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Abstract

An approximation scheme is proposed for the computation of the risk mea-
sures of Guaranteed Minimum Maturity Benefits (GMMBs) and Guaranteed
Minimum Death Benefits (GMDBs) with additional earnings, based on the
evaluation of single integrals under conditional moment matching. This pro-
cedure is computationally efficient and recovers the numerical results obtained
by standard analytical methods in the absence of additional earnings.
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1 Introduction

Variable annuity benefits offered by insurance companies are usually protected via

different mechanisms such as Guaranteed Minimum Maturity Benefits (GMMBs) or
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Guaranteed Minimum Death Benefits (GMDBs). The computation of the correspond-

ing risk measures such as value at risk and conditional tail expectation is an important

issue for the practitioners in risk management.

We work in the standard model in which the underlying equity value (St)t∈R+ is

modeled as a geometric Brownian motion

St = S0eµt+σBt , t ∈ R+, (1.1)

with constant drift and volatility parameters µ and σ respectively, where (Bt)t∈R+

is a standard Brownian motion. Given an insurer continuously charging annualized

mortality and expense fees at the rate m from the account of variable annuities, the

fund value Ft of the variable annuity is defined as

Ft := F0e−mt
St
S0

= F0e(µ−m)t+σBt , t ∈ R+,

and the margin offset income Mx
t is given by

Mx
t := mxFt = mxF0e(µ−m)t+σBt , t ∈ R+, (1.2)

where mx is replaced by me in the GMMB model, and by md in the GMDB model.

The GMMB and GMDB riders provide minimum guarantees to protect the investment

account of the policyholder. Namely, denoting by τx the future lifetime of a policy-

holder at the age x, the future payment made by the insurer is (GF0 − FT )+
1{τx>T}

at maturity T for GMMBs, and (eδτxGF0 − Fτx)+
1{τx6T} at the time of death of the

insured for GMDBs, where GF0 is the guarantee level expressed as a fraction G of the

initial fund value F0, δ is a roll-up rate according to which the guarantee increases up

to the payment time.

Variable Annuities with embedded guarantees can be priced by the Monte-Carlo

method or PDE discretization, however those methods are generally computation-

ally demanding and a precise estimation of risk measures is difficult with classical

Monte Carlo simulation or grid approximation, cf. e.g. [BKR08] for a general frame-

work.
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In this framework, the evaluation of quantile risk measures and conditional tail ex-

pectations of the net liabilities

L0 := e−rT (GF0 − FT )+
1{τx>T} −

∫ T∧τx

0

e−rsM e
sds (1.3)

of GMMBs relies on the knowledge of the probability density function of the time

integral

∫ T∧τx

0

e−rsM e
sds of the geometric Brownian motion (1.2).

The marginal probability density of
∫ T

0
Stdt, called the Hartman-Watson distribution,

has been used in [FV12] for the evaluation of the risk measures of the net liabilities

(1.3) by analytic methods. It allowed the authors to deal with the risk measures of

the net liabilities

L′0 := e−rτx(eδτxGF0 − Fτx)+
1{τx6T} −

∫ T∧τx

0

e−rsMd
s ds

of GMDBs, also written in discrete time as

L
(n)
0 := e−rκ

(n)
x
(
eδκ

(n)
x GF0 − Fκ(n)x

)+
1{κ(n)x 6T} −

∫ T∧κ(n)x

0

e−rsMd
s ds,

when n is large enough, where κ
(n)
x := 1

n
dnτxe and dae is the integer ceiling of a > 0.

More computationally efficient expressions for those risk measures have been obtained

in [FV14] based on identities in law for the geometric Brownian motion with affine

drift

St + a

∫ t

0

St
Ss
ds, t ∈ R+,

where a > 0.

Here we propose to use moment matching for the computation of the risk measures

of GMMBs and GMDBs. This allows us to derive single integral approximations

which are significantly faster than the double integral expressions of [FV12], while ap-

proaching the performance of the single integral and series approximations of [FV14].

Moreover, we show that conditional moment matching can be applied to compute the

risk measures of the GMDB and GMMB riders with Additional Earnings (AE), which

cannot be treated via the approach of [FV14]. For this, we apply the stratified ap-

proximation method of [PY16] to GMDBs and GMMBs, which also allows us to take
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into account additional earning features as it is based on conditioning with respect to

the terminal value of geometric Brownian motion.

