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Abstract

Bernstein processes over a finite time interval are simultaneously forward and
backward Markov processes with arbitrarily fixed initial and terminal probabil-
ity distributions. In this paper, a large deviation principle is proved for a family
of Bernstein processes (depending on a small parameter ~ which is called the
Planck constant) arising naturally in Euclidean quantum physics. The method
consists in nontrivial Girsanov transformations of integral forms, suitable equiv-
alence forms for large deviations and the (local and global) estimates on the
parabolic kernel of the Schrödinger operator.

Keywords and phrases : Bernstein process, large deviation principle, Girsanov trans-
formation, rate function, Schrödinger operator.

AMS 2010 subject classifications : Primary 60F10, 35Q40, 60J65

1 Introduction

1.1 Bernstein processes

Consider (Xt)0≤t≤1 a one-dimensional stochastic process in some probability space

(Ω,F,P) and the forward, resp. backward filtrations

Ft = σ(Xv, t ≤ v ≤ 1), 0 ≤ t ≤ 1, (backward filtration),
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resp.

Pt = σ(Xs, 0 ≤ s ≤ t), 0 ≤ t ≤ 1, (forward filtration).

A stochastic process (Xt)0≤t≤1 is called a Bernstein process if for any 0 ≤ s1 < t <

t1 ≤ 1 and any f bounded measurable,

E
[
f(Xt)

∣∣ Ps1 ∨ Ft1
]

= E
[
f(Xt)

∣∣ Xs1 , Xt1

]
.

Stochastic processes satisfying this time-symmetric property have been introduced as

reciprocal processes by Bernstein [3] (1932). Bernstein processes are also referred to

as local Markov or two-sided Markov processes; see [5] and [13]. It has been shown

[5] that Bernstein processes provide new tools for further analysis of Feynman’s path

integral as well as of a number of fundamental issues of quantum physics and its

probabilistic content.

In this paper we consider a special family of Bernstein processes (X~,a,b
t )0≤t≤1 related

to a system with Hamiltonian H = −~2
2
4 + V, where ~ is Planck constant and the

potential V (x) : R → R depends only on the space variable x. The definition of the

Bernstein process for every value of ~ > 0 is as follows (cf. Section 5.1 of [5]).

(I). The distribution of X~,a,b
t is given by

P
(
X~,a,b
t ∈ A

)
=

1

η~(0, a)

∫
A

η∗~(t, x)η~(t, x)dx (1.1)

for A measurable, where η∗~ and η~ are two positive fundamental solutions (parabolic

kernels) of adjoint partial differential equations
−~∂η

∗
~

∂s
(s, x) = Hη∗~(s, x),

η∗~(0, x) = δa(x),

and


~
∂η~
∂s

(s, x) = Hη~(s, x),

η~(1, x) = δb(x),

(1.2)

0 < s ≤ 1, where δc denotes the Dirac delta distribution at c ∈ R.

(II). For any 0 ≤ t < 1, the process (X~,a,b
t )0≤t≤1 solves the following Pt-forward

stochastic differential equation

dX~,a,b
t =

√
~dWt + ~∇ log η~(t,X

~,a,b
t )dt, X~,a,b

0 = a, (1.3)
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where (Wt)0≤t≤1 stands for a standard Wiener process. We remark that the process

(X~,a,b
t )0≤t≤1 solves as well a backward stochastic differential equation with respect

to (Ft)0≤t≤1 (which is a kind of reciprocal property; see [5]), but only the forward

stochastic differential equation will be used throughout the paper, which is sufficient

for our purpose.

For every ~ > 0 the Bernstein process (X~,a,b
t )0≤t≤1 is a bridge starting from a ∈ R

and ending at b ∈ R, i.e. X~,a,b
0 = a and X~,a,b

1 = b. Such a Bernstein process is

generally regarded as a version of the killed process with infinitesimal generator −H,

conditioned to fixed initial and terminal positions; see Section 3 of [13], however this

construction by killing is not natural in our time symmetric context, as the potential

V has the same interpretation as in classical (and quantum) mechanics.

This paper investigates the limiting behavior of the Bernstein processes (X~,a,b
t )0≤t≤1

as ~→ 0. Such asymptotics are the basis of the “quasi” or “semi”-classical analysis of

quantum physics. In this context the results can be represented in terms of quantities

characterizing the underlying classical dynamical system, in particular its classical

action functional. Feynman’s original path integral, for a system of Hamiltonian H as

before, is an oscillatory integral. To study its asymptotic when ~ tends to zero requires

to use the method of stationary phase. As is well known, however, the Feynman path

integral does not have any probabilistic content and it is not possible to construct

well defined measures compatible with it on path spaces. If the time parameter of

the Schrödinger equation for this system becomes purely imaginary, however, the path

integral becomes rigorous, and this is called the “Euclidean” approach in mathematical

physics. As a matter of fact, the two adjoint PDEs (1.2) constitute one way to present

this Euclidean approach. Although it is not the traditional one, let us observe that, in

contrast with this one, and together with (1.1), it manifestly preserves a fundamental

invariance under time reversal (for any time-independent potential V ). We refer the

reader to [5] and [26] for more about the origin and meaning of our Euclidean approach.
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1.2 Main results

We study the large deviations of the family of processes (X~,a,b
t )0≤t≤1 over the space

Ca,b([0, 1]) = {φ(·) ∈ C([0, 1]) : φ(0) = a and φ(1) = b}

equipped with the topology of uniform convergence and Borel σ-algebra. We will

prove that the family obeys a large deviation principle with a rate function (or action

functional in the quantum context) defined by

Sa,bX (φ) =
1

2

∫ 1

0

φ′(t)2dt+

∫ 1

0

V (φ(t))dt− 2ρ(a, b, 1) (1.4)

for absolutely continuous φ (otherwise Sa,bX (φ) = ∞), where ρ(a, b, 1) represents the

distance between a and b introduced by Li and Yau in [18] as

ρ(a, b, 1) =
1

2
inf

{
1

2

∫ 1

0

φ′(t)2dt+

∫ 1

0

V (φ(t))dt

}
,

where the infimum is taken over functions φ : [0, 1]→ R with φ(0) = a and φ(1) = b.

To achieve large deviations for (X~,a,b
t )0≤t≤1, we list the following technical assump-

tions.

