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Abstract

We investigate explosion in finite time of one-dimensional semilinear equa-
tions of the form

∂ut
∂t

(x) =
1

2

∂2ut
∂x2

(x) +
ϕ′(x)

ϕ(x)

∂ut
∂x

(x)− a

x2
ut(x) + u1+βt (x)

with initial value φ ≥ 0, where ϕ ∈ C2(R) is positive and a ≥ 0, β > 0 are
constants. In the free case a = 0 we provide conditions on ϕ under which any
positive nontrivial solution is non-global. In the case a > 0 and ϕ(x) = xµ+1/2,
µ ∈ R, which includes in the special case µ = −1/2 the equation

∂ut
∂t

(x) =
1

2

∂2ut
∂x2

(x)− a

x2
ut(x) + u1+βt (x),

we use the Feynman-Kac formula for Bessel processes to give conditions on the
equation parameters ensuring finite-time blowup and existence of nontrivial
positive global solutions.

Key words: Semilinear PDEs, Bessel processes, Feynman-Kac representation, critical ex-
ponent, finite time blow-up, global solution.
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1 Introduction

Consider a semilinear PDE of the form
∂ut
∂t

(x) = Aut(x)− V (x)ut(x) +G(ut(x)), t > 0,

u0(x) = φ(x), x ∈ RN ,

where A is the generator of a nice Markov process in RN and V (x), x ∈ RN , is a

nonnegative potential, G(z) ≥ 0 is a nonlinear term which is locally Lipschitz, say of

the form G(z) = z1+β for some β > 0, and the initial value u0(x) = φ(x) is bounded

and nonnegative. In this setting, a positive solution ut(x) will either exist up to a
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finite life span τf , and in this case ‖ut‖∞ explodes as t approaches τf from below, or

exists globally in the sense that ‖ut‖∞ <∞ for all t > 0. In the former case it is said

that ut(x) blows up in finite time, and in the latter that ut(x) is a global solution.

It is well-known that, when V = 0 and A = ∆ is the Laplacian in the N -

dimensional Euclidean space, the ratio 2/N rules out the asymptotic growth of ut(x).

More precisely, if β ≤ 2/N then, apart from 0, there are no nonnegative global solu-

tions, whereas if β > 2/N , the equation admits nontrivial positive global solutions.

When V (x) > 0 is constant one can prove under mild conditions on A that ut(x)

must be global if we choose φ appropriately small. This follows from the fact that,

since V > 0 and etA is a contraction for every t > 0, ‖e−tV etAϕ‖∞ decays exponentially

fast as t→∞, and this suffices to conclude that ut(x) is global if φ(x) decays quickly

enough to 0 as ‖x‖ goes to infinity.

The case when V (x) ≥ 0 is non-constant is less clear and has been studied both

in the analytic and probabilistic literature. For example, critical exponents for the

finite time blow-up of the semilinear equation
∂ut
∂t

(x) =
1

2
∆ut(x)− V (x)ut(x) + u1+βt (x), t > 0,

u0(x) = φ(x), x ∈ RN ,

in dimensions N ≥ 3, where φ(x) ≥ 0 and V (x) is bounded above (or below) by

a/(1 + |x|b), x ∈ RN , with a > 0 and b ∈ [2,∞), have been studied in [11], [14], [15].

In [7] we treated this type of problem using heat kernel estimates and the Feynman-

Kac representation, again for N ≥ 3, but including in the critical value b = 2. It

turns out that, if N ≥ 3 and

0 ≤ V (x) ≤ a

1 + ‖x‖b
, x ∈ RN ,

where a > 0 and b > 2, then ut(x) blows up in finite time for all 0 < β < 2/N . On

the contrary, if

V (x) ≥ a

1 + ‖x‖b
, x ∈ RN ,

with a > 0 and 0 ≤ b < 2, then ut(x) can be global for any β > 0 provided φ(x)

decays sufficiently fast to 0 as x goes to infinity. For the “critical” value b = 2, blowup

occurs when 0 < β < β∗(a), where the upper bound β∗(a) depends rather sensitively

on a; see [6], [7], [11]. Thus, substracting a nontrivial potential to the diffusion term
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in our equation may be a delicate question.

The unbounded potential V (x) = a/|x|2 has been considered when N ≥ 3 in [5],

[1], and [2], where it is shown that (1.6) admits a unique critical exponent β(a) < 2/N ,

given by

β(a) =
4

2 +N +
√

8a+ (N − 2)2
. (1.1)

Namely, if V (x) = a|x|−2, then no global nontrivial solution of (1.6) exists if β < β(a),

whereas global solutions exist if β > β(a).

