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Abstract

This paper is concerned with the distribution properties of the binomial
aX + bX“, where X is a gamma random variable. We show in particular that
aX + bX® is infinitely divisible for all @ € [1,2] and a,b € R, and that for
a = 2 the second order polynomial a X +bX? is a generalized gamma convolution
whose Thorin density and Wiener-gamma integral representation are computed
explicitly. As a byproduct we deduce that fourth order multiple Wiener integrals
are in general not infinitely divisible.
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1 Introduction

The power X§ of order v € (—00, —=1] U [1, 00) of a gamma random variable X with
shape parameter 5 > 0 is known to be infinitely divisible, and in addition it belongs
to the class of generalized gamma convolutions (GGCs), cf. [10], which is made of

random variables Z whose Laplace transform can be expressed as

Ele=*%] = exp (—cs - /OOO log <1 + ;) u(dt)) . s>0, (1.1)
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where ¢ > 0 and the Thorin measure p(dt) of Z satisfies

1 o 1
/0+ |log t|p(dt) < oo and /1 ;,u(dt) < 00, (1.2)

cf. page 29 of [1]. We refer to [5] for a complete survey with recent results on gener-

alized gamma convolutions.

In particular, the random variable X3 is a GGC for all @ > 1, cf. Example 4.3.4 page

60 of [1], and its Thorin measure pg(dz) has total mass

to.0([0,00)) = sup {I/ >0 : lim fxg@) = O} =

el

, (1.3)

z\,0 vl

cf. Theorem 4.4 of [1], and cumulative function
FO,a : RJr — [0,5/0&)

In addition, X§ is also a GGC with 1194([0,00)) = 00 if @ < —1.

In this paper we deal with the binomial a Xg+bXg, a > 0, and show in Proposition 2.1
that a Xz + bX§ is infinitely divisible for all o € [1,2] and a,b € Ry. For a = 2 we
consider the problem of addition and interpolation of two dependent GGCs by proving
that the (non-central) gamma square Xz + ng is a generalized gamma convolution

for all 8 > 0, whose Thorin density ¢, is computed explicitly in Proposition 3.1 as

/6(]_ + ay)e(l_ay)Q/(4by)
Panly) = Bp1/2,3/2,,3/2 2-28 2 ( [1—ayl ’
28b1/2713/2 (F(1/2+5/2) 222 (2_@) /F(1/2+5/2))

y € Ry, where F'is the complex error function. In Proposition 3.4 we also compute

the Wiener-gamma integral representation

B
aXs+ bX3 :/ hap(s)ds,
0

where (7s)scr, is a standard gamma process, and hqy, is given by (3.9) below.

The case 3 = 1/2 allows us to consider powers of the square Z% ~ X, /2 of a centered

Gaussian random variable Z. As an application of Proposition 3.1 for 5 = 1/2 we find
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that |Z|* + aZ? is infinitely divisible for all @ € [2,4] and @ > 0, and, in particular,
that Z* + aZ? is infinitely divisible for @ > 0. In Section 4 we show that Z* 4 aZ?
is not infinitely divisible for all a < 0, showing in particular that fourth order mul-
tiple stochastic integrals with respect to Brownian motion are not infinitely divisible
random variables, although first and second order Brownian stochastic integrals are

known to be infinitely divisible.

We proceed as follows. After recalling some basic results on infinite divisibility at
the end of this introduction, we consider interpolated gamma powers of the form
aXp+bXg in Section 2. The case of second order polynomials of the form a Xz + ng
as generalized gamma convolutions is discussed in Section 3 with explicit calculations
of Thorin measures and Wiener-gamma representations, based in part on Theorem 2.3
of [5]. In Section 4 we consider the infinite divisibility of multiple Wiener integrals.
Section 5 contains the complete monotonicity results needed in this paper, and in the
Appendix Section 6 we extend to the gamma case the results of [5] on the computation

of Thorin densities for exponential random variables.

Infinite divisibility and complete monotonicity

We close this introduction with a review of the links between infinite divisibility and
complete monotonicity. Recall that a nonnegative random variable Z > 0 is infinitely

divisible if and only if its Laplace transform takes the form

Ele %] = exp | —cs — 00(1 — e My(dr)), seERy, (1.4)
(-] )

where ¢ > 0 and v(dx) is a measure on R, such that

/000(1 A 2)w(dz) < oo.

