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Abstract—Due to its mathematical tractability, the homoge-
neous Poisson point process (PPP) has been employed to model
wireless networks and analyze their performance. The PPP has
the fundamental property that in a network with n nodes, the
n nodes are distributed independently from each other. As such
the PPP is not a suitable model for many networks where there
exists a repulsion among the nodes. In order to address this
limitation, in this paper we model the spatial distribution of
transmitters in wireless networks as a Poisson hard-core process
(PHCP) in which no two nodes can be closer to each other than
a given repulsion radius from one another. We first provide an
exact expression of the coverage probability of the networks and
then introduce the method to efficiently evaluate the derived
expression. Additionally, we derive approximations of the cover-
age probability which have low computational complexities. The
accuracy and efficiency of our analytical results are validated by
our simulations.

Index Terms—Stochastic geometry, repulsive point process,
Poisson hard-core process

I. INTRODUCTION

The spatial distribution of nodes in wireless networks
strongly affects the performance of networks. Recently, many
researchers have utilized stochastic geometry [1] to model
and analyze the wireless networks since conventional methods
assuming a regular hexagonal lattice or the Wyner model
[2] are unrealistic and difficult to apply. Since the Poisson
point process (PPP) has many useful mathematical properties,
several works have assumed that the spatial distribution of
the nodes in wireless networks are distributed according to
a PPP [3]–[6]. The authors in [3] and [4] characterized the
transmission capacity of ad hoc wireless networks. In the
case of cellular networks, downlink and uplink performances
were studied in [5] and [6], respectively. However, in the PPP
model, nodes are assumed to be independently distributed,
making PPP not a suitable model to reflect the actual node
deployment in many wireless networks. In [5], it is shown that
modeling the locations of cellular base stations (BSs) as a PPP
underestimates the performance of the actual BS deployment.

In practical networks, the locations of transmitters are
chosen in order to alleviate interference or extend coverage
region, and thus a repulsion among the locations of the
transmitters naturally arises [7]–[10]. In this context, hard-core
point processes (HCPs) have drawn attention as the models for
actual networks which exhibit repulsion. These HCPs aim to
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model repulsive phenomena, as they are characterized by the
property that no two points can be closer to each other than a
given repulsion radius from one another. We distinguish two
main classes of HCPs which we now introduce.

The Matérn hard-core process (MHCP) type I [11] is
obtained by retaining every point of a PPP which is not within
a certain distance from another point of the PPP. The MHCP
type II model [11] is constructed by assigning an age t ∈ [0, 1]
to each point of a PPP and removing every point which is
within a given distance of a younger point of the PPP (a point
x with age tx is said to be younger than y with age ty if
tx ≤ ty). In [12], it was shown that BS locations in wireless
cellular networks can be modeled by the MHCPs. The works
in [13] and [14] studied mean interference of the MHCPs of
types I and II, respectively. The nearest neighbor distribution
in the MHCP type II was derived in [15]. However, since
the Laplace functional of the MHCPs is unknown, the model
is not well suited. As an example, it is intractable to find
the exact distribution of the signal-to-noise-plus-interference
ratio (SINR), which determines key performance metrics such
as achievable rate and coverage probability, for the networks
modeled by the MHCP as in [7] and [16].

A better suited HCP turns out to be the Poisson hard-core
process (PHCP) [1] (sometimes called Gibbs hard-core process
or Strauss hard-core process) which is a PPP conditional on
all its points being further than a certain distance from one
another. From the experimental results in [8]–[10], it was
verified that the PHCP can model the actual deployment of
BSs which exhibit a repulsive behavior. However, previous
works on the PHCP have only tried to fit the PHCP to
real configurations of the nodes. We have found that the
performance of networks modeled by a PHCP has not been
analytically investigated yet.

