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Abstract

Wireless radio frequency energy harvesting has been adopted in wireless networks as a method

to supply energy to wireless nodes. In this paper, we analyze a wireless energy harvesting network

based on a Boolean-Poisson model. This model assumes that energy sources are distributed according

to a Poisson point process, and have disc-shaped coverage regions, with random radii. We introduce a

distribution for the coverage radii which takes aggregated harvested power into account. The union of

the coverage regions of the energy sources forms the energy harvesting zone. We derive the transmission

success probability of single-hop networks characterized by the probability that two sensor nodes are

located in the energy harvesting zone. Then, we analyze the performance of multi-hop networks in cases

where the locations of the sensor nodes are either fixed or randomly distributed. Moreover, we consider

a star-shaped topology which reflects the scenario wherein some sensor nodes simultaneously transmit

data to a data collector. In this setting, we derive an approximation of the average throughput at the

data collector. Numerical results validate the accuracy of our analysis in the single-hop and multi-hop

networks and confirm the tightness of our approximation in the case of the star-shaped topology.
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I. INTRODUCTION

Recently, radio frequency (RF) energy harvesting techniques have been developed to let mobile

and sensor nodes scavenge energy from radiated RF signals from ambient or dedicated RF

sources [2]. Due to its advantages of powering energy-constrained devices and prolonging the

lifetime of wireless networks, many researchers have studied energy harvesting methods in

various wireless network scenarios, and implementations of RF energy harvesting techniques

were presented in many experiments in [3]–[6].

One of the main issues in RF energy harvesting communication network is the modeling of the

energy harvesting zone in the network. One can consider the coverage region of an RF energy

source, i.e., an energy harvesting enabled area formed by the RF signals from the energy source.

Then, the union of the coverage regions can be understood as the energy harvesting zone in the

networks. In other words, energy constrained wireless nodes can harvest power to transmit or

decode data if the nodes are located in the energy harvesting zone. In this sense, the probability

that the nodes harvest energy is related not only to the distribution of the locations of the RF

energy sources, but also to the characteristics of the coverage region.

In probability theory, the union of overlapping discs centered at random locations is known

as the Boolean model. The Boolean model has been extensively studied, cf. [7] and [8] for a

thorough overview, and the coverage properties of the model were investigated in [9]–[11]. In

addition, the model has been used in different applications, see [7]. More specific examples

are [12] for applications to image analysis and [13], [14] for applications to wireless networks.

However, its application to wireless energy harvesting networks and the performance analysis

of the networks have not been well studied in the literature.

A. Related Work and Motivations

In RF energy harvesting networks, there are mainly two types of RF energy sources, i.e.,

dedicated RF sources and ambient RF sources. In the networks with dedicated RF sources,

energy harvesting nodes collect power from the RF signals sent by its dedicated RF energy

transmitters [15]–[20]. In [15], simultaneous wireless information and power transfer (SWIPT)

techniques for multiple-input multiple-output (MIMO) wireless broadcast systems were studied.

The authors in [16] investigated a resource allocation algorithm in multiuser orthogonal frequency

division multiplexing (OFDM) systems with SWIPT. Also, a power splitting technique for an
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interference channel was proposed in [17]. References [18] and [19] introduced tradeoff between

the information rate and the harvested energy for two-user and K-user interference channels,

respectively. The performance of energy beamforming in wireless-powered communication net-

works was analyzed in [20]. Although energy harvesting nodes can efficiently scavenge power

from the dedicated signals, deploying the dedicated RF sources leads to a high cost for the

network.

In the networks with ambient RF sources, the energy harvesting nodes charge their battery

from the RF signals radiated by nearby RF sources such as cellular base stations, TV radio

towers, WiFi routers and mobile devices. Under the assumption that nodes harvest power from

the aggregated RF signals from the energy sources which are distributed according to a Poisson

point process (PPP), the performance of the energy harvesting networks was characterized in

[21]–[25]. The study in [21] introduced a tradeoff among transmit power, density of base stations,

and density of energy sources in an uplink cellular network. In [22], the authors derived the

outage probability of a network overlaid with power beacons distributed according to a PPP.

Alternatively, the authors in [23] investigated the transmission success probability in an RF

energy harvesting multi-tier uplink cellular network by modeling the level of stored energy as

a Markov chain. The ambient RF energy harvesting cognitive device-to-device communication

was studied in [24]. In addition, the work in [25] proposed an approach for designing powered

wireless networks and analyzed the performance of a hexagonal cellular network.

Unlike the works in [21]–[25], references [26]–[28] analyzed the performance of the ambient

RF energy harvesting networks by introducing the energy harvesting zone. The authors in [26]

characterized the transmission probability in wireless energy harvesting cognitive radio networks

where transmitters in primary networks deliver RF energy to secondary transmitters located in

the harvesting zone. Assuming that secondary transmitters scavenge power when they are located

in the harvesting zone induced by both primary transmitters and Wi-Fi hotspots, the transmission

probability was analyzed in [27]. Also, reference [28] developed a channel selection technique

which maximizes the secondary throughput using an iterative algorithm.

However, previous works on networks with energy harvesting zone [26]–[28] only focused on

the cognitive radio networks, and assumed that the radius of energy harvesting zone is fixed and

deterministic. In other words, the previous works have not taken the features of the coverage

regions into account when analyzing the networks. Furthermore, since the works in [26]–[28]
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focused on a so-called typical node, it is intractable to extend the results to different networks

where multiple nodes which communicate with each other simultaneously harvest energy. In this

context, in this paper, we consider the Boolean-Poisson model which can reflect the characteristic

of the coverage regions and consider the scenario where multiple nodes simultaneously scavenge

energy.

B. Contributions and Organization

In this paper, we assume that the RF energy sources are distributed according to a homogeneous

PPP, and the coverage region of an RF source is a disc of random radius. The Boolean-Poisson

model then serves as a model for the energy harvesting zone of the networks. Based on this model,

we analyze the performance of wireless energy harvesting networks where sensor nodes transmit

or decode signals by utilizing the harvested power from the energy sources. The performance

measures in terms of the energy harvesting probability, the transmission success probability and

the average throughput are derived in various scenarios. The main contributions of this paper

are summarized as follows:

• First, we provide the energy harvesting probability in single-hop networks that two sensor

nodes are covered by the Boolean model with an arbitrary distribution of radii in Theorem 1.

From Theorem 1, it is shown that the energy harvesting probability is a function of the

distance between the nodes and the intensity of the RF energy sources. In addition, in

(30), we provide a simplified expression for the energy harvesting probability for the case

where the path loss exponent is equal to 2. Based on our results, we derive the transmission

success probability which is the probability that the nodes successfully communicate with

each other.

• Next, we extend the energy harvesting probability in Theorem 1 to the case of multiple

nodes at aligned fixed locations. These nodes are part of a multi-hop link, and thus the

important performance metric is the end-to-end transmission success probability. We derive

an expression for the end-to-end transmission success probability which contains only a

single integration.

• For the multi-hop networks, we also develop a tractable framework which takes randomly

distributed multiple aligned nodes into account. More specifically, it is assumed in our

framework that the nodes are distributed according to a general point process. We find that in
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this setting the transmission success probability can be computed by numerical integration,

cf. (58); furthermore, it can be computed efficiently employing the Quasi-Monte Carlo

(QMC) technique which we introduce in Section VI-A.

