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Abstract

This paper is concerned with the distribution properties of the binomial
aX + bXα, where X is a gamma random variable. We show in particular that
aX + bXα is infinitely divisible for all α ∈ [1, 2] and a, b ∈ R+, and that for
α = 2 the second order polynomial aX+bX2 is a generalized gamma convolution
whose Thorin density and Wiener-gamma integral representation are computed
explicitly. As a byproduct we deduce that fourth order multiple Wiener integrals
are in general not infinitely divisible.
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1 Introduction

The power Xα
β of order α ∈ (−∞,−1] ∪ [1,∞) of a gamma random variable Xβ with

shape parameter β > 0 is known to be infinitely divisible, and in addition it belongs

to the class of generalized gamma convolutions (GGCs), cf. [10], which is made of

random variables Z whose Laplace transform can be expressed as

E[e−sZ ] = exp

(
−cs−

∫ ∞
0

log
(

1 +
s

t

)
µ(dt)

)
, s ≥ 0, (1.1)
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†dyang5@student.cityu.edu.hk
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where c ≥ 0 and the Thorin measure µ(dt) of Z satisfies∫ 1

0+
| log t|µ(dt) <∞ and

∫ ∞
1

1

t
µ(dt) <∞, (1.2)

cf. page 29 of [1]. We refer to [5] for a complete survey with recent results on gener-

alized gamma convolutions.

In particular, the random variable Xα
β is a GGC for all α ≥ 1, cf. Example 4.3.4 page

60 of [1], and its Thorin measure µ0,α(dx) has total mass

µ0,α([0,∞)) = sup

{
ν > 0 : lim

x↘0

fXα
β
(x)

xν−1
= 0

}
=
β

α
, (1.3)

cf. Theorem 4.4 of [1], and cumulative function

F0,α : R+ → [0, β/α).

In addition, Xα
β is also a GGC with µ0,α([0,∞)) =∞ if α < −1.

In this paper we deal with the binomial aXβ+bXα
β , α ≥ 0, and show in Proposition 2.1

that aXβ + bXα
β is infinitely divisible for all α ∈ [1, 2] and a, b ∈ R+. For α = 2 we

consider the problem of addition and interpolation of two dependent GGCs by proving

that the (non-central) gamma square aXβ + bX2
β is a generalized gamma convolution

for all β > 0, whose Thorin density ϕa,b is computed explicitly in Proposition 3.1 as

ϕa,b(y) =
β(1 + ay)e(1−ay)

2/(4by)

2βb1/2π3/2y3/2
(

Γ(1/2 + β/2) + 22−2βF 2
(
|1−ay|
2
√
by

)
/Γ(1/2 + β/2)

) ,
y ∈ R+, where F is the complex error function. In Proposition 3.4 we also compute

the Wiener-gamma integral representation

aXβ + bX2
β '

∫ β

0

ha,b(s)dγs,

where (γs)s∈R+ is a standard gamma process, and ha,b is given by (3.9) below.

The case β = 1/2 allows us to consider powers of the square Z2 ' X1/2 of a centered

Gaussian random variable Z. As an application of Proposition 3.1 for β = 1/2 we find
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that |Z|α + aZ2 is infinitely divisible for all α ∈ [2, 4] and a ≥ 0, and, in particular,

that Z4 + aZ2 is infinitely divisible for a ≥ 0. In Section 4 we show that Z4 + aZ2

is not infinitely divisible for all a < 0, showing in particular that fourth order mul-

tiple stochastic integrals with respect to Brownian motion are not infinitely divisible

random variables, although first and second order Brownian stochastic integrals are

known to be infinitely divisible.

We proceed as follows. After recalling some basic results on infinite divisibility at

the end of this introduction, we consider interpolated gamma powers of the form

aXβ + bXα
β in Section 2. The case of second order polynomials of the form aXβ + bX2

β

as generalized gamma convolutions is discussed in Section 3 with explicit calculations

of Thorin measures and Wiener-gamma representations, based in part on Theorem 2.3

of [5]. In Section 4 we consider the infinite divisibility of multiple Wiener integrals.

Section 5 contains the complete monotonicity results needed in this paper, and in the

Appendix Section 6 we extend to the gamma case the results of [5] on the computation

of Thorin densities for exponential random variables.

Infinite divisibility and complete monotonicity

We close this introduction with a review of the links between infinite divisibility and

complete monotonicity. Recall that a nonnegative random variable Z ≥ 0 is infinitely

divisible if and only if its Laplace transform takes the form

E[e−sZ ] = exp

(
−cs−

∫ ∞
0

(1− e−sx)ν(dx)

)
, s ∈ R+, (1.4)

where c ≥ 0 and ν(dx) is a measure on R+ such that∫ ∞
0

(1 ∧ x)ν(dx) <∞.

