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Abstract—Wireless radio frequency (RF) energy harvesting
has been adopted in wireless networks as a method to supply
energy to wireless nodes, e.g., sensors. In this paper, we present a
new analysis of the wireless energy harvesting network based on
a Boolean-Poisson model. This model considers that the energy
sources have a fixed coverage range. The energy sources are
distributed according to a Poisson point process (PPP) while
their radii of coverage are random and are assumed to follow
a given probability distribution. We derive the performance
measures consisting of the energy harvesting probability and the
transmission success probability both in the cases of two nodes
and multiple nodes. Our analysis is validated by simulation.

Index Terms—RF energy harvesting, Boolean-Poisson model,
multihop networks.

I. INTRODUCTION

Recently, RF energy harvesting techniques have been de-
veloped to let mobile and sensor nodes scavenge energy
from radiated RF signals from ambient or dedicated RF
sources [1]. Due to its advantages of powering energy-
constrained devices and prolonging the lifetime of wireless
networks, many researchers have studied energy harvesting
methods in various wireless network scenarios [2]–[7]. For
example, in [2]–[4], transmit beamforming methods which
optimize the performance were developed for the networks
where energy harvesting nodes collect power from the RF sig-
nals sent by its dedicated RF energy transmitters. To analyze
the performance of the network with RF energy harvesting
capability, analytical models based on a Poisson point process
(PPP) were introduced [5]–[7]. In such models, the locations
of RF energy sources are geographically distributed according
to the PPP, assuming that nodes in the networks harvest energy
from the signals transmitted by surrounding energy sources.
The study in [5] introduced a tradeoff among transmit power,
density of base stations, and density of energy sources in
an uplink cellular network. In [6], the authors derived the
outage probability of a network overlaid with power beacons
distributed according to a PPP. Alternatively, the authors
in [7] investigated the transmission success probability in an
RF energy harvesting multi-tier uplink cellular network by
modeling the level of stored energy as a Markov chain.

In wireless energy harvesting networks, one can consider
the coverage region of an RF energy source, i.e. an energy
harvesting enabled area formed by the RF signals from the
energy source. Then, the union of the coverage regions can
be understood as the energy harvesting enabled region in the
networks. In this sense, the probability that nodes can harvest

energy is related to not only the distribution of the locations of
the RF energy sources, but also characteristics of the coverage
region. However, most previous works on energy harvesting
networks have not taken the features of the coverage regions
into account when analyzing the networks.

In this paper, we assume that the RF energy sources are
distributed according to a homogeneous PPP, and the coverage
region of a RF source is a disc of random radius. This
model is known in the literature as the Boolean model. The
Boolean model has been extensively studied, cf. [8] and [9]
for a thorough overview, and the coverage properties of the
model were investigated in [10]–[12]. The model has been
used in different applications, see [8]. More specific examples
are [13] for applications to image analysis and [14], [15] for
applications to wireless networks. However, its application to
wireless energy harvesting networks has not been previously
considered.

The analysis presented in this paper considers two major
situations arising in RF energy harvesting networks, i.e., two
node harvesting and multiple node harvesting. The perfor-
mance measures in terms of the energy harvesting proba-
bility and transmission success probability are derived. As
for the mathematical contributions, Theorem 1 provides the
probability that two nodes at fixed locations are covered by
the Boolean model. This is the situation in which the nodes
can harvest energy and are able to communicate with each
other. We extend the computation of Theorem 1 to the case
of multiple nodes at aligned fixed points. These nodes are
part of a multihop link, and thus the important performance
metric is an end-to-end transmission success probability. We
find that these results depend only on the law of the radius,
and we provide some explicit computations for a panel of
common distributions.