• We also consider a network which we call “star-shaped topology”. The network is composed

of a data collector surrounded by n sensor nodes, and the sensor nodes transmit data to

the data collector. In this setting, we introduce an approximation of the energy harvesting

probability and then derive an approximation of the average throughput

From our numerical simulations, it is verified that our analytical results in the multi-hop

networks accurately predict the performance and our analysis in the star-shaped topology ap-

proximates the actual average throughput very well.

This paper is organized as follows. The background on the Boolean-Poisson model and the

network model are presented in Sections II and III, respectively. In Section IV, the energy

harvesting and transmission success probabilities in single- and multi-hop networks are derived.

Section V investigates the average throughput of the network with the star-shaped topology. In

Section VI, we provide numerical results to validate our analysis. The conclusion of our work

is made in Section VII.

II. THE BOOLEAN-POISSON MODEL

This section introduces the required background for the study of the Boolean-Poisson model

which is also known as a Boolean model [8]. Please refer to [8] for further details.

The Boolean-Poisson model is driven by a PPP on Rd with intensity λ. Each point in the

PPP is the center of a ball with random radius r, distributed according to a probability measure

µ on [0,∞), independently from the other radii and from the PPP. More formally, we consider

the probability space (Ω,F ,P) on which we let Φ be a PPP supported on Rd × [0,∞), with

intensity measure (λ`)×µ, where ` indicates the Lebesgue measure on Rd and ·× · denotes the

product measure. Each point (x, r) ∈ Φ corresponds to (i) a location x ∈ Rd along with (ii) a

radius r ∈ [0,∞) corresponding to the radius of the ball centered around it. We recall that the

void probability of the PPP is given by

P(Φ ∩ A = ∅) = exp
(
− λ(`× µ)(A)

)
, (1)

for any bounded measurable set A ⊂ Rd × [0,∞).
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Fig. 1: Illustration of the Boolean-Poisson model.

We denote by Bx (r) the open Euclidean ball of Rd centered at x ∈ Rd with radius r ∈ [0,∞).

The occupied space corresponds to the subset of Rd covered by the balls centered around the

points of the PPP, i.e.,

Ξ =
⋃

(x,r)∈Φ

Bx (r), (2)

which consists of all points covered by at least one ball. By extension, we will call the set Ξ

the Boolean-Poisson model, and Φ is the driving PPP containing the pairs (x, r) of points along

with their corresponding radius. In our setting, the Boolean-Poisson model Ξ corresponds to the

harvesting energy enabled region (we provide more details in Section III). In other applications,

it has been used to model phenomena ranging from the form of geological structures generated

by sedimentation to the spread of forest fires. The Boolean-Poisson model has also been used in

a wide variety of settings, cf. the summary on pages 67-69 from [7] as well as the applications

to wireless communications in [13], [14]. We illustrate the Boolean-Poisson model in Fig. 1.

We now introduce some of the mathematical properties of the model. First, the model is

stationary by stationarity of the PPP, and similarly it is also isotropic. In other words, its

distribution is invariant with respect to translations and rotations. Second, the metric which

will be of interest is the probability that a fixed point in Rd is covered by the Boolean-Poisson

model. The coverage properties have been extensively studied in [9]–[11], and we now briefly

recall some basic facts. We consider a point A which is located at x ∈ Rd and define the set

Cx =
{

(y, r) ∈ Rd × [0,∞) : y ∈ Bx (r)
}
. (3)
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TABLE I: List of Symbols

Symbol Definition

Φ Homogeneous PPP which models the distribution of energy sources

λ Spatial intensity of energy sources

µ Distribution of random radius in the Boolean-Poisson model

Ξ Energy harvesting zone

PH Energy harvesting probability

PS Transmission success probability

α Path loss exponent

G Path loss coefficient

hk Fading power of the channel for the k-th hop

gk Fading power of the channel between the k-th sensor node and a data sink

P Transmit power at sensor nodes

γk Received Signal-to-noise ratio (SNR) for the k-th hop

σ2 Power of additive white Gaussian noise (AWGN)

γth SNR threshold

It is readily checked that

x /∈ Ξ ⇐⇒ Φ ∩ Cx = ∅, (4)

as well as

(`× µ)(Cx) =

∫ ∞
0

(∫
Rd
1{y∈Bx(u)} `(dy)

)
µ(du) =

∫ ∞
0

`(Bx (u))µ(du). (5)

From (1), (4) and (5), the probability that the point A falls in Ξ is easily computed as

P (x ∈ Ξ) = 1− P (Φ ∩ Cx = ∅) = 1− exp (−λ(`× µ) (Cx))

= 1− exp

(
−λ
∫ ∞

0

` (Bx (u))µ(du)

)
= 1− exp

(
−λvd

∫ ∞
0

ud µ(du)

)
, (6)

where vd , πd/2/Γ(d/2 + 1) and Γ(·) is the Gamma function. We note that P (x ∈ Ξ) = 1

when
∫∞

0
udµ(du) =∞ and as such, we infer that a point in Rd is almost surely covered by the

Boolean-Poisson model if the d-th moment of µ is infinite. Our subsequent analysis will build

upon formula (6) expresses the probability that a single node is covered. We will generalize the

result in (6) to the case of multiple points A1, . . . ,An in Sections IV and V.
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III. SYSTEM MODEL

In this paper, we analyze the wireless energy harvesting networks consisting of a (random)

number of ambient RF energy sources. A list of the symbols used in this paper is given in

Table I. The homogeneous PPP Φ with intensity λ models the locations of the ambient RF

energy sources. The coverage region of each ambient RF energy source is modeled by an open

Euclidean ball of Rd centered at the location of the energy source. Note that the radius of the

coverage region is related to the random signal attenuation over the wireless channel. Therefore,

in this paper, we consider a random radius which follows a given distribution µ.

A. General Framework

In this subsection, we develop a general system model which allows for the radii of the

Poisson random balls to be distributed according to any distribution µ(dr). In Section III-B,

we introduce a distribution of radius of the energy harvesting zone which reflects the relation

between the harvested power and the path loss of the signals transmitted by the energy sources.

By construction, the energy harvesting enabled region is modeled as the Boolean-Poisson model

Ξ as defined in (2).

It is worthwhile to note that exploiting the Boolean-Poisson model with random radii to model

energy harvesting networks is a new approach and different from the conventional approaches

in [21]–[28]. We would like to emphasize that the works in [21]–[28] only concentrated on the

probability that a typical node can harvest energy. For networks where multiple nodes communi-

cate with each other, the probability that the nodes can simultaneously harvest power determines

the performance of the networks. Therefore, it is important to investigate the performance of the

networks where multiple nodes simultaneously scavenge energy.

In this paper, we consider battery-free sensor nodes and a P -threshold based transmission,

i.e., a sensor node transmits data with fixed power P when the harvested power at the sensor

node exceeds P due to the power regulation [21], [29], [30]. The energy harvesting zone is

defined in such a way that a sensor node can harvest power greater than or equal to P when it

is located in the energy harvesting zone Ξ.

Let us consider n sensor nodes A1,A2, . . . ,An which are respectively located at x1 ∈ Rd, x2 ∈

Rd, . . . , xn ∈ Rd. Multi-hop networks are considered, where node Ai transmits data to node An

aided by nodes Ai+1, . . . ,An−1. In this paper, for notational brevity, we set i = 1. In the networks,
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sensor nodes operate in a harvest-then-transmit protocol. More specifically, each sensor node

harvests energy one time slot before it transmits or decodes data, and then transmits or decodes

data by using the harvested energy. It is additionally assumed that the spatial distribution of

energy sources remains the same during the multi-hop transmission, and the energy harvesting

and data transmission happen on different spectrum bands. Under this setup, the transmission

succeeds when all sensor nodes are located in the energy harvesting enabled region Ξ, and

the end-to-end signal-to-noise-ratio (SNR) γ is larger than a certain threshold γth which is the

minimum SNR required for successful data detection.