In this paper we are mainly concerned with the infinite divisibility of lower (or upper)
bounded random variables, for which we will use the following criterion, cf. Theo-
rem XIIL.7.1 of [4], Theorem III.4.1 of [9], or Theorem 5.9 of [8]. Recall that a €

function f : (0,00) — R is completely monotone if
(=1)" /") >0,  zeRy,
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for all integer n > 0.

Theorem 1.1 Let Z be a nonnegative random variable with Laplace transform
Uy(s) = Ele*7], seRy.
Then Z is infinitely divisible if and only if
0
S o log Uz(s)

1s completely monotone on R .

Proof. By the Bernstein theorem, cf. e.g. Theorem 3.2 of [8], the € function
o(s) = —logUy(s),  sER,,
has the representation
o(s) =cs + /00(1 — e M(dr), se Ry, (1.5)
0

where ¢ € Ry and v(dz) is a measure on Ry such that [77(1 A z)r(dz) < oo, if and

only if ¢’ is completely monotone. U

In addition it follows from (1.1), (1.4), Frullani’s identity
> d
log <1 + f) = / (1-— e‘“)e‘mtﬁ, s,t e Ry,
t 0 z
that the Lévy measure v(dx) is linked to the Thorin measure p(dx) by the relation

1 [e.e]
v(dr) = —/ e “*u(dz)de, x> 0.
0

T

2 Interpolated gamma powers

Let Xz denote a gamma random variable with density

1
fx,(@) = =—=a""te™", x>0,

I'(8)
and shape parameter 3 > 0. Recall that for any o € R\ {0} the random variable Xg
has density
fxg (@) ;x_lﬂg/ae—xl/a, x>0,

~ Jal0(8)



which is a Weibull probability density when o« > 0 and $ = 1. On the other hand,

X§ is not infinitely divisible for o € (0, 1) and it is unknown whether X§ is infinitely

divisible when a € (—1,0), cf. Example 4.3.4 page 60 and § III page 67 of [1].

In this section we prove the following result.

Proposition 2.1 Let § > 0 and a,b € Ry. The random variable aXp + bXf is

infinitely divisible for all o € [1,2].

Proof.  This result is a consequence of Theorem 1.1, Lemma 2.2 below, and Corol-

lary 5.2 which states that the function

n+aa(l+as)*t 0
=—1 1 «
S st (1t as) B4 og(ns + (14 as)®)

is completely monotone for all « € [0,2] and a,n € R,.

The next Lemma 2.2 has been used in the proof of Proposition 2.1.

Lemma 2.2 Leta € Ry and a > 1. We have

\I]aXBJng(S) = exp <_/ log ((1 + CLS)a + ;) N0,0{(dt>) ) s € IRJr'
0

Proof. 'We have

E[efs(Xngan)}

! /°° ~s(antaz) 81, -
= e W TP e d
L(B) Jo
1 /Oo B-1 sz ~a(1+as)
— T €S$ x CLde
L'(B) Jo

1 > — QO
= (1+a8)_6—/ gfems(as) %%~z g .
I'(B3) Jo

= (14 as)? Ele—s0Fas) "X

= (14as)™” Wxg(s(l+as)™), s € Ry.

‘I’aXBJrX;; (s) =

Hence from (1.1) and (1.3) we get

lIlaX,BJFXg (S) = (1 —+ GS)_E qug(S(l + aS)ia)

(2.1)

(2.2)



= (1+as) exp ( / log ; (1+as)” ),uoa(dt))
0

= (14as) 7exp ( /OOO log ( ( 1 +as)® + ;) o (dt) + alog(1l + as)po.([0, oo)))

= exp ( /o log ((1 +as)* + ) Mga(dt))
since fig ([0, 00)) = B/a by (1.3). O

Note that the transformations of Lemma 2.2 are not applicable to the Lévy-Khintchine
formula (1.1), as a consequence the Lévy measure of a X + X§ does not seem to be

computable from the Lévy measure of X§.

We close this section with some remarks on the case a ¢ [1,2]. When o € (0,1)
the random variable X3 is not infinitely divisible, and from Remark 5.3 below we

conjecture that X3 + aXjg is not infinitely divisible for o > 2.