II. THE BOOLEAN-POISSON MODEL

This section introduces the required background for the
study of the Boolean-Poisson model which is also known as
a Boolean model. Let us define µ a probability measure on
[0,1) and consider the probability space (⌦,F ,P) on which
we let � be a PPP supported on Rd ⇥ [0,1). The intensity
measure is `⌦ (�µ), where ` indicates the Lebesgue measure
on Rd. We denote by Bx(r) the open Euclidean ball of Rd

centered at x 2 Rd with radius r 2 [0,1). Moreover, we
consider the following random set

⌅ =

[

(x,r)2�

Bx(r), (1)
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Fig. 1: Description of the Boolean-Poisson model

which consists of all points covered by at least one ball.
The set ⌅ is called the Boolean-Poisson model, and � is the
underlying PPP containing the pairs (x, r) of points along with
their corresponding radius. We illustrate the model in Fig. 1.

In the Boolean-Poisson model, the metric of interest is the
probability that a fixed point in Rd is covered by the union
of balls. Let us consider a point A in space located at x 2 Rd

and define the set

Cx =

n

(y, r) 2 Rd ⇥ [0,1) : y 2 Bx(r)

o

. (2)

Then, since x /2 ⌅ () � \ Cx = ;, the probability that
the point A falls in ⌅ can be computed by fairly standard
calculations:

P (x 2 ⌅) = 1� P (� \ Cx = ;)
= 1� exp (�(`⌦ (�µ)) (Cx))

= 1� exp

✓

��

Z 1

0

` (Bx(r))µ(dr)

◆

= 1� exp

✓

��vd

Z 1

0

r

d
µ(dr)

◆

, (3)

where vd , ⇡

d/2
/�(d/2+1) represents the volume of the d-

dimensional Euclidean ball, and �(·) is the Gamma function.
Note that P (x 2 ⌅) = 1 when

R1
0 r

d
µ(dr) = 1. Therefore,

we can infer that a point in Rd is almost surely covered by the
Boolean-Poisson model if the d-th moment of µ is infinite.

III. SYSTEM MODEL

In this paper, we analyze the wireless energy harvesting
networks consisting of a (random) number of ambient RF
energy sources. In the networks, sensor nodes harvest energy
from the RF signals radiated by the ambient RF energy
sources, and transmit or receive data by using the harvested
energy. The homogeneous PPP � with density � models the
locations of the ambient RF energy sources. Also, we assume
that each energy source has its own coverage region, and
the sensor nodes in the region can scavenge energy from
one of the energy sources. The coverage region of each
ambient RF energy source is modeled by the open Euclidean
ball of Rd centered at the location of the energy source
with a randomly distributed radius distributed according to
µ. By construction, the energy harvesting enabled region is
modeled as the Boolean-Poisson model ⌅ as defined in (1).
Fig. 2 illustrates a realization of the network where d = 2,
� = 0.04, and the radius is exponentially distributed, i.e.,
µ(dr) = ⇢ exp(�⇢r) dr with ⇢ = 0.5.
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Fig. 2: A realization of the network in a Boolean-Poisson
model where black dots and blue circles represent the loca-
tions of the ambient RF energy sources and boundaries of the
coverage region

It is worthwhile to note that exploiting the Boolean-Poisson
model to model the energy harvesting networks is a new
approach and different from the conventional approach in [5]–
[7]. Most previous works on the wireless energy harvesting
networks have not considered characteristics of the coverage
range and only focused on the locations of the energy sources.
However, the probability that a sensor node in the network
can harvest energy is strongly dependent on the distribution
of the coverage range. Therefore, it is important to investigate
the performance of the networks where the energy harvesting
enabled region is modeled as the Boolean-Poisson model.

Let us consider n sensor nodes A1,A2, . . . ,An which are
respectively located at x1 2 Rd

, x2 2 Rd
, . . . , xn 2 Rd.