For k ∈ {2, . . . , n}, we define γk , PGhk||xk − xk−1||−α/σ2 as the received SNR for the

(k − 1)-th hop where P is the transmit power at all sensor nodes, G represents the path loss

coefficient, hk denotes the fading power for the (k−1)-th hop, α indicates the path loss exponent,

and σ2 accounts for the power of AWGN. We assume the decode-and-forward (DF) protocol,

and therefore the end-to-end SNR γ = min(γ2, . . . , γn) is greater than γth when γk ≥ γth for

k ∈ {2, . . . , n}. More formally, let us denote by PH and PT the probabilities that all nodes can

harvest energy and the end-to-end SNR is higher than γth when all nodes can scavenge energy,

respectively. Then, we can express PH and PT as

PH , P (∀k ∈ {1, . . . , n}, xk ∈ Ξ) , (7)

and

PT , P (∀k ∈ {2, . . . , n}, γk ≥ γth | ∀k ∈ {1, . . . , n}, xk ∈ Ξ) , (8)

respectively. The transmission success probability PS is then expressed as

PS , P (∀k ∈ {1, . . . , n}, xk ∈ Ξ, ∀i ∈ {2, . . . , n}, γi ≥ γth) = PHPT . (9)

In this paper, the fading powers {hk} are assumed to be independent and identically distributed

(i.i.d.) exponential random variables E(τ) with parameter τ [31]. It is also assumed that the

random variables {hk} are independent of the PPP Φ. Therefore, PT can be rewritten as

PT = P (∀k ∈ {2, . . . , n}, γk ≥ γth) ,

since the random variables γk are independent of Φ (and therefore are also independent of Ξ).

We remark that in most of the analysis presented in this paper, the distribution of the fading

powers could be generalized to other models (e.g., Nakagami-m or Rician) with only minor
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changes in the computation of PS in (9); however the results from Section V require the fading

powers to be exponentially distributed.

B. Distribution of the radius

In this subsection, we introduce a distribution of the radius which takes the path loss of the

signals sent by energy sources into account. First, we investigate the energy harvesting probability

in the conventional model in [21]–[25] which considers the aggregated harvested power. Then,

we provide a distribution of the radius in the Boolean-Poisson model by investigating the relation

between the conventional model and the Boolean-Poisson model.

In the conventional model with the aggregated harvested power, the probability that the

harvested power at Ak is larger than the transmit power at sensor nodes P is represented as

Υ , P
(
ηPeG

∑
y∈Φ

hy,k‖xk − y‖−α ≥ P
)
, (10)

where η, Pe and hy,k ∼ E(τ) stand for the RF-to-DC conversion efficiency, the transmit power at

energy sources, and the fading power of the channel between Ak and the energy source located

at y, respectively. We can obtain a lower bound of the probability in (10) as

Υ ≥ P
(
∃y ∈ Φ : ηPeGhy,k‖xk − y‖−α ≥ P

)
= P

(
∃y ∈ Φ : ‖xk − y‖ ≤

(
ηPeGhy,k

P

)1/α
)
.

(11)

In the Boolean-Poisson model, the probability that Ak can harvest enough power is written as

P (xk ∈ Ξ) = P (∃(y, r) ∈ Φ : xk ∈ By (r)) = P (∃(y, r) ∈ Φ : ‖xk − y‖ ≤ r) . (12)

By comparing (11) and (12), the energy harvesting probability in the Boolean-Poisson model

can be interpreted as a lower bound of the energy harvesting probability in the conventional

model when r is distributed as
(
ηPeGh
P

)1/α
and h ∼ E(τ). In other words, if we assume that

the radius of the Boolean-Poisson model r is distributed as
(
ηPeGh
P

)1/α
, the sensor node Ak is

covered by the harvesting enabled region Ξ if and only if there exists an energy source located

at y such that ηPeGhy,k‖xk−y‖−α ≥ P , i.e., the energy source positioned at y by itself provides

the energy required to power the sensor node.

However, in general, the bound in (11) is not tight, and therefore adopting the above dis-

tribution may not be suitable to reflect the aggregated harvested power. In order to take the
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aggregated harvested power into account, we introduce a parameter δ > 0 which is designed to

satisfy

Υ = P
(
∃y ∈ Φ : δηPeGhy,k‖xk − y‖−α ≥ P

)
. (13)

This is equivalent to assuming that r is distributed according to
(
δηPeGh

P

)1/α
for h ∼ E(τ). It is

readily checked that this corresponds to a distribution given by

µδ(dr) =
ατP

δηPeG
rα−1 exp

(
− τP

δηPeG
rα
)

dr, r ≥ 0. (14)

Our initial approach is recovered by setting δ = 1 in the above equation. Under this setup,

combining (12) and (13) we observe that the event “Ak is in Ξ” is precisely “there exists an RF

source such that δ times the energy harvested from it suffices to power the sensor node”.

We now move on to exhibiting δ which satisfies (13). Due to the stationarity of the PPP and

[23], we rewrite Υ in (10) as

Υ =

∫ ∞
0

1

πu
exp

(
−uP − 2π2λ (ηPeGu/τ)

2
α

α tan (2π/α)

)
sin

(
2π2λ (ηPeGu/τ)

2
α

α

)
du. (15)

Additionally, again by the stationarity of the PPP, we have

P
(
∃y ∈ Φ : δηPeGhy,k‖xk − y‖−α ≥ P

)
= P

(
∃y ∈ Φ : δηPeGhy,k‖y‖−α ≥ P

)
= 1− P

(
∀y ∈ Φ : hy,k ≤

P‖y‖α

δηPeG

)
= 1− E

[∏
y∈Φ

P
(
hy,k ≤

P‖y‖α

δηPeG

)]

= 1− E

[∏
y∈Φ

(
1− exp

(
−τP‖y‖

α

δηPeG

))]
= 1− exp

(
−2πλ

∫ ∞
0

exp

(
− τPrα

δηPeG

)
r dr

)

= 1− exp

(
−2πλδ2/α

∫ ∞
0

exp

(
−τPν

α

ηPeG

)
ν dν

)
. (16)

By combining (15) and (16), δ which meets the equality in (13), can be identified as

δ =

 ln
(

1
1−Υ

)
2πλ

∫∞
0

exp
(
− τPνα

ηPeG

)
ν dν

α/2

. (17)

Fig. 2 illustrates a realization of the network with µδ(dr) in (14) with δ given by (17) where

d = 2, α = 3, τ = 1, η = 1, σ2 = −90 dBm, Pe = 50 dBm, P = −20 dBm, G = 0 dB and

λ = 2 sources/km2.
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Fig. 2: A realization of the network in a Boolean-Poisson model where dots and circles represent

the locations of the ambient RF energy sources and boundaries of the coverage region.

We would like to emphasize that, in the conventional model, it is intractable to analytically

investigate the probability that multiple sensor nodes simultaneously scavenge sufficient power.

On the contrary, as will be shown in Sections IV and V, in the Boolean-Poisson model, we

can derive analytical expressions for the probability that multiple sensor nodes are located in

the energy harvesting zone. Lastly, although we have introduced a reasonable choice for the

radius distribution in (14), one is free to choose any other distributions according to the problem

tackled. Please note that the analytical results in Sections IV and V are valid for any choice of

µ.