When a > 1 is an integer we may decompose the polynomial s — (1 + as)® + s/t in
(2.2),t >0, as

(1+as)°‘+§:ﬁ(1+ > )20, (2.3)

el gi(t)
where ¢f(t),...,¢%(t) are the (complex) roots of s — (1 — as)* — s/t, counted with
their multiplicities. Then Frullani’s identity yields

a

log ((1 + as) ) Zlog ( >> /000(1 — e ) Ze_mg’g(t)i—x,

k=1

and the Lévy measure v(dz) of X§ + aXp, if it exists, is given from Lemma 2.2 by

Z / —29k (0 0 o (dt)diz,

which is real since the roots {g¢(t),...,¢%(t)} are either real or complex conjugate.

In Section 3 we will consider the case a = 2 where both roots are real, 22:1 e~ 9k ) is
positive, and aXg + Xg is infinitely divisible. Numerical computations not presented

here have shown that the sum ZZZI e~"9% () is not always positive when a > 3.
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3 Second order polynomials

In this section we consider the case « = 2 and @ € R,. The probability density

function of aXj + X3 is given for all > 0 by

21_5 1 ﬁfl —a+vV a’+4x
o(7) = —a+\/a2+4x> e 2 , x>0,
Ja(2) Va2 + 42 T(B) (

and it is log-convex only for g € (0, 1], which shows that X + Xg is infinitely divis-
ible for 5 € (0,1] and a > 0, by e.g. Theorem 51.4 of [7].

In case 8 = 1 the density function f, is hyperbolically completely monotone (HCM,
cf. § 5.1 of [1]), hence aX; + X? is a GGC by Theorem 5.1.2 page 71 of [1], or Theo-
rem 5.18 of [9].

That f, is HCM follows from the facts that the function z +— (a? + 42)~'/? is HCM
by page 68 of [1], and the function z ~ e~*V® is HCM and decreasing for ¢ > 0, cf.
Property (iv) page 68 of [1]. Then, by Property (zi) of [1], z — e~¢V**+47 is HCM,
and f, is HCM since the product of two HCM functions is HCM. Note also that
z s e—e(Valtiz—a) s HOM because it is the Laplace transform of a tempered stable

distribution with parameter 1/2 which is a GGC, cf. Theorem 6.1.1 page 90 of [1].
In Proposition 3.1 below we prove that aXz+ ng isa GGC for all 5 > 0and a,b >0
by resorting directly to the definition (1.1) of the GGC class.

Proposition 3.1 For alla € Ry, b > 0 and B > 0, the random variable aXg + ng
is @ GGC whose Thorin measure fi,2(dy) has the density

B ]_ _|_ ay e(l_ay)2/(4by)
(pa,b(y> = ( )

_ . (31
2BL/273/2y 3/ (F(1/2 + 3/2) + 2228 F? <'§_—jg—§') /T(1/2+ 5/2)) ()

y > 0, where
2 x
F(z) = ﬁ/ e dz, r e Ry, (3.2)
0

s the complex error function.



Proof. ~ We use the expression (3.3) of the Thorin density ¢g1(y) of X g given in
Lemma 3.2, and apply Lemma 3.3. 0

Proposition 3.1 follows from the next Lemmas 3.2 and 3.3 below. Lemma 3.2 is an
application for a = 2 of Proposition 6.1 which relies on Theorem 2.3 of [5], cf. the

Appendix Section 6.

Lemma 3.2 The distribution function Fyo of the Thorin measure o 2(dy) of Xg 18
given by

Foo(y) = garctan ( L(5/2+1/2) ) , y >0,

P (1 2y5)
for all B > 0. In particular, Fys(y) is absolutely continuous and pip2(dy) admits a
density o 1(y) with respect to the Lebesque measure, given by
Bel/(4y)
Porll) = SR (T2 1 5/2) 2 BRIy T2 + /7))
y > 0.

(3.3)

The next Lemma 3.3 shows that the Thorin density ¢, ,(z) of aXp + ng can be
computed from the Thorin density ¢q1(z) of Xg, and relies on Proposition 6.1 in the

appendix Section 6 for the absolute continuity of £, and the existence of ¢ .

Lemma 3.3 For alla € Ry, b > 0 and 8 > 0, the random variable a Xz + ng S a
GGC whose Thorin density @, satisfies

14+ ax bx
a =b s 07
Pap(2) |1 — a:c]?’%’l ((1 = ax)2> v

with total mass
ta2((0,00)) = 3
if a >0, while 1192((0,00)) = /2.