2 GMMBs with additional earnings

In order to reduce incentives to lapse and reenter of the variable annuities, an Ad-

ditional Earnings (AE) feature has been added to the basic riders, by increasing the

benefit payout by a share ρ of the policyholder’s variable annuities earnings, capped

by the maximum additional payout C, cf. e.g. [MZ16] for details. Taking ρ = 0

recovers the plain GMMB and GMDB riders.

For a GMMB rider with AE feature, an extra payment

min
(
C, ρ(FT −GF0)+

)
will be paid to the GMMB policyholder in addition to the guaranteed benefit, thus

the net liability (1.3) of the GMMB rider with AE feature becomes

L0 :=
(
e−rT (GF0 − FT )+ + e−rT min

(
C, ρ(FT −GF0)+

))
1{τx>T} −

∫ T∧τx

0

e−rsM e
sds.

Risk measures on the net liability L0 can still be expressed in terms of Hartmann-

Watson distributions and double integral expressions as in [FV12], using the joint

distribution of
(
ST ,

∫ T
0
Stds

)
, cf. [Yor92]. The closed form expressions of [FV14] do

not apply to this setting as they rely on the particular distributional properties of

geometric Brownian motion with affine drift. Here we propose to use conditional mo-

ment matching in order to deal with additional earnings while significantly improving

computation speed in comparison with double integral expressions.

We do not consider negative liabilities, and restrict the risk tolerance level α to be

greater than the probability ξm of non-positive liability, which is defined for GMMBs

as

ξm := P(L0 6 0) = 1− TpxP(L0 > 0 | τx > T ) = 1− TpxPρ(T,G, 0),

where Tpx is the probability that a policyholder at age x will survive T units of time,
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x, T > 0, and for w > 0, the key quantity Pρ(T,G,w) is defined as

Pρ(T,G,w) := P
(

e−rT (GF0 − FT )+ + e−rT min
(
C, ρ(FT −GF0)+

)
−
∫ T

0

e−rsM e
sds > w

)
.

(2.1)

Value at Risk for GMMBs

The Value at Risk (VaR)

Vα(L0) := inf
{
y : P(L0 6 y) > α

}
with risk tolerance level α > ξm for the net liability L0 of GMMB is determined

implicitly from the relation

1− α = TpxPρ(T,G, Vα(L0)). (2.2)

Conditional Tail Expectation for GMMBs

The Conditional Tail Expectation (CTE)

CTEα(L0) := IE[L0 | L0 > Vα(L0)]

at the level of risk tolerance level α > ξm for the net liability L0 of the GMMB with

AE feature is given by

CTEα(L0) =
Tpx

1− α
Zρ(T,G, Vα(L0)), (2.3)

where

Zρ(T,G,w) := IE

[(
e−rT (GF0 − FT )+ + e−rT min(C, ρ(FT −GF0)+)−

∫ T

0

e−rsM e
sds

)
1ET (w,G)

]
,

(2.4)

w, T > 0, and 1ET (w,G) is the indicator function of the event

ET (w,G) :=

{
e−rT (GF0 − FT )+ + e−rT min(C, ρ(FT −GF0)+)−

∫ T

0

e−rsM e
sds > w

}
.
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3 GMDBs with additional earnings

In the case of GMDBs the extra payment is min
(
C, ρ(Fτx − GF0eδτx)+

)
and the net

liability of the GMDB rider with AE feature becomes

L
′

0 := e−rτx
((

eδτxGF0 − Fτx
)+

+ min
(
C, ρ(Fτx −GF0eδτx)+

))
1{τx6T}−

∫ T∧τx

0

e−rsMd
s ds.

If the benefits of GMDBs with AE feature are payable on a discrete-time basis, their

net liability is

L
(n)
0 : = e−rκ

(n)
x

((
eδκ

(n)
x GF0 − Fκ(n)x

)+

+ min
(
ρ
(
F
κ
(n)
x
−GF0eδκ

(n)
x

)+

, C
))

1{κ(n)x 6T}

−
∫ T∧κ(n)x

0

e−rsMd
s ds.