In this paper, we model the locations of transmitters in
wireless networks as a PHCP, and our focus will be the
analysis of some key performance metrics of the network.
First, by computing the Laplace functional of pairwise inter-
action point processes, we derive an exact series expansion
of the coverage probability which is the probability that the
SINR is larger than a certain target SINR. Then, we introduce
a method to compute the derived result which exploits the
Quasi-Monte Carlo (QMC) technique. In addition, we provide
approximations of the coverage probability which have low
computational complexities. Lastly, in order to confirm our
analysis, we compare our theoretical results with those given
by Monte Carlo simulation.
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II. PRELIMINARIES AND SYSTEM MODEL

In this section, we first introduce fundamental properties
of the pairwise interaction point process which includes the
PHCP as a special case. Then, we will present the system
model by focusing on the PHCP.

A. Preliminaries

Let W := B0 (R) ⊂ R2 be a circular observation window
of radius R centered at the origin (0, 0) in R2, and let Ψ be a
point process on W , i.e. a random finite set of points of W .
The configuration space (i.e., the space in which Ψ takes its
values) is denoted by X . We assume that Ψ has a density fΨ

with respect to the PPP on W with intensity 1 [17], i.e.,

E

[
exp

(
−
∑
x∈Ψ

g(x)
)]

=
∑
n≥0

e−`(W )

n!
(1)

×
∫
Wn

e−
∑n
i=1 g(xi)fΨ({x1, . . . , xn}) `(dx1) · · · `(dxn),

for all non-negative functions g : R2 → [0,∞), where `
indicates the Lebesgue measure on R2. We recall that the
Laplace functional of the point process on the left-hand side
of (1) characterizes its distribution.

In the following, we introduce the definition of the pairwise
interaction point process and Georgii-Nguyen-Zessin formula.

Definition 1 (Pairwise interaction point process). The point
process Ψ is said to be a pairwise interaction point process if

fΨ(ω) = c
∏
x∈ω

ϕ1(x)
∏

{x,y}⊂ω

ϕ2(‖x− y‖), ω ∈ X , (2)

where c is the normalizing constant defined by

c−1 :=
∑
n≥0

e−`(W )

n!

∫
Wn

n∏
i=1

ϕ1(xi) (3)

×
∏

j,k=1,...,n;
j 6=k

ϕ2(‖xj − xk‖) `(dx1) · · · `(dxn),

and ϕ1 and ϕ2 are two non-negative functions such that the
right-hand side of (3) is finite. The Papangelou conditional
intensity of a pairwise interaction point process is defined as

π(x, ω) :=
fΨ(ω ∪ {x})

fΨ(ω)
, x ∈W, ω ∈ X . (4)

Definition 2. A pairwise interaction point process with
ϕ1(x) = λ and ϕ2(x) = 1{x≥d} is called a PHCP with
intensity λ > 0 and radius d > 0.

Proposition 1 (Georgii-Nguyen-Zessin formula). Assume that
Ψ is a pairwise interaction point process. Then, for any f :
W ×X → [0,∞), we have

E

[∑
x∈Ψ

f(x,Ψ \ {x})

]
= E

[∫
W 2

f(x,Ψ)π(x,Ψ) dx

]
. (5)

We remark that the Georgii-Nguyen-Zessin formula (5)
implies that the (reduced) Palm measure of Ψ at x ∈ R2 [18]
is

µx(dξ) := π(x, ξ)λ−1(x)PΨ(dξ),

where PΨ denotes the distribution of Ψ and λ is the intensity
of Ψ. To obtain some heuristics on the Palm measure µx, let
dx be an infinitesimally small volume around x, let A ∈ A,
and set f(x, ω) := 1{x∈dx, ω∈A}. Then, by Proposition 1,

µx(A) = lim
`(dx)→0

P((Ψ \ dx) ∈ A | |Ψ ∩ dx| = 1),

or to state things analogously, µx is the distribution of the
point process obtained by conditioning Ψ on x ∈ Ψ and
removing x from the obtained configuration. When Ψ is the
PPP, µx = PΨ(dξ), which is known in the literature as the
Slivnyak-Mecke theorem [1]. We now characterize the Palm
distributions of the pairwise interaction point processes.