(A1) For some α > 1 it holds that

lim
t→1−

lim sup
~→0+

~ logE
[
exp

(
−α
~

∫ 1−t

0

V
(
a+
√
~Ws

)
ds

)]
<∞, (A1.1)

and

lim
t→1−

lim sup
~→0+

~ logE
[
exp

(
−α
~

∫ t

0

V
(
a+
√
~Ws

)
ds

)]
<∞. (A1.2)

(A2) We have the bounds

η~(t, x) ≤ g(~, t) and η~(t, x) ≥ f0(~, t) exp

(
k∑
i=1

fi(~, t) · gi(b, x)

)
for some integer k > 0, where fi ≥ 0, g and gi are functions that satisfy

(i) lim
t→1−

lim sup
~→0+

~ log g(~, t) <∞,

(ii) gi(b, x) ≥ min {gi(b, x0 + 1/n), gi(b, x0 − 1/n)} for any fixed x0 ∈ R and fixed

integer n ≥ 1 with |x− x0| < 1/n, and
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(iii) lim
t→1−

lim
n→∞

lim inf
~→0+

(
~ log f0(~, t)

+~ ·
k∑
i=1

fi(~, t) ·min {gi(b, b+ (1− t) + 1/n), gi(b, b+ (1− t)− 1/n)}
)

= 0.

In Section 1.3 below we will provide examples that satisfy the above Conditions (A1)

and (A2) such as bounded potentials supx∈R |V (x)| <∞ and the quadratic potential

V (x) = x2. The main result of this paper is formulated as follows.

Theorem 1.1. Assume that V is twice continuously differentiable and satisfies Con-

ditions (A1) and (A2). Then

(1) for any open set O ⊆ Ca,b([0, 1]),

lim inf
~→0+

~ logP
(
X~,a,b ∈ O

)
≥ − inf

φ∈O
Sa,bX (φ); (1.5)

(2) for any closed set F ⊆ Ca,b([0, 1]),

lim sup
~→0+

~ logP
(
X~,a,b ∈ F

)
≤ − inf

φ∈F
Sa,bX (φ). (1.6)

Theorem 1.1 suggests that the most probable trajectories of (X~,a,b
t )0≤t≤1 as ~ → 0

are contained in the set of φ such that Sa,bX (φ) = 0, and this is precisely the content of

the Principle of Least Action in a classical mechanical system; see Section 1.2 in [16].

The existence of φ with Sa,bX (φ) = 0 can be easily seen from the lower semi-continuity

of Sa,bX , while the uniqueness can also hold under more restrictions on V . Further-

more, if the initial and terminal probability distributions are more regular than Dirac

measures, then the problem of searching the most probable trajectories has also inter-

esting connections with Monge’s problem; see [20], [23], [17] and references therein.

When V ≡ 0 and H = −~2
2
4 the Bernstein process (X~,a,b

t )0≤t≤1 reduces to the well-

known one-dimensional Brownian bridge from a to b, by comparing (1.3) and (2.1)

below, in which case we will denote (X~,a,b
t )0≤t≤1 by (B~,a,b

t )0≤t≤1. A large deviation

principle for (B~,a,b
t )0≤t≤1 on a Riemannian manifold has been derived by Hsu in [12]

based on a Girsanov transformation involving minimal heat kernels on the manifold

by a direct proof of (1.5) and (1.6) which involves a number of technical difficulties,
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cf. the elaborate proof of Lemma 2.4 in [12]. There are also related discussions on

local uniform large deviation bound for Brownian bridges on a Riemannian manifold

in [24]. Here our approach is to prove (1.5) and (1.6) indirectly based on suitable

equivalents (cf. Remark 2.2 in Section 2), which is more tractable than the one in

[12]. Because of the singularity at t = 1 in (1.3), it is then natural to split the interval

[0, 1] as [0, t] ∪ [t, 1] and investigate on each separated interval.

Another possibility to get rid of the singularity at t = 1 is to first approximate the

boundary condition δb(x) by a smooth function ψ, in which case the law of (X~,a,b
t )0≤t≤1

becomes absolutely continuous and large deviations arguments for (B~,a,b
t )0≤t≤1 can

be applied. However this method requires exponential convergence of the smoothed

process to the original processes, which in turn also involves the above splitting of the

interval. We thus do not proceed in this direction.

The method proposed in this paper has also been successfully applied in [25] to a fam-

ily of Lévy bridges. In order to explain our method we start by applying it in Section 2

to the large deviations of one-dimensional Brownian bridges. We also notice that from

the contraction principle it is trivial to prove the large deviations of one-dimensional

Brownian bridges based on (2.3) below, however this approach does not apply to our

Bernstein processes. Although the method proposed in this paper is applied only to

one-dimensional processes for the sake of notational and computational simplicity, it

can be equally applied to multi-dimensional processes.

Note that for the time-homogeneous diffusion bridges constructed in [22] and [21],

direct proofs of (1.5) and (1.6) were provided via the analysis of arbitrarily small

partitions of [0, 1]. Besides, large deviations for Brownian bridges in Hölder norm

were presented in [1] based on arguments of abstract Wiener spaces. In contrast, our

method requires only a direct analysis over Ca,b([0, 1]).

We also remark that the Girsanov transformation in integral form for a Brownian

bridge with respect to a Brownian motion, cf. (2.6) in Section 2, is well-known. It is ex-
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pected that such Girsanov transformation holds for Bernstein processes (X~,a,b
t )0≤t≤1.

The feasibility (3.1) of such Girsanov transformation is verified in Section 4.

1.3 Examples

Example 1. Bounded potential.

We show that any bounded potential V satisfies Conditions (A1) and (A2). First, it

is trivial to verify (A1). In order to achieve (A2), we take into account the following

lower and upper global bounds for the kernel η~(t, x) :

η~(t, x) ≥ c√
(1− t)~

exp

(
−(1− t)‖V ‖

~
− (b− x)2

2~(1− t)

)
and

η~(t, x) ≤ c√
(1− t)~

exp

(
(1− t)‖V ‖

~
− (b− x)2

2~(1− t)

)
for some c > 0 (cf. [27]), where ‖V ‖ = supx∈R |V (x)|. Therefore in (A2) we can take

g(~, t) =
c√

(1− t)~
e(1−t)‖V ‖/~, f0(~, t) =

c√
(1− t)~

e−(1−t)‖V ‖/~,

f1(~, t) = 1
2~(1−t) and g1(~, t) = −(b − x)2, t ∈ [0, 1]. It is then straightforward to

verify each requirement in (A2), for instance we have

lim
t→1−

lim sup
~→0+

~ log g(~, t) = lim
t→1−

‖V ‖(1− t) = 0.

The next example will give an explicit illustration of a particular bounded potential.

Example 2. Constant potential.