The probability of non-positive liability for GMDB riders with AE feature is given by

ξd := P(L
(n)
0 6 0) = 1−

dnT e∑
k=1

(k−1)/npx 1/nqx+(k−1)/nPρ(k/n, e
δk/nG, 0),

where Pρ(k/n, e
δk/nG,w) is defined in (2.1), and 1/nqx+(k−1)/n is the probability that

a policyholder at age of x+ (k − 1)/n will die in 1/n periods.

Value at Risk for GMDBs

The value at risk Vα
(
L

(n)
0

)
with α > ξd for the net liability of the GMDB is similarly

given implicitly from the relation

1− α =

dnT e∑
k=1

(k−1)/npx 1/nqx+(k−1)/nPρ
(
k/n, eδk/nG, Vα

(
L

(n)
0

))
, (3.1)

cf. e.g. Proposition 3.9 of [FV12] when ρ = 0.

Conditional Tail Expectation for GMDBs

The conditional tail expectation

CTEα

(
L

(n)
0

)
:= IE

[
L

(n)
0

∣∣ L(n)
0 > Vα

(
L

(n)
0

)]
with risk tolerance level α > ξd for the net liability L

(n)
0 of the GMDB with AE feature

is given by

CTEα

(
L

(n)
0

)
=

1

1− α

dnT e∑
k=1

Zρ
(
k/n,Gekδ/n, Vα(L

(n)
0 )
)
P
(
κ(n)
x = k/n

)
, (3.2)
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where Zρ
(
k/n, ekδ/nG, Vα(L

(n)
0 )
)

is defined by (2.4) for any k, n > 0.

4 Conditional moment matching

In this section we propose a conditional moment matching approximation for the es-

timation of the key quantities Pρ(T,G,w) and Zρ(T,G,w) by approaching the prob-

ability density function of the time integral

ΛT :=

∫ T

0

S̃tdt =
1

F0mx

∫ T

0

e−rtMx
t dt

where S̃t := e(µ−m−r)t+σBt , t ∈ R+, using a lognormal distribution, conditionally to

the terminal value S̃T = z, as in [PY16]. We approximate the conditional probabil-

ity density of ΛT given S̃T = z by the lognormal density function with parameters

(−µzT (σzT )2T/2, (σzT )2T ) as

fΛT |S̃T=z(x;µzT , (σ
z
T )2) ≈ 1

xσzT
√

2πT
e−(µzT (σzT )2T/2+log x)2/(2(σzT )2T ), (4.1)

where µzT and σzT are also derived by conditional moment matching by taking

(σzT )2 :=
1

T
log

(
2

σ2azT

(
bzT
azT
− 1− z

))
and µzT := 1− 2

(σzT )2T
log azT ,

cf. Proposition 3.2 of [PY16]. In Proposition 4.1 we use the lognormal approximation

(4.1) to evaluate the key quantity Pρ(T,G,w) used in the compuation (2.2) of VaR,

by single numerical integrations.

Proposition 4.1 Under the conditional lognormal approximation the key quantity

Pρ(T,G,w) in the calculation (2.2) of VaR can be estimated by the single integrals

Pρ(T,G,w) ≈
∫ e−rT GF0−w

F0

0

Φ

µzT (σzT )2T

2
+ log e−rTGF0−w−zF0

F0mx

σzT
√
T

 fS̃T (z)dz (4.2)

+

∫ e−rT
ρF0

(ρGF0+C)

ρe−rT GF0+w
ρF0

Φ

µzT (σzT )2T

2
+ log ρzF0−e−rT ρGF0−w

F0mx

σzT
√
T

 fS̃T (z)dz(4.3)

+

∫ ∞
e−rT
ρF0

(ρGF0+C)

Φ

µzT (σzT )2T

2
+ log e−rTC−w

F0mx

σzT
√
T

 fS̃T (z)dz. (4.4)
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Similarly, we get the following approximation result of the key quantity Zρ(T,G,w)

appearing in the CTE expression (2.3).