Proposition 2. Let Ψ be a pairwise interaction point process
with interaction functions ϕ1 and ϕ2. Then, µx is the law of
a pairwise interaction point process with interaction functions
given by

ϕx1(y) = ϕ1(y)ϕ2(‖x− y‖), and ϕx2(y) = ϕ2(y). (6)

Proof: Letting g : R2 → [0,∞), by (4) the Laplace
functional of µx at g is equal to∫

exp
(
−
∑
y∈ξ

g(y)
)
µx(dξ)

= ϕ1(x)λ−1(x)E

[
exp

(
−
∑
y∈Ψ

g(y)
) ∏
y∈Ψ

ϕ2(‖x− y‖)

]
,

and by (1) we obtain∫
exp

(
−
∑
y∈ξ

g(y)
)
µx(dξ) = cϕ1(x)λ−1(x) (7)

×
∑
n≥0

e−`(W )

n!

∫
Wn

e−
∑n
i=1 g(xi)

n∏
i=1

ϕ1(xi)ϕ2(‖x− xi‖)

×
∏

j,k=1,...,n;
j 6=k

ϕ2(‖xj − xk‖) `(dx1) · · · `(dxn).

Additionally,

λ(x) = E[π(x,Ψ)]

= cϕ1(x)
∑
n≥0

e−`(W )

n!

∫
Wn

n∏
i=1

ϕ1(xi)ϕ2(‖x− xi‖)

×
∏

j,k=1,...,n;
j 6=k

ϕ2(‖xj − xk‖) `(dx1) · · · `(dxn),

which implies that the normalizing constant appearing in (7) is
indeed the one corresponding to the pairwise interaction point
process with interaction functions given by (6). We conclude
by comparing (7) to (1) and (2).

In the following, we apply the previous proposition to the
PHCP.

Remark 1. By Proposition 2, the Palm measure of the
PHCP is the law of a pairwise interaction point process with
interaction functions given by

ϕx1(y) = λ1{‖x−y‖≥d}, and ϕx2(y) = 1{y≥d}. (8)

We note that the Palm measure above is the distribution of
a PPP with intensity λ on W \ B0 (d) conditional on all its
points lying farther than d from one-another.
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(a) a PPP with λ = 0.02
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(b) a PHCP with λ = 0.02 and
dh.c. = 4

Fig. 1. Some realizations of networks distributed according to a PPP and a
PHCP, respectively.

B. System model

In this subsection, in order to reflect the repulsion among the
locations of transmitters [7]–[10], we model wireless networks
utilizing the PHCP defined in Definition 2. Let Ψ denote
the point process modeling the locations of the transmitters
in wireless networks, and assume that Ψ is a PHCP on the
observation window W = B0 (R) with intensity λ and radius
dh.c. such that 0 ≤ dh.c. < R. Fig. 1 demonstrates realizations
of the networks where dots and circles represent the locations
of transmitters and balls centered at the transmitters with
radius dh.c./2, respectively. When the transmitters follow a
PPP, as shown in Fig. 1-(a), some transmitters are very closely
placed. Thus, modeling the spatial distribution of transmitters
as a PPP may not be suitable for networks where the points
cannot be located close to each other. On the other hand, as
seen in Fig. 1-(b), a PHCP with radius dh.c. can reflect the
repulsion by imposing that the transmitters cannot be at a
distance less than dh.c..

In the networks, each transmitter x ∈ Ψ sends data to its
corresponding receiver, located at a distance r from x, in a
direction which is assumed to be uniformly distributed. We
study the interference at a typical receiver, and its associated
transmitter (termed tagged transmitter) is conditioned on being
located at the origin. Under this conditioning, the typical
receiver is located according to a uniform distribution on
C0(r), the circle centered at the origin and with radius r. In the
remainder, we denote by Ψ0 a point process whose distribution
is the Palm measure of Ψ, i.e., a pairwise interaction point
process characterized by (8).