As noted above, most of the existing literature on the blowup of semilinear PDEs

with potential deals with the case N ≥ 3. In this paper we investigate the one-

dimensional case of semilinear equations of the form
∂ut
∂t

(x) =
1

2

∂2ut
∂x2

(x) +
ϕ′(x)

ϕ(x)

∂ut
∂x

(x)− a

x2
ut(x) + u1+βt (x), t > 0,

u0(x) = φ(x) ≥ 0, x > 0,

(1.2)

where β > 0 and a ≥ 0 are constants, and φ is a non identically vanishing measurable

function on R. The case N = 1 has several features that make it different from that

of N ≥ 3, in particular the potential V (x) = a/x2, a > 0, is not integrable around 0

and the underlying Brownian motion returns to 0 with probability one.

We proceed as follows. In Section 2 we first consider the “free case” a = 0 and C2

functions ϕ ∈ L2(R) such that ϕ′/ϕ is bounded. Using Jensen’s inequality, together

with the fact that µ(dx) = ϕ2(x) dx is an invariant measure of the semigroup (Tt)t∈R+

with generator

Lϕf(x) :=
1

2

∂2f

∂x2
(x) +

ϕ′(x)

ϕ(x)

∂f

∂x
(x),

we arrive at the conclusion that ‖ut‖∞ explodes in finite time.

In the remaining sections 3, 4, 5 and 6 we consider the case a ≥ 0 with

ϕ(x) = xµ+1/2, x ∈ R,

where µ ∈ R, which renders the equation
∂ut
∂t

(x) = Lµut(x)− a

x2
ut(x) + u1+βt (x), t > 0,

u0(x) = φ(x), x > 0,

(1.3)

3



where

Lµ =
1

2

∂2

∂x2
+

2µ+ 1

2x

∂

∂x

is the generator of the Bessel process of index µ ∈ R, and β > 0 is a constant. This

case falls apart from the setting outlined above, including in the case of a = 0, there-

fore we need to resort to other techniques. Our main tools here are the Feynman-Kac

representation of (1.3), as well as certain bounds established in Sections 3 and 4 for

the heat kernel and for the conditional moments of the Bessel generator perturbed by

V (x). This approach also allows us to deal with a class of convex increasing nonlin-

earitiesG(z), and with certain time-dependent nonlinear terms of the form tζG(ut(x)).

Next in Section 5 we prove that for µ ∈ R, if a > 0 and

β <
2 + µ−

√
µ2 + 2a

2 + µ+
√
µ2 + 2a

, (1.4)

then (1.3) possesses no nontrivial positive global solutions, cf. Corollary 5.3. We

also deal with a semilinear equation whose nonlinear term is of the form tζG(ut(x)),

where ζ ≥ 0 is a constant and G(z) is a positive increasing convex function satisfying

certain growth conditions, see (5.3) below.

In Section 6 we show that for µ ∈ R and a > 0, (1.3) admits a global positive

nontrivial solution when

β >
2

2 + µ+
√
µ2 + 2a

, (1.5)

cf. Theorem 6.2. When µ > −1 and a = 0 we find 2/d := (1 + µ)−1 as the critical

exponent for explosion of (1.3), where d = 2 + 2µ denotes the dimension of the

underlying Bessel process with parameter µ ∈ R. Notice that when µ ≥ 0, (1.4) and

(1.5) recover the critical exponent (1 + µ)−1 as a tends to 0, while in case µ < 0 the

equation exhibits a discontinuous behavior and the bounds (1.4) and (1.5) do not

apply when a = 0. This is due to the fact that the Bessel process almost surely does

not return to 0 when µ ≥ 0, and returns to 0 in finite time with strictly positive

probability when µ < 0. In particular when µ = −1/2 and a > 0, i.e. d = 1, this

shows that the equation

∂ut
∂t

(x) =
1

2

∂2ut
∂x2

(x)− a

x2
ut(x) + u1+βt (x), (1.6)
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(with a nontrivial positive u0) blows up in finite time for

β <
3−
√

1 + 8a

3 +
√

1 + 8a
< β(a),

and admits a global solution when

β >
4

3 +
√

1 + 8a
= β(a),

which partly extends (1.1) to the case N = 1. As noted above, when a tends to 0 the

above thresholds do not recover the critical exponent 2, which is obtained separately

in Corollary 5.3 and Theorem 6.2 below.

2 The free case

In this section we consider the case a = 0 and prove that (1.2) blows-up in finite time

when ϕ : R→ (0,∞) is in L2(R), of class C2, and such that the function

x 7−→ ϕ′(x)

ϕ(x)
, x ∈ R,

is bounded. First, let us explain our method in the particular case

ϕ(x) = e−x
2/2, x ∈ R,

in which (1.2) becomes

∂ut
∂t

(x) =
1

2

∂2ut
∂x2

(x)− x∂ut
∂x

(x) + u1+βt (x), t > 0,

where

Lϕ =
1

2

∂2

∂x2
− x ∂

∂x

is the generator of the Ornstein-Uhlenbeck process with semigroup (Tt)t∈R+ . Then

the semigroup (Qt)t∈R+ defined by

Qtf(x) := e−x
2/2Tt

(
ex

2/2f(x)
)
, t ∈ R+,

is the Markov semigroup corresponding to the harmonic oscillator, a real-valued

Gauss-Markov process having generator

H =
1

2

∂2

∂x2
− x2

2
+

1

2
. (2.1)
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Since Qt can be written as

