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Abstract

We obtain lower and upper bounds on option prices in one-dimensional
jump-diffusion markets with point process components. Our proofs rely in gen-
eral on the classical Kolmogorov equation argument and on the propagation of
convexity property for Markov semigroups, but the bounds on intensities and
jump sizes formulated in our hypotheses are different from the ones already
found in the literature [1], [2].
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1 Introduction

Bounds on Black-Scholes prices have first been obtained in [6] in the continuous dif-

fusion case and extended to jump-diffusion processes in several papers [1], [2], [5],

assuming the propagation of convexity of diffusion semigroups.
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In this paper we obtain lower and upper bounds for option prices in jump-diffusion

models with point process components, which complete the results of [2] by providing

new conditions for the ordering of option prices. Namely we show that, in addition to

the class of directionally convex functions considered in [2], the class of non-increasing

functions can be used as test functions in the generator of the jump part of a jump-

diffusion semigroup in order to derive bounds on options prices. As an application we

study several particular cases (point processes, point processes with bounded jumps,

Poisson random measures) in which our conditions can be formulated explicitly. Our

proofs are carried out in the one-dimensional case.

We proceed as follows. In Section 2 we recall the classical Kolmogorov equation

in our point process diffusion framework. In Section 3 we present our main result

(Theorem 3.2) which states some general conditions for the supermartingale property

of option prices to hold. Finally, in Sections 4, 5 and 6 we formulate our results in

the case of point processes and Poisson random measures.

2 Backward Kolmogorov equation

Let (Ω,F , P ) be a probability space equipped with an increasing filtration (Ft)t∈R+ .

Consider two assets whose respective prices are modelled via jump-diffusion processes

(S∗(t))t∈R+ , (S∗(t))t∈R+ solutions of the stochastic differential equations

dS∗(t)

S∗(t−)
= r∗(t)dt+ σ∗(t, S∗(t))dWt +

∫ ∞
−∞

y(µ∗(dt, dy)− ν∗(t, S∗(t−), dy)dt),

and

dS∗(t)

S∗(t−)
= r∗(t)dt+ σ∗(t, S∗(t))dWt +

∫ ∞
−∞

y(µ∗(dt, dy)− ν∗(t, S∗(t−), dy)dt),

where r∗(t), r∗(t) are deterministic interest rate functions and σ∗(t, x), σ∗(t, x) are

Lipschitz volatility functions. Here, (Wt)t∈R+ is a Ft-Brownian motion and µ∗(dt, dy),

µ∗(dt, dy) are jump measures with respective Ft-compensators ν∗(t, S∗(t−), dy) and

ν∗(t, S∗(t
−), dy), see Theorem 13.58, Theorem 14.80 of [7], p. 438 and p. 481, and the

results on martingale problems for discontinuous processes of [9].
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Let L∗ and L∗ denote the respective generators of (S∗(t))t∈R+ and of (S∗(t))t∈R+ , i.e.

L∗f(t, x) = r∗(t)x
∂f

∂x
(t, x) +

1

2
x2|σ∗(t, x)|2∂

2f

∂x2
(t, x)

+

∫ ∞
−∞

(
f(t, x(1 + y))− f(t, x)− xy∂f

∂x
(t, x)

)
ν∗(t, x, dy) (2.1)

and

L∗f(t, x) = r∗(t)x
∂f

∂x
(t, x) +

1

2
x2|σ∗(t, x)|2∂

2f

∂x2
(t, x)

+

∫ ∞
−∞

(
f(t, x(1 + y))− f(t, x)− xy∂f

∂x
(t, x)

)
ν∗(t, x, dy). (2.2)

The following lemma is a formulation of the classical Kolmogorov equation. Here the

function φ plays the role of a payoff function.

Lemma 2.1. Let φ : R → R be a Lipschitz function and assume that there exists a

function v∗ in C1,2([0, T ]× R) such that

v∗(t, S∗(t)) = E
[
φ(S∗(T ))

∣∣∣S∗(t)] , 0 ≤ t ≤ T. (2.3)

Then v∗ satisfies the partial differential equation (PDE)
∂v∗

∂t
(t, x) + L∗v∗(t, x) = 0,

v∗(T, x) = φ(x).