In this paper we are mainly concerned with the infinite divisibility of lower (or upper)

bounded random variables, for which we will use the following criterion, cf. Theo-

rem XIII.7.1 of [4], Theorem III.4.1 of [9], or Theorem 5.9 of [8]. Recall that a C∞

function f : (0,∞)→ R is completely monotone if

(−1)nf (n)(x) ≥ 0, x ∈ R+,
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for all integer n ≥ 0.

Theorem 1.1 Let Z be a nonnegative random variable with Laplace transform

ΨZ(s) = E[e−sZ ], s ∈ R+.

Then Z is infinitely divisible if and only if

s 7→ − ∂

∂s
log ΨZ(s)

is completely monotone on R+.

Proof. By the Bernstein theorem, cf. e.g. Theorem 3.2 of [8], the C∞ function

ϕ(s) = − log ΨZ(s), s ∈ R+,

has the representation

ϕ(s) = cs+

∫ ∞
0

(1− e−sx)ν(dx), s ∈ R+, (1.5)

where c ∈ R+ and ν(dx) is a measure on R+ such that
∫∞
0

(1 ∧ x)ν(dx) < ∞, if and

only if ϕ′ is completely monotone. �

In addition it follows from (1.1), (1.4), Frullani’s identity

log
(

1 +
s

t

)
=

∫ ∞
0

(1− e−sx)e−xtdx
x
, s, t ∈ R+,

that the Lévy measure ν(dx) is linked to the Thorin measure µ(dx) by the relation

ν(dx) =
1

x

∫ ∞
0

e−xzµ(dz)dx, x > 0.

2 Interpolated gamma powers

Let Xβ denote a gamma random variable with density

fXβ(x) =
1

Γ(β)
xβ−1e−x, x > 0,

and shape parameter β > 0. Recall that for any α ∈ R \ {0} the random variable Xα
β

has density

fXα
β
(x) =

1

|α|Γ(β)
x−1+β/αe−x

1/α

, x > 0,
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which is a Weibull probability density when α > 0 and β = 1. On the other hand,

Xα
β is not infinitely divisible for α ∈ (0, 1) and it is unknown whether Xα

β is infinitely

divisible when α ∈ (−1, 0), cf. Example 4.3.4 page 60 and § III page 67 of [1].

In this section we prove the following result.

Proposition 2.1 Let β > 0 and a, b ∈ R+. The random variable aXβ + bXα
β is

infinitely divisible for all α ∈ [1, 2].

Proof. This result is a consequence of Theorem 1.1, Lemma 2.2 below, and Corol-

lary 5.2 which states that the function

s 7→ η + aα(1 + as)α−1

ηs+ (1 + as)α
=

∂

∂s
log(ηs+ (1 + as)α) (2.1)

is completely monotone for all α ∈ [0, 2] and a, η ∈ R+. �

The next Lemma 2.2 has been used in the proof of Proposition 2.1.

Lemma 2.2 Let a ∈ R+ and α ≥ 1. We have

ΨaXβ+X
α
β
(s) = exp

(
−
∫ ∞
0

log
(

(1 + as)α +
s

t

)
µ0,α(dt)

)
, s ∈ R+. (2.2)

Proof. We have

ΨaXβ+X
α
β
(s) = E[e−s(X

α
β+aXβ)]

=
1

Γ(β)

∫ ∞
0

e−s(x
α+ax)xβ−1e−xdx

=
1

Γ(β)

∫ ∞
0

xβ−1e−sx
α−x(1+as)dx

= (1 + as)−β
1

Γ(β)

∫ ∞
0

xβ−1e−s(1+as)
−αxα−xdx

= (1 + as)−β E[e−s(1+as)
−αXα

β ]

= (1 + as)−β ΨXα
β
(s(1 + as)−α), s ∈ R+.

Hence from (1.1) and (1.3) we get

ΨaXβ+X
α
β
(s) = (1 + as)−β ΨXα

β
(s(1 + as)−α)
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= (1 + as)−β exp

(
−
∫ ∞
0

log
(

1 +
s

t
(1 + as)−α

)
µ0,α(dt)

)
= (1 + as)−β exp

(
−
∫ ∞
0

log
(

(1 + as)α +
s

t

)
µ0,α(dt) + α log(1 + as)µ0,α([0,∞))

)
= exp

(
−
∫ ∞
0

log
(

(1 + as)α +
s

t

)
µ0,α(dt)

)
,

since µ0,α([0,∞)) = β/α by (1.3). �

Note that the transformations of Lemma 2.2 are not applicable to the Lévy-Khintchine

formula (1.1), as a consequence the Lévy measure of aXβ + Xα
β does not seem to be

computable from the Lévy measure of Xα
β .

We close this section with some remarks on the case α /∈ [1, 2]. When α ∈ (0, 1)

the random variable Xα
β is not infinitely divisible, and from Remark 5.3 below we

conjecture that Xα
β + aXβ is not infinitely divisible for α > 2.