In this case (X~,a,b
t )0≤t≤1 can be regarded as a Brownian motion killed at an indepen-

dent random time τ , and conditioned to fixed initial and terminal positions. Since

the random time τ is independent of (X~,a,b
t )0≤t≤1, under the condition X~,a,b

1 = b the

process (X~,a,b
t )0≤t≤1 is not killed as it does not end at the “cemetery” state. Therefore

the limiting behavior of (X~,a,b
t )0≤t≤1 will be identical to that of the classical Brownian

bridge with V = 0, and this can be also easily verified from the rate function Sa,bX
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defined in (1.4). More precisely we have

lim
~→0+

~ logP
(

sup
0≤t≤1

X~,a,b
t > c

)
=

{
−2(c− a)(c− b) if c > max{a, b},
0 otherwise,

which is a fact for Brownian bridges (cf. [4]). When ~→ 0+ the limiting trajectory of

(X~,a,b
t )0≤t≤1 is the straight line a(1− t) + bt, thus we can also study the convergence

rate of (X~,a,b
t )0≤t≤1 to this line, i.e.

lim
~→0+

~ logP
(

sup
0≤t≤1

∣∣∣X~,a,b
t − a(1− t)− bt

∣∣∣ > c

)
= −2 · c2, (1.7)

for any fixed c > 0, which follows from Fernique’s theorem on the tail probabilities

of Gaussian measures. For the reader’s convenience we recall Fernique’s theorem as

stated in e.g. [19]: for any (a.s) bounded Gaussian process (Xt)t∈T with supremum

‖X‖ := supt∈T |Xt| we have

lim
v→∞

1

v2
logP (‖X‖ > v) = − 1

2σ2
,

where σ2 := supt∈[0,T ] Var[Xt] is the supremum of the variances of the individual Xt’s.

Example 3. Quadratic potential.

We let ω > 0 and check that the potential

V (x) :=
1

2
ω2x2.

satisfies Condition (A1) and (A2). Clearly, Condition (A1) is satisfied. Regarding

(A2) we note that the parabolic kernel η~(t, x) has the explicit form

η~(t, x) =

( √
2ω

4π~ sinh(
√

2ω(1− t))

)1/2

× exp

(
−
√

2ω

4~
· (x2 + b2) · coth(

√
2ω(1− t)) +

ωxb√
2~ sinh(

√
2ω(1− t))

)
,

cf. § 3.3 of [7], and we take

f0(~, t) = g(~, t) =

( √
2ω

4π~ sinh(
√

2ω(1− t))

)1/2
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with coth(x) ≥ 1/ sinh(x). Next we choose

f1(~, t) =

√
2ω

4~
· coth(

√
2ω(1− t)), f2(~, t) =

√
2ω

4~ sinh(
√

2ω(1− t))
,

and g1(~, t) = −(x2 + b2), g2(~, t) = 2xb.

In this case (X~,a,b
t )0≤t≤1 is a Gaussian process with drifts given by

B~(x, t) =
ω

~
· b− x cosh(ω(1− t))

sinh(ω(1− t))
and B~

∗(x, t) =
ω

~
· x cosh(ωt)− a

sinh(ωt)
,

cf. page 1308 of [15], expectation

E[X~,a,b
t ] = a · sinh(ω(1− t))

sinh(ω)
+ b · sinh(ωt)

sinh(ω)
,

and variance

Var(X~,a,b
t ) = ~

sinh(ω(1− t)) sinh(ωt)

ω sinhω
.

Its covariance is

Cov(X~,a,b
t , X~,a,b

r ) = ~
sinh2(ω(1− r))
sinh(ω(1− t))

sinh(ωt)

ω sinhω
+

∫ r

t

sinh2(ω(1− r))
sinh2(ω(1− u))

du,

0 < t < r < 1, cf. page 1323 of [15]. We note that in this case, the most probable

trajectory of (X~,a,b
t )0≤t≤1 as ~→ 0+ is, as expected,

φ∗(t) := E[X~,a,b
t ] = a · sinh(ω(1− t))

sinh(ω)
+ b · sinh(ωt)

sinh(ω)
,

which can be checked from Sa,bX (φ∗(t)) = 0. In addition φ∗(t) solves indeed the ordinary

differential equation

φ′′(t) = ω2 · φ(t), with φ(0) = a and φ(1) = b.

We now study the convergence speed of (X~,a,b
t )0≤t≤1 to the most probable trajectory

φ∗(t) as ~→ 0+ via the asymptotics

lim
~→0+

~ logP
(

sup
0≤t≤1

∣∣∣X~,a,b
t − φ∗(t)

∣∣∣ > 1

)
.
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To this end, we note that

Yt :=
1√
~

(X~,a,b
t − φ∗(t))

is a centered Gaussian process with variance

Var(Yt) =
sinh(ω(1− t)) sinh(ωt)

ω sinhω
.

It is easy to see the maximal variance occurs uniquely at t = 1/2, therefore from

Fernique’s theorem it follows that

lim
~→0+

~ logP
(

sup
0≤t≤1

∣∣∣X~,a,b
t − φ∗(t)

∣∣∣ > c

)
= − ωc2

tanh(ω/2)
(1.8)

for any fixed c > 0, and this recovers (1.7) in the free case when ω → 0.

The limiting behavior (1.8) might have potential applications in related variational

problems. Here we consider the simplest case a = b = 0. More precisely, according to

Theorem 1.1 the left hand side of (1.8) should be

−1

2
· inf
φ∈A

∫ 1

0

(
φ′(t)2 + ω2φ2(t)

)
dt (1.9)

where the set A consists of absolutely continuous functions φ(t) on [0, 1] such that

φ(0) = φ(1) = 0 and max0≤t≤1 |φ(t)| > c. The variational problem (1.9) is less easy

to solve, while (1.8) is much easier.

2 Brownian bridges - an illustration of the method

In this section we illustrate the method of the proof used in this paper by applying it

first to the derivation of the standard large deviation result for Brownian bridges, cf.

Theorem 2.1 below. The following are three equivalent constructions in distribution

sense of the one-dimensional Brownian bridge (Bε,a,b
t )0≤t≤1 parametrized by the scale

parameter ε > 0 with fixed initial and terminal conditions Bε,a,b
0 = a and Bε,a,b

1 = b;

see e.g. Section 5.6 of [14], [10], and [2].

dBε,a,b
t =

√
εdWt +

b−Bε,a,b
t

1− t
dt, t ∈ [0, 1), Bε,a,b

0 = a, (2.1)
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Bε,a,b
t = a+ (b− a)t+

√
ε

∫ t

0

1− t
1− s

dWs, t ∈ [0, 1), (2.2)

B̃ε,a,b
t = a(1− t) + bt+

√
ε(Wt − tW1), t ∈ [0, 1], (2.3)

where (Wt)0≤t≤1 is a standard Wiener process started at zero. The representation (2.3)

is generally said to be anticipative due to the fact that (B̃ε,a,b
t )0≤t≤1 is not adapted to

the natural filtration of W . We will use the functional

Sa,b(φ) =
1

2

(∫ 1

0

φ′(t)2dt− (b− a)2

)
for absolutely continuous φ.