(2.4)

Proof. Itô’s formula applied to v∗(t, S∗(t)) reads

v∗(t, S∗(t)) = v∗(0, S∗(0)) +

∫ t

0

∂v∗

∂s
(s, S∗(s))ds

+

∫ t

0

r∗(s)S∗(s)
∂v∗

∂x
(s, S∗(s))ds+

∫ t

0

σ∗(s, S∗(s))
∂v∗

∂x
(s, S∗(s))dWs

+
1

2

∫ t

0

|S∗(s)|2|σ∗(s, S∗(s))|2∂
2v∗

∂x2
(s, S∗(s))ds

+

∫ t

0

∫ ∞
−∞

(v∗(s, S∗(s)(1 + y))− v∗(s, S∗(s)))µ∗(ds, dy)

−
∫ t

0

∫ ∞
−∞

yS∗(s)
∂v∗

∂x
(s, S∗(s))ν∗(ds, dy)

= v∗(0, S∗(0)) +

∫ t

0

∂v∗

∂s
(s, S∗(s))ds
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+

∫ t

0

r∗(s)S∗(s)
∂v∗

∂x
(s, S∗(s))ds+

∫ t

0

σ∗(s, S∗(s))
∂v∗

∂x
(s, S∗(s))dWs

+
1

2

∫ t

0

|S∗(s)|2|σ∗(s, S∗(s))|2∂
2v∗

∂x2
(s, S∗(s))ds

+

∫ t

0

∫ ∞
−∞

(v∗(s, S∗(s)(1 + y))− v∗(s, S∗(s)))(µ∗(ds, dy)− ν∗(s, S∗(s), dy)ds)

+

∫ t

0

∫ ∞
−∞

(
v∗(s, S∗(s)(1 + y))− v∗(s, S∗(s))− yS∗(s)∂v

∗

∂x
(s, S∗(s))

)
(2.5)

×ν∗(s, S∗(s), dy)ds.

By construction in (2.3) the process v∗(t, S∗(t)) is a martingale, hence from e.g. Cor. 1,

p. 64 of [11], the finite variation terms in (2.5) vanishes, i.e.

0 =
∂v∗

∂s
(s, S∗(s)) + r∗(s)S∗(s)

∂v∗

∂x
(s, S∗(s)) +

1

2
|S∗(s)|2|σ∗(s, S∗(s))|2∂

2v∗

∂x2
(s, S∗(s))

+

∫ ∞
−∞

(
v∗(s, S∗(s)(1 + y))− v∗(s, S∗(s))− yS∗(s)∂v

∗

∂x
(s, S∗(s))

)
ν∗(s, S∗(s), dy),

which yields (2.6). �

Similarly, any function v∗ ∈ C1,2([0, T ]× R) satisfying

v∗(t, S∗(t)) = E
[
φ(S∗(T ))

∣∣∣S∗(t)] , 0 ≤ t ≤ T, (2.6)

will also satisfy the PDE 
∂v∗
∂t

(t, x) + L∗v∗(t, x) = 0,

v∗(T, x) = φ(x).

The smoothness conditions imposed on v∗ and v∗ can be satisfied under adequate

regularity conditions on the semi-groups of (S∗(t))t∈R+ and of (S∗(t))t∈R+ .

In the sequel, some of our results will use the following propagation of convexity (PC)

assumption on the Markov semigroups of (S∗(t))t∈R+ and of (S∗(t))t∈R+ .

Assumption (PC). The functions x 7→ v∗(t, x) and x 7→ v∗(t, x) defined in (2.3) and

(2.6) are convex on R for all t ∈ [0, T ] when the payoff function φ is convex.
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Note that in the one-dimensional diffusion case without jumps, propagation of con-

vexity is essentially always satisfied under reasonable smoothness assumptions on the

diffusion coefficient, see e.g. [6] and [10]. In one-dimensional models with jumps it

suffices that the jump size be a concave and positive or convex and negative function

of the state of the process, but no condition on the diffusion coefficient is required,

see Theorem 6.1 of [5]. See also [4], Theorem 5.1, on the necessity of this condition.

For the d-dimensional case with or without jumps, see [2], [3] for a condition on the

diffusion matrix and more precisely the LCP condition of [5].