IV. PERFORMANCE ANALYSIS FOR SINGLE-HOP AND MULTI-HOP NETWORKS

In this section, we first derive an analytical expression for the transmission success probability

in single-hop networks with two nodes. Then, we generalize the analytical result to the case of

multi-hop networks.
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(b) Coverage: both A1 and A2 are covered.

Fig. 3: Examples to illustrate single-hop networks.

A. Single-hop networks

Let us consider two nodes A1 and A2 which are located at x1 ∈ Rd and x2 ∈ Rd, respectively.

Note that both A1 and A2 ought to be located in Ξ in order to scavenge energy. As an illustration,

the placement of A2 in Fig. 3a corresponds to a non-coverage situation, whereas that of A1 and

A2 in Fig. 3b corresponds to a coverage situation.

In networks with two nodes, the coverage probability PH in (7) can be rewritten as

PH = P (x1 ∈ Ξ) + P (x2 ∈ Ξ)− P ({x1 ∈ Ξ} ∪ {x2 ∈ Ξ}) (18)

(a)
= 2− 2 exp

(
−λvd

∫ ∞
0

ud µ(du)

)
− P ({x1 ∈ Ξ} ∪ {x2 ∈ Ξ}) , (19)

where (a) follows from (6) and the stationarity of the PPP. In the following theorem, we

provide an analytical expression for PH , in an arbitrary dimension, and for any choice of radius

distribution µ.

Theorem 1. In networks with two nodes, the probability that both nodes can harvest energy is

given by

PH = 1− 2 exp

(
−λvd

∫ ∞
0

ud µ(du)

)
+ exp

(
− 2λvd

∫ ∞
0

ud µ(du)

+ λvd

∫ ∞
l/2

I1−l2/(4u2)

(
d+ 1

2
,
1

2

)
ud µ(du)

)
, (20)
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Fig. 4: An illustration for the case of u ≥ l/2.

where l , ‖x1 − x2‖ is the distance between A1 and A2. Here, Iz(a, b) is the regularized

incomplete beta function defined by

Iz(a, b) =
Γ(a+ b)

∫ z
0
ua−1(1− u)b−1 du

Γ(a)Γ(b)
, a, b, z > 0.

Proof. Let us define Φx1 as a PPP on the same probability space as Φ, supported on the

complement Ccx1 of Cx1 , with intensity measure (λ`) × µ restricted to Ccx1 . Recall that Cx1 has

been defined in (3). We define accordingly the Boolean-Poisson model associated to Φx1 as

Ξx1 =
⋃

(x,r)∈Φx1
Bx (r). In a similar manner as in (6) with Φ replaced with Φx1 , we have

P (x2 /∈ Ξx1) = P ({(y, u) ∈ Φx1 : x2 ∈ By (u)} = ∅) = P (Φx1 ∩ Cx2 = ∅) (21)

= exp
(
−λ(`× µ)

(
Cx2 ∩ Ccx1

))
(22)

= exp
(
−λ(`× µ)

({
(y, u) ∈ Rd × [0,∞) : y ∈ Bx2 (u) ∩ Bx1 (u)c

}))
(23)

= exp

(
−λ
∫ ∞

0

∫
Rd
1{

y∈Bx2 (u)∩Bx1 (u)c
} `(dy)µ(du)

)
(24)

= exp

(
−λ
∫ ∞

0

` (Bx2 (u) ∩ Bx1 (u)c)µ(du)

)
. (25)

Now, we focus on the computation of the volume in the above equation. First, if u < l/2, then

` (Bx2 (u) ∩ Bx1 (u)c) = ` (Bx2 (u)) = vdu
d. Second, if u ≥ l/2, then one has to compute the

shaded area in Fig. 4 (represented here in dimension d = 2). The above d-dimensional volume

(known in the literature as hyperspherical cap) is equal to [32]

` (Bx2 (u)∩Bx1 (u)c)=vdu
d

(
1−I1−l2/(4u2)

(
d+ 1

2
,
1

2

))
. (26)
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Hence, combining (25) with (26), we obtain

P (x2 /∈ Ξx1) = exp

(
−λvd

∫ ∞
0

ud µ(du) + λvd

∫ ∞
l/2

I1−l2/(4u2)

(
d+ 1

2
,
1

2

)
ud µ(du)

)
. (27)

Note that the law of Φ given Φ ∩ Cx1 = ∅ coincides with the distribution of Φx1 , and therefore

P ({x1 ∈ Ξ} ∪ {x2 ∈ Ξ}) in (19) can be rewritten as

P ({x1 ∈ Ξ} ∪ {x2 ∈ Ξ}) = 1− P (x1 /∈ Ξ)P (x2 /∈ Ξ | x1 /∈ Ξ)

(b)
= 1− P (x1 /∈ Ξ)P (x2 /∈ Ξ | Φ ∩ Cx1 = ∅)

= 1− P (x1 /∈ Ξ)P (x2 /∈ Ξx1) , (28)

where (b) follows from (4). Combining (19), (27) and (28), we obtain the result in (20).

In the following corollary, we customize Theorem 1 to the case of d = 2 and µδ(dr) defined

by (14).

Corollary 1. In the two-dimensional network with two nodes and µδ in (14), the coverage

probability in (20) can be simplified as

PH = 1− 2 exp

(
−λπ

(δηPeG
τP

)2/α

Γ
(

1 +
2

α

))
+ exp

(
−2λπ

(δηPeG
τP

)2/α

Γ
(

1 +
2

α

)
+

2λατP

δηPeG

∫ ∞
l/2

(
arccos

(
l

2u

)
− l

2u

√
1− l2

4u2

)
uα+1 exp

(
− τP

δηPeG
uα
)

du

)
, (29)

where arccos(·) denotes the inverse cosine function, and we recall that l is the distance between

the nodes A1 and A2. In addition, when α = 2, we can obtain a more explicit expression as

PH = 1− 2 exp

(
−λπδηPeG

τP

)
+ exp

(
πλδηPeG

τP

(
erfc

(
l

2

√
τP

δηPeG

)
− 2

))
, (30)

where erfc(x) = 2√
π

∫∞
x

e−t
2

dt is the complementary error function.

Proof. By directly exhibiting an anti-derivative, we may rewrite I1−l2/(4u2)

(
3
2
, 1

2

)
as

I1−l2/(4u2)

(
3

2
,
1

2

)
=

2

π

∫ 1−l2/(4u2)

0

√
v

1−v
dv=

2

π

[
arccos(

√
1− x)−

√
1− x

√
x
]1−l2/(4u2)

0

=
2

π

(
arccos

(
l

2u

)
− l

2u

√
1− l2

4u2

)
. (31)
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Also, since v2 = π when d = 2, PH in (20) becomes

PH = 1− 2 exp

(
−λπ

∫ ∞
0

u2 µ(du)

)
+ exp

(
−2λπ

∫ ∞
0

u2 µ(du) + 2λ

∫ ∞
l/2

(
arccos

(
l

2u

)
− l

2r

√
1− l2

4u2

)
u2 µ(du)

)
. (32)

Plugging µδ in (14) into (32), we compute the integral of u2 with respect to µ as∫ ∞
0

u2 µδ(du) =
ατP

δηPeG

∫ ∞
0

uα+1 exp
(
− τP

δηPeG
uα
)

du =
(δηPeG

τP

)2/α
∫ ∞

0

y2/αe−y dy

=
(δηPeG

τP

)2/α

Γ
(

1 +
2

α

)
, (33)

by the change of variables y = τP
δηPeG

uα. We then obtain (29) by combining (32) and (33).