Proof. Letting

11 1 1\* 1
+
t)= —+4+— =% —+ -] ——=>0 t>0 3.4
9a (1) 2% a \/(2a2t+a> a? = ’ (3:4)

with



g, )gr(t)=1/a* t >0, and

lim g, (t) =t, lim g (¢) = oo, teR,.

a—0 a—0
Letting i ,(dt), resp. ji, o(dt) denote the image measures of pg2(dt) by g, resp. g,
by (2.3) and Lemma 2.2 we have

Wox,x3(s) = Ble @)

— exp|— / " log ((1+as)2+§) u0,2<dt))

: (H(uga)sm)m(dw)
e () O ) postan)
<“+%ZQ“””“ A bg@*@Aw)m“ﬁO

= exp (— /Ol/a log (1 + ;) fo o (dt) — /10: log (1 + ;) sz(dt)) )

s € Ry, which shows that the Thorin measure p,2(dx) of aXg + Xg, satisfies

Pa2(dr) = fig5(dr) + 15 (d).

Next, denoting by F,2(x) = pa2([0,z]) the cumulative distribution function of the

Thorin measure i, 2(dx), we have

Em@%=AmhmﬂﬁﬁDmxﬁ%+Awhmﬂﬂﬁﬁmﬂﬁ)

> _ B
= 1{z§1/a}/0 1j0,2(9, (t))uo,2(dt)+1{x>1/a}§+1{x>1/a} i Lj0.0)(9q (t))p0,2(dt)

(92)" () B 00
= 1{m§1/a}/ fo2(dt) + Lizs1/ay (5 +/ M0,2(dt))
0 (

94) (=)
(9a )7 () (94) 7 ()
= 1{x§1/a}/0 po2(dt) + Lips1/a) | B —/0 to,2(dt)
x x
= P —" V1e —Fo [ —5— ) ) 1y, 3.6
o (=) v+ (9 o (=3 ) ) 1 (3

x € Ry, a > 0. This shows in particular that
Faa(1/a) = Foa(+00) = p0,2((0,00)) = 4/2,
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by (1.3), and
Fa2(00) = 1a,2((0,00)) = 5,

a > 0.

By Proposition 6.1 below the function Fj o is absolutely continuous and by differenti-

ation with respect to x we obtain

(z) I+ ax x >0
a,1\T) = ) x )
Fal |1 — ax|3$00’1 (1 —ax)?

which gives ¢, () in (3.1) by (3.3) and the rescaling relation
Pap(T) = bpasm,1(br), x>0,

for a € Ry and b > 0.

In order to conclude that a X+ X3 is a GGC with Thorin measure jq,5(dt) = 117 5(dt)+
Hq o (dt) it suffices to check that Condition (1.2) holds. We have

1/a % 1
| ottt + [~ Sudtan
ot 1

/a
_ /0010 ! ‘ (dt)+/oo L oa(dt)
= o B or 9O
< ey e [ Nogtmaldt) + anoal(0,2)
o0+

< oo,

by (3.5) for some ¢, > 0 since

) = L1 1+121
Ja 2a%t  a 20t a a?
L L L 1+ 4at
= —F+ - — — a
20t a  2a?t
1 1 1 1
= 4= ——(1+42at — =4%2 t
2a2t+a 2a2t< e g ¢ )+0()

— t4o(t), t\0,
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which implies

log——= = —logg, (1)
= —log(t+ o(t))
= —logt—log(1l+ o(t)/t)
< ¢+ |logt|, 0<t<l,

for some ¢ > 0. ]

Note that from (3.6) we have

Foao(xz/a) = Foa (ﬁ) lizcny + (5 — Fop <ﬁ)) 1oy,

which converges to
lim Fya(/a) = Bl (2)
as a goes to infinity, and we recover
lim @ p(2)dx = B01/4(dx),
b—0

which is the Thorin measure of a I'(a, 5) random variable.

By (3.1) we also find

9163 a3/?
ab(l = ) 7b >0,
¥ ,b( /Cl) 1‘\(1/2 4 ﬁ/2) T3/2p1/2 a
and when § = 1 we have
1 [1—azx|?/(4bx)
Pap(T) = o ‘ x> 0.