Qtf(x) =

∫ ∞
−∞

Kt(x, y)f(y) dy,

where the kernel Kt(x, y) is given by Mehler’s formula, it is easy to verify that for

any positive φ ∈ L2(µ) and all sufficiently large t we have

Qtφ(x) ≥ cκ(βt)−1/β, x ∈ R, (2.2)

for some constant c > 0, and

κ = inf
t≥1

inf
|x|,|y|<1

Kt(x, y) > 0,

provided φ does not identically vanish. The inequality (2.2) above ensures finite-time

blowup of the solution of
∂ut
∂t

(x) = Hut(x) + u1+βt (x),

u0(x) = φ(x), x ∈ R, t > 0,

see [8] and [9]. From here we can infer that the norm ‖ut‖∞ of the solution ut(x) to

(1.2) with a = 0 explodes in finite time.

In the general case, when the function ϕ(x) is not specified, one cannot expect to

know explicitly the transition densities of (Qt)t∈R+ , however we obtain the following

result.

Theorem 2.1 Let ϕ ∈ L2(R) ∩ C2(R) be a positive function such that

x 7→ ϕ′(x)

ϕ(x)
, x ∈ R,

is bounded. Let µ(dx) := ϕ2(x) dx, and let G be a positive convex function such that

G(z) ≥ cz1+β for all z ≥ 0,

where β > 0 and c > 0 is constant. Then the norm ‖ut‖L1(µ) of any positive solution

of 
∂ut
∂t

(x) = Lϕut(x) +G(ut(x)),

u0(x) = φ(x) ≥ 0, x ∈ R, t > 0,

(2.3)
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blows up in finite time, provided its initial value φ ≥ 0 has the form

φ(x) =
h(x)

ϕ(x)
≥ 0, x ∈ R, (2.4)

for some positive nontrivial h ∈ C2(R)
⋂
L2(µ).

Proof. By a classical comparison argument, see e.g. Lemma 3.1 in [6], it suffices to

consider the case G(z) = z1+β, z ≥ 0. Writing again (Tt)t∈R+ for the semigroup with

generator Lϕ, which now is given by

Lϕ :=
1

2

∂2

∂x2
+
ϕ′(x)

ϕ(x)

∂

∂x
,

we get

ut(x) = Ttφ(x) +

∫ t

0

Tt−su
1+β
s (x) ds, x ∈ R, t ≥ 0. (2.5)

By multiplying the above equation by ϕ(x), letting wt(x) := ϕ(x)ut(x) and using

(2.4), we obtain

wt(x) = ϕ(x)Tt

(
h

ϕ

)
(x) +

∫ t

0

ϕ(x)Tt−s
(
w1+β
s ϕ−β−1

)
(x) ds.

Notice that

f 7→ Qϕ
t f := ϕTt

(
f

ϕ

)
, t ≥ 0, (2.6)

defines a semigroup (Qϕ
t )t∈R+ of bounded linear operators on L2(µ) with infinitesimal

generator given by

Hϕf =
1

2

∂2

∂x
f − 1

2

ϕ′′

ϕ
f, f ∈ C2(R), (2.7)

and that

wt(x) = (Qϕ
t h)(x) +

∫ t

0

Qϕ
t−s
(
w1+β
s (·)ϕ−β

)
(x) ds. (2.8)

Let now

E(f) = 〈f, ϕ〉L2(R), f ∈ L2(µ).

Since h̃ := ϕ2 satisfies

1

2

∂2h̃

∂x2
(x)− ∂

∂x

(
h̃(x)

ϕ′(x)

ϕ(x)

)
= 0,

it turns out that µ(dx) = ϕ2(x) dx is an invariant probability measure of (Tt)t∈R+ up

to normalization, and it follows from (2.8) that

E(wt) = E(h) +

∫ t

0

E
(
w1+β
s ϕ−β

)
ds. (2.9)
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Now,

E
(
w1+β
s ϕ−β

)
= ‖ϕ‖2L2

∫ ∞
−∞

(
w1+β
s

ϕ1+β

)
(x)

ϕ2(x)

‖ϕ‖L2

dx

≥
‖ϕ‖2L2

‖ϕ‖2+2β
L2

(∫
R

ws(x)

ϕ(x)
ϕ2(x) dx

)1+β

= ‖ϕ‖−2βL2 (E(ws))
1+β,

where we used Jensen’s inequality. Hence from (2.9) we have

E(wt) ≥ E(w0) + ‖ϕ‖−2βL2

∫ t

0

(E(ws))
1+βds.