We now focus on the proof of (30). For notational convenience, we define β as β = τP/(δηPeG).

By two successive integrations by parts, followed by a change of variable x = 1/u2, we have∫ ∞
l/2

arccos
( l

2u

)
u3 exp

(
−βu2

)
du

=
1

2β

∫ ∞
l/2

(
l

2
√

1− l2/(4u2)
+ 2u arccos

( l

2u

))
exp
(
−βu2

)
du

=
1

4β

∫ ∞
l/2

l exp
(
−βu2

)√
1− l2/(4u2)

du+
1

4β2

∫ ∞
l/2

l exp
(
−βu2

)
u2
√

1− l2/(4u2)
du

=
1

4β

∫ 4/l2

0

x−3/2 exp
(
−β/x

)√
4/l2 − x

dx+
1

4β2

∫ 4/l2

0

x−1/2 exp
(
−β/x

)√
4/l2 − x

dx. (34)

Here, by [33, p. 187, eq. (16)], we obtain

1

4β

∫ 4/l2

0

x−3/2 exp
(
−β/x

)√
4/l2 − x

dx =
l
√
πe−βl

2/4

8β3/2
, (35)

and by [33, p. 187, eq. (18)], we get

1

4β2

∫ 4/l2

0

x−1/2 exp
(
−β/x

)√
4/l2 − x

dx =
1

4β2
β−1/4

( 4

l2

)1/4

e−βl
2/8
√
πW−1/4,1/4(βl2/4)

=
π

4β2
erfc
(√βl

2

)
, (36)

where W is the Whittaker function. Similarly, by [33, p. 187, eq. (16)] and the change of

variables x = 1/u2,∫ ∞
l/2

l

2u

√
1− l2

4u2
u3 exp

(
− τP

δηPeG
u2
)

du =
l2

8

∫ 4/l2

0

x−5/2

√
4

l2
− xe−β/x dx

=
l
√
πe−βl

2/4

8β3/2
. (37)
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Combining (34)-(37) with β = τP/(δηPeG), we obtain∫ ∞
l/2

(
arccos

(
l

2u

)
− l

2u

√
1− l2

4u2

)
u3 exp

(
− τP

δηPeG
u2
)

du =
πδ2η2P 2

eG
2

4τ 2P 2
erfc

(
l

2

√
τP

δηPeG

)
.

From (30), we deduce that the coverage probability is a decreasing function of the distance

l. This observation is verified numerically in Fig. 8.

When the networks consist of only two nodes, PT in (8) is computed as

PT = P
(
PGh2l

−α

σ2
≥ γth

)
= exp

(
−τ l

ασ2γth
PG

)
. (38)

From (20), (29) and (38), we can calculate the transmission success probability in (9).

B. Multi-hop networks

In this subsection, we focus on the wireless energy harvesting networks containing multiple

aligned nodes. Here, the aligned model for the location of sensor nodes can be applied to various

scenarios such as a multi-hop transmission along a straight highway. Let us consider A1, . . . ,An

nodes (n ≥ 2) which are located at x1 ∈ Rd, . . . , xn ∈ Rd, respectively, and define the inter-nodal

distance as

la,b , ‖xb − xa‖, a, b ∈ {1, . . . , n}. (39)

We assume that the nodes are aligned as shown in Fig. 5. In this example, as node A3 is not

covered, node A3 does not have power available for data decoding and encoding, and therefore

outage occurs when node A1 attempts to communicate with node A5 through nodes A2, A3 and

A4.

We remark that PH can be computed as

P (∀k ∈ {1, . . . , n}, xk ∈ Ξ) = 1− P (∃k ∈ {1, . . . , n}, xk /∈ Ξ)

(c)
= 1 +

∑
X⊂{1,...,n}, X 6=∅

(−1)|X|P (∀k ∈ X, xk /∈ Ξ) , (40)

where (c) follows from the inclusion-exclusion principle and |X| denotes the cardinal of a set

X .

We exploit relation (40) in the following theorem, wherein we derive a procedure for computing

the probability that all n nodes are covered by the energy harvesting zone.
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Fig. 5: Illustration of a network with multiple nodes.

Theorem 2. Let X = (a1, . . . , ai) ⊂ {1, . . . , n} correspond to one of the terms appearing in

(40). Then, P (∀k ∈ X, xk /∈ Ξ) is given inductively by

P(∀k ∈ {a1, . . . , ai}, xk /∈ Ξ) = P (∀k ∈ {a1, . . . , ai−1}, xk /∈ Ξ)

× exp

(
− λvd

∫ ∞
0

ud µ(du) + λvd

∫ ∞
lai,ai−1/2

I1−l2ai,ai−1
/(4u2)

(
d+ 1

2
,
1

2

)
ud µ(du)

)
,

(41)

whilst noting that the initial term P (xa1 /∈ Ξ, xa2 /∈ Ξ) has been computed in Theorem 1.

Additionally, in the two-dimensional network with µδ(dr) in (14), the coverage probability is

given inductively by

P(∀k∈{a1, . . . , ai}, xk /∈ Ξ)=P (∀k ∈ {a1, . . . , ai−1}, xk /∈ Ξ) exp

(
−λπ

(δηPeG
τP

)2/α

Γ
(

1+
2

α

)
+

2λατP

δηPeG

∫ ∞
lai,ai−1/2

(
arccos

(
l

2u

)
− l

2u

√
1− l2

4u2

)
uα+1 exp

(
− τP

δηPeG
uα
)

du

)
. (42)

Proof. In this setting, in a similar fashion as in (6), one may compute the probability in the
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summation in (40) by induction as follows:

P (∀k ∈ {a1, . . . , ai}, xk /∈ Ξ)

= P (∀k ∈ {a1, . . . , ai−1}, xk /∈ Ξ)P (xai /∈ Ξ | ∀k ∈ {a1, . . . , ai−1}, xk /∈ Ξ) (43)

(d)
= P (∀k ∈ {a1, . . . , ai−1}, xk /∈ Ξ)P

(
xai /∈ Ξ | Φ ∩ Cxa1 = ∅, . . . ,Φ ∩ Cxai−1

= ∅
)

(44)

= P (∀k ∈ {a1, . . . , ai−1}, xk /∈ Ξ) exp
(
−λ(`× µ)

(
Cxai ∩ (Cxa1 ∪ · · · ∪ Cxai−1

)c
))

(45)

= P (∀k ∈ {a1, . . . , ai−1}, xk /∈ Ξ)

× exp

(
− λ

∫ ∞
0

`
(
Bxai (u) ∩ Bxa1 (u)c ∩ · · · ∩ Bxai−1

(u)c
)
µ(du)

)
, (46)

where we obtain (d) by applying (4). From the assumption that the n nodes are aligned, we have

Bxai (u) ∩ Bxa1 (u)c ∩ · · · ∩ Bxai−1
(u)c = Bxai (u) ∩ Bxai−1

(u)c. (47)

Thus, by proceeding as in Theorem 1, when u < lai,ai−1
/2, we obtain

`
(
Bxai (u) ∩ Bxai−1

(u)c
)

= `
(
Bxai (u)

)
= vdu

d, (48)

while, when u ≥ lai,ai−1
/2, the volume can be computed as

`
(
Bxai (u) ∩ Bxai−1

(u)c
)

= vdu
d

(
1− I1−l2ai,ai−1

/(4u2)

(
d+ 1

2
,
1

2

))
. (49)

The result in (42) follows by applying the same arguments as in the proof of Corollary 1.