The quantities of interest are the interference from the other
transmitters I and the SINR at the typical receiver γ. Denoting
the location of the typical receiver as x1, γ and I can be
respectively written as

γ =
Phr−α

I + σ2
, (9)

and I =
∑
y∈Ψ0 Phy‖y − x1‖−α where P , α and σ2 stand

for the transmit power at the transmitters in Ψ, the path loss
exponent and the power of additive white Gaussian noise
(AWGN), respectively. Here, h and hy indicate the fading
gains of the channel between the typical receiver and the
tagged transmitter, and the channel between the receiver and

the transmitter positioned at y. We assume that fading channels
follow the Rayleigh distribution, and thus h and {hy} are
independent exponential random variables with unit mean.
Note that x1 presents the location of the typical receiver
whose coordinates are given by (r cos(U), r sin(U)) where
U ∼ U([0, 2π]) is a uniform random variable on [0, 2π]
independent from the other random variables.

III. PERFORMANCE ANALYSIS

In this section, we study the coverage probability, defined as
the probability that the SINR γ in (9) is larger than a certain
threshold γth. In the following, we denote by P the probability
on the underlying probability space, and the corresponding
expectation is denoted by E. The coverage probability Pcov
can be written as

Pcov , P (γ ≥ γth) .

Since h is an exponential random variable with unit mean,

Pcov = P
(
h ≥ γthr

α

P
(I + σ2)

)
= E

[
exp

(
− γthr

α

P
(I + σ2)

)]

= exp

(
−γthr

ασ2

P

)
LI
(
γthr

α

P

)
, (10)

where LX(s) = E [exp(−sX)] stands for the Laplace trans-
form of a random variable X .

A. Exact performance analysis

In the following theorem, we derive the exact expression
for Pcov in (10).

Theorem 1. For any γth > 0, the coverage probability in (10)
is given by

Pcov = c exp

(
−γthr

ασ2

P

)∑
n≥0

λne−πR
2

n!
(11)

×
∫

(W\B0(dh.c.))
n

n∏
i=1

1

1 + γthrα((x
(1)
i − r)2 + (x

(2)
i )2)−α/2

×
∏

j,k=1,...,n;
j 6=k

1{‖xj−xk‖≥dh.c.} `(dx1) · · · `(dxn),

where (x(1), x(2)) are the coordinates of a point x ∈ R2 and
c is defined by

c−1 :=
∑
n≥0

λne−πR
2

n!

∫
(W\B0(dh.c.))

n

(12)

×
∏

j,k=1,...,n;
j 6=k

1{‖xj−xk‖≥dh.c.} `(dx1) · · · `(dxn).

Proof: See Appendix A.
We note that in (11), the expression of the exact cov-

erage probability contains a multi-dimensional integral, and
therefore evaluating (11) may require a high computational
complexity. As a method to efficiently compute (11), we
employ the QMC integration method [19] which approximates
a multi-dimensional integral and has a low complexity. For
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all f : [0, 1]n → C, the QMC integration method exhibits a
deterministic sequence x1, . . .xNs ∈ [0, 1]n such that

QNs(f) :=
1

Ns

Ns∑
n=1

f(xn) ≈
∫

[0,1]n
f(x) dx, (13)

when Ns goes to infinity. The advantage of this method com-
pared to the Monte-Carlo method (in which the sequence xn is
stochastic) is that for high dimensions the QMC approximation
converges much faster. In this paper, we choose the Sobol
sequence [20] as the deterministic sequence. Since the QMC
method is applicable for integrations over the unit square,
we rewrite the coverage probability in (11) as shown in the
following corollary. Utilizing the results in Corollary 1 and
the QMC integration method in (13), we can readily evaluate
the coverage probability of the networks.