Theorem 2.1. (1) For any open set O ⊆ Ca,b([0, 1]),

lim inf
ε→0+

ε logP
(
Bε,a,b ∈ O

)
≥ − inf

φ∈O
Sa,b(φ); (2.4)

(2) For any closed set F ⊆ Ca,b([0, 1]),

lim sup
ε→0+

ε logP
(
Bε,a,b ∈ F

)
≤ − inf

φ∈F
Sa,b(φ). (2.5)

Our first step is, as usual, to split [0, 1] into [0, 1] = [0, t]∪ [t, 1] due to the singularity

at time 1, to change the bridge on [0, t] into a Wiener process on [0, t] by a Girsanov

transformation, and then to let t go to one. Letting Xε
s = a+

√
εWs, the distribution

µBε,a,b
[0,t]

of (Bε,a,b
t )0≤t≤1 restricted to [0, t], t < 1, is absolutely continuous with respect to

the distribution µXε
[0,t]

of Xε restricted to [0, t] over the space Ca,b([0, t]) of restrictions

to [0, t] of functions in Ca,b([0, 1]), with Girsanov-Radon-Nikodym density

dµBε,a,b
[0,t]

dµXε
[0,t]

(x·) = exp

(
1

ε

∫ t

0

b− xs
1− s

dxs −
1

2ε

∫ t

0

(
b− xs
1− s

)2

ds

)
, (2.6)

cf. Section 3.2 in [11] and Section 4 below for details.

2.1 Proof of the lower bound (2.4)

For fixed δ > 0, γ > 0 and φ(·) ∈ Ca,b([0, 1]), from (2.6) we have

P
(

max
0≤s≤t

∣∣Bε,a,b
s − φ(s)

∣∣ < δ

)
11



=

∫
{max0≤s≤t|Xε

s−φ(s)|<δ}
exp

(
1

ε

∫ t

0

b−Xε
s

1− s
dXε

s −
1

2ε

∫ t

0

(
b−Xε

s

1− s

)2

ds

)
dP

= (1− t)−1/2 · exp

(
(b− a)2

2ε

)
·
∫
{max0≤s≤t|Xε

s−φ(s)|<δ}
exp

(
−(b−Xε

t )
2

2ε(1− t)

)
dP

≥ (1− t)−1/2 exp

(
1

2ε

(
(b− a)2 − max{(b− φ(t)− δ)2, (b− φ(t) + δ)2}

1− t

))
(2.7)

×P
(

max
0≤s≤t

|Xε
s − φ(s)| < δ

)
≥ (1− t)−1/2 · exp

(
−1

ε

(
Sa,b(φ[0, t]) + γ +

max{(b− φ(t)− δ)2, (b− φ(t) + δ)2}
2(1− t)

))
with

Sa,b(φ[0, t]) =
1

2

∫ t

0

φ′(t)2dt− (b− a)2

2
,

where the last inequality comes from the lower bound of large deviations for Brownian

motions; see Section 3.2 in [9]. Now for any open set O ⊆ Ca,b([0, 1]), x∗(·) ∈ O with

Sa,b(x∗) <∞ and Ballδ(x
∗) ⊆ O for some δ > 0, we define

Ot :=

{
φ ∈ Ca,b([0, 1]) : max

0≤s≤t
|φ(s)− x∗(s)| < δ

}
and

Ot :=

{
φ ∈ Ca,b([0, 1]) : max

t≤s≤1
|φ(s)− x∗(s)| ≥ δ

}
.

Then we have Ot ⊆ O ∪Ot and

P
(
Bε,a,b ∈ O

)
+ P

(
Bε,a,b ∈ Ot

)
≥ P

(
Bε,a,b ∈ Ot

)
. (2.8)

We first deal with P
(
Bε,a,b ∈ Ot

)
. It follows from (2.7) that for large n and x∗ ∈ Ot,

lim inf
ε→0+

ε logP
(
Bε,a,b ∈ Ot

)
≥ lim inf

ε→0+
ε logP

(
max
0≤s≤t

∣∣Bε,a,b
s − x∗(s)

∣∣ < 1/n

)
≥ −

(
Sa,b(x∗[0, t]) + γ +

max{(b− x∗(t)− 1/n)2, (b− x∗(t) + 1/n)2}
2(1− t)

)
= −

(
Sa,b(x∗[0, t]) +

(b− x∗(t))2

2(1− t)

)
(after the limit n→∞, γ → 0).

Thus

lim
t→1

lim inf
ε→0+

ε logP
(
Bε,a,b ∈ Ot

)
≥ −Sa,b(x∗). (2.9)

12



Now for the term P
(
Bε,a,b ∈ Ot

)
, we apply Fernique’s theorem to get

lim
t→1

lim inf
ε→0+

ε logP
(
Bε,a,b ∈ Ot

)
= lim

t→1
lim inf
ε→0+

ε logP
(

max
t≤s≤1

∣∣Bε,a,b
s − x∗(s)

∣∣ ≥ δ

)
= lim

t→1
lim inf
ε→0+

ε logP
(

max
t≤s≤1

|Ws − sW1| ≥ δ/(2
√
ε)

)
= − lim

t→1

δ2

8t(1− t)
= −∞.

(2.10)

The lower bound (2.4) is thus proved by combining (2.8), (2.9) and (2.10).

2.2 Proof of the upper bound (2.5)

For any s > 0, we define the compact set

Φ(s) := {φ ∈ Ca,b([0, 1]) : Sa,b(φ) ≤ s},

and denoted by dist(φ,A) the distance between a point φ and a set A in the continuous

path space. Due to the singularity at time 1, for any δ > 0 we write{
dist

(
Bε,a,b,Φ(s)

)
≥ δ
}

(2.11)

=
{

dist
(
Bε,a,b

[0,t] ,Φ[0,t](s)
)
≥ δ
}
∪
{

dist
(
Bε,a,b

[t,1] ,Φ[t,1](s)
)
≥ δ
}

where Φ[0,t](s), resp. Φ[t,1](s), denotes the collection of all elements in Φ(s) restricted

on [0, t] (resp. [t, 1]). Thus we have

P
(
dist

(
Bε,a,b,Φ(s)

)
≥ δ
)

≤ P
(

dist
(
Bε,a,b

[0,t] ,Φ[0,t](s)
)
≥ δ
)

+ P
(

dist
(
Bε,a,b

[t,1] ,Φ[t,1](s)
)
≥ δ
)
.

Again, from (2.6) we estimate

P
(

dist
(
Bε,a,b

[0,t] ,Φ[0,t](s)
)
≥ δ
)

= (1− t)−1/2 · exp

(
(b− a)2

2ε

)
·
∫
{

dist
(
Xε

[0,t]
,Φ[0,t](s)

)
≥δ
} exp

(
−(b−Xε

t )
2

2ε(1− t)

)
dP

≤ (1− t)−1/2 · exp

(
(b− a)2

2ε

)
· P
(
dist

(
Xε

[0,t],Φ[0,t](s)
)
≥ δ
)
.