Let now y(t) be the solution to the ordinary differential equation

y(t) = E(w0) + ‖ϕ‖−2βL2

∫ t

0

y1+β(s)ds. (2.10)

Since E(wt) is a supersolution of (2.10) and y(t) explodes at time

th,ϕ =
‖ϕ‖2βL2

β

(∫ ∞
−∞

h(x)ϕ(x) dx

)β ,
it follows that

E(wt) = ‖ut‖L1(µ) = +∞, t ≥ th,ϕ.

�

From the inequality∫
ϕ2(x)ut(x) dx ≤ ‖ut‖∞

∫
R
ϕ2(x) dx, t > 0,

we get the following corollary of Theorem 2.1.

Corollary 2.2 Let β > 0, and let φ ≥ 0 be of the form (2.4). Then under the

assumptions of Theorem 2.1, the solution of (2.3) blows up in finite time.

3 Heat kernel estimates

In order to apply the Feynman-Kac formula to the study of equations of the form

(1.3) we need to study the transition function of the Bessel semigroup.
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Let Pµ denote the law of the Bessel process (Rt)t∈R+ with parameter µ ∈ R,

generator

Lµ :=
1

2

∂2

∂x2
+

2µ+ 1

2x

∂

∂x
, x > 0,

and transition density qµt (x, y), given when µ > −1 by

qµt (x, y) =
1

t

(y
x

)µ
ye−

x2+y2

2t Iµ

(xy
t

)
, x, y, t > 0,

where Iµ denotes the modified Bessel function of the first kind of order µ > −1, cf.

e.g. [3], Theorem 9.1.

The measure Pµ is a probability measure on the filtered space (Ω,F , (Ft)t∈R+),

where Ω is the space C(R+,R+) of nonnegative continuous functions on R+, F =

σ{Rs, s ≥ 0} and Ft = σ{Rs, 0 ≤ s ≤ t}, t ≥ 0. Here Rs(ω) = ω(s) for all s ∈ R+

and ω ∈ Ω. Recall that when

d := 2 + 2µ

is a positive integer we have Rt = ‖Wt‖ under Pµ, where (Wt)t∈R+ is a standard

Brownian motion in Rd, and (Rt)t∈R+ solves the stochastic differential equation

dRt =
2µ+ 1

2

dt

Rt

+ dBt,

where (Bt)t∈R+ is a one-dimensional standard Brownian motion. Moreover, for µ, ν ∈
R and F any Ft-measurable positive random variable, we have

IEµ

[(
x

Rt

)µ
F exp

(
−ν

2

2

∫ t

0

ds

R2
s

)
1{t<τ0}

∣∣∣R0 = x

]
(3.1)

= IEν

[(
x

Rt

)ν
F exp

(
−µ

2

2

∫ t

0

ds

R2
s

)
1{t<τ0}

∣∣∣R0 = x

]
, x ≥ 0,

where IEµ denotes the expectation under Pµ and τ0 denotes the first time (Rt)t∈R+

reaches 0, cf. [12] Lemma (4.5), [10] Chapter XI, Exercise 1.22, and [13] Chapter 6,

§ 2.2.

For any a ≥ 0 let pat (x, y), t > 0, denote the transition densities of the Markov

process (Xt)t∈R+ with generator Lµ−V , where V (x) = a/x2, x > 0. Recall that from

the Feynman-Kac formula we have

pat (x, y) = qµt (x, y) IEµ

[
exp

(
−a
∫ t

0

1

R2
s

ds

) ∣∣∣Rt = y, R0 = x

]
, x, y ≥ 0, (3.2)
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for all µ ∈ R and a ≥ 0. On the other hand, letting

τ0 = inf{t > 0 : Rt = 0}

denote the first hitting time of 0 by (Rt)t∈R+ , it is known that τ0 = +∞ when µ ≥ 0,

and the integral

∫ t

0

ds

R2
s

diverges a.s. when µ < 0, cf. [12] and [13] Chapter 6. Hence

we also have

pat (x, y) = qµt (x, y) IEµ

[
exp

(
−a
∫ t

0

1

R2
s

ds

)
1{t<τ0}

∣∣∣Rt = y, R0 = x

]
, x, y ≥ 0,

for all µ ∈ R and a > 0. Note that in general, (3.2) yields

lim
a↘0

pat (x, y) = p0t (x, y)Pµ(t < τ0),

thus, when µ < 0, pat (x, y) does not converge to p0t (x, y) as a tends to 0.

For any µ ∈ R and a ≥ 0, let

ν :=


√
µ2 + 2a, if a > 0,

µ, if a = 0,

and

n :=
ν − µ

2
=


√
µ2 + 2a− µ

2
, if a > 0,

0, if a = 0.

(3.3)

Moreover, when a = 0 we will assume that ν = µ > −1.