Proposition 4.2 Under the conditional lognormal approximation, the key quantity

Zρ(T,G,w) in the CTE formula (2.3) can be estimated by the single integrals

Zρ(T,G,w)

≈
∫ e−rT GF0−w

F0

0

(
e−rTGF0 − F0z

)
Φ

µzT (σzT )2T

2
+ log e−rTGF0−w−zF0

F0mx

σzT
√
T

 fS̃T (z)dz

− F0mx

∫ e−rT GF0−w
F0

0

e(1−µzT )(σzT )2T/2Φ

(µzT − 2)
(σzT )2T

2
+ log e−rTGF0−w−zF0

F0mx

σzT
√
T

 fS̃T (z)dz

+ ρ

∫ e−rT
ρF0

(ρGF0+C)

e−rTG+ w
ρF0

(
F0z − e−rTGF0

)
Φ

µzT (σzT )2T

2
+ log ρzF0−e−rT ρGF0−w

mxF0

σzT
√
T

 fS̃T (z)dz

− F0mx

∫ e−rT
ρF0

(ρGF0+C)

ρe−rT GF0+w
ρF0

e(1−µzT )(σzT )2T/2Φ

(µzT − 2)
(σzT )2T

2
+ log ρzF0−e−rT ρGF0−w

mxF0

σzT
√
T

 fS̃T (z)dz

+ e−rTC

∫ ∞
e−rT
ρF0

(ρGF0+C)

Φ

(µzT − 2)
(σzT )2T

2
+ log e−rTC−w

mxF0

σzT
√
T

 fS̃T (z)dz

− F0mx

∫ w

e−rT
ρF0

(ρGF0+C)

e(1−µzT )(σzT )2T/2Φ

(µzT − 2)
(σzT )2T

2
+ log e−rTC−w

mxF0

σzT
√
T

 fS̃T (z)dz.

5 Numerical examples

For GMMBs, the underlying asset of the variable annuities is assumed to follow (1.1)

with r = 4%, µ = 9%, and σ = 30%. The variable annuities with GMMB and GMDB

riders are designed for policyholders of age 65 with the product parameters T = 10,

m = 1%, and me = 0.35%. The future life time table is the one published by the US

Social Security Administration (Bell and Miller, 2005) in 2005, cf. Table 1 in [FV12].

The initial account value is set to be F0 = 100, the guarantee level G and the risk

measures VaR and CTE are represented in percentages of initial account value.
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G = 75% [FV14]† lognormal

V95%/F0 12.177734 12.177230

CTE95%/F0 23.283517 23.283757

G = 100% [FV14]‡ lognormal

V90%/F0 12.550367 12.550349

CTE90%/F0 30.296486 30.296445

G = 120% [FV14]‡ lognormal

V80%/F0 0∗ 0∗

CTE80%/F0 27.333610∗ 27.333606∗

Table 1: Risk measure estimates in % for the GMMB rider with different levels of risk
tolerance α.

The algorithms are implemented with the PNL scientific Library for special functions

and numerical integration routines, while the original implementations of [FV12] and

[FV14] for the inverse Laplace and Green function methods are using Maple. We

applied the Newton-Raphson method with precision of 5 decimal places for the root

search procedure to solve equations (2.2) and (3.1) for the computation of VaR for

GMMBs and GMDBs. The conditional tail expectations of net liabilities CTEα(L0)

for GMMBs and CTEα(L(n)) for GMDBs are computed from

CTEα(L0) :=
IE[L01{L0>0}]

1− α
=

(1− ξm) IE[L01{L0>0}]

1− α
=

(1− ξm)CTEξm(L0)

1− α

as in [FV12].

The parameters of the products and the underlying asset (1.1) are the same as for

GMMBs except that here r = 7%, and the roll-up rate per annum is δ = 6%. We

take n = 1, but one can also take n > 2 and apply the fractional age assumption in

order to consider payments more frequent than yearly payments.

†Green function method.
∗This value is computed using L∗0 := max(L0, 0) when L0 yields a negative risk measure.
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G = 75% [FV14]† lognormal

V80%/F0 0∗ 0∗

CTE80%/F0 7.018559∗ 7.018555∗

G = 100% [FV14]‡ lognormal

V90%/F0 2.135188 2.135182

CTE90%/F0 33.706297 33.706289

G = 120% [FV14]‡ lognormal

V95%/F0 50.732711 50.732661

CTE95%/F0 69.140653 69.140640

Table 2: Risk measure estimates in % for the GMDB rider with different levels of risk
tolerance α.