(2.12)
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Defining s := infφ∈F S
a,b(φ)− γ for any closed set F and arbitrarily small positive γ,

we have

lim sup
ε→0+

ε logP
(
Bε,a,b ∈ F

)
≤ lim

t→1
lim sup
ε→0+

ε logP
(

dist
(
Bε,a,b

[0,t] ,Φ[0,t](s)
)
≥ δ
)
(2.13)

for some δ > 0, since by Fernique’s theorem we have

lim
t→1

lim sup
ε→0+

ε logP
(

dist
(
Bε,a,b

[t,1] ,Φ[t,1](s)
)
≥ δ
)

= −∞.

By combining (2.12) and (2.13), we obtain

lim sup
ε→0+

ε logP
(
Bε,a,b ∈ F

)
≤ 1

2
(b− a)2 + lim

t→1
lim sup
ε→0+

ε logP
(
dist

(
Xε

[0,t],Φ[0,t](s)
)
≥ δ
)

≤ 1

2
(b− a)2 + lim sup

ε→0+
ε logP (dist (Xε,Φ(s)) ≥ δ)

≤ 1

2
(b− a)2 − 1

2
inf
φ∈A

∫ 1

0

φ′(t)2dt

from the upper bound of large deviations for Brownian motions, where A is the closed

set A = {φ(·) : dist(φ,Φ(s)) ≥ δ}. We conclude by noting that

1

2

∫ 1

0

φ′(t)2 ≥ s+
1

2
(b− a)2

for any φ ∈ A.

Remark 2.1. In the case of general Bernstein processes, several technical difficulties

arise from the presence of a potential V , as can be seen in the three lemmas at the

beginning of Section 3. We point out in particular that Fernique’s theorem will not be

applicable to Bernstein processes since they can not be written as linear combinations

of elementary Gaussian processes; see (2.10) for Brownian bridges built as linear

combinations of Brownian motions.

Remark 2.2. The Girsanov transformation (2.6) played an important role in our proof.

Analogous transformations will be used for Bernstein processes in Section 4. On the

other hand, for the proof of the upper bound, we used upper probability estimates
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involving compact sets Φ(s), which are equivalent to the standard upper bounds of

large deviations for closed sets; see Section 3.3 in [9]. The advantage of this method

is to split an event into two parts on [0, t] and [t, 1] as in (2.11), which is not obvious

for closed sets. Lastly, the transition density of the Wiener process which has been

implicitly used throughout the proof, cf. e.g. (2.7), will be replaced for Bernstein pro-

cesses by various local and global estimates on the parabolic kernel of the Schrödinger

operator in Section 3.

3 Proof of Theorem 1.1

The following three technical lemmas will be needed for the proof of Theorem 1.1,

and their proofs are given at the end of this section. The first lemma will be used in

both proofs of the lower and the upper bounds.

Lemma 3.1. Under the conditions of Theorem 1.1, for any δ > 0 and φ(·) ∈
Ca,b([0, 1]), we have

lim
t→1−

lim
~→0+

~ logP
(

max
t≤s≤1

∣∣X~,a,b
s − φ(s)

∣∣ ≥ δ

)
= −∞.

The second and third lemmas play important parts in the proof of the upper bound.

Lemma 3.2. For the rate function Sa,bX defined by (1.4), we define the compact sets

ΦX(s) = {φ ∈ Ca,b([0, 1]) : Sa,bX (φ) ≤ s}, s > 0,

and let ΦX
[0,t](s) denote the collection of all elements in ΦX(s) restricted to [0, t], 0 ≤

t < 1. Then under the conditions of Theorem 1.1, we have

lim
t→1−

lim sup
~→0+

~ log

∫
{

dist
(
a+
√
~W[0,t],Φ

X
[0,t]

(s)
)
≥δ
} exp

(
−1

~

∫ t

0

V
(
a+
√
~Wu

)
du

)
dP

≤ −s− 2ρ(a, b, 1),

for all δ > 0 and s > 0.

Lemma 3.3. Under the conditions of Theorem 1.1, the following holds

lim
t→1−

lim sup
~→0+

~ logP
(

dist
(
X~,a,b

[t,1] ,Φ
X
[t,1](s)

)
≥ δ
)

= −∞,

where ΦX
[t,1](s) denotes the collection of all elements in ΦX(s) restricted on [t, 1].
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In view of (1.3) the Girsanov transformation is given by

dµX~,a,b
[0,t]

dµa+
√
~W[0,t]

(y·) = exp

(∫ t

0

∇ log η~(s, ys)dys −
~
2

∫ t

0

(∇ log η~(s, ys))
2 ds

)
, (3.1)

t ∈ [0, 1), cf. Section 4. It follows that for any measurable A ⊆ Ca,b([0, t]) we have

µX~,a,b
[0,t]

(A) =

∫
{a+
√
~W[0,t]∈A}

exp

(√
~
∫ t

0

∇ log η~(s, a+
√
~Ws)dWs

−~
2

∫ t

0

(
∇ log η~(s, a+

√
~Ws)

)2

ds

)
dP

=

∫
{a+
√
~W[0,t]∈A}

η~(t, a+
√
~Wt)

η~(0, a)
exp

(
−1

~

∫ t

0

V
(
a+
√
~Ws

)
ds

)
dP

(3.2)

where the last equality comes from (1.2) and the Itô formula applied to d log η~(s, a+
√
~Ws).

For simplicity of exposition, some steps in the proof of Theorem 1.1 are derived using

simpler bounds that hold under the boundedness of the potential V. Indeed, in this

case the estimates on the kernel have relatively simpler forms as seen in Example 1.

As noted within the proof, those arguments extend to potentials satisfying Conditions

(A1) and (A2).

3.1 Proof of the lower bound (1.5)

For any open set O ⊆ Ca,b([0, 1]) and x∗(·) ∈ O with Sa,bX (x∗) <∞ and Ballδ(x
∗) ⊆ O

for some δ > 0, we define

Ot =

{
φ ∈ Ca,b([0, 1]) : max

0≤s≤t
|φ(s)− x∗(s)| < δ

}
,

and

Ot =

{
φ ∈ Ca,b([0, 1]) : max

t≤s≤1
|φ(s)− x∗(s)| ≥ δ

}
.

