft)− Lft log ηt(k)− 1

ηt(k)
Hηt(k)

= −Lft log
ηt(k)

ft(k)
+

1

ft(k)
Hft(k)− 1

ηt(k)
Hηt(k)
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=

∫
IRd
F (k, y)ηt(y)ν~(dy) +

1

2

〈
∇gt
gt

(k)− ∇ft
ft

(k),
∇gt
gt

(k)− ∇ft
ft

(k)

〉
~B

≥
∫

IRd
F (k, y)gt(y)ν~(dy),

Now, for all a > 0,

min
z∈IR

(za+ a log a− a+ e−z) = 0,

hence taking z = − log(gt(k+ y)/gt(k)) and a = ft(k+ y)/ft(k), we have F (k, y) ≥ 0,

and

L(k, f)− Lft log gt −
1

gt
Hgt = −Lft log

gt
ft

+
1

ft
Hft −

1

gt
Hgt ≥ 0.

the minimum (zero) being attained with f = gt, i.e.:

min
f

[L(k, f)− Lft log gt] =
1

gt
Hgt.

Letting At = − log gt, the dynamic programming equation (8.2) becomes

∂At
∂t

+ eAtHe−At = 0,

with solution At = − log ηt. Finally, from the relation

∆BAt =
1

gt
∆Bgt −

〈
∇gt
gt

,
∇gt
gt

〉
B

,

we have

1

gt(k)
Hgt(k) =

1

gt(k)

(
U(k)gt − 〈c,∇gt(k)〉 − 1

2
∆~Bgt(k)

−
∫

IRd
(gt(k + y)− gt(k)− 〈y,∇gt(k)〉1{|y|≤1})ν~(dy)

)
= U(k) + 〈c,∇At(k)〉 − 1

2
(∆~BAt − 〈∇At,∇At〉~B)

−
∫

IRd
(e−At(k+y)+At(k) − 1 + 1{|y|≤1}〈y,∇At〉)dν~,

which yields (8.3). �

In the backward case we consider the action functional which is, informally, the time

reversed of (8.1):

J∗(t, k; f ∗) = E(t,k)

[∫ t

r

L∗(z(s), f ∗)ds− log η∗r(z(r))

]
. (8.5)
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with Lagrangian L∗(k, f ∗) defined now as

L∗(k, f ∗) = −L∗f∗ log f ∗(k) +
1

f ∗(k)
H†f ∗(k), f ∗ ∈ S(IRd).

We have

L∗(k, f ∗) =

∫
IRd
g

(
δ∗f ∗(k, y)

f ∗(k)

)
ν~(dy) +

1

2
〈∇ log f ∗(k),∇ log f ∗(k)〉~B + U(k),

with δ∗f ∗(k, y) = f ∗(k − y)− f ∗(k). In particular,

L∗(k, η∗t ) = −D∗t log η∗t (k).

Proposition 8.2 The backward dynamic programming equation with initial boundary

condition

∂A∗t
∂t

(k) + min
f∗

[
−L∗f∗A∗t (k) + L(k, f ∗)

]
= 0, A∗r = − log η∗r , (8.6)

associated to (8.5) has solution A∗t = − log η∗t , the minimum in f ∗ being attained at

f ∗t (k) = η∗t (k), and A∗t is solution of the backward Hamilton-Jacobi-Bellman equation

∂A∗t
∂t

(k) = U(k) +
1

2
(∆~BA

∗
t (k)− 〈∇A∗t (k),∇A∗t (k)〉~B) (8.7)

−
∫

IRd
(e−A

∗
t (k−y)+A∗t (k) − 1− 1{|y|≤1}〈y,∇A∗t (k)〉)dν~(y)− 〈c,∇A∗t (k)〉.

Proof. The proof, symmetric to the preceding one, is given for completeness. We

first show that for gt(k) > 0:

min
f∗

[
−L∗f∗t log gt(k) + L∗(k, f ∗t )

]
= − 1

gt(k)
H†gt(k), (8.8)

and the minimum is attained for f ∗t = gt. Let

F ∗(k, y) = −f
∗
t (k − y)

f ∗t (k)
log

gt(k + y)

gt(k)
+
f ∗t (k − y)

f ∗t (k)
log

f ∗t (k + y)

f ∗t (k)
−f

∗
t (k − y)

f ∗t (k)
+
gt(k − y)

gt(k)
.