2m3/2p1/ 2312 | + F? (|1 _ ax|/(2\/@)> ’

Figure 1 below shows a graph of the Thorin density

TR b N B s L
pap(r) = (1 p)|1—p1:\3('00’1<(1—p37)2)

1+ px e(1=p2)?/(4(1-p)z)
~ 9:3/2(] 1/2.,.3/2 , >0,
TP =) (1 - pal/ 24200 1)

of pX1 + (1 — p)X? for f = 1 and different values of p € [0, 1], which interpolate
between the Thorin measure §;(dz) of X; and the Thorin density ¢g1(z) of X3.
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Figure 1: Graphs of  — ¢, 1—p(x) for p =10, p = 0.97, and p = 0.997.

Here the shape parameter is plotted as a function of the scale parameter. Note that

the total mass of the Thorin density ¢, 1, on (0,00) is 1 for p > 0 and 1/2 for p = 0.

Wiener-gamma representation

By Proposition 1.1 of [5], the gamma square X3 can be written as the Wiener-gamma

integral

) B/2 o q

X 2/ ho,l(S)d%Z/ ;d’YFo,z(t)a

0 0
with
1
ho1(s) = ———+—, 0<s< /2,
0a(s) (Fo2)~1(s) b/

where (7s)scr, is a standard gamma process, i.e. the Lévy process whose increments

v — s are gamma distributed with shape parameter ¢ — s, 0 < s < t, where

Foa(x) = poa([0, x]), x>0,

is the cumulative distribution function of the Thorin measure po» of X3, with total

mass /2. By inverting Fp5 in (6.3), i.e.

Foa(y) = garctan ( L(6/2+1/2) ) |

2R (1/2y/7))
we find

= 4|F (2771 T(1/2+ B/2) cot(my/B) |, v € (0.5/2),
(3.7)

hoaly) = (Fo2)~'(y)
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where F(x) is the complex error function (3.2) and cotx = 1/tanz, z € R\ {0}.

In particular when 8 =1 we have

hoa(y) = 4| F 7 (cot(ry))|”, ye[0,1/2]

The Wiener-gamma integral representation provides a stochastic integral expression

of the Lévy process associated to aXg + ng and indexed by the shape parameter.

Proposition 3.4 Foralla,b € R, and 8 > 0 the random variable aXﬁ+bX§ admits

the representation
B
aXgs+ ng ~ / hap(s)dys, (3.8)
0

m law, with

;

2
ha,b(‘S) = (39)

b 4a
\a+§<1—\/l+m>ho,l(ﬁ—3)a ﬁ/2<5§ﬁ7

where ho1(s) is given by (3.7).

b 4a
-1 1+——1|h 2
a —+ ( -+ +bh071(8)> 0,1(8), 0<S<ﬁ/ ,

Proof. By (3.6) we have
z x
Foo(x) = Fy (1= az)? lia<ijay + | B — Fop m 1io>1/a)
1 -1 T 1 -1 x
- Lestsa ) (g=om2) | e
(ho,l) ((1 —ax)Q) (ot (ﬁ (ho,1) ((1 - a:U)Z)) e

- (hi) (9:)"@)) Lpocrya) + (6 - (hi) (<g:>‘1<m>>) Las1/a):

x > 0, where

(9a) "+ (L/a,00) — (0,00)

—_—
v (1 —ax)?’

and
(92)7": (0,1/a) — (0,00)
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T

—_——
v (1 —ax)?’

hence the Wiener-gamma representation of aXg + Xg is given by

bl =
( — (1/—;071(3))’ 0 <5< Fua(l/a) = /2,
| F gy A2 Bt <o
( a’gr (ﬁ(s)) 0<s<p/2
_ (3.10)
\ a’g, (hm(ﬂl_s)» B/2 < s < B,
| %ho,l(s) +a+ \/haz(s> + ahg(s), 0<s<p/2

2 (5
1ho,l(ﬁ —s8)+a— \/M +aho (B —s), B/2<s<p.

L 2 4
(1 da
—h 1 1 0 < B/2
atg 0,1(5) ( + + ho,l(S)) ) < s< /2,
= (3.11)
1 4a
—h — 1—4 1+ — 2<s<pf.
\ CL+2 0,1(/6 8) ( \/ +h[)71(/8—8)> y ﬁ/ S_B
To conclude the proof we use the rescaling relation
hap(s) = bhapi(s), s> 0,
for b > 0. O

We note that h,,(8/2) = a, and h,o(s) = a, s € (0,8]. When b > 0 we also have
hop(0) = 400, and h, () = 0 since

2 2 4
lim£+a—\/gc—+cwc:limz 1+—a— 1—1——a = 0.