Lemma 3.1 For all µ ∈ R and a ≥ 0 we have

pat (x, y) = x2ny−2nqνt (x, y), x, y, t ≥ 0. (3.4)

Proof. Clearly it suffices to consider the case a > 0. By an application of (3.1) to

F :=

(
x

Rt

)−µ
U exp

(
µ2

2

∫ t

0

ds

R2
s

)
,

where U is an Ft-measurable non-negative random variable, we get

IEµ

[
U exp

(
−ν

2 − µ2

2

∫ t

0

ds

R2
s

)
1{t<τ0}

∣∣∣R0 = x

]
= IEν

[(
x

Rt

)ν−µ
U1{t<τ0}

∣∣∣R0 = x

]
,

(3.5)
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hence

IEµ

[
exp

(
−ν

2 − µ2

2

∫ t

0

ds

R2
s

)
1{Rt∈dy}1{t<τ0}

∣∣∣R0 = x

]
= IEν

[(
x

Rt

)ν−µ
1{Rt∈dy}1{t<τ0}

∣∣∣R0 = x

]

=

(
x

y

)ν−µ
Pν(Rt ∈ dy | R0 = x),

and

IEµ

[
exp

(
−ν

2 − µ2

2

∫ t

0

ds

R2
s

)
1{t<τ0}

∣∣∣Rt = y, R0 = x

]
=

(
x

y

)ν−µ
qνt (x, y)

qµt (x, y)
,

which yields (3.4) due to (3.2). �

Note that in case µ < −1, letting ν̃ = −
√
µ2 + 2a < −1 and ñ = (ν̃ − µ)/2, a ≥ 0,

the above argument would yield the upper bound

pat (x, y) ≤ x2ñy−2ñqν̃t (x, y), x, y, t ≥ 0, (3.6)

which is weaker than (3.4) but remains valid in the limit as a tends to 0.

From Lemma 3.1 we deduce the following lower bounds. In the sequel, c > 0 denotes

a generic positive constant whose value depends on the context.

Lemma 3.2 Let µ ∈ R and a > 0. For all sufficiently large t > t0 we have

pat (x, y) ≥ ct−ν−1x2ny2n+d−11[0,
√
t](x)1[0,

√
t](y), x, y ≥ 0. (3.7)

Proof. From the equivalence

Iν(z) ' czν

as z tends to 0, which is valid for ν > −1, we get

qνt (x, y) ' ct−ν−1y2ν+1e−
x2+y2

2t , as t→∞,

which, due to Lemma 3.1, shows that for all x, y ≥ 0 we have

pat (x, y) ' ct−2n−d/2x2ny2n+d−1e−
x2+y2

2t , as t→∞, (3.8)

hence (3.7) holds. �
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When µ > −1 and a = 0, an argument similar to that of Lemma 3.2 yields

p0t (x, y) ≥ ct−µ−1yd−11[0,
√
t](x)1[0,

√
t](y).

As a consequence of Lemma 3.2, for all sufficiently large t > 0 we have for all x, y ≥ 0,

pat (x, y) ≥ ct−ν−1y2n+d−11[α,
√
t](x)1[0,

√
t](y), (3.9)

and

pat (x, y) ≥ ct−ν−1x2n1[0,
√
t](x)1[α,

√
t](y). (3.10)

The next lemma provides upper bounds for the transition densities pat (x, y).

Lemma 3.3 Let µ ∈ R and a > 0. There exists t0 > 0 such that for all t > t0 we

have

pat (x, y) ≤ ct−n−d/2y2n+d−1, x, y ≥ 0. (3.11)

Proof. Due to (3.8) and the fact that x2ne−
x2

2t ≤ Ctn for all x ≥ 0, where C > 0 is a

constant, we have

pat (x, y) ≤ ct−2n−d/2x2ny2n+d−1e−
x2

2t

≤ ct−n−d/2y2n+d−1, x, y ≥ 0.

�

When µ > −1 and a = 0, by the argument leading to (3.11) we get

p0t (x, y) = qµt (x, y) ≤ ct−d/2yd−1, x, y ≥ 0. (3.12)

On the other hand, when µ < 0, using (3.6) yields another upper bound

pat (x, y) ≤ ct−ñ−d/2y2ñ+d−1, x, y ≥ 0,

with ν̃ = −
√
µ2 + 2a > −1, a ≥ 0, and ñ = (ν̃ − µ)/2, which is not directly

comparable with (3.11) but, unlike (3.11), recovers (3.12) as a tends to 0, and conducts

to (6.7) below.

4 Semigroup bounds

In this section, from the heat kernel bounds of the previous section, we derive the

semigroup bounds that will be used to prove the results of Sections 5 and 6.
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In the next lemma we give a lower bound for the semigroup (T at )t≥0 generated by

Lµ − V , i.e.

T at φ(x) =

∫ ∞
0

φ(y)pat (x, y) dy, (4.1)

is the solution ft(x) of the linear equation
∂ft
∂t

(x) =
1

2
∆ft(x) +

2µ+ 1

2x
∇ft(x)− a

x2
ft(x), t > 0,

f0(x) = φ(x), x > 0.