We assume multi-hop networks where node A1 transmits
data to node An aided by nodes A2, . . . ,An�1. In this case,
the transmission succeeds when all nodes are located in the
energy harvesting enabled region ⌅, and the received signal-
to-noise-ratio (SNR) of each hop is larger than a certain
threshold �th which means the minimum SNR required for the
successful data detection. Therefore, by defining PH and PT

as the probabilities that all nodes can harvest energy and the
received SNRs for all hops are higher than �th, respectively,
the transmission success probability PS can be expressed as

PS = PHPT , (4)

where

PH = P (8k 2 {1, . . . , n}, xk 2 ⌅) , (5)

and

PT = P (8k 2 {1, . . . , n� 1}, �k � �th) . (6)

Here, �k , Ph
k

||x
k+1�x

k

||�↵

�2 stands for the received SNR
for the k-th hop where P is the transmit power at all nodes,
hk denotes the fading power for the k-th hop, ↵ indicates
the pathloss exponent, and �

2 accounts for the power of
additive white Gaussian noise. In this paper, the fading powers
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(a) Non-coverage: only A1 is covered

(b) Coverage: both A1 and A2 are covered

Fig. 3: Examples to illustrate networks with two nodes

{hk} are assumed to follow independently and identically
distributed (i.i.d.) exponential distribution with parameter ⌧ .
It is also assumed that the {hk} are independent of the PPP
�.

IV. PERFORMANCE ANALYSIS

In this section, we first derive an analytical expression for
the transmission success probability in the networks where
two nodes exist. Then, we generalize the analytical result to
the case of the networks with multiple nodes.

A. Networks with two nodes

Let us consider two nodes A1 and A2 which are located at
x1 2 Rd and x2 2 Rd, respectively. Note that both A1 and A2

ought to be located in ⌅ in order to scavenge energy. As an
illustration, the placement of A2 in Fig. 3a corresponds to a
non-coverage situation, whereas that of in Fig. 3b corresponds
to a coverage situation.

In the networks with two nodes, the coverage probability
PH in (5) can be rewritten as

PH = P (x1 2 ⌅) + P (x2 2 ⌅)� P ({x1 2 ⌅} [ {x2 2 ⌅})
(a)
= 2� 2 exp

✓

��vd

Z 1

0

r

d
µ(dr)

◆

� P ({x1 2 ⌅} [ {x2 2 ⌅}) , (7)

where (a) follows from the result in (3) and the stationarity
of the PPP. In the following theorem, we provide an analytical
expression for PH .

Theorem 1: In the networks with two nodes, the probability
that both nodes can harvest energy is given by

PH = 1� 2 exp

✓

��vd

Z 1

0

r

d
µ(dr)

◆

+ exp

✓

�2�vd

Z 1

0

r

d
µ(dr)

+�vd

Z 1

l/2

I1�l2/(4r2)

✓

d+ 1

2

,

1

2

◆

r

d
µ(dr)

!

, (8)

Fig. 4: An illustration for the case of r � l/2

where l , kx1�x2k is the distance between A1 and A2. Here,
Iz(a, b) is the regularized incomplete beta function defined by

Iz(a, b) =
�(a+ b)

R z

0
u

a�1
(1� u)

b�1
du

�(a)�(b)

, a, b, z > 0.

Proof: Let us define �x1 as a PPP on the same probability
space as �, supported on Cc

x1
with intensity measure `⌦ (�µ)

restricted to Cc
x1

, where X

c denotes the complement of a
set X . Recall that Cx1 has been defined in (2). We define
accordingly the Boolean-Poisson model associated to �x1 as
⌅x1 =

S
(x,r)2�

x1
Bx(r). Then, we have

P (x2 /2 ⌅x1) = P ({(y, r) 2 �x1 : x2 2 By(r)} = ;)
= P (�x1 \ Cx2 = ;)
= exp (�(`⌦ (�µ)) (Cx2 \ Cc

x1
))

= exp

✓

��

Z 1

0

` (Bx2(r) \ Bx1(r)
c
)µ(dr)

◆

.

Now, we focus on the computation of the volume in the
above equation. First, if r < l/2, then ` (Bx2(r) \ Bx1(r)

c
) =

` (Bx2(r)) = vdr
d. Second, if r � l/2, then one has

to compute the shaded area in Fig. 4 (represented here in
dimension d = 2). The above d-dimensional volume (known
in the literature as hyperspherical cap) is equal to [16]

` (Bx2(r)\Bx1(r)
c
)=vdr

d

✓

1�I1�l2/(4r2)

✓

d+ 1

2

,

1

2

◆◆

.