14



Figure 2 below shows a graph of the Wiener-gamma integrand = +— h,;1_,(z) of
pXi+ (1 —p)X? for B =1 and different values of p € [0, 1]. Here the scale parameter

is plotted as a function of the shape parameter.

leTele
e~

TTOUT

) ..
0.2 0.4 0.6 0.8 1

Figure 2: Graphs of z — hy1-_p(z) for p=0,p=0.7, p=0.99, and p = 1.

As can be expected, by (3.9) we also have

mha,b(y) = ha,O(y) = a, Yy e (075)

li
b—0
Finally, denoting by (s)scr, another standard gamma process independent of (7;)scr, ,

by (3.10) and (3.11) we have

B
(lXﬁ"‘Xg = /hm(s)d'ys
0

2 o + 1 2 g 1
[ (Y [ (Y
/0 g (h0,1(5)> ! B/Qg ho,1 (B — s) !
, (P2 (1 L [ 1
o[l [ )
/0 g (h0,1(3)> ! 0 g ho1(s K
1 [B/2 B/2 B/2 h(2)1
= —/ h(]’l(S)d’}/S“‘/ ad’ys—ir/ 2 + ahg 1(s)dys
2 Jo 0 0 4

1 [8/2 B/2 B2 |h2 (s
+5 / ho1(s)d7, + / adys — / 01( )+ah071(s)d’ys
0

0 0

B/2
— a(v(8/2) +7(5/2)) + / hoa ()

15



ﬁ/2]'L01(S> 4
+ =21+, /1+a drys — dAs
/0 L ) =

B8/2
— a(v(8/2) +7(8/2)) + / ho(s)ds

B2 4a o
—I—Qa/ T+, /14— drys — d7),
i hox(5) (dvys — dAs)

where we also used (3.8).

This provides a linearization of a Xz + ng in 7, into the sum of a I'(a, §) random
variable, a squared gamma variable, and a remainder which is an extended GGC in

the sense of Chapter 7 of [1], and goes to 0 as a tends to 0.

4 Multiple Wiener integrals

We now consider some examples of non-infinite divisibility of second order polynomials
in the case a < 0, with application to the fourth order multiple Wiener integral of

[, with || f|| 12,y = 1, which can be written as

LY = 4 /0 k) /0 i) /0 " bt /0 " F{t1)dBy, B, dBydB,
= Hy(I(f))
= (Il<f))4_6(jl(f>)2+37

where (B;)ier, is a standard Brownian motion and Hy(z) = 2*— 622+ 3 is the Hermite
polynomial of degree 4 and I,(f) = fooo f(t)dBy is the first order Wiener integral, cf.
e.g. Proposition 5.1.3 of [6], and X/, = I;(f)* is a gamma random variable with
shape parameter 5 = 1/2.

Proposition 4.1 The fourth order multiple Wiener integral Is(f®*), with || f|| r2r.) =
1, is not infinitely divisible.

dlog V_61/2
0s

is not to be completely monotone since its third derivative does not have constant

Proof. 1t follows from Lemma 4.2 and Figure 3 below™ that the function —

sign.

*Figures 3 and 4 have been checked independently using Mathematica and Sage.
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Figure 3: Graph of s — —83/9s3log ¥ _g o5(s).
Consequently the fourth order multiple Wiener integral
L(f%) ~ Xty —6X12 +3

of ¥4 with | f|z2,) = 1, is not infinitely divisible by Theorem 1.1. n

Lemma 4.2 Letting
\I/a, B(S) = E[G_S(X[H-a/?)?]’ and Fa,é’(3> _ / xﬁ—le—s(;ﬂ-{-ax)—zd:p’
0

s € Ry, we have

0 2 OOZL‘B r+a efs(x2+aw)fwdx 2 Fa i Fa
——log ¥, 5(s) = “ + fo = ( 51 _)5(12+am)_m _ + s12(s) +a ,B+1(5)7
83 4 fO €T e dx 4 Fa,ﬁ(s)
822 log W, 5(s) =  Papra(s) +2alapys(s) + a’Ty pia(s) Jr( api2(8) +alapii(s ))2’
o Fas(s) (Tup(s))?
and
o Lopr6(s) +3alapi5(s) +30°Tapra(s) + a’Tapya(s)
log ¥,.5(s) =
05 Ta(s)
3 (Lapra(s) +2al0543(s) + a*Tapia(s) (Pagea(s) + alasi1(s))
(Fa,p(s8))?