We note that Ot ⊆ O ∪Ot, and

P
(
X~,a,b ∈ O

)
+ P

(
X~,a,b ∈ Ot

)
≥ P

(
X~,a,b ∈ Ot

)
, t ∈ [0, 1). (3.3)
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By (3.2) we have, for large enough n,

lim inf
~→0+

~ logP
(
X~,a,b ∈ Ot

)
≥ lim inf

~→0+
~ logP

(
max
0≤s≤t

∣∣Xε,a,b
s − x∗(s)

∣∣ < 1/n

)
≥ lim inf

~→0+
~ log

∫
{max0≤s≤t|a+

√
~Ws−x∗(s)|<1/n}

η~(t, a+
√
~Wt)

η~(0, a)

· exp

(
−1

~

∫ t

0

V
(
a+
√
~Ws

)
ds

)
dP

≥ −
∫ t

0

V (x∗(s))ds− α(n)− lim inf
~→0+

~ log η~(0, a)

+ lim inf
~→0+

~ log

∫
{max0≤s≤t |a+

√
~Ws−x∗(s)|<1/n}

η~(t, a+
√
~Wt)dP

(3.4)

where α(n)→ 0 as n→∞ from the fact that V is continuous. We now analyze each

term in the last step of (3.4).

First, we clearly have ∫ t

0

V (x∗(s))ds+ α(n)→
∫ t

0

V (x∗(s))ds

when n → ∞. Second, from the asymptotic behavior for the parabolic kernel of

the operator ~
2
4− 1

~V −
∂
∂t

developed in Theorem 6.1 of [18] for twice continuously

differentiable V it follows that

lim inf
~→0+

~ log η~(0, a) = −2ρ(a, b, 1). (3.5)

Lastly, in case the potential V is bounded the function η~(t, x) admits the lower bound

η~(t, x) ≥ c√
(1− t)~

exp

(
−(1− t)‖V ‖

~
− (b− x)2

2~(1− t)

)
(3.6)

for some c > 0, cf. for instance [27] where we can make the change of variable

η̃~(t, x) = η~(1− 2t/~, x). Thus on the set
{

max0≤s≤t

∣∣∣a− x∗(s) +
√
~Ws

∣∣∣ < 1/n
}

we

get

η~(t, a+
√
~Wt) ≥

c√
(1− t)~

exp

(
−(1− t)‖V ‖

~

)
(3.7)

× exp

(
−(b− x∗(t) + 1/n)2 + (b− x∗(t)− 1/n)2

2~(1− t)

)
,
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when V is bounded. By (3.4) and the above inequality we find

lim
t→1−

lim
n→∞

lim inf
~→0+

~ log

∫
{max0≤s≤t|a−x∗(s)+

√
~Ws|<1/n}

η~(t, a+
√
~Wt)dP (3.8)

= lim
t→1−

lim
n→∞

lim inf
~→0+

~ logP
(

max
0≤s≤t

∣∣∣a− x∗(s) +
√
~Ws

∣∣∣ < 1/n

)
≥ − lim

t→1−
lim
n→∞

1

2

∫ t

0

(dx∗(s)/ds)2ds = −1

2

∫ 1

0

(dx∗(s)/ds)2ds.

The arguments between (3.4) and (3.8) imply

lim
t→1−

lim inf
~→0+

~ logP
(
X~,a,b ∈ Ot

)
≥ −Sa,bX (x∗).

For the term P
(
X~,a,b ∈ Ot

)
, Lemma 3.1 implies

lim
t→1−

lim inf
~→0+

~ logP
(
X~,a,b ∈ Ot

)
= lim

t→1−
lim inf
~→0+

~ logP
(

max
t≤s≤1

∣∣X~,a,b
s − x∗(s)

∣∣ ≥ δ

)
= −∞,

which completes the proof of the lower bound. If V is not bounded we can conclude

similarly by replacing (3.7) with (A2) from (3.6) to (3.8).

3.2 Proof of the upper bound (1.6)

Let us recall the rate function

Sa,bX (φ) =
1

2

∫ 1

0

φ′(t)2dt+

∫ 1

0

V (φ(t))dt− 2ρ(a, b, 1)

and the definition of the compact sets

ΦX(s) = {φ ∈ Ca,b([0, 1]) : Sa,bX (φ) ≤ s}, for s > 0.

For δ > 0 and 0 ≤ t < 1 we now write{
dist

(
X~,a,b,ΦX(s)

)
≥ δ
}

=
{

dist
(
X~,a,b

[0,t] ,Φ
X
[0,t](s)

)
≥ δ
}
∪
{

dist
(
X~,a,b

[t,1] ,Φ
X
[t,1](s)

)
≥ δ
}

where ΦX
[0,t](s), resp. ΦX

[t,1](s), denote again the restrictions to [0, t], resp. [t, 1], of

elements in ΦX(s), hence we have

P
(
dist

(
X~,a,b,ΦX(s)

)
≥ δ
)
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≤ P
(

dist
(
X~,a,b

[0,t] ,Φ
X
[0,t](s)

)
≥ δ
)

+ P
(

dist
(
X~,a,b

[t,1] ,Φ
X
[t,1](s)

)
≥ δ
)
.

On the other hand the Girsanov transformation (3.2) shows that

P
(

dist
(
X~,a,b

[0,t] ,Φ
X
[0,t](s)

)
≥ δ
)

=

∫
{

dist
(
a+
√
~W[0,t],Φ

X
[0,t]

(s)
)
≥δ
} η~(t, a+

√
~Wt)

η~(0, a)
exp

(
−1

~

∫ t

0

V
(
a+
√
~Ws

)
ds

)
dP.

If V is bounded, we then use an upper bound estimate for η~(t, x) as

η~(t, x) ≤ c√
(1− t)~

exp

(
(1− t)‖V ‖

~
− (b− x)2

2~(1− t)

)
, (3.9)

cf. [27]. Thus, using (3.5) we have

lim
t→1−

lim sup
~→0+

~ logP
(

dist
(
X~,a,b

[0,t] ,Φ
X
[0,t](s)

)
≥ δ
)
≤ 2ρ(a, b, 1) + ‖V ‖(1− t)

+ lim
t→1−

lim sup
~→0+

~ log

∫
{

dist
(
a+
√
~W[0,t],Φ

X
[0,t]

(s)
)
≥δ
} exp

(
−1

~

∫ t

0

V
(
a+
√
~Ws

)
ds

)
dP

≤ −s,
(3.10)

where the last inequality follows from Lemma 3.2. Now for F a closed set and γ > 0

arbitrarily small we let s := −γ + infφ∈F S
a,b
X (φ) and get

lim
t→1−

lim sup
~→0+

~ logP
(

dist
(
X~,a,b

[t,1] ,Φ
X
[t,1](s)

)
≥ δ
)

= −∞,

for some δ > 0 by Lemma 3.3, hence

lim sup
~→0+

~ logP
(
X~,a,b ∈ F

)
≤ lim

t→1−
lim sup
~→0+

~ logP
(

dist
(
X~,a,b

[0,t] ,Φ
X
[0,t](s)

)
≥ δ
)
.