3 Supermartingale property

Consider (Xt)t∈R+ an Ft-martingale with right-continuous paths with left limits. De-

note by (Xc
t )t∈R+ the continuous part of (Xt)t∈R+ , and by

∆Xt = Xt −Xt−

its jumps. The process (Xt)t∈R+ has jump measure

µ(dt, dy) =
∑
s>0

1{∆Xs 6=0}δ(s,∆Xs)(dt, dy),

where δ(s,x) denotes the Dirac measure at (s, x) ∈ R+ × R. Denote by ν(dt, dy) the

(Ft)t∈R+-dual predictable projection of µ(dt, dy) and by ([X,X]t)t∈R+ , resp. (〈Xc, Xc〉t)t∈R+ ,

the corresponding optional, resp. predictable quadratic variations. The pair

(ν(dt, dy), 〈Xc, Xc〉)

is called the local characteristics of (Xt)t∈R+ , cf. [8]. We will assume that ν(dt, dy)

has the form

ν(dt, dy) = νt(dy)dt.

Consider (St)t∈R+ a jump-diffusion price process of the form

dSt

St−
= rtdt+ σtdWt +

∫ ∞
−∞

y(µ(dt, dy)− νt(dy)dt), (3.1)
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with (logarithmic) jump measure µ(dt, dy) and compensator νt(dx)dt, where (rt)t∈R+

and (σt)t∈R+ are adapted processes. Define the (random) pseudo-generator L as

Lf(t, x) = rtx
∂f

∂x
(t, x) +

1

2
x2σ2

t

∂2f

∂x2
(t, x)

+

∫ ∞
−∞

(
f(t, x(1 + y))− f(t, x)− yx∂f

∂x
(t, x)

)
νt(dy). (3.2)

Note that here, S, S∗ and S∗ all have the same drift coefficient (rt)t∈R+ . Recall that

Itô’s formula, applied to f ∈ C1,2([0, T ]× R) and to the jump-diffusion St, reads

f(t, St) = f(0, S0) +

∫ t

0

rsSs
∂f

∂x
(s, Ss)ds+

∫ t

0

∂f

∂s
(s, Ss)ds

+

∫ t

0

σsSs
∂f

∂x
(s, Ss)dWs +

1

2

∫ t

0

S2
sσ

2
s

∂2f

∂x2
(s, Ss)ds

−
∫ t

0

∫ ∞
−∞

ySs
∂f

∂x
(s, Ss)µ(ds, dy)

+

∫ t

0

∫ ∞
−∞

(f(s, Ss(1 + y))− f(s, Ss))µ(ds, dy)

= f(0, S0) +

∫ t

0

σsSs
∂f

∂x
(s, Ss)dWs

+

∫ t

0

∂f

∂s
(s, Ss)ds+

∫ t

0

Lf(s, Ss)ds

+

∫ t

0

∫ ∞
−∞

(f(s, Ss(1 + y))− f(s, Ss)) (µ(ds, dy)− νs(dy)).

In the following results (Lemma 3.1, Theorem 3.2 and Propositions 4.2, 5.1 and 6.1),

assuming only a lower (resp. upper) type bound in the hypothesis conducts to the

corresponding lower (resp. upper) bound in (3.4) below.

Lemma 3.1. The processes v∗(t, St) and v∗(t, St) are respectively a submartingale and

a supermartingale provided

L∗v∗(t, St) ≤ Lv∗(t, St), resp. Lv∗(t, St) ≤ L∗v∗(t, St), dtdP−a.e., (3.3)

and in this case we have

v∗(t, St) ≤ E
[
φ(ST )

∣∣∣Ft

]
≤ v∗(t, St), 0 ≤ t ≤ T, (3.4)
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and in particular

E[φ(S∗(T )) | S∗(0) = x] ≤ E [φ(ST ) | S0 = x] ≤ E[φ(S∗(T )) | S∗(0) = x], x > 0.

Proof. Using Lemma 2.1 we have

v∗(t, St) = v∗(0, S0) +

∫ t

0

σsSs
∂v∗

∂x
(s, Ss)dWs

+

∫ t

0

∫ ∞
−∞

(v∗(s, Ss(1 + y))− v∗(s, Ss)) (µ(ds, dy)− νs(dy))

+

∫ t

0

Lv∗(s, Ss)ds−
∫ t

0

L∗v∗(s, Ss)ds

and it remains to use the fact that the sum of a martingale and a non-increasing

adapted process is a supermartingale. Similarly we have

v∗(t, St) = v∗(0, S0) +

∫ t

0

σsSs
∂v∗
∂x

(s, Ss)dWs

+

∫ t

0

∫ ∞
−∞

(v∗(s, Ss(1 + y))− v∗(s, Ss)) (µ(ds, dy)− νs(dy))

+

∫ t

0

(Lv∗(s, Ss)− L∗v∗(s, Ss))ds,

which is a submartingale as the sum of a martingale and a non-decreasing adapted

process. Finally the submartingale and supermartingale properties imply

v∗(t, St) ≤ E[v∗(T, ST ) | Ft] = E[φ(ST ) | Ft] = E[v∗(T, ST ) | Ft] ≤ v∗(t, St),

0 ≤ t ≤ T . �

We now present some sufficient conditions for the condition (3.3) to hold and to ensure

the inequality (3.4).