(Fa,5+2(3) + CLFa,B-H (S))3

(Cap(s))’ ’

+2

s e R,

17



Proof. 1t suffices to note that we have

_ _—sa?/ Pa,ﬂ(8>
Yesl9) = Gy

and the relation

0

—EFaﬁ(s) =Dy pi2(s) +als g11(s), seR,.

When =1 we have

1
\I/a,l(s) — \/gea/2+1/(48)(1) (—CL g — E) 5

and

) 11 —1/s)es(zsta/2)?
——logV,1(8) = — + — + (a = 1/s)e™ : s > 0.

Os 2s 482 4 /75D (_(a+1/3) 3/2)

5 Complete monotonicity
In this section we prove the complete monotonicity results used in Proposition 2.1.
Lemma 5.1 Leta,n e R,.

i) Let o € [0,1]. The function
1

S , seR,y,
E+ns+ (14 as)® *
is completely monotone for all £ € R,..
i) Let o € [1,2]. The function
1
5 = +as seRy,

(1+as)*+mns’

15 completely monotone.

18



Proof. If o € |0, 1], consider the nonnegative function
h(s) = (1+as)*+ns+¢&, s € Ry,
whose derivative
B (s) = aa(l +as)* ' +1n

is completely monotone on R, . By Criterion XIII.4.2 of [4], the function

1 1

ST Ermst (1 tas)e

is completely monotone on R . Next if a € [1,2], consider the nonnegative function

S
1+as’

h(s) = (1+as)* " 4+

whose derivative

Ui

R(s) = (a—1)a(l+as)** + A7 as?

>0

is completely monotone on R. Again by Criterion XIII.4.2 of [4] the function

= 1 1 1+as
S = =
h(s)  (1+as)*t4+ns/(1+as) (14 as)*+ns

is completely monotone on R, . O

Remark: Alternatively we may note that the function
st (14 as)*+ns

is a complete Bernstein function for all o € [0,1] from § 15.2.2 of [8], hence

1

S
E+ns+ (14 as)®

is a Stieltjes function for all £ > 0 by Theorem 7.5 of [8], hence it is completely

monotone. When « € [1, 2], the function

s (14as)* '+

1+ as
is also a complete Bernstein function from § 15.2.4 of [8], hence
1 I +as
s =
(I+as)*t4+ns(14+as)”t (14 as)*+1ns

is also a Stieltjes function which is completely monotone.
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Corollary 5.2 For all a,b,c,n € Ry and all a € [0,2], the function

c+b(1+as)*™!
ns + (1 + as)®

(5.1)

15 completely monotone.

Proof. If o € [0, 1], we multiply

1
= 5
E+ns+ (14 as)”

S

of Lemma 5.1-i) by the completely monotone function

s an+ a(l+as)*

If a € [1,2] we multiply
1+as

(1+as)*+mns

of Lemma 5.1-i7) by the completely monotone function

S —

s+ aa(l+as)* 2,

to get that
ac(l+ as)*!

(1+as)*+mns’

is completely monotone on R, .

s € Ry,

On the other hand by Lemma 5.1, the function

1+as 1 1
— X = S€R+,
(I+as)*+ns 1+as (1+as)*+ns

is also completely monotone on R, for « € [1,2]. O

Remark 5.3 There exist values of a > 2 for which the function (5.1) is not com-

pletely monotone.

Remark 5.3 is illustrated for a = 1 and n = 100 in Figure 4 below, in which differ-
entiation up to the 18th order is required for a = 3, and the values taken by the

derivative are of order 1020,
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Figure 4: Graphs of s — 02/0s%log(100s 4 (1 +5)*) and s +— 9'7/0s'"1og(100s + (1 4 s)3).
6 Appendix

In this appendix we prove Lemma 3.2 by extending to all values of 5 > 0 the results
stated for 8 = 1 in § 2.6a of [5] on the computation of Thorin measures for exponential

random variables. The function A, ¢t > 0, is defined by

1 sin(7t)
A(y) :=1— —arctan | ———— > 0.
() ot O (y + COS(TFt)) ’ Y

We let fi/o denote the probability density function of a stable random variable with

parameter 1/c.