Hence, P (x2 /2 ⌅x1) becomes

P (x2 /2 ⌅x1) = exp

✓

��vd

Z 1

0

r

d
µ(dr)

+�vd

Z 1

l/2

I1�l2/(4r2)

✓

d+ 1

2

,

1

2

◆

r

d
µ(dr)

!

. (9)

Note that the law of � given � \ Cx1 = ; coincides with the
distribution of �x1 , and therefore P ({x1 2 ⌅} [ {x2 2 ⌅})
in (7) can be written as

P ({x1 2 ⌅} [ {x2 2 ⌅})
= 1� P (x1 /2 ⌅)P (x2 /2 ⌅ | x1 /2 ⌅)

= 1� P (x1 /2 ⌅)P (x2 /2 ⌅ | � \ Cx1 = ;)
= 1� P (x1 /2 ⌅)P (x2 /2 ⌅x1) . (10)

Combining (7), (9) and (10), we obtain the result in (8).
In the following corollary, we customize Theorem 1 to the

case d = 2, which is the main situation of interest.
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Fig. 5: An example to illustrate networks with multiple nodes

Corollary 1: When d = 2, the coverage probability can be
simplified as

PH = 1� 2 exp

✓

��⇡

Z 1

0

r

2
µ(dr)

◆

+ exp

 

�2�⇡

Z 1

0

r

2
µ(dr) + 2�

Z 1

l/2

✓

arccos

✓

l

2r

◆

� l

2r

r

1� l

2

4r

2

!

r

2
µ(dr)

!

, (11)

where arccos(·) denotes the inverse cosine function, and we
recall that l is the distance between A1 and A2.

Proof: By using mathematical software such as Mathe-
matica, we may rewrite I1�l2/(4r2)

�
3
2 ,

1
2

�
as

I1�l2/(4r2)

✓

3

2

,

1

2

◆

=

2

⇡

Z 1�l2/(4r2)

0

r

u

1� u

du

=

2

⇡

 

arccos

✓

l

2r

◆

� l

2r

r

1� l

2

4r

2

!

.

Also, if d = 2, v2 is equal to ⇡. From these results, we derive
the expression in (11).

When the networks consists of only two nodes, PT in (6)
is easily computed as

PT = P
✓

Ph1l
�↵

�

2
� �th

◆

= exp

✓

�⌧ l

↵
�

2
�th

P

◆

. (12)

From (8), (11) and (12), we deduce the transmission success
probability in (4).

B. Networks with multiple nodes

In this subsection, we concentrate on the wireless energy
harvesting networks containing multiple nodes. Let us con-
sider A1, . . . ,An nodes (here n � 2) which are located at
x1 2 Rd

, . . . , xn 2 Rd, respectively, and define the inter-
nodal distance as

la,b , kxb � xak, a, b 2 {1, . . . , n}.

We assume that the nodes are aligned as shown in Fig. 5. In
this example, as node A3 is not covered, node A3 does not
have available power for data decoding and encoding, and
therefore outage occurs when node A1 attempts to communi-
cate with node A5 through nodes A2, A3 and A4.

We remark that PH can be computed as

P (8k 2 {1, . . . , n}, xk 2 ⌅)

= 1� P (9k 2 {1, . . . , n}, xk /2 ⌅)

(c)
= 1 +

X

X⇢{1,...,n}, X 6=;

(�1)

|X|P (8k 2 X, xk /2 ⌅) , (13)

where (c) follows from the inclusion-exclusion principle and
|X| denotes the cardinal of a set X .

We exploit relation (13) in the following theorem, wherein
we derive a procedure for computing the probability that all
n nodes are covered by the Boolean-Poisson model.