Theorem 3.2 below provides an additional sufficient condition for the ordering of

option prices as compared to [2], [3]. Precisely, in Theorem 2.3 of [2], resp. in

Theorem 2.2 of [3], f is taken in a class of directionally convex functions, while in

Theorem 3.2 below we consider f in the class of non-decreasing functions.

Theorem 3.2. Assume that r∗(t) = rt = r∗(t), t ∈ R+, that the (PC) property holds

for S∗ and S∗, and either:
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i-a) |σ∗(t, St)| ≤ |σt| ≤ |σ∗(t, St)|, and

i-b) ν∗(t, St, dy), ν∗(t, St, dy), νt(dy) are supported by R+, dPdt-a.e., and

i-c) for all non-negative and non-decreasing functions f we have:∫ ∞
0

yf(y)ν∗(t, St, dy) ≤
∫ ∞

0

yf(y)νt(dy) ≤
∫ ∞

0

yf(y)ν∗(t, St, dy), t ∈ R+,

or:

ii-a) ν∗(t, St, dy), ν∗(t, St, dy), νt(dy) are supported by (−1,∞), dPdt-a.e., and

ii-b) the functions
∂v∗
∂x

(t, ·) and
∂v∗

∂x
(t, ·) are convex and we have:

f(0)|σ∗(t, St)|2 +

∫ ∞
−∞

y2f(y)ν∗(t, St, dy) ≤ f(0)|σt|2 +

∫ ∞
−∞

y2f(y)νt(dy)

≤ f(0)|σ∗(t, St)|2 +

∫ ∞
−∞

y2f(y)ν∗(t, St, dy), t ∈ R+,

for all non-negative and non-decreasing functions f .

Then

v∗(t, St) ≤ E [φ(ST )|Ft] ≤ v∗(t, St), 0 ≤ t ≤ T,

holds.

Proof. We only deal with v∗, the case of v∗ being treated by similar arguments.

i) We have

L∗v∗(t, St)− Lv∗(t, St)

=
1

2
S2

t

∂2v∗

∂x2
(t, St)(|σt|2 − |σ∗t |2)

+

∫ ∞
−∞

(
v∗(s, Ss(1 + y))− v∗(s, Ss)− ySs

∂v∗

∂x
(s, Ss)

)
ν∗(s, Ss, dy)

−
∫ ∞
−∞

(
v∗(s, Ss(1 + y))− v∗(s, Ss)− ySs

∂v∗

∂x
(s, Ss)

)
νs(dy)

=
1

2
S2

t

∂2v∗

∂x2
(t, St)(|σt|2 − |σ∗t |2) + Ss

∫ ∞
−∞

yϕs(Ss, y)
(
ν∗(s, Ss, dy)− νs(dy)

)
,

where

ϕt(x, y) =
v∗(t, x(1 + y))− v∗(t, x)− xy∂v

∗

∂x
(t, x)

xy
, x, y > 0.
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Since v∗(t, ·) is convex, the function y 7→ ϕt(x, y) is non-negative and non-decreasing

in y ∈ R for all x ∈ R and t ∈ R+, and
∂2v∗

∂x2
(t, x) ≥ 0 for all x ∈ R, hence

Lv∗(t, St) ≤ L∗v∗(t, St), t ∈ R+. The conclusion follows from Lemma 3.1.

ii) Using the following version of Taylor’s formula

φ(y + x) = φ(y) + xφ′(y) + |x|2
∫ 1

0

(1− τ)φ′′(y + τx)dτ, x, y ∈ R,

we have:

Lv∗(t, St)− L∗v∗(t, St)