In multi-hop networks, PT in (8) becomes

PT = P

(
∀k ∈ {2, . . . , n},

PGhkl
−α
k,k−1

σ2
≥ γth

)
= exp

(
−τσ

2γth
PG

n∑
k=2

lαk,k−1

)
. (50)

We may then derive the transmission success probability PS in (9) using Theorem 2, along with

(40) and (50).

C. Multi-hop networks with sensor nodes distributed according to a point process

In the above subsections, the aligned sensor nodes have fixed distances. In this subsection, we

consider aligned sensor nodes distributed according to a point process Ψ taking values in [0, L],

where L > 0 is fixed, and independent from Φ. Recall that Φ is the underlying PPP representing

the ambient RF energy sources. More specifically, the location of the node A0 is fixed as 0, and

another node AN is assumed to be located at a distance L from A0. Between A0 and AN , other
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nodes are assumed to be distributed according to Ψ. We assume that Ψ has a density fΨ with

respect to the Poisson point process on [0, L] with intensity 1, i.e., by definition,

E
[
g(Ψ)

]
=
∑
n≥0

e−L

n!

∫ L

0

· · ·
∫ L

0

g({t1, . . . , tn})fΨ({t1, . . . , tn}) dt1 · · · dtn, (51)

for all non-negative functions g depending on a subset of points of [0, L]. In the above definition,

the points t1, . . . , tn represent the positions of the sensor nodes, which are located between 0

and L. When Ψ is a PPP on [0, L] with intensity λs, we have

fΨ({t1, . . . , tn}) = λns exp(L(1− λs)), (52)

but most other choices of point processes fit into this subsection’s framework.

When Ψ = {t1, . . . , tn}, the SNR for the last hop can be written by

γN ,

PGhNL
−α/σ2 if Ψ = ∅,

PGhN(L− t(n))
−α/σ2 otherwise,

(53)

and the SNR for the k-th hop becomes

γk ,

PGh1t
−α
(1)/σ

2 if k = 1,

PGhk(t(k) − t(k−1))
−α/σ2 otherwise,

(54)

where (t(1), . . . , t(n)) is the ordered version of the points of Ψ, i.e., the n-tuple such that t(1) <

· · · < t(n). The transmission success probability in this model is given by

PS = P(A0 ∈ Ξ, AN ∈ Ξ, γN ≥ γth, ∀ti ∈ Ψ, Ai ∈ Ξ and γi ≥ γth). (55)

From (51) and the independence of Ψ and Φ, the above probability is computed as

PS =P(A0 ∈ Ξ, AN ∈ Ξ, γN ≥ γth, Ψ = ∅) +
∑
n≥1

e−L

n!

∫ L

0

· · ·
∫ L

0

fΨ({t1, . . . , tn}) (56)

× P(A0 ∈ Ξ, AN ∈ Ξ, γN ≥ γth, ∀i = 1, . . . , n, ti ∈ Ξ and γi ≥ γth) dt1 · · · dtn

=
∑
n≥1

e−L

n!

∫ L

0

· · ·
∫ L

0

P(A0 ∈ Ξ, AN ∈ Ξ, ∀i = 1, . . . , n, ti ∈ Ξ)P(γN ≥ γth) (57)

×
n∏
i=1

P(γi ≥ γth)fΨ({t1, . . . , tn}) dt1 · · · dtn+P(A0 ∈ Ξ, AN ∈ Ξ, γN ≥ γth, Ψ = ∅)

=P(A0 ∈ Ξ, AN ∈ Ξ, γN ≥ γth, Ψ = ∅) (58)
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+
∑
n≥1

e−L

n!

∫ L

0

· · ·
∫ L

0

P(A0 ∈ Ξ, AN ∈ Ξ, ∀i = 1, . . . , n, ti ∈ Ξ)fΨ({t1, . . . , tn})

× exp

(
− τγthσ

2

PG

(
(L− t(n))

α + tα(1) +
n∑
i=2

(t(i) − t(i−1))
α
))

dt1 · · · dtn.

Additionally, the first term on the right-hand side of equation (58) has already been computed

in Section IV-A; specifically,

P(A0 ∈ Ξ, AN ∈ Ξ, γN ≥ γth, Ψ = ∅)

= P(A0 ∈ Ξ, AN ∈ Ξ, γN ≥ γth | Ψ = ∅)P(Ψ = ∅) (59)

= fΨ(∅) exp
(
− τγthσ

2Lα

PG
− L

)(
1− 2 exp

(
− λvd

∫ ∞
0

ud µ(du)
)

+ exp

(
− 2λvd

∫ ∞
0

ud µ(du) + λvd

∫ ∞
L/2

I
1− L2

4u2

(
d+ 1

2
,
1

2

)
ud µ(du)

))
,

(60)

by Theorem 1. Here, we can calculate P(Ψ = ∅) by applying (51) with g(Ψ) = 1{Ψ=∅}. In

addition, the integrand in (58) is computed recursively by Theorem 2.

Lastly, the second term in (58) can be rewritten as a series of integral on [0, 1]n by the change

of variables si ≡ ti/L for i = 1, . . . , n; namely it is equal to

∑
n≥1

Lne−L

n!

∫ 1

0

· · ·
∫ 1

0

P(A0 ∈ Ξ, AN ∈ Ξ, ∀i = 1, . . . , n, Lsi ∈ Ξ)fΨ({Ls1, . . . , Lsn})

× exp

(
− τγthσ

2Lα

PG

(
(1− s(n))

α + sα(1) +
n∑
i=2

(s(i) − s(i−1))
α
))

ds1 · · · dsn. (61)

Then, by considering only the first Nmax terms, an approximation of (61) can be written as

Nmax∑
n=1

Lne−L

n!

∫ 1

0

· · ·
∫ 1

0

P(A0 ∈ Ξ, AN ∈ Ξ, ∀i = 1, . . . , n, Lsi ∈ Ξ)fΨ({Ls1, . . . , Lsn})

× exp

(
− τγthσ

2Lα

PG

(
(1− s(n))

α + sα(1) +
n∑
i=2

(s(i) − s(i−1))
α
))

ds1 · · · dsn, (62)

which is the approximation that we exploit in our numerical analysis, see Fig. 13.

Since the n-fold integrals appearing in the summation (62) lead to an extremely high compu-

tational complexity, we utilize the QMC integration method for efficient numerical integration.

We refer the reader to Section VI-A for details on the QMC method.
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Fig. 6: An example to illustrate networks with star-shaped topology.