Corollary 1. By changing the integral region in (11), we have

Pcov = c exp

(
−γthr

ασ2

P

)∑
n≥0

λne−πR
2

n!
(2R)2n (14)

×
∫

([0,1]×[0,1])n

n∏
i=1

1{dh.c./(2R)≤‖zi−(1/2,1/2)‖≤1/2}

×
n∏
i=1

1

1 + sP ((R(2z
(1)
i − 1)− r)2 + (R(2z

(2)
i − 1))2)−α/2

×
∏

j,k=1,...,n;
j 6=k

1{‖zj−zk‖≥dh.c./(2R)} `(dz1) · · · `(dzn),

where

c−1 =
∑
n≥0

λne−πR
2

(2R)2n

n!
(15)

×
∫

([0,1]×[0,1])n

n∏
i=1

1{dh.c./(2R)≤‖zi−(1/2,1/2)‖≤1/2}

×
∏

j,k=1,...,n;
j 6=k

1{‖zj−zk‖≥dh.c./(2R)} `(dz1) · · · `(dzn).

Proof: See Appendix B.

B. Approximations

So far, we have obtained the exact coverage probability
Pcov and introduced the method to compute the derived
result. Now, we introduce some approximations of Pcov which
have simple expressions. The main difficulty in identifying
closed-form expressions for the coverage probability Pcov =

exp
(
−γthr

ασ2

P

)
LI
(
γthr

α

P

)
in (10) comes from the fact that

the Laplace transform with Ψ0 contains a multi-dimensional
integral. Therefore, we approximate Ψ0 by a PPP in order
to obtain simple expressions for the Laplace transform of the
interference.

1) As one of the most naive approaches, one may substitute
the location of the points in Ψ0 by a PPP denoted by
Φ(1) with intensity λ. Then, since the PPP is stationary,
we can compute the Laplace transform of the interference

as [3]

L(1)
I (s) = E

exp

−s ∑
y∈Φ(1)

Phy‖y − x1‖−α


= A(λ, P, s), (16)

where

A(λ, a, s) , exp

(
−λa2/αs2/α 2π2

α sin(2π/α)

)
. (17)

2) The second approximation follows an idea from [21]
which we recall. Since the transmitters in Ψ cannot be
at a distance less than dh.c. from one another, and the
distance from a transmitter in Ψ to its corresponding
receiver is equal to r, the distance between a receiver
and its interfering transmitter is always larger than τ =
max(dh.c. − r, 0). Thus, by excluding the interference
from the points in Φ(1) within the distance τ , we have
[21]

L(2)
I (s)=E

[
exp

(
−s
∑
y∈Φ(1)

Phy‖y−x1‖−α1{‖y−x1‖>τ}

)]
= B(λ, P, s, τ), (18)

where

B(λ, a, s, τ) , exp

(
− λπ

(
a2/αs2/α (19)

×
∫ ∞

0

h2/αγ(1− 2/α, ashτ−α)e−hdh− asτ2−α

1 + asτ−α

))
,

and γ(x, y) ,
∫ y

0
tx−1e−tdt denotes the lower incom-

plete gamma function. We refer the reader to [21] for the
details of the derivation.

3) Note that when producing points of a PHCP with intensity
λ and radius dh.c., the points are first generated according
to a PPP with intensity λ, and then it is checked whether
the minimum distance among the points is greater than
dh.c.. If the minimum distance is less than dh.c., the
sample is rejected and another set of points is repeatedly
generated until the minimum distance becomes larger
than dh.c.. Thus, the intensity λ̃ of the resulting points of
the PHCP (termed scaled intensity) turns out to be less
than λ. In the following lemma, we provide the scaled
intensity of the PHCP.
Lemma 1. For the Palm measure of a PHCP with radius
dh.c. and intensity λ, the scaled intensity λ̃ is given by

λ̃ =
λ

πR2

∑
n≥0

λn

n! νn+1∑
n≥0

λn

n! νn
, (20)

where

νn ,
∫

(W\B0(dh.c.))
n

∏
j,k=1,...,n;

j 6=k

1{‖xj−xk‖≥dh.c.} (21)

× `(dx1) · · · `(dxn).