=
1

2
S2

t σ
2
t

∂2v∗

∂x2
(t, St) + S2

t

∫ ∞
−∞
|y|2

∫ 1

0

(1− τ)
∂2v∗

∂x2
(t, St(1 + τy))νt(dy)dτ

−1

2
S2

t |σ∗(t, St)|2
∂2v∗

∂x2
(t, St)− S2

t

∫ ∞
−∞
|y|2

∫ 1

0

(1− τ)
∂2v∗

∂x2
(t, St(1 + τy))ν∗(t, St, dy)dτ

=
1

2
S2

t (σ2
t − |σ∗(t, St)|2)

∂2v∗

∂x2
(t, St)

+S2
t

∫ 1

0

(1− τ)

∫ ∞
−∞
|y|2∂

2v∗

∂x2
(t, St(1 + τy))

(
νt(dy)− ν∗(t, St, dy)

)
dτ

= S2
t

∫ 1

0

(1− τ)(σ2
t − |σ∗(t, St)|2)

∂2v∗

∂x2
(t, St)dτ

+S2
t

∫ 1

0

(1− τ)

∫ ∞
−∞
|y|2∂

2v∗

∂x2
(t, St(1 + τy))

(
νt(dy)− ν∗(t, St, dy)

)
dτ.

The convexity assumptions on v∗(t, ·) and
∂v∗

∂x
(t, ·) respectively imply that

∂2v∗

∂x2
(t, ·)

is non-negative and non-decreasing, hence by assumption (ii) we have

Lv∗(t, St)− L∗v∗(t, St) ≤ 0, t ∈ R+,

and the conclusion follows from Lemma 3.1.

�

Note that Condition (i) above requires two distinct bounds on σt and νt, whereas

Condition (ii) is formulated using a single condition on both σt and on νt and re-

quires the convexity of
∂v∗
∂x

(t, ·), and
∂v∗

∂x
(t, ·).
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In the sequel we assume as in Theorem 3.2 that r∗(t) = rt = r∗(t), t ∈ R+. However

the conclusions of Theorem 3.2 still hold when rt is random and r∗(t) ≤ rt ≤ r∗(t),

a.s., t ∈ R+, provided in addition that v∗(t, ·) and v∗(t, ·) are non-decreasing functions.

The above two comments also apply to Propositions 4.2, 5.1 and 6.1 below.

4 Bounded jumps

In this section and the following, we study some particular cases of Theorem 3.2. The

proofs rely on the following comparison lemma.

Lemma 4.1. Let m1, m2 be two positive measures on R such that

m1([x,∞)) ≤ m2([x,∞)) <∞, (4.1)

for all x ∈ R. Then we have∫ ∞
−∞

f(x)m1(dx) ≤
∫ ∞
−∞

f(x)m2(dx) (4.2)

for all non-decreasing and non-negative measurable functions f on R.

Proof. Clearly, the implication holds for any linear combination of the form

n∑
i=1

αi1[xi,∞), x1, . . . , xn ∈ R, α1, . . . , αn ∈ R+.

The property is extended to the general case by approximating f by a sequence of

such step functions. �

From now on we assume that the respective compensators ν∗(t, x, dy) of S∗ and

ν∗(t, x, dy) of S∗ have the form

ν∗(t, x, dy) = λ∗(t, x)δk∗(dy) and ν∗(t, x, dy) = λ∗(t, x)δk∗(dy), (4.3)

where −∞ < k∗ ≤ k∗ ≤ ∞ and (λ∗(t, x))t∈R+ , (λ∗(t, x))t∈R+ are non-negative func-

tions, with the conventions δ−∞ = 0 and δ+∞ = 0.
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Note that in Proposition 4.2 below, part (ii) does not apply to European calls with

payoff functions of the form φ(x) = (x−K)+ due to the additional convexity assump-

tion made on
∂v∗
∂x

(t, ·) and
∂v∗

∂x
(t, ·).

Proposition 4.2. Relation (3.4) holds for all convex functions φ : R → R, provided

the (PC) property holds for S∗ and S∗, r∗(t) = rt = r∗(t), t ∈ R+, and one of the

following conditions is satisfied for some −1 < k∗ ≤ k∗:

i) we have 0 ≤ k∗ ≤ ∆Xt ≤ k∗ and

|σ∗(t, St)| ≤ |σt| ≤ |σ∗(t, St)|, k∗λ∗(t, St) ≤
∫ k∗

k∗

yνt(dy) ≤ k∗λ∗(t, St),

dPdt-a.e.