(3.11)

By combining (3.10) and (3.11), we obtain

lim sup
~→0+

~ logP
(
X~,a,b ∈ F

)
≤ −s = γ − inf

φ∈F
Sa,bX (φ),

which completes the proof by sending γ to 0. In case V is not bounded we replace

(3.9) by (A2).
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3.3 Proofs of the lemmas

Proof of Lemma 3.1. From the distribution of X~,a,b
t in (1.1) and (1.2), it can be seen

that the distribution of the Bernstein process (X~,a,b
t )0≤t≤1 is equal to the distribu-

tion of its time reversed process (X~,b,a
1−t )0≤t≤1, as this property is constitutive of all

Bernstein processes and not only of bridge processes. This yields

P
(

max
t≤s≤1

∣∣X~,a,b
s − φ(s)

∣∣ ≥ δ

)
= P

(
max

0≤s≤1−t

∣∣X~,b,a
s − φ(1− s)

∣∣ ≥ δ

)
.

Noting that the new kernel η~ has the new terminal condition η~(1, x) = δa(x), by the

Girsanov transformation (3.2) we find

P
(

max
0≤s≤1−t

∣∣X~,b,a
s − φ(1− s)

∣∣ ≥ δ

)
=

∫
{max0≤s≤1−t|

√
~Ws+b−φ(1−s)|≥δ}

η~(1− t,
√
~W1−t + b)

η~(0, b)
(3.12)

× exp

(
−1

~

∫ 1−t

0

V
(√

~Ws + b
)
ds

)
dP.

In case the potential V is bounded we have the upper estimate

η~(t, x) ≤ c√
(1− t)~

exp

(
(1− t)‖V ‖

~
− (x− a)2

2~(1− t)

)
, (3.13)

which implies

lim
~→0+

~ log P
(

max
0≤s≤1−t

∣∣X~,b,a
s − φ(1− s)

∣∣ ≥ δ

)
≤ 2ρ(a, b, 1) + 2‖V ‖+ lim

~→0+
~ logP

(
max

0≤s≤1−t

∣∣∣√~Ws + b− φ(1− s)
∣∣∣ ≥ δ

)
≤ 2ρ(a, b, 1) + 2‖V ‖+ lim

~→0+
~ logP

(
max

0≤s≤1−t

∣∣∣√~Ws

∣∣∣ ≥ δ/2

)
, for t near 1,

= 2ρ(a, b, 1) + 2‖V ‖ − δ2

8(1− t)
,

from (3.5) and Fernique’s theorem. By taking t→ 1− we conclude that

lim
t→1−

lim
~→0+

~ logP
(

max
t≤s≤1

∣∣X~,a,b
s − φ(s)

∣∣ ≥ δ

)
= −∞.
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In case V is not bounded, we replace (3.13) by (A2), and apply a Hölder inequality

in (3.12) together with the following fact

lim
t→1−

lim sup
~→0+

~ logE
[
exp

(
−α
~

∫ 1−t

0

V
(
a+
√
~Ws

)
ds

)]
<∞,

which is Condition (A1.1).

Proof of Lemma 3.2. We start by noting the upper estimate

lim sup
~→0+

~ log

∫
{

dist
(
a+
√
~W[0,t],Φ

X
[0,t]

(s)
)
≥δ
} exp

(
−1

~

∫ t

0

V
(
a+
√
~Ws

)
ds

)
dP

≤ lim sup
~→0+

~ log

∫
{dist(a+

√
~W,ΦX(s))≥δ}

exp

(
−1

~

∫ t

0

V
(
a+
√
~Ws

)
ds

)
dP,

(3.14)

and inspired by the proof of Varadhan’s Integral Lemma in Section 4.3 of [6], we

analyze the last limit in (3.14). New difficulties arise in this case since the domain of

the integration is not the whole function space.

From the lower semi-continuity of the functional
∫ 1

0
φ′(s)2ds and the continuity of V ,

it follows that for a fixed % > 0 and every point φ in the compact set ΦX(n), n ≥ 1,

there exists an open neighborhood Oφ of φ such that

inf
ϕ∈Oφ

∫ 1

0

ϕ′(s)2ds ≥
∫ 1

0

φ′(s)2ds− %

and

sup
ϕ∈Oφ

(
−
∫ t

0

V (ϕ(s))ds

)
≤ −

∫ t

0

V (φ(s))ds+ %, for all t ∈ [0, 1].

For our purpose we use the neighborhood Oφ := Ballε(φ) with a sufficiently small

ε(%, φ) depending on % and on φ, such that ε(%, φ) < δ/2, and from the compactness

of ΦX(n), we choose a finite cover of ΦX(n) as ∪Nk=1Ballε(φk). Next, introducing the

notation

Aκ =
{
φ(·) : dist(φ,ΦX(s)) ≥ κ

}
,

for any constant κ > 0 we have

lim sup
~→0+

~ log

∫
{dist(a+

√
~W,ΦX(s))≥δ}

exp

(
−1

~

∫ t

0

V
(
a+
√
~Ws

)
ds

)
dP
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= lim sup
~→0+

~ log

(∫
{x·∈Aδ}∩{x·∈∪Nk=1Ballε(φk)}

exp

(
−1

~

∫ t

0

V (x(s))ds

)
dµa+

√
~W (x·)

+

∫
{x·∈Aδ}∩{x·∈(∪Nk=1Ballε(φk))

c}
exp

(
−1

~

∫ t

0

V (x(s))ds

)
dµa+

√
~W (x·)

)
=: lim sup

~→0+
~ log

(
Γ~,t

1 + Γ~,t
2

)
.

From the fact that ε(%, φ) < δ/2 we see that if Aδ ∩ Ballε(φk) 6= ∅ then φk ∈ Aδ/2.

Therefore, denoting by (φki)
M
i=1 the collection of all points in (φk)

N
k=1 which belong to

Aδ/2 we have

Γ~,t
1 ≤

M∑
i=1

exp

(
−1

~

(∫ t

0

V (φki(s))ds− %
))
· µa+

√
~W

(
Ballε(φki)

)
.

Thus by the large deviation upper bounds for {a +
√
~W} applied to the closed sets

Ballε(φki) we obtain

lim sup
~→0+

~ log Γ~,t
1 ≤ max

i=1,...,M

{
−
∫ t

0

V (φki(s))ds+ %− infφ∈Ballε(φki )

1

2

∫ 1

0

φ′(s)2ds

}
≤ max

i=1,...,M

{
−
∫ t

0

V (φki(s))ds+ 2%− 1

2

∫ 1

0

φ′ki(s)
2ds

}
≤ 2%− (s+ 2ρ(a, b, 1)) + max

i=1,...,M

{∫ 1

t

V (φki(s))ds

}
.