We have

L∗(k, f ∗) + L∗f∗t log gt(k)− 1

gt(k)
H†gt(k)

=

∫
IRd
F ∗(k, y)gt(y)ν~(dy) +

1

2

〈
∇gt
gt

(k)− ∇f
∗
t

f ∗t
(k),
∇gt
gt

(k)− ∇f
∗
t

f ∗t
(k)

〉
~B
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≥
∫

IRd
F ∗(k, y)gt(y)ν~(dy),

Proceeding as in the forward case we obtain (8.8) and letting A∗t = − log gt, the

dynamic programming equation (8.2) becomes

∂A∗t
∂t
− eA∗tH†e−A∗t = 0,

with solution A∗t = − log η∗t . Finally we have

1

η∗t (k)
H†η∗t (k) =

1

η∗t (k)

(
U(k)η∗t + 〈c,∇η∗t (k)〉 − 1

2
∆~Bη

∗
t (k)

−
∫

IRd
(η∗t (k − y)− η∗t (k) + 〈y,∇η∗t (k)〉1{|y|≤1})ν~(dy)

)
= U(k)− 〈c,∇At(k)〉+

1

2
(∆~BAt − 〈∇At,∇At〉~B)

−
∫

IRd
(e−At(k−y)+At(k) − 1− 1{|y|≤1}〈y,∇At〉)dν~,

which yields (8.3). �

In summary, we have shown here that the diffusion processes with jumps constructed

before can also be regarded as minima of some stochastic action functionals associated

with the starting H.

9 Equations of motion

In this section we derive the a.s. equations of motion associated to (zt)t∈[r,v]. This is

useful in the context of physical applications, especially when ~U(k~) = 1
2
〈k, k〉C , i.e.

when H = U +V (∇) is obtained by the action of a Fourier transform with parameter

~ on the Hamiltonian ~
2
∆C + V ( q~). In this case, (zt)t∈[r,v] represents the process

associated to the system in the momentum representation, and the expectations of

the equations of motion is the probabilistic counterpart of the Ehrenfest theorem in

quantum mechanics.

The forward and backward derivatives are given in terms of the generators Dt =

∂
∂t

+ Lηt and D∗t = ∂
∂t

+ L∗η∗t as the following limits of conditional expectations:

Dtft(zt) = lim
∆t↓0

E

[
ft+∆t(zt+∆t)− ft(zt)

∆t
| Pt
]

= E

[
d

dt+
ft(zt) | Pt

]
, (9.1)
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and

D∗t ft(zt) = lim
∆t↓0

E

[
ft(zt)− ft−∆t(zt−∆t)

∆t
| Ft
]

= E

[
d

dt−
ft(zt) | Ft

]
, (9.2)

for ∆t ≥ 0, and d
dt+
f , d

dt−
f denote the right hand side and left hand side derivatives

corresponding to the formal limits of (9.1) and (9.2) when Planck’s constant ~ is equal

to 0 (cf. Sect. 2). In the next proposition we make the assumption:∫
IRd
|y|ν~(dy) <∞, (9.3)

and let Dtzt denote Dtk|k=zt .

Proposition 9.1 The process (zt)t∈[r,v] which is the minumum of the action func-

tional of Prop. 8.1 solves the almost sure equations of motion

Dtzt =
1

ηt(zt)
(−i∇qV )(∇k)ηt(zt), Dt

(
∇ηt
ηt

)
(zt) = ∇U(zt). (9.4)

Proof. We have

−i∇V (q) = c− i~Bq +

∫
IRd
y(e−i〈q,y〉 − 1{|y|≤1})ν(dy),

hence

(−i∇V )(∇)ηt(k) = cηt(k) + ~B∇ηt(k) +

∫
IRd
y(ηt(k + y)− ηt(k)1{|y|≤1})ν~(dy).

On the other hand we have

Dtk = Lηtk = c+

∫
IRd
y

(
ηt(k + y)

ηt(k)
− 1{|y|≤1}

)
ν~(dy) + ~B∇ log ηt(k),

which proves the first relation. Concerning the second relation we have:

∂

∂t

(
∇ηt
ηt

)
(k) =

1

ηt

∂

∂t
∇ηt(k)− 1

η2
t

∇ηt(k)
∂ηt
∂t

(k)

=
1

ηt(k)
∇∂ηt
∂t

(k)− 1

η2
t (k)
∇ηt(k)

∂ηt
∂t

(k)

=
1

ηt(k)
∇Hηt(k)− 1

η2
t (k)
∇ηt(k)Hηt(k)

=
1

ηt(k)
∇ (U(k)ηt + V (∇)ηt(k))− 1

η2
t (k)

(U(k)ηt(k) + V (∇)ηt(k))∇ηt(k)
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= ∇U(k) +
1

ηt(k)
∇(V (∇)ηt(k))− 1

η2
t (k)