Proof: See Appendix C.
Then, by approximating Ψ0 as a PPP with the rescaled
intensity λ̃, in the same way as in (16), we obtain an



5

0 1 2 3 4 5

dh.c.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
o
v
er

ag
e 

P
ro

b
ab

il
it

y

Analysis (N
s
 = 32768)

Analysis (N
s
 = 8192)

Analysis (N
s
 = 2048)

Simulation

γ
th

 = 10 dB

γ
th

 = 15 dB

Fig. 2. Coverage probability with different values of Ns

approximation of the Laplace transform of interference
as

L(3)
I (s) = A(λ̃, P, s). (22)

4) Similarly, by (18) we obtain

L(4)
I (s) = B(λ̃, P, s, τ). (23)

IV. SIMULATION RESULTS

In this section, we provide numerical results to validate our
analysis. Let us set SNR = P/σ2. We set α = 4, r = 1 and
σ2 = 1. The analytical result in (11) is evaluated using the
QMC method in (13) and the result in (14). Fig. 2 examines
the coverage probability Pcov with various numbers of terms
in the Sobol sequence Ns when SNR = 20 dB and λ = 0.01.
We see that the analytical results with Ns = 215(32768) are
well matched with the simulated results. Accordingly, in this
paper, we set the number of Sobol sequences Ns as Ns = 215.

In Fig. 3, we plot the coverage probability Pcov for different
values of SNR and λ in the case of γth = 15 dB. We observe
that Pcov is an increasing function of dh.c. and SNR. Since an
increase in λ results in additional interference, Pcov decreases
as λ becomes larger. In addition, it is observed that the impact
of dh.c. on Pcov is more pronounced when the SNR is high.

Fig. 4 reveals the exact and approximated coverage prob-
abilities of the networks with SNR = 20 dB, λ = 0.01 and
γth = 15 dB. As the approximation with L(1)

I (s) does not
take dh.c. into account, the approximation fails to predict the
performance of the networks with a PHCP. We see that L(2)

I (s)
enhances the accuracy of the approximations by excluding the
interference within the distance τ . Additionally, it is observed
that better approximations are obtained by employing the
rescaled intensity λ̃ in Lemma 1, i.e., L(3)

I (s) is better than
L(1)
I (s) and L(4)

I (s) is better than L(2)
I (s).

V. CONCLUSION

In this paper, we have modeled wireless networks using the
Poisson hard-core process (PHCP) which takes the repulsion
among the transmitters into account. We have derived an
explicit analytical representation of the coverage probability.
In addition, we have introduced the method to compute the
derived result by employing the Quasi-Monte Carlo (QMC)
method. The approximations on the coverage probability have
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also been provided. In the simulation results, we have verified
that our analysis accurately predicts the performance and con-
firmed that the coverage probability is an increasing function
of the radius of the PHCP.

APPENDIX A
PROOF OF THEOREM 1

First, we focus on the computation of the Laplace transform.
Let us denote the rotation of angle u by Ru. Then, for any
s > 0, we have

LI(s)

=
1

2π

∫ 2π

0

E
[

exp

(
− s

∑
y∈Ψ0

Phy

∥∥∥∥y −Ru(r, 0)

∥∥∥∥−α)] du

= E
[

exp

(
− s

∑
y∈Ψ0

Phy

∥∥∥∥y − (r, 0)

∥∥∥∥−α)],
since the law of Ψ0 is invariant with respect to rotations.
Hence,

LI(s) (24)

= E
[ ∏
y∈Ψ0

E
[
exp
(
−sPhy((y(1)−r)2+(y(2))2)−α/2

)
| Ψ0]]

(a)
= E

[ ∏
y∈Ψ0

1

1 + sP ((y(1) − r)2 + (y(2))2)−α/2

]

= E
[

exp

(
−
∑
y∈Ψ0

ln
(

1+sP ((y(1)−r)2+(y(2))2)−α/2
))]

(b)
= c

∑
n≥0

e−πR
2

n!