V. STAR-SHAPED TOPOLOGY

We now study a network consisting of a data collector and n sensor nodes. Let us consider a

data collector A0 located at 0 and n sensor nodes A1,A2, . . . ,An, which are respectively located

at x1 ∈ Rd, x2 ∈ Rd, . . . , xn ∈ Rd and transmit data to the data collector. We assume that the

data collector adopts a successive interference cancellation technique for information decoding

as in [34]. Then, the throughput is written as

C , log2

(
1 +

n∑
k=1

PGgk
σ2‖xk‖α

1{A0∈Ξ, Ak∈Ξ}

)
, (63)

where gk ∼ E(τ) is the fading power of the channel between the data collector and the k-th

sensor node, and {gk} are independent. In the following, we denote by Θall = {1, . . . , n} the set

of indices of sensor nodes. Since gk is independent of Ξ, we have

E [C] =
∑

Θ⊂Θall

E
[
C1{A0∈Ξ, ∀k∈Θ,Ak∈Ξ, ∀i∈Θall\Θ,Ai /∈Ξ}

]
(64)

=
∑

Θ⊂Θall

E

[
log2

(
1 +

∑
k∈Θ

PGgk
σ2‖xk‖α

)
1{A0∈Ξ, ∀k∈Θ,Ak∈Ξ, ∀i∈Θall\Θ,Ai /∈Ξ}

]
(65)

=
∑

Θ⊂Θall

E

[
log2

(
1 +

∑
k∈Θ

PGgk
σ2‖xk‖α

)]

× P (A0 ∈ Ξ, ∀k ∈ Θ, Ak ∈ Ξ, ∀i ∈ Θall \Θ, Ai /∈ Ξ) . (66)

In (66), Θ is assumed to be non-empty since otherwise log2

(
1 +

∑
k∈Θ

PGgk
σ2‖xk‖α

)
= 0, i.e., the

corresponding term does not appear. Let Θ = {θ1, . . . , θm} ⊂ Θall, for some m ≥ 1. In general,



23

it is intractable to identify a closed-form expression for P(A0 ∈ Ξ, ∀k ∈ Θ, Ak ∈ Ξ, ∀i ∈

Θall \ Θ, Ai /∈ Ξ). However, when the events {A0 ∈ Ξ, Aθ1 ∈ Ξ} and {Aθk ∈ Ξ} are close to

being mutually independent as k spans {2, . . . ,m}, the following approximation holds:

P (A0 ∈ Ξ, ∀k ∈ Θ, Ak ∈ Ξ, ∀i ∈ Θall \Θ, Ai /∈ Ξ) ≈ P (A0 ∈ Ξ, Aθ1 ∈ Ξ)

×
m∏
k=2

P (Aθk ∈ Ξ)
∏

i∈Θall\Θ

(1− P (Ai ∈ Ξ)). (67)

Here, P (Aθk ∈ Ξ) and P (A0 ∈ Ξ, Aθ1 ∈ Ξ) in (67) can be computed by the results in (6) and

(20), respectively. Although the equation (67) is an approximation, from Figs. 14 and 15 in

Section VI, we have confirmed that the approximation is tight.

We now concentrate on the factor E
[
log2

(
1 +

∑
k∈Θ

PGgk
σ2‖xk‖α

)]
in (66). Let us define Xk as

a series of independent exponential random variables with parameters τσ2‖xk‖α/(PG). Then,

we have ∑
k∈Θ

PGgk
σ2‖xk‖α

=
∑
k∈Θ

Xk.

By [35, Lemma 1], we obtain

E

[
log2

(
1 +

∑
k∈Θ

PGgk
σ2‖xk‖α

)]
=

∫ ∞
0

1−
∏

k∈Θ(1 + zPG(τσ2‖xk‖α)−1)−1

z ln(2)
e−z dz, (68)

which provides an approximation of E [C] when combined with (66) and (67).

Next, we introduce an explicit expression of E
[
log2

(
1 +

∑
k∈Θ

PGgk
σ2‖xk‖α

)]
, which does not

require the numerical integration in (68), for the case with ‖x1‖ = · · · = ‖xk‖ , ‖x‖ for some

fixed x. Assume first that Θ = {θ} is a singleton for a fixed θ ∈ Θall. Then,

E
[
log2

(
1 +

∑
k∈Θ

PGgk
σ2‖xk‖α

)]
=

∫ ∞
0

log2

(
1 +

PGu

σ2‖xθ‖α

)
τe−τu du (69)

=

[
− log2

(
1 +

PGu

σ2‖xθ‖α

)
e−τu

]∞
0

+

∫ ∞
0

d

du

(
log2

(
1 +

PGu

σ2‖xθ‖α

))
e−τu du (70)

=
PG

ln(2)σ2‖xθ‖α

∫ ∞
0

1

1 + PGu
σ2‖xθ‖α

e−τu du (71)

(e)
=

eτσ
2‖xθ‖α/(PG)

ln(2)

∫ ∞
1

1

v
e−vτσ

2‖xθ‖α/(PG) dv (72)

=
eτσ

2‖xθ‖α/(PG)

ln(2)
E1

(
τσ2‖xθ‖α

PG

)
, (73)
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where we have used the change of variable v = 1 + uPGσ−2‖xθ‖−α in (e), and

En(x) ,
∫ ∞

1

1

un
e−xu du, x 6= 0, n ≥ 1, (74)

is a generalization of the exponential integral special function. For a non-singleton Θ = {θ1, . . . ,

θm} ⊂ Θall, we note that
∑

k∈Θ gk is distributed according to a gamma random variable with

shape parameter m and rate parameter τ . In this case,

E

[
log2

(
1 +

∑
k∈Θ

PGgk
σ2‖xk‖α

)]
=

τm

(m− 1)!

∫ ∞
0

log2

(
1 +

PGr

σ2‖x‖α

)
rm−1e−τr dr︸ ︷︷ ︸

:=Im

, (75)

and Im satisfies the following recursion:

Im =
τm−1

(m− 1)! ln(2)

∫ ∞
0

(
ln

(
1 +

PGr

σ2‖x‖α

)
(m− 1)rm−2 +

PG

σ2‖x‖α
(

1 + PGr
σ2‖x‖α

)rm−1

)
e−τrdr

= Im−1 +
τm−1

(m− 1)! ln(2)

∫ ∞
0

1

σ2‖x‖α/(PG) + r
rm−1e−τr dr

= Im−1 +
1

(m− 1)! ln(2)

∫ ∞
0

1

τσ2‖x‖α/(PG) + u
um−1e−u du

(f)
= Im−1 +

eτσ
2‖x‖α/(PG)

ln(2)
Em

(
τσ2‖x‖α

PG

)
,

where (f) follows from Lemma 1 in the appendix. Consequently, from (73) and (75), we have

E

[
log2

(
1 +

∑
k∈Θ

PGgk
σ2‖xk‖α

)]
=

eτσ
2‖x‖α/(PG)

ln(2)

m∑
k=1

Ek

(
τσ2‖x‖α

PG

)
, (76)

where we recall that m is the number of elements in Θ, and Ek has been defined in (74).

Combining (66) and (76) with the approximation (67), we approximate the average throughput

as

E [C] ≈ eτσ
2‖x‖α/(PG)

ln(2)

∑
Θ⊂Θall; Θ 6=∅

|Θ|∑
k=1

Ek

(
τσ2‖x‖α

PG

)
P (A0 ∈ Ξ, Aθm ∈ Ξ)

×
∏

k∈Θ; k 6=θm

P (Ak ∈ Ξ)
∏

i∈Θall\Θ

(1− P (Ai ∈ Ξ)), (77)

where |Θ| denotes the cardinality of Θ and θm , min Θ for any non-empty Θ ⊂ Θall.

VI. SIMULATION RESULTS

In this section, we put forth numerical simulations to validate our analytical results.
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Fig. 7: Comparison between the Boolean-Poisson model and the conventional model.

A. Simulation framework

Unless otherwise stated, we assume that d = 2, α = 3, τ = 1, η = 1, σ2 = −90 dBm,

G = 0 dB, and Pe = 50 dBm, and adopt the distribution of radius µδ in (14) with δ given by

(17). We use the lines and symbols to denote the analytical and simulated results, respectively.

Simulation results are averaged over 105 realizations of the channel, the locations of the nodes

and the radii of coverage regions.