Without loss of generality we assume that φ > 0 a.e. on a bounded interval (s, t) ⊂
R+, and that

∫∞
0
φ(y) dy <∞. The next lemma uses the number n defined in (3.3).

Lemma 4.1 Assume that µ ∈ R and a > 0. Then for all sufficiently large t > 1

there holds

T at φ(x) ≥ ct−2n−d/2x2n1[0,
√
t](x), x ≥ 0. (4.2)

Proof. We use the bound (3.10), which yields

ft(x) =

∫ ∞
0

φ(y)pat (x, y) dy

≥ ct−2n−d/2x2n1[0,
√
t](x)

∫ √t
α

φ(y) dy

≥ c′t−2n−d/2x2n1[0,
√
t](x)

∫ ∞
0

φ(y) dy, x ≥ 0,

for all sufficiently large t, due to our assumptions on φ(y). �

Note that the bound (4.2) is also valid if µ > −1 and a = 0, in which case it reads

T 0
t φ(x) ≥ ct−d/21[0,

√
t](x), x ≥ 0. (4.3)

Let (Xt)t∈R+ be the Markov process with generator Lµ − V .

Lemma 4.2 Assume that µ ∈ R and a > 0. Let α ∈ (0, 1) and x ∈ [α, 1]. For all t

large enough, all s ∈ [1, t/2] and all y ∈ [0,
√
t− s], there holds

IE
[
fβt−s(Xs)1[0,

√
t−s](Xs)

∣∣∣Xt = y,X0 = x
]
≥ ct−(n+2βn+βd/2)sβn. (4.4)

Proof. From Lemma 4.1 above, for all t large enough we have

ft−s(Xs) ≥ c(t− s)−2n−d/2X2n
s 1[0,

√
t−s](Xs), 0 ≤ s ≤ t, (4.5)

13



and therefore,

IE
[
fβt−s(Xs)1[0,

√
t−s](Xs)

∣∣∣Xt = y,X0 = x
]

(4.6)

≥ c(t− s)−β(2n+d/2) IE
[
X2βn
s 1[0,

√
t−s](Xs)

∣∣Xt = y,X0 = x
]
.

We now proceed to obtain a lower bound for the moments of the process (Xt)t∈R+ .

Let α ∈ (0, 1) be given, and let x ∈ [α, 1]. Due to (3.9) we have, for all sufficiently

large t > 2 and all 1 ≤ s ≤ t/2,

pas(x, z) ≥ cs−2n−d/2z2n+d−11[0,
√
s](z), x, y ≥ 0,

and

pat−s(z, y) ≥ c(t− s)−2n−d/2z2ny2n+d−11[0,
√
t−s](z)1[0,

√
t−s](y), x, y ≥ 0.

Together with Lemma 3.3, the above inequalities render

pas(x, z)p
a
t−s(z, y)

pat (x, y)
≥ cz4n+d−1

s−2n−d/2(t− s)−2n−d/2

t−n−d/2
1[0,
√
s](z), x, y, z ≥ 0.

It follows that

IE
[
X2βn
s 1[0,

√
t−s](Xs)

∣∣∣Xt = y, X0 = x
]

=

∫ ∞
0

z2βn1[0,
√
t−s](z)P(Xs ∈ dz | Xt = y,X0 = x)

≥ ctn+d/2s−(2n+d/2)(t− s)−(2n+d/2)
∫ √s
0

z4n+d−1+2βn dz

= ctn+d/2(t− s)−(2n+d/2)sβn.

�

If µ > −1 and a = 0, by (3.12) and the argument of Lemma 4.2 we have

IE
[
1[0,
√
t−s](Xs)f

β
t−s(Xs)

∣∣∣Xt = y,X0 = x
]
≥ ct−βd/2 (4.7)

under the same conditions as in (4.4). Next we state an estimate which will be useful

in Section 6, and is valid as above under the condition

(µ, a) ∈ (R× (0,∞)) ∪ ((−1,∞)× {0}).
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Proposition 4.3 Assume that φ ≥ 0 and∫ ∞
0

y2n+d−1φ(y) dy <∞.

Then there exists t0 > 0 such that for all t > t0 we have

‖T at φ‖L∞(R) ≤ ct−n−d/2.

Proof. From Lemma 3.3 we get

T at φ(x) =

∫ ∞
0

φ(y)pat (x, y) dy

≤ ct−n−d/2
∫ ∞
0

y2n+d−1φ(y) dy, x ∈ R.

�

5 Explosion via the Feynman-Kac formula

Let now gt(x) denote the mild solution to the semilinear equation
∂gt
∂t

(x) =
1

2

∂2gt
∂x2

(x) +
2µ+ 1

2x

∂gt
∂x

(x)− a

x2
gt(x) + gt(x)fβt (x), t > 0,

g0(x) = φ(x), x > 0,

(5.1)

where µ ∈ R, a ≥ 0 and ft(x) is defined in (4.1).