The VaR Vα(L0) is computed from (2.2) given Pρ(T,G, Vα(L0)) approximated by (4.2)

under the lognormal approximation. The CTE is similarly computed from (2.3) given

Zρ(T,G,w) evaluated as in Proposition 4.2. We take the risk tolerance level α = 90%,

G = 100%, and C/F0 = 100%, 200%, 250% as in [MZ16], the other model and product

parameters being the same as above. The computation time for VaR and CTE by

stratified approximation is around 0.01 and 0.004 seconds respectively.

C/F0 = 100% ρ = 0.1 ρ = 0.2 ρ = 0.3

V90%/F0 36.1990 53.5788 58.1323
CTE90%/F0 46.9541 57.5319 60.1738

Table 3: Risk measure estimates in % for the GMMB rider with AE feature and level of
risk tolerance α = 90% using the lognormal approximation.

VaR and CTE of GMDBs with additional earnings

The VaR and CTE of GMDBs with additional earnings can be computed by the

following C function, with alpha:=G/F0.

int AP_GMDB_AE_Lognormal_VaR_CTE(double F0, double alpha, double maturity,

double r, double sigma, double risk_level, double rollup_rate, double me,

double mu, double m, int n_, double rho, double C, double *ptvar,

double *ptcte)

†Green function method.
∗This value is computed using L

(n)∗
0 := max

(
L
(n)
0 , 0

)
when L

(n)
0 yields a negative risk measure.
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with the following parameters, in addition to F0, r, σ, δ = rollup rate, and maturity:

risk level ∈ [0, 1]

alpha = G/F0 : percentage of premium guaranteed

me : margin offset

mu : drift µ

m : mortality & expense fees

n− : number of steps per year in the mortality table

rho : share of the policyholder’s variable annuities earnings

C : maximum additional payout.

The VaR Vα(L
(n)
0 ) and CTE of the net liabilities can be similarly calculated implicitly

from (3.1) for GMDBs.

C/F0 = 200% ρ = 0.1 ρ = 0.2 ρ = 0.3

V90%/F0 14.735675 22.566120 28.094065
CTE90%/F0 38.180667 45.741347 53.113941

Table 4: Risk measure estimates in % for the GMDB rider with AE feature and level of
risk tolerance α = 90% using the lognormal approximation.

VaR and CTE of GMMBs with additional earnings

The VaR and CTE of GMMBs with additional earnings can be similarly computed

by the following C function with alpha:=G/F0.

int AP_GMMB_AE_Lognormal_VaR_CTE(double F0, double alpha, double maturity,

double r, double sigma, double risk_level, double me, double mu, double m,

double rho, double C, double *ptvar, double *ptcte)

with the following parameters, in addition to F0, r, σ, and maturity:

risk level ∈ [0, 1]

alpha = G/F0 : percentage of premium guaranteed

me : margin offset

11



mu : drift µ

m : mortality & expense fees

rho : share of the policyholder’s variable annuities earnings

C : maximum additional payout.

The risk measures of ordinary GMMBs and GMDBs without additional earnings can

be computed by taking ρ := 0.

VaR and CTE of GMDBs and GMMBs by the spectral method

In the absence of additional earnings, the spectral method of [FV14] is implemented

in C via the command

int AP_GMDB_Spectral_VaR_CTE(double F0, double alpha, double maturity, double r,

double sigma, double risk_level, double rollup_rate, double me, double mu, double m,

int n_, int N, double *ptvar, double *ptcte)

for GMDBs, with the following parameters, in addition to F0, r, σ, δ =rollup rate,

and maturity:

risk level ∈ [0, 1]

alpha = G/F0 : percentage of premium guaranteed

me : margin offset

mu : drift µ

m : mortality & expense fees

n− : number of steps per year in the mortality table

N=7 : parameter of the spectral method,

and with

int AP_GMMB_Spectral_VaR_CTE(double F0, double alpha, double maturity, double r,

double sigma, double risk_level, double me, double mu, double m, int N,

double *ptvar, double *ptcte)
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for GMMBs, with the following parameters, in addition to F0, r, σ, and maturity:

risk level ∈ [0, 1]

alpha = G/F0 : percentage of premium guaranteed

me : margin offset

mu : drift µ

m : mortality & expense fees

N=7 : parameter of the spectral method.

The PNL implementation of the inverse Laplace method was found to be compu-

tationally less stable than other methods, and highly dependent of the parameters

chosen for the discretization of integrals.
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