We now recall some background about QMC integration (see also [36] for a gentle introduc-

tion). The QMC integration method consists in finding a deterministic sequence x1, . . .xNsample ∈

[0, 1]n such that

QNsample(f) :=

Nsample∑
m=1

wmf(xm) ≈
∫

[0,1]n
f(x) dx, for all f : [0, 1]n → C continuous, (78)

as Nsample goes to infinity. In our simulations, we employ the Sobol sequence [37]. As expected,

the tightness of the QMC method depends on the number of samples Nsample. We have confirmed

from computer simulations that the QMC method with more than 32 samples yields only

negligible performance gain when evaluating our analytical result in (61). Therefore, in this

paper, we set the number of samples for the QMC method to Nsample = 32.
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Fig. 8: Comparison of the energy harvesting

probability for the single-hop networks.
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Fig. 9: Comparison of the energy harvesting

probability for the multi-hop networks.

B. Single-hop and multi-hop networks

Figs. 7 to 9 illustrate the energy harvesting probability PH of the networks. In Fig. 7, we

evaluate PH for the single-hop networks where l = 150 m, and in Fig. 9, la,a+1 = 200 m for

a = 1, . . . , n − 1. In Fig. 7, the conventional model means the model which is based on the

aggregated harvested power [21]–[25]. As shown in Fig. 7, when the distribution (14) with δ

given by (17) is employed, our analysis for the Boolean-Poisson model in Theorem 1 exhibits

almost identical performance with the conventional model for different values of α and λ. Hence,

in Figs 8 to 15, we adopt the distribution in (14) with δ given by (17). From Figs. 8 and 9, it

is shown that the analytical results in Section IV match well with the simulated results and the

energy harvesting probability decreases as P increases. When the sensor nodes in the network

are close together, the sensor nodes are more likely to be located in a coverage region of

an RF source, and therefore the probability that the nodes are in the energy harvesting zone

becomes high. Therefore, in Fig. 8, we observe that the energy harvesting probability increases

as the distance between two nodes l becomes small. Also, in Fig. 9, it is shown that the energy

harvesting probability decays as the number of sensor nodes increases.

In Figs. 10 and 11, we evaluate the transmission success probability PS of the networks. In

Fig. 10, the distance between nodes l is set to l = 200 m, and in Fig. 11, the intensity λ is fixed
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cess probability for the multi-hop networks.

as λ = 7 sources/km2 and la,a+1 = 200 m for a = 1, . . . , n − 1. As expected, PS increases as

γth decreases. One interesting observation is that PS is not a monotonic function of P . This is

due to the fact that the energy harvesting probability PH is a decreasing function of P while

PT in (50) is an increasing function of P . From the observation that PS becomes larger as P

grows when P is small, we can refer that Ps is dominated by PT when P is low. Moreover, in

Fig. 10, it is shown that PS grows as the intensity λ becomes larger.

Fig. 12 demonstrates the optimal number of hops for the networks with multiple nodes where

γth = −5 dB. We assume that there are n > 1 aligned nodes spanning a given distance L > 0. We

further assume that the inter-nodal distance is fixed and equal to L/(n−1), i.e., li,i+1 = L/(n−1)

for all i ∈ {1, . . . , n − 1}. Then, the optimal number of hops, which maximizes PS = PTPH ,

is identified by employing the exhaustive search algorithm. Note that when the number of hops

increases, PH decreases whereas PT increases since the received SNR at each hop largely

increases due to the shortened distance. Therefore, there exists a trade-off between PH and PT ,

from which an optimal number of hops can be obtained. Note that PH gets higher as P decreases

or λ increases. Therefore, as shown in Fig. 12, when P decays or λ grows, the optimal number

of hops is increased since PH slowly decreases over the number of hops. Also, when L is large,

due to a large path loss between the source (A1) and the destination (An), PT is very low for

a small number of hops. Thus, in order to improve PT , the optimal number of hops becomes
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Fig. 13: Comparison of the transmission suc-

cess probability for the networks with a PPP.

higher as L grows as seen in Fig. 12.

In Fig. 13, the transmission success probability PS for the networks with aligned sensor nodes

distributed according to a PPP is presented as a function of the intensity of sensor nodes λs with

various values of Nmax and γth. We mention that when the aligned sensor nodes are distributed as

a PPP, the transmission success probability PS is obtained by combining the approximation (62)

with the expression of fΨ given in (52). Here, we assume λ = 7 sources/km2, P = −20 dBm and

L = 300 m. It is worthwhile to note that the derived approximated expression is well matched

with the simulated results when Nmax is set to 12. We can observe that the gaps between the

approximations with small Nmax and the simulated results increase as λs grows. In addition,

we can see that the transmission success probability increases as λs grows. Although a higher

λs increases PT , PH is diminished as λs becomes larger, and therefore PS is saturated as λs

increases.

C. Star-shaped topology

In Fig. 14, we illustrate the average throughput for the networks with star-shaped topology

as a function of P . We set D , ‖x1‖ = · · · ‖xn‖ = 300 m. It is observed that when n = 3,

our analytical results with the approximation in (67) exhibit almost identical performance with

the simulation results. Note that the approximation in (67) comes from the assumption that the
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events Aθk(k > 1) are located in the energy harvesting enabled region are independent. If n is

large, the locations of sensor nodes are more likely to be correlated, and thus, for the case of

n = 6, there exist small gaps between the analytical results and simulation results. As expected,

we can see that the average throughput becomes larger as λ increases or n grows.

Fig. 15 examines the influence of P , D , ‖x1‖ = · · · ‖xn‖ and n on the average throughput for

the networks where λ = 6 sources/km2. It is shown that the derived approximations well predict

the performance of the networks. Note that as similar to the transmission success probability

in Figs. 10 and 11, the average throughput is not a monotonic function of P since the first

and second terms in the summation in (66) are an increasing and a decreasing function of P ,

respectively. Also, the average throughput is a monotonically increasing function of n. Moreover,

we can observe that the approximation in (67) gets looser as D decreases or n increases. This is

due to the fact that the probability that sensor nodes are located closely to one another increases

when D is small or n is large, and this leads to a correlation among the sensor nodes.

VII. CONCLUSION

In this paper, we have presented a novel analytical framework based on the Boolean-Poisson

model for analyzing the performance of wireless energy harvesting networks. The probability of
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a single node being covered by the Boolean-Poisson model is well known. We have extended

this computation to the cases of two nodes, multiple aligned nodes with fixed distances, and

multiple aligned nodes distributed according to a point process. In these different settings, the

performance metrics have been derived. We have also derived a tight approximation of the

average throughput of networks with star-shaped topology. In addition, we have conducted an

extensive simulation to validate the described analytical framework.

APPENDIX

Lemma 1. For any m > −1 and β > 0, we have∫ ∞
0

rm

r + β
e−r dr = eβ Em+1(β) Γ(m+ 1). (79)

Proof. Starting from the right-hand side of (79), we have

eβ Em+1(β) Γ(m+ 1) = eβ
∫ ∞

1

∫ ∞
0

u−m−1vm e−(βu+v) dv du.

Then, by the bi-dimensional change of variables u = s/(r + β) and v = rs/(r + β), the above

expression is simplified to

eβ Em+1(β) Γ(m+ 1) = eβ
∫ ∞

0

∫ ∞
r+β

( s

r + β

)−m−1( rs

r + β

)m
e−s

s

(r + β)2
ds dr

= eβ
∫ ∞

0

∫ ∞
r+β

rm

r + β
e−s ds dr = eβ

∫ ∞
0

rm

r + β
e−(r+β) dr

=

∫ ∞
0

rm

r + β
e−r dr,

which concludes the proof.
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