Proposition 6.1 Let X3 be a gamma random variable with shape parameter 3 > 0.
Let o > 1. Then the distribution function Fy. of the Thorin measure oo of X§

satisfies

Foal) = 2 = 2y

['(1+4 f/a) sin(r/a) /°° 1 fi/a(2)
y

I'(1+p) Y z —y)l/e fl/a(y)dx) ) yeR,.

(6.1)
In particular, Fyo(y) is absolutely continuous and o, admits a density with respect

to the Lebesgue measure.

Proof. In this proof we use the notation of [5]. The random variable X§ is a (8/«, G)-
GGC, where G is a random variable with distribution function Fg(x) = aFy.(z)/f
and such that Eflog™ (1/G)] < co. By Theorem 4.1.1 page 49 of [1], X§ can be written
as the gamma mixture

X5 ~Yp/aD1/a(G),

where Yj/, is a gamma random variable with parameter 3/a, and D,/ (G) is a pos-

itive independent random variable which is an example of a Dirichlet mean, cf. [3]
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and Relation (38) in [5].

By the duality Theorem 2.1.3-(i7) in [5], the density
1

N _ B/a—1 —gl/e >0
fXB(x) |Oé|F(6)x € ) X ’
rewrites as
fXg (l’) = F(ﬁl/ )xﬁ/a*leﬁE[lOg(G)]/OlE[e*l?Dl/oz(l/G)]7 z >0,
«

which, by identification, yields

CPElos(@)] /o _ I'(B/a)  T(1+p8/a)

eC(B)  TA+p)
which extends Relation (158) of [5] to 5 > 1, and

Ele "Pual/0)] = ="/ r € Ry,

(6.2)

i.e. Di/a(1/G) = S1/q is a stable random variable with exponent 1/«. For complete-

ness we need to check that the argument of page 385-386 of [5], which is stated therein
for § =1, also extends to all 5 > 0. By Relation (42) in § 1.4.d-(iz4) in [5] we have

1
D, (GZl/a> = ﬁl,l—l/aDl/a(l/G>7

where 7, is a Bernoulli random variable with parameter 1 Jaand 111 /a 1s a beta

random variable, which shows by convolution that the density of D, < !

_sin(m/a) [ 1 e
Fo () = 0 | g et

Now, by Relation (4.19.2) on page 112 of [2] we have

Xg ~
p Sl/a

where S}/, is a stable random variable with parameter 1/o. Hence, since

X3
Sl/a

22

GZl/a

G
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we get

> (7) s
! Zl/a _Sl/a7

and by Relation (164) page 386 of [5] we get

1
o e @) == ia(l/z).
ni(52) )= i/

Zl/a

Next, Theorem 2.3-4) of [5] shows that the distribution function Fg of G satisfies

L= SFaly) = Fua(l/y)
fD1< ) )(y)eﬁE[log(G)}/a
= Al/a I/ZZIQ/;; (1/ )
TG e
B I'(1+4 8/a)sin(r/a) [ 1 fija(z) )
= A ( I'1+8) my /y (@ =Y fia(y) )
since e#PlleeGl/e = (1 + B/a)/T(1 4 B) by (6.2). O

Finally we prove Lemma 3.2 as a corollary of Proposition 6.1.

Proof of Lemma 3.2. When a = 2 we have
2 1 2
Ayj2(y) =1 — —arctan — = — arctany, y >0,
T y
hence Relation (6.1) of Proposition 6.1 and Legendre’s duplication formula (cf. [4], p.

64):

L(1+p8/2) 1
VAT(1+5)  9T(1/2+ 5/2)
give
28 275 > 1 fip) 7
Rty = et (o | womiaw )
B 278, fyel/ () © 1 ) 47 -
= }arctan<ﬁr(1/2+6/2)/y mel 4 P
B 92— Ve, N\
= ;arctan (ﬁr(1/2+ﬁ/2)/0 e” dz
_ B L(8/2+1/2)
= = arctan (215F(1/(2\/§))) , (6.3)
where we applied the change of variable 2? = 1/(4y) — 1/(4x), =,y > 0. O
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