∫
Wn

n∏
i=1

λn

1 + sP ((x
(1)
i − r)2 + (x

(2)
i )2)−α/2
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×
n∏
i=1

1{‖xi‖≥dh.c.}
∏

j,k=1,...,n;
j 6=k

1{‖xj−xk‖≥dh.c.} `(dx1) · · · `(dxn)

= c
∑
n≥0

λne−πR
2

n!

∫
(W\B0(dh.c.))

n

∏
j,k=1,...,n;

j 6=k

1{‖xj−xk‖≥dh.c.}

×
n∏
i=1

1

1 + sP ((x
(1)
i − r)2 + (x

(2)
i )2)−α/2

`(dx1) · · · `(dxn),

where (a) follows from the independence between {hy} and
Ψ0, and the fact that the moment generating function of hy
is equal to E[exp(thz)] = (1 − t)−1. In addition, (b) comes
from the results in (1), (2) and (8). The result in (11) follows
by plugging (24) into (10). �

APPENDIX B
PROOF OF COROLLARY 1

The Laplace transform in (24) can be rewritten as

LI(s)

= c
∑
n≥0

e−πR
2

n!

∫ R

−R
· · ·
∫ R

−R
λn

n∏
i=1

1{‖xi‖≥dh.c.}

×
n∏
i=1

1{‖xi‖≤R}

n∏
i=1

1

1 + sP ((x
(1)
i − r)2 + (x

(2)
i )2)−α/2

×
∏

j,k=1,...,n;
j 6=k

1{‖xj−xk‖≥dh.c.} `(dx1) · · · `(dxn)

(c)
= c

∑
n≥0

λne−πR
2

n!
(2R)2n

∫
([0,1]×[0,1])n

×
n∏
i=1

1{dh.c./(2R)≤‖zi−(1/2,1/2)‖≤1/2}

×
n∏
i=1

1

1 + sP ((R(2z
(1)
i − 1)− r)2 + (R(2z

(2)
i − 1))2)−α/2

×
∏

j,k=1,...,n;
j 6=k

1{‖zj−zk‖≥dh.c./(2R)} `(dz1) · · · `(dzn),

where (c) comes from a change of variables z(j)
i ≡ x

(j)
i /R for

i = 1, . . . , n and j = 1, 2. In a similar fashion, c−1 in (12)
can be expressed as in (15). �

APPENDIX C
PROOF OF LEMMA 1

Let us denote by λ̃ the scaled intensity. Then, the equation
characterizing the intensity is

E[Ψ(W )] = λ̃`(W ) = λ̃πR2. (25)

From (12) and (21), we have

c−1 =
∑
n≥0

λne−πR
2

n!
νn. (26)

Additionally, we have

E[Ψ(W )]

= c
∑
n≥0

e−πR
2

n!

∫
(W\B0(dh.c.))

n

Ψ({x1, . . . , xn})

× `(dx1) · · · `(dxn)

= c
∑
n≥0

nλne−πR
2

n!
νn = cλ

∑
n≥0

λne−πR
2

n!
νn+1. (27)

Hence, from (25), (26) and (27), λ̃ is obtained as (20). �

REFERENCES

[1] M. Haenggi, Stochastic geometry for wireless networks. Cambridge,
U.K.: Cambridge Univ. Press, 2012.

[2] A. Wyner, “Shannon-theoretic approach to a Gaussian cellular multiple-
access channel,” IEEE Trans. Inf. Theory, vol. 40, pp. 1713–1727, Nov.
1994.

[3] A. M. Hunter, J. G. Andrews, and S. Weber, “Transmission capacity of
ad hoc networks with spatial diversity,” IEEE Trans. Wireless Commun.,
vol. 12, pp. 5058–5071, Dec. 2008.