ii) the functions
∂v∗
∂x

(t, ·) and
∂v∗

∂x
(t, ·) are convex and

|σ∗(t, St)|2 + |k∗|2λ∗(t, St) ≤ |σt|2 +

∫ k∗

k∗

|y|2νt(dy) ≤ |σ∗(t, St)|2 + |k∗|2λ∗(t, St),

(4.4)

dPdt-a.e. and either:

ii-a) k∗ ≤ ∆Xt ≤ k∗ ≤ 0 and |σ∗(t, St)|2 ≤ |σt|2 ≤ |σ∗(t, St)|2, dPdt-a.e., or:

ii-b) k∗ ≤ ∆Xt ≤ 0 ≤ k∗ and |σ∗(t, St)|2 ≤ |σt|2, dPdt-a.e., or:

ii-c) k∗ ≤ 0 ≤ k∗, k∗ ≤ ∆Xt ≤ k∗, and

|σ∗(t, St)|2 ≤ |σt|2 +

∫ k∗

0

|y|2νt(dy),

∫ k∗

0

|y|2νt(dy) ≤ |k∗|2λ∗(t, St),

dPdt-a.e., or:

ii-d) k∗ ≤ 0 ≤ ∆Xt ≤ k∗ and

∫ k∗

0

|y|2νt(dy) ≤ |k∗|2λ∗(t, St), dPdt-a.e., or:

ii-e) 0 ≤ k∗ ≤ ∆Xt ≤ k∗ and k2
∗λ∗(t, St) ≤

∫ k∗

k∗

|y|2νt(dy) ≤ |k∗|2λ∗(t, St),

dPdt-a.e.

Proof. Note that the condition 0 ≤ ∆Xt ≤ k∗, resp. k∗ ≤ ∆Xt ≤ k∗, is equivalent to

νt([0, k
∗]c) = 0, resp. νt([k∗, k

∗]c) = 0. In case (i) we apply the comparison Lemma 4.1

to the measures

ν̄t(dy) = yνt(dy), ν̄∗,t(dy) = yν∗,t(dy), ν̄∗t (dy) = yν∗t (dy),
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after checking that they satisfy Condition (4.1), and we conclude the proof from

Theorem 3.2. In case (ii) we proceed similarly with the measures

ν̃t(dy) = |y|2νt(dy) + |σt|2δ0(dy),

ν̃∗,t(dy) = |y|2ν∗,t(dy) + |σ∗(t, St)|2δ0(dy),

ν̃∗t (dy) = |y|2ν∗t (dy) + |σ∗(t, St)|2δ0(dy),

noting that here the expression of the condition depends on the position of 0 with

respect to k∗ and to k∗. �

Again, case (ii) is formulated as a unique assumption on σt and νt, with additional

conditions in a)-e). Note further that in ii-b) (resp. ii-d)), only (4.4) is required for

the upper (resp. lower) bound to hold in (4.3). A similar remark applies also to

Propositions 5.1 and 6.1.

On the other hand, in ii-c) above, no hypothesis is made on the sign of ∆Xt. Moreover,

in both (i) and ii-e) it is assumed that 0 ≤ k∗ ≤ ∆Xt ≤ k∗, dPdt-a.e., strong

conditions on σt and ∆Xt in (i), while the convexity of the derivatives is required in

ii-e).

5 Point processes

Consider a Brownian motion (Wt)t∈R+ and a point process (Zt)t∈R+ with intensity

(λt)t∈R+ , generating a filtration (Ft)t∈R+ . We assume now that (St)t∈R+ in (3.1) has

the following form

St = S0 +

∫ t

0

ruSudu+

∫ t

0

σuSudWu +

∫ t

0

Ju−Su−(dZu − λudu), t ∈ R+, (5.1)

where (σt)t∈R+ , (Jt)t∈R+ are predictable with respect to (Ft)t∈R+ . That is, the char-

acteristic measure of (Xt)t∈R+ in Section 3 is taken to be

νt(dx) = λtδJt(dx). (5.2)

In addition we assume that the respective compensators ν∗(t, x, dy) of S∗ and ν∗(t, x, dy)

of S∗ have the form

ν∗(t, x, dy) = λ∗(t, x)δJ∗(t,x)(dy) and ν∗(t, x, dy) = λ∗(t, x)δJ∗(t,x)(dy) (5.3)
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where−∞ < J∗(t, x) ≤ J∗(t, x) ≤ ∞, and λ∗(t, x), λ∗(t, x) are non-negative functions,

again with the convention δ∞ = 0. Applying Theorem 3.2 we derive the following

corollary:

Proposition 5.1. Assume that (St)t∈R+ has the jump characteristics (5.2) and r∗(t) =

rt = r∗(t), t ∈ R+. Then the inequality

v∗(t, St) ≤ E [φ(ST )|Ft] ≤ v∗(t, St), 0 ≤ t ≤ T, (5.4)

holds for all convex functions φ : R→ R provided the (PC) property holds for S∗, S
∗,

and one of the following conditions is satisfied:

i) we have 0 ≤ J∗(t, St) ≤ Jt ≤ J∗(t, St) and

|σ∗(t, St)| ≤ |σt| ≤ |σ∗(t, St)|, λ∗(t, St)J∗(t, St) ≤ λtJt ≤ λ∗(t, St)J
∗(t, St),

dPdt-a.e.

ii) the functions
∂v∗
∂x

(t, ·) and
∂v∗

∂x
(t, ·) are convex and

|σ∗(t, St)|2 +λ∗(t, St)|J∗(t, St)|2 ≤ σ2
t +λt|Jt|2 ≤ |σ∗(t, St)|2 +λ∗(t, St)|J∗(t, St)|2,

(5.5)

dPdt-a.e. and either:

ii-a) −1 < J∗(t, St) ≤ Jt ≤ J∗(t, St) ≤ 0 and |σ∗(t, St)|2 ≤ |σt|2 ≤ |σ∗(t, St)|2,

dPdt-a.e., or:

ii-b) −1 < J∗(t, St) ≤ Jt ≤ 0 ≤ J∗(t, St) and |σ∗(t, St)|2 ≤ |σt|2, dPdt-a.e., or:

ii-c) −1 < J∗(t, St) ≤ 0, Jt ≤ J∗(t, St) and

|σ∗(t, St)|2 ≤ |σt|2, λt|Jt|2 ≤ λ∗(t, St)|J∗(t, St)|2,

dPdt-a.e., or:

ii-d) −1 < J∗(t, St) ≤ 0 ≤ Jt ≤ J∗(t, St) and λt|Jt|2 ≤ λ∗(t, St)|J∗(t, St)|2,

dPdt-a.e., or:
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ii-e) 0 ≤ J∗(t, St) ≤ Jt ≤ J∗(t, St) and

λ∗(t, St)|J∗(t, St)|2 ≤ λt|Jt|2 ≤ λ∗(t, St)|J∗(t, St)|2,

dPdt-a.e. .

Proof. We apply the comparison lemma to the same measures as in the proof of

Proposition 4.2 and the result follows from Theorem 3.2. Once more, the expression

of the condition in (ii) depends on the position of 0 with respect to J∗(t, St) and to

J∗(t, St). �

The remarks formulated after the proof of Proposition 4.2 also apply here.

6 Poisson random measures

We now investigate the consequences of Theorem 3.2 in the setting of Poisson random

measures. Let γ be a diffuse Radon measure on Rd \ {0} such that∫
Rd\{0}

(|x|2 ∧ 1)γ(dx) <∞,

and consider a random measure ω(dt, dx) of the form

ω(dt, dx) =
∑
i∈N

δ(ti,xi)(dt, dx),

which is assumed to be Poisson distributed with intensity γ(dx)dt on R+× (Rd \{0}),
and consider a standard Brownian motion (Wt)t∈[0,T ], independent of ω(dt, dx), under

a probability P on Ω. Here we have

Ft = σ
(
Ws, ω([0, s]× A) : 0 ≤ s ≤ t, A ∈ Bb(Rd \ {0})

)
, t ∈ R+,

where Bb(Rd \ {0}) = {A ∈ B(Rd \ {0}) : γ(A) <∞}. Let S be the solution of

dSt = rtStdt+ σtStdWt +

∫
Rd\{0}

Jt−,xSt−(ω(dt, dx)− γ(dx)), (6.1)

where σt is a square-integrable Ft-predictable process and (Jt,x)(t,x)∈[0,T ]×(Rd\{0}) is an

Ft-predictable process satisfying the hypotheses of Proposition 6.1 below. In (i) and

(ii) below we respectively assume that

(Jt,x)(t,x)∈[0,T ]×Rd\{0}) ∈ L1(Ω× [0, T ]× (Rd \ {0}), dP × dt× dγ),
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and

(Jt,x)(t,x)∈[0,T ]×Rd\{0}) ∈ L2(Ω× [0, T ]× (Rd \ {0}), dP × dt× dγ).