(V (∇)ηt(k))∇ηt(k)

= ∇U(k)

+
1

ηt(k)
∇
(
−〈c,∇ηt(k)〉 − 1

2
∆~Bηt(k)−

∫
IRd

(ηt(k + y)− ηt(k)− 〈y,∇ηt(k)〉)ν~(dy)

)
− 1

η2
t (k)
∇ηt(k)

(
−〈c,∇ηt(k)〉 − 1

2
∆~Bηt(k)−

∫
IRd

(ηt(k + y)− ηt(k)− 〈y,∇ηt(k)〉)ν~(dy)

)
= ∇U(k)−

〈
c,∇

(
∇ηt(k)

ηt(k)

)〉
−∆~B

(
∇ηt(k)

ηt(k)

)
+

∫
IRd

(
∇ηt(k + y)

ηt(k + y)
− ∇ηt(k)

ηt(k)
−
〈
y,∇

(
∇ηt
ηt

)〉)
ηt(k + y)

ηt(k)
ν~(dy)

+

∫
IRd

ηt(k + y)− ηt(k)

ηt(k)

〈
y,∇

(
∇ηt(k)

ηt(k)

)〉
ν~(dy)−

〈
∇ηt(k)

ηt(k)
,∇
(
∇ηt(k)

ηt(k)

)〉
~B

= ∇U(k)− Lηt(k)

(
∇ηt(k)

ηt(k)

)
,

where we used the relation

∆~B

(
∇ηt(k)

ηt(k)

)
=

1

ηt(k)
∇∆~Bηt(k)− ∇ηt(k)

η2
t (k)

∆~Bηt(k)

−2
1

η2
t (k)
〈∇2ηt(k),∇ηt(k)〉~B − 2

1

η3
t (k)
〈∇ηt(k),∇ηt(k)⊗∇ηt(k)〉~B

=
1

ηt(k)
∇∆~Bηt(k)− ∇ηt(k)

η2
t (k)

∆~Bηt(k)− 2

〈
∇ηt(k)

ηt(k)
,∇
(
∇ηt(k)

ηt(k)

)〉
~B
.

�

In the backward case, similar calculations yield

D∗t zt =
1

η∗t (zt)
(i∇qV̄ )(∇k)η

∗
t (zt), D∗t

(
∇η∗t
η∗t

)
(zt) = −∇U(zt).

The (forward) analog of the Newton equation in momentum representation becomes

DtDt

(
∇ηt
ηt

)
(zt) =

1

ηt(zt)
(−i∇V )(∇)ηt(zt).

The relation with quantum dynamics is clearer when expressed in terms of expecta-

tions. For this purpose it is sufficient to observe that

Corollary 9.2 Under expectations, the a.s. equations of motion are:

d

dt
E[ft(zt)]. = E[Dtft(zt)] = E[D∗t ft(zt)], f ∈ S(IRd).

55



Proof. This follows from the Itô formula, written as

dft(zt) = Dtft(zt)dt+ 〈∇ft(zt), dWt〉

+

∫
IRd

(ft(zt− + y)− ft(zt−))

(
µ(dy, dt)− ηt(zt− + y)

ηt(zt−)
1{|y|≤1}ν~(dy)dt

)
,

and

d∗f(zt) = D∗t ft(zt)dt+ 〈∇f(zt), d∗W
∗
t 〉

+

∫
IRd

(f(zt+)− f(zt+ − y))

(
µ∗(dy, dt)−

η∗t (zt+ − y)

η∗t (zt+)
1{|y|≤1}ν~(dy)dt

)
,

�

If ~V ( q
~2 ) = 1

2
q2, (B = Id) we obtain DDzt = ∇U(zt) and Dtzt = ~∇ log ηt. This is

the purely diffusive case, already known.

A number of the properties of these processes remains to be investigated. Many

of those known to hold for pure diffusions should survive for the much richer class

of diffusions with jumps considered here. In particular, a systematic study of their

symmetries, in term of a Noether Theorem, on the model of [27], [28], is possible and

should provide further informations on the general structure of the construction. A

more geometrical approach to these symmetries [23] can probably be extended as well

to this class. Moreover, the almost sure equations of motion could be more elegantly

deduced from an appropriate generalization of the stochastic calculus of variations

used in [8].
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tiques associées à un opérateur intégro-différentiel. Ann. Inst. H. Poincaré Sect. B (N.S.),
12(1):43–103, 1976.

[23] P. Lescot and J.-C. Zambrini. Isovecteurs pour l’équation de Hamilton-Jacobi-Bellman,
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