Proposition 5.1 Let µ ∈ R, a > 0 and α ∈ (0, 1]. There exists c3, c4 > 0 such that

for all x > 0 and all sufficiently large t ≥ 1,

gt(x) ≥ c4 exp
(
c3t

1−β(n+d/2)−n)1[α,1](x).

Proof. The Feynman-Kac representation of (5.1) yields

gt(x) =

∫ ∞
0

φ(y)pat (x, y) IE

[
exp

∫ t

0

fβt−s(Xs) ds
∣∣∣Xt = y, X0 = x

]
dy.

Let x ∈ [α, 1]. Using Jensen’s inequality we obtain, for all t large enough,

gt(x) ≥
∫ ∞
0

φ(y)pat (x, y) exp

(
c1

∫ t/2

1

IE
[
fβt−s(Xs) | Xt = y,X0 = x

]
ds

)
dy

≥
∫ 1

α

φ(y)pat (x, y) exp

(
c2t
−(n+2βn+βd/2)

∫ t/2

1

sβn ds

)
dy

≥ c4t
−(1+ν) exp

(
c3t

1−β(n+d/2)−n) , x ≥ 0,

for some positive constants c1, c2, c3 > 0, where we used Lemma 4.2 to obtain the

second inequality. �
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Notice that, when µ > −1 and a = 0, the above argument together with (4.7) gives

gt(x) ≥ c4 exp
(
c3t

1−βd/2)1[α,1](x), x ≥ 0.

As a consequence of the above proposition, g grows to +∞ uniformly on [α, 1] provided

that 1−β(n+d/2)−n > 0, and this implies the following result, in which n is defined

by (3.3).

Theorem 5.2 Let µ ∈ R, a > 0, and assume that

β <
1− n
n+ d/2

.

Then the mild solution ut(x) of (1.3) blows up in finite time.

Proof. Let ut(x) denote the solution of (1.3). Since gt(x) ≤ ut(x), Proposition 5.1

implies that ut(x) grows to +∞ uniformly on [α, 1] as t → ∞. According to a well-

known argument [4], this is sufficient to prove explosion in finite time of ut(x). Indeed,

let t0 ≥ 1, ũt = ut+t0 and K(t0) = minx∈[α,1] ut0(x). Then ũt solves

ũt(x) =

∫
pat (x, y)ut0(y) dy +

∫ t

0

∫
pat−s(x, y) (ũs(y))1+β dy ds,

hence

min
x∈[α,1]

ũt(x) ≥ ξK(t0) + ξ

∫ t

0

(
min
x∈[α,1]

ũs(x)

)1+β

ds, t ∈ [0, 1],

where

ξ := min
r∈[0,1]

min
x∈[α,1]

IPx(Xr ∈ [α, 1]). (5.2)

From Lemma 3.1 it follows that the function

(r, x) 7→ P (Xr ∈ [α, 1] | X0 = x) =

∫ 1

α

par(x, y) dy = x2n
∫ 1

α

y−2nqνr (x, y) dy

is continuous and strictly positive on [0, 1]× [α, 1]. Therefore ξ > 0, and it suffices to

choose t0 > 0 sufficiently large so that the blow-up time ρ0 of the equation

y(t) = ξK(t0) + ξ

∫ t

0

y1+β(s) ds

is smaller than 1 to conclude that ut(x) blows up at time t0 + ρ0. �

We remark that in case µ > −1 and a = 0, the conclusion of Theorem 5.2 holds for

β < 2/d.

The next result holds for

(µ, a) ∈ (R× (0,∞)) ∪ ((−1,∞)× {0}).
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Corollary 5.3 Let G : R+ → R+ be increasing and convex, such that

G(z)

z
∼ κ1z

β as z → 0, (5.3)

for some κ1 > 0, and let w : R+ × Rd → R+ be a measurable function satisfying

wt(x) ≥ κ2t
ζ1(0,1)(t

−1/2x) (5.4)

for all t ≥ 1 and some κ2 > 0. Then any nontrivial positive solution of the semilinear

equation
∂ut
∂t

(x) =
1

2

∂2ut
∂x2

(x) +
2µ+ 1

2x

∂ut
∂x

(x)− a

x2
ut(x) + wt(x)G(ut(x)),

u0(x) = φ(x) ≥ 0, x > 0, t > 0,

(5.5)

blows up in finite time provided

β <
1 + ζ − n
n+ d/2

.

Proof. The Feynman-Kac representation of (5.5) yields

ut(x) =

∫ ∞
0

φ(y)pat (x, y) IE

[
exp

(∫ t

0

wt−s(Xs)
G(ut−s(Xs))

ut−s(Xs)
ds

) ∣∣∣Xt = y, X0 = x

]
dy.