[4] S. Weber, J. G. Andrews, and N. Jindal, “An overview of the trans-
mission capacity of wireless networks,” IEEE Trans. Commun., vol. 58,
pp. 3593–3604, Dec. 2010.

[5] J. G. Andrews, F. Baccelli, and R. K. Ganti, “A tractable approach to
coverage and rate in cellular networks,” IEEE Trans. Commun., vol. 59,
pp. 3122–3134, Nov. 2011.

[6] T. D. Novlan, H. S. Dhillon, and J. G. Andrews, “Analytical modeling
of uplink cellular networks,” IEEE Trans. Wireless Commun., vol. 12,
pp. 2669–2679, Jun. 2013.

[7] A. M. Ibrahim, T. A. ElBatt, and A. El-Keyi, “Coverage probability
analysis for wireless networks using repulsive point processes,” in Proc.
Int. Symp. Personal, Indoor and Mobile radio communications, London,
United Kingdom, pp. 1002–1007, Sep. 2013.

[8] D. B. Taylor, H. S. Dhillon, T. D. Novlan, and J. G. Andrews, “Pairwise
interaction processes for modeling cellular network Topology,” in Proc.
IEEE Global Commun. Conf. (Globecom), pp. 4524–4529, Dec. 2012.

[9] A. Guo and M. Haenggi, “Spatial stochastic models and metrics for the
structure of base stations in cellular networks,” IEEE Trans. Wireless
Commun., vol. 12, pp. 5800–5812, Nov. 2013.

[10] Q. Ying, Z. Zhao, Y. Zhou, R. Li, X. Zhou, and H. Zhang, “Char-
acterizing spatial patterns of base stations in cellular networks,” in
Proc. IEEE/CIC International Conference on communications in China
(ICCC), Oct. 2014, pp. 490-495.

[11] B. Matérn, Spatial Variation. Springer lecture notes in statistics, 1986.
[12] F. Lagum, S. S. Szyszkowicz, and H. Yanikomeroglu, “CoV-based

metrics for quantifying the regularity of hard-core point processes for
modeling base Station Locations,” IEEE Wireless Commun. Lett., vol. 5,
pp. 276–279, Jun. 2016.

[13] M. Haenggi, “Mean interference in hard-core wireless networks,” IEEE
Commun. Lett., vol. 15, pp. 792–694, Aug. 2011.

[14] B. Cho, K. Koufos, and R. Jäntti, “Bounding the mean interference
in Matérn Type II hard-core wireless networks,” IEEE Commun. Lett.,
vol. 2, pp. 563–566, Oct. 2013.

[15] A. Al-Hourani, R. J. Evans, and S. Kandeepan, “Nearest neighbour
distance distribution in hard-core point processes,” IEEE Commun. Lett.,
vol. 20, pp. 1872–1875, Sep. 2016.

[16] H. He, J. Xue, T. Ratnarajah, F. A. Khan, and C. B. Papadias, “Modeling
and analysis of cloud radio access networks using Matérn hard-core
point processes,” IEEE Trans. Wireless Commun., vol. 6, pp. 4074–4087,
Jun. 2016.

[17] D. J. Daley and D. Vere-Jones, An introduction to the theory of point
processes: Volume I: elementary theory and methods. Second Edition,
New York: Springer, 2003.

[18] O. Kallenberg, Random measures. Fourth Edition, Berlin, Germany:
Akademie-Verlag, 1986.

[19] F. Y. Kuo and I. H. Sloan, “Lifting the curse of dimensionality,” Notices
AMS, vol. 52, pp. 1320–1328, 2005.

[20] B. Blaszczyszyn and H. P. Keeler, “Studying the SINR process of
the typical user in Poisson networks by using its factorial moment
measures,” 2014. Available: http://arxiv.org/abs/1401.4005.

[21] M. Haenggi and R. Ganti, “Interference in large wireless networks,”
Foundations and Trends in networking, vol. 3, pp. 127–248, 2008.