Therefore

lim
t→1

lim sup
~→0+

~ log Γ~,t
1 ≤ 2%− (s+ 2ρ(a, b, 1)).

For Γ~,t
2 , we apply Hölder inequality to get

Γ~,t
2 ≤

(
E
[
exp

(
−α
~

∫ t

0

V
(
a+
√
~Ws

)
ds

)])1/α

·

(
µa+

√
~W

((
N⋃
k=1

Ballε(φk)

)c))1/β

with α > 1 and 1/α + 1/β = 1. Thus

lim sup
~→0+

~ log Γ~,t
2 ≤

1

α
lim sup
~→0+

~ logE
[
exp

(
−α
~

∫ t

0

V
(
a+
√
~Ws

)
ds

)]
− 1

2β
inf

φ∈(ΦX(n))c

∫ 1

0

φ′(s)2ds

22



by noting that
(
∪Nk=1Ballε(φk)

)c ⊆ (ΦX(n)
)c

. It follows from Condition (A1.2) that

the constant

C :=
1

α
lim
t→1

lim sup
~→0+

~ logE
[
exp

(
−α
~

∫ t

0

V
(
a+
√
~Ws

)
ds

)]
<∞

is finite. To summarize, we obtain

lim
t→1

lim sup
~→0+

~ log
(

Γ~,t
1 + Γ~,t

2

)
(3.15)

≤ max

{
2%− s− 2ρ(a, b, 1), C − 1

2β
inf

φ∈(ΦX(n))c

∫ 1

0

φ′(s)2ds

}
= −s− 2ρ(a, b, 1),

where the last equality of (3.15) follows from sending %→ 0 and using the fact that

lim
n→∞

inf
φ∈(ΦX(n))c

∫ 1

0

φ′(s)2ds =∞. (3.16)

If (3.16) were not true, then there would be a constant D > 0 and a sequence {φn ∈(
ΦX(n)

)c}n≥1 such that

1

2

∫ 1

0

φ′n(s)2ds ≤ D.

Then ‖φn‖2 ≤ 2D. This in turn implies that

Sa,bX (φn) =
1

2

∫ 1

0

φ′n(t)2dt+

∫ 1

0

V (φn(t))dt− 2ρ(a, b, 1)

≤ D + max
−
√

2D≤x≤
√

2D
|V (x)| − 2ρ(a, b, 1),

which is a contradiction with the fact that limn→∞ S
a,b
X (φn) ≥ limn→∞ n =∞.

Proof of Lemma 3.3. From the compactness of{
φ ∈ Ca,b([0, 1]) : φ is absolutely continuous and

1

2

∫ 1

0

φ′(s)2ds ≤ α

}
for any α > 0, we easily see that the infimum

ρ(a, b, 1) = inf

{
1

4

∫ 1

0

(
φ′(t)2 + 2V (φ(t))

)
dt

}
,

over φ : [0, 1]→ R with φ(0) = a and φ(1) = b, is reached at some φ0, i.e.

ρ(a, b, 1) =
1

4

∫ 1

0

(
φ′0(t)2 + 2V (φ0(t))

)
dt.
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In this case Sa,bX (φ0) = 0. Therefore we have

lim
t→1−

lim sup
~→0+

~ logP
(

dist
(
X~,a,b

[t,1] ,Φ
X
[t,1](s)

)
≥ δ
)

= lim
t→1−

lim sup
~→0+

~ logP
(

dist
(
X~,a,b

[t,1] ,Φ
X
[t,1](s)

)
≥ δ, max

t≤s≤1

∣∣X~,a,b
s − φ0(s)

∣∣ ≥ δ

)
≤ lim

t→1−
lim sup
~→0+

~ logP
(

max
t≤s≤1

∣∣X~,a,b
s − φ0(s)

∣∣ ≥ δ

)
= −∞,

where the last step follows from Lemma 3.1.

Remark 3.4. The most probable trajectories of (X~,a,b
t )0≤t≤1 as ~ → 0 are contained

in the set of φ such that Sa,bX (φ) = 0. If we further assume that the infimum of

1
4

∫ 1

0
(φ′(t)2 + 2V (φ(t))) dt, over all absolutely continuous functions φ : [0, 1] → R

with φ(0) = a and φ(1) = b, is attained uniquely, then the (unique) most probable

trajectory is the minimizer of ρ(a, b, 1). This is also the conclusion of the Least Action

Principle in a mechanical system; see Section 1.2 in [16]. See [26] for a recent overview

of “stochastic deformation” of classical mechanics founded on Bernstein processes.

4 On the Girsanov transformation

In this section, we study the feasibility of the Girsanov transformation

dµX~,a,b
[0,t]

dµa+
√
~W[0,t]

(y·) = exp

(∫ t

0

∇ log η~(s, ys)dys −
1

2

∫ t

0

~ (∇ log η~(s, ys))
2 ds

)
for Bernstein processes. Using Itô’s formula, it becomes equivalent to prove that

E

η~
(
t, a+

√
~Wt

)
η~(0, a)

exp

(
−1

~

∫ t

0

V
(
a+
√
~Ws

)
ds

) = 1. (4.1)

To this end, let us consider the initial value problem
∂u

∂s
(s, y) =

~
2
4u(s, y)− 1

~
V (y)u(s, y), 0 < s ≤ 1,

u(0, y) = f(y)

(4.2)
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for a continuous and bounded function f(y). On one hand, from the theory of partial

differential equations, the solution u(s, y) can be given in terms of the fundamental

solution

u(t, y) =

∫
R
η~,y(1− t, z)f(z)dz

where η~,y is the fundamental solution to (1.2) with η~,y(1, z) = δy(z). On the other

hand, this solution u(s, y) has a Feynman-Kac type representation (see Theorem 4.4.2

in [14] and [8])

u(t, y) = E
[
f(
√
~Bt + y) exp

(
−1

~

∫ t

0

V
(√

~Bs + y
)
ds

)]
.

For a fixed 0 ≤ t < 1, we now choose a special continuous and bounded (positive) func-

tion f(y) = η~(t, y)/η~(0, a). By equating these two representations of the solution, it

follows that

∫
R
η~,a(1− t, z)

η~(t, z)

η~(0, a)
dz = E

η~
(
t, a+

√
~Wt

)
η~(0, a)

exp

(
−1

~

∫ t

0

V
(
a+
√
~Ws

)
ds

)
(4.3)

where η~ is defined by (1.2). From the construction of a Bernstein process, the left

hand side of (4.3) is equal to P
(
X~,a,b
t ∈ R

)
= 1 by observing that η~,a(1 − t, z) =

η∗~(t, z) which is defined in (1.2). This proves (4.1).
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