Proposition 6.1. Assume that (St)t∈R+ has the jump characteristics (5.2) and r∗(t) =

rt = r∗(t), t ∈ R+. Then

v∗(t, St) ≤ E [φ(ST )|Ft] ≤ v∗(t, St), 0 ≤ t ≤ T,

holds provided the (PC) property holds for S∗, S
∗, and one of the following conditions

is satisfied:

i) we have 0 ≤ J∗(t, St) ≤ Jt,x ≤ J∗(t, St), |σ∗(t, St)| ≤ |σt| ≤ |σ∗t (t, St)|, and

λ∗(t, St)J∗(t, St) ≤
∫

Rd\{0}
Jt,yγ(dy) ≤ λ∗(t, St)J

∗(t, St), (6.2)

dPγ(dx)dt-a.e.

ii) the functions
∂v∗
∂x

(t, ·) and
∂v∗

∂x
(t, ·) are convex and

|σ∗(t, St)|2+λ∗(t, St)|J∗(t, St)|2 ≤ σ2
t +

∫
Rd\{0}

|Jt,y|2γ(dy) ≤ |σ∗(t, St)|2+λ∗(t, St)|J∗(t, St)|2,

(6.3)

dPdt-a.e. and either :

ii-a) −1 < J∗(t, St) ≤ Jt,x ≤ J∗(t, St) ≤ 0 and |σ∗(t, St)|2 ≤ |σt|2 ≤ |σ∗(t, St)|2,

dPγ(dx)dt-a.e., or:

ii-b) −1 < J∗(t, St) ≤ Jt,x ≤ 0 ≤ J∗(t, St) and |σ∗(t, St)|2 ≤ |σt|2, dPγ(dx)dt-

a.e., or:

ii-c) −1 < J∗(t, St) ≤ 0, Jt,x ≤ J∗(t, St) and

|σ∗(t, St)|2 ≤ |σt|2,
∫

Rd\{0}
|Jt,y|2γ(dy) ≤ λ∗(t, St)|J∗(t, St)|2,

dPγ(dx)dt-a.e., or:

ii-d) −1 < J∗(t, St) ≤ 0 ≤ Jt,x ≤ J∗(t, St) and

∫
Rd\{0}

|Jt,y|2γ(dy) ≤ λ∗(t, St)|J∗(t, St)|2,

dPγ(dx)dt-a.e., or:
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ii-e) 0 ≤ J∗(t, St) ≤ Jt,x ≤ J∗(t, St) and

λ∗(t, St)|J∗(t, St)|2 ≤
∫

Rd\{0}
|Jt,y|2γ(dy) ≤ λ∗(t, St)|J∗(t, St)|2,

dPγ(dx)dt-a.e.

Proof. We directly apply Theorem 3.2 instead of Proposition 5.1. Here, νt(dx) denotes

the image measure of γ(dx) by the mapping x 7→ Jt,x, t ≥ 0, and µ(dt, dx) denotes

the image measure of ω(dt, dx) by (s, y) 7→ (s, Js,y), i.e.

µ(dt, dx) =
∑

ω({(s,y)})=1

δ(s,Js,y)(dt, dx).

Let also

ν∗(t, x, dy) = λ∗(t, x)δJ∗(t,x)(dy), ν∗(t, x, dy) = λ∗(t, x)δJ∗(t,x)(dy).

From J∗(t, St) ≤ Jt,x ≤ J∗(t, St) dPγ(dx)dt-a.e. and from (6.2) (resp. (6.3), with

extra conditions in a)–e) according to the place of 0 with respect to J∗, to J and to

J∗), we derive for p = 1 (resp. p = 2):∫ ∞
x

(
λ∗(t, St)y

pδJ∗(t,S(t))(dy) + |σ∗(t, St)|2δ0(dy)δp,2

)
≤
∫

Rd\{0}
1{x≤Jt,y}

(
Jp

t,yγ(dy) + |σt|2δ0(dy)δp,2

)
≤
∫ ∞

x

(
λ∗(t, St)y

pδJ∗(t,S(t))(dy) + |σ∗(t, St)|2δ0(dy)δp,2

)
x ∈ R and t ∈ [0, T ]. Using the comparison lemma, the hypotheses of Theorem 3.2

are derived in i) for p = 1 and in ii) for p = 2. �
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