Theorem 2: Let X = (a1, . . . , an) ⇢ {1, . . . , n} cor-
respond to one of the terms appearing in (13). Then
P (8k 2 X, xk /2 ⌅) is given inductively by

P (8k 2 {a1, . . . , an}, xk /2 ⌅)

= P (8k 2 {a1, . . . , an�1}, xk /2 ⌅)

⇥ exp

✓

��vd

Z 1

0

r

d
µ(dr)

+�vd

Z 1

l

a

n

,a

n�1
2

I

1�
l

2
a

n

,a

n�1
4r2

✓

d+ 1

2

,

1

2

◆

r

d
µ(dr)

!

,

whilst noting that the initial term P (xa1 /2 ⌅, xa2 /2 ⌅) has
been computed in Theorem 1.

Proof: In this setting, one may compute the probability
in the summation in (13) by induction as follows:

P (8k 2 {a1, . . . , an}, xk /2 ⌅)

= P (8k 2 {a1, . . . , an�1}, xk /2 ⌅)

⇥ P
⇣

xa
n

/2 ⌅ | � \ Cx
a1

= ;, . . . ,� \ Cx
a

n�1
= ;
⌘

= P (8k 2 {a1, . . . , an�1}, xk /2 ⌅)

⇥ exp

⇣

�(`⌦ (�µ))

⇣

Cx
a

n

\ (Cx
a1

[ · · · [ Cx
a

n�1
)

c
⌘⌘

= P (8k 2 {a1, . . . , an�1}, xk /2 ⌅)

⇥ exp

✓

��

Z 1

0

`

�

Bx
a

n

(r) \ Bx
a1
(r)

c \ · · ·

\ Bx
a

n�1
(r)

c
)µ(dr)

◆

.

From the assumption that the n nodes are aligned, we have

Bx
a

n

(r)\Bx
a1
(r)

c\. . .\Bx
a

n�1
(r)

c
=Bx

a

n

(r)\Bx
a

n�1
(r)

c
.

Thus, in a similar manner to Theorem 1, the volume can be
computed as

`

⇣

Bx
a

n

(r)\Bx
a

n�1
(r)

c
⌘

=vdr
d

✓

1�I

1�
l

2
a

n

,a

n�1
4r2

⇣

d+ 1

2

,

1

2

⌘

◆

.

This concludes the proof.
In multi-hop networks, PT in (6) becomes

PT = P
 

8k 2 {1, . . . , n� 1},
Phkl

�↵
k+1,k

�

2
� �th

!

= exp

 

�⌧�

2
�th

P

n�1
X

k=1

l

↵
k+1,k

!

. (14)

We may then derive the transmission success probability PS

in (4) using Theorem 2, i.e., (13) and (14).
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C. Distribution of the radius

In this subsection, we consider some specific distributions
for the radius, i.e., discrete distribution, continuous uniform
distribution and Gamma distribution. Then, we introduce
more simplified expressions for the integrals in the coverage
probability. For the simplicity of presentation, we assume
d = 2 and define the two integrals appearing in Corollary 1
as

⌘1 ,
Z 1

0

r

2
µ(dr),

⌘2 ,
Z 1

l/2

 

arccos

✓

l

2r

◆

� l

2r

r

1� l

2

4r

2

!

r

2
µ(dr),

so that

PH = 1� 2 exp (��⇡⌘1) + exp (�2�⇡⌘1 + 2�⌘2) .

1) First, assume that the radius can take only a finite
number of values, denoted by R1, . . . , Rm 2 (0,1) for
some m � 1, and set pi = µ({Ri}) for i = 1, . . . ,m,
which is the probability that the radius is equal to Ri.
This corresponds to the following choice of µ

µ(dr) =

m
X

i=1

pi �R
i

(dr),

where �r denotes the Dirac measure at point r 2 [0,1).
Then, we obtain ⌘1 =

Pm
i=1 piR

2
i and

⌘2 =

m
X

i=1

pi {R
i

�l/2}

⇥
 

arccos

✓

l

2Ri

◆

� l

2Ri

s

1� l

2

4R

2
i

!

R

2
i .

2) Next, let us consider the case where the radius is
uniformly distributed on [0, R] for a fixed R 2 [0,1),
i.e.,

µ(dr) =

1

R

[0,R] dr.