Since by assumption wt−s(Xs)G(ut−s(Xs))/ut−s(Xs) can be bounded from below by

κ1κ2(t− s)ζ1[0,
√
t−s](Xs)u

β
t−s(Xs) ≥ κ1κ2(t− s)ζ1[0,

√
t−s](Xs)f

β
t−s(Xs),

we get, using Lemma 4.2 as in the proof of Proposition 5.1, that

ut(x) ≥∫ ∞
0

φ(y)pat (x, y) IE

[
exp

(
κ1κ2

∫ t

0

(t− s)ζ1[0,
√
t−s](Xs)f

β
t−s(Xs)ds

) ∣∣∣Xt = y, X0 = x

]
dy

≥
∫ ∞
0

φ(y)pat (x, y) exp

(
κ1κ2

∫ t

0

(t− s)ζ IE
[
1[0,
√
t−s](Xs)f

β
t−s(Xs)

∣∣∣Xt = y, X0 = x
]
ds

)
dy

≥
∫ 1

α

φ(y)pat (x, y) exp

(
c2t
−(n+2βn+βd/2)

∫ t/2

1

sζ+βn ds

)
dy

≥ c5t
−1−ν exp

(
c6t

1+ζ−β(n+d/2)−n)
for all x ∈ [α, 1], all t large enough, and some constants c5, c6 > 0. Therefore,

lim
t→∞

inf
x∈[α,1]

ut(x) =∞

due to the condition 1 + ζ > β(n + d/2) + n. The assertions follow in the same way

as in the proof of Theorem 5.2. �
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Again when µ > −1 and a = 0, the conclusion of Corollary 5.3 also holds when

β <
2(1 + ζ)

d
.

6 Existence of global solutions

The following result gives conditions for existence of a nontrivial positive global solu-

tion. Its proof is very similar to that of Theorem 4.1 in [6], and is therefore omitted.

Theorem 6.1 Let µ ∈ R and a ≥ 0, and consider the semilinear equation
∂ut
∂t

(x) =
1

2

∂2ut
∂x2

(x) +
2µ+ 1

2x

∂ut
∂x

(x)− a

x2
ut(x) + tζG(ut(x)), t > 0,

u0(x) = φ(x), x > 0,

(6.1)

where ζ ∈ R, φ is bounded and measurable, and G : R+ → R+ is a measurable

function satisfying

0 ≤ G(z)

z
≤ λzβ, z > 0, (6.2)

for some λ, β > 0. If

λβ

∫ ∞
0

rζ‖T ar φ‖
β
L∞(R) dr < 1, (6.3)

then (6.1) admits a global solution.

Notice that by choosing ‖φ‖L∞(R) > 0 sufficiently small, it is possible to prove exis-

tence of a positive global solution of (6.1) under (6.3) and the less restrictive condition

0 ≤ G(z)

z
≤ λzβ, z ∈ (0, c),

for some λ, β, c > 0, see [7], Theorem 4.1.

As a consequence of Theorem 6.1, an existence result can be obtained under an

integrability condition on φ.

Theorem 6.2 Given (µ, a) ∈ R × (0,∞) ∪ (−1,∞) × {0}, let G : R+ → R+ and

w : R+ × R→ R+ be measurable functions such that

G(z) ≤ κ1z
1+β, z > 0, and wt(x) ≤ κ2t

ζ , (t, x) ∈ R+ × R,
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where β, κ1, κ2 > 0 and ζ ∈ R. The equation
∂ut
∂t

(x) =
1

2

∂2ut
∂x2

(x) +
2µ+ 1

2x

∂ut
∂x

(x)− a

x2
ut(x) + wt(x)G(ut(x)), t > 0,

u0(x) = φ(x), x > 0,

(6.4)

admits a global solution on (0,∞) provided

β >
1 + ζ

n+ d/2
. (6.5)

Proof. Clearly, it suffices to consider the semilinear equation
∂ut
∂t

(x) =
1

2

∂2ut
∂x2

(x) +
2µ+ 1

2x

∂ut
∂x

(x)− a

x2
ut(x) + κtζu1+βt (x), t > 0,

u0(x) = φ(x), x > 0,

(6.6)

for a suitable constant κ > 0, and to apply Proposition 4.3 and Theorem 6.1. �

Let us remark that from (3.6) one can also show that when µ < −1, a ≥ 0, and

µ2 + 2a < 1, Equation (6.4) admits a global solution on (0,∞) provided

β >
2 + 2ζ

2 + µ−
√
µ2 + 2a

. (6.7)

The above bound (6.7) recovers the critical exponent (1 + ζ)/(1 +µ) when a tends to

0, however it is weaker than (6.5).
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Apartado Postal 402
36000 Guanajuato, Mexico
jalfredo at cimat.mx

Nicolas Privault
Division of Mathematical Sciences
School of Physical and Mathematical Sciences
Nanyang Technological University
Singapore 637371
nprivault at ntu.edu.sg

20