Then, ⌘1 can be easily obtained as ⌘1 = R

2
/3. Now,

we focus on the computation of ⌘2 for R � l/2 as
⌘2 = 0 for R < l/2. Note that an antiderivative of
r 7! r

2
(arccos(l/(2r))� l/(2r)

p
1� l

2
/(4r

2
)) is

'(r) ,r

3

3

arccos

✓

l

2r

◆

� r

2
l

3

r

1� l

2

4r

2

+

l

3

24

ln

 

2r

 

1 +

r

1� l

2

4r

2

!!

.

Hence, we can compute ⌘2 as

⌘2 =

1

R

✓

'(R)� '

✓

l

2

◆◆

.

3) Last, assume that the radius is Gamma distributed, i.e.,

µ(dr) =

1

�(m)✓

m
r

m�1
e

�r/✓
dr,

where m > 0 and ✓ > 0 stand for the shape and scale
parameters, respectively. Then, we can readily calculate
⌘1 as

⌘1 = ✓

2
m(1 +m).

;
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Fig. 6: Comparison of the energy harvesting probability for the
networks with two nodes and exponentially distributed radius

We remark that to the best of our knowledge, when the
radius is Gamma distributed, the integral ⌘2 does not
have a closed form in terms of standard mathematical
functions.

V. SIMULATION RESULTS

In this section, we provide numerical results to validate our
analytical results. We assume that d = 2 and use the lines
and symbols to denote the analytical and simulated results,
respectively. Figs. 6 and 7 illustrate the energy harvesting
probability of the networks when the radius is exponentially
distributed with parameter ⇢, i.e., ⇢ is an inverse of the
mean. Note that this distribution is same as the Gamma
distribution with parameters m = 1 and ✓ = 1/⇢. In Fig.
7, the density � is fixed as � = 0.15. From the figures,
it is shown that the analytical results match well with the
simulated results. Since the mean of the radius decreases as
⇢ grows, the energy harvesting probability decreases when ⇢

increases. When the nodes in the network are close together,
the probability that the nodes are in the coverage region
becomes high. Therefore, in Fig. 6, we can see that the energy
harvesting probability increases as the distance between two
nodes l becomes small. Also, in Fig. 7, it is shown that the
energy harvesting probability decays as the number of sensor
nodes increases.

In Figs. 8 and 9, we evaluate the transmission success
probability of the networks where the radius is uniformly
distributed on [0, R]. Here, the SNR is defined as P/�

2, and
�th = 1, ⌧ = 1 and ↵ = 4. In Fig. 8, the distance between
nodes l is set to l = 2, and in Fig. 9, the density � is fixed as
� = 0.15. We can see that the transmission success probability
increases as R grows. This is due to the fact that the coverage
region becomes larger as R increases. Moreover, in Fig. 8, it
is shown that the transmission success probability grows as
the density � becomes larger. Note that the probability PT in
(6) is the product of the probabilities that the received SNR
for each hop is larger than �th. Consequently, in Fig. 9,
we observe that the transmission success probability rapidly
decays to zero as the number of hops increases if the SNR is
low.
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Fig. 7: Comparison of the energy harvesting probability for the
networks with multiple nodes and exponentially distributed
radius
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Fig. 8: Comparison of the transmission success probability for
the networks with two nodes and uniformly distributed radius
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Fig. 9: Comparison of the transmission success probability for
the networks with multiple nodes and uniformly distributed
radius

VI. SUMMARY

In this paper, we have presented a novel analytical frame-
work for analyzing the performance of wireless energy har-
vesting networks. The framework is based on the classical
Boolean-Poisson model. The probability of a single node
being covered by the Boolean-Poisson model is well-known.
We have extended this computation by considering the cases
of two nodes and multiple nodes. The former involves the
transmitter and receiver, while the latter also includes relays.
In both of these settings, the energy harvesting probability and
transmission success probability have been derived. We have
conducted an extensive simulation to validate the described
analytical framework.
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