When α ≥ 1 is an integer we may decompose the polynomial s 7→ (1 + as)α + s/t in

(2.2), t > 0, as

(1 + as)α +
s

t
=

α∏
k=1

(
1 +

s

gak(t)

)
≥ 0, (2.3)

where ga1(t), . . . , gaα(t) are the (complex) roots of s 7→ (1 − as)α − s/t, counted with

their multiplicities. Then Frullani’s identity yields

log
(

(1 + as)α +
s

t

)
=

α∑
k=1

log

(
1 +

s

gak(t)

)
=

∫ ∞
0

(1− e−sx)
α∑
k=1

e−xg
a
k(t)

dx

x
,

and the Lévy measure ν(dx) of Xα
β + aXβ, if it exists, is given from Lemma 2.2 by

ν(dx) =
1

x

α∑
k=1

∫ ∞
0

e−xg
a
k(t)µ0,α(dt)dx,

which is real since the roots {ga1(t), . . . , gan(t)} are either real or complex conjugate.

In Section 3 we will consider the case α = 2 where both roots are real,
∑2

k=1 e
−xgak(t) is

positive, and aXβ +X2
β is infinitely divisible. Numerical computations not presented

here have shown that the sum
∑k

k=1 e
−xgak(t) is not always positive when α ≥ 3.
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3 Second order polynomials

In this section we consider the case α = 2 and a ∈ R+. The probability density

function of aXβ +X2
β is given for all β > 0 by

fa(x) =
21−β

√
a2 + 4x

1

Γ(β)

(
−a+

√
a2 + 4x

)β−1
e−

−a+
√
a2+4x
2 , x > 0,

and it is log-convex only for β ∈ (0, 1], which shows that aXβ +X2
β is infinitely divis-

ible for β ∈ (0, 1] and a > 0, by e.g. Theorem 51.4 of [7].

In case β = 1 the density function fa is hyperbolically completely monotone (HCM,

cf. § 5.1 of [1]), hence aX1 +X2
1 is a GGC by Theorem 5.1.2 page 71 of [1], or Theo-

rem 5.18 of [9].

That fa is HCM follows from the facts that the function x 7→ (a2 + 4x)−1/2 is HCM

by page 68 of [1], and the function x 7→ e−c
√
x is HCM and decreasing for c > 0, cf.

Property (iv) page 68 of [1]. Then, by Property (xi) of [1], x 7→ e−c
√
a2+4x is HCM,

and fa is HCM since the product of two HCM functions is HCM. Note also that

x 7→ e−c(
√
a2+4x−a) is HCM because it is the Laplace transform of a tempered stable

distribution with parameter 1/2 which is a GGC, cf. Theorem 6.1.1 page 90 of [1].

In Proposition 3.1 below we prove that aXβ + bX2
β is a GGC for all β > 0 and a, b ≥ 0

by resorting directly to the definition (1.1) of the GGC class.

Proposition 3.1 For all a ∈ R+, b > 0 and β > 0, the random variable aXβ + bX2
β

is a GGC whose Thorin measure µa,2(dy) has the density

ϕa,b(y) =
β(1 + ay)e(1−ay)

2/(4by)

2βb1/2π3/2y3/2
(

Γ(1/2 + β/2) + 22−2βF 2
(
|1−ay|
2
√
by

)
/Γ(1/2 + β/2)

) , (3.1)

y > 0, where

F (x) =
2√
π

∫ x

0

ez
2

dz, x ∈ R+, (3.2)

is the complex error function.
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Proof. We use the expression (3.3) of the Thorin density ϕ0,1(y) of X2
β given in

Lemma 3.2, and apply Lemma 3.3. �

Proposition 3.1 follows from the next Lemmas 3.2 and 3.3 below. Lemma 3.2 is an

application for α = 2 of Proposition 6.1 which relies on Theorem 2.3 of [5], cf. the

Appendix Section 6.

Lemma 3.2 The distribution function F0,2 of the Thorin measure µ0,2(dy) of X2
β is

given by

F0,2(y) =
β

π
arctan

(
Γ(β/2 + 1/2)

21−βF (1/(2
√
y))

)
, y > 0,

for all β > 0. In particular, F0,2(y) is absolutely continuous and µ0,2(dy) admits a

density ϕ0,1(y) with respect to the Lebesgue measure, given by

ϕ0,1(y) =
βe1/(4y)

2βπ3/2y3/2
(
Γ(1/2 + β/2) + 22−2βF 2(1/(2

√
y))/Γ(1/2 + β/2)

) , (3.3)

y > 0.

The next Lemma 3.3 shows that the Thorin density ϕa,b(x) of aXβ + bX2
β can be

computed from the Thorin density ϕ0,1(x) of X2
β, and relies on Proposition 6.1 in the

appendix Section 6 for the absolute continuity of F0,2 and the existence of ϕ0,1.

Lemma 3.3 For all a ∈ R+, b > 0 and β > 0, the random variable aXβ + bX2
β is a

GGC whose Thorin density ϕa,b satisfies

ϕa,b(x) = b
1 + ax

|1− ax|3
ϕ0,1

(
bx

(1− ax)2

)
, x > 0,

with total mass

µa,2((0,∞)) = β

if a > 0, while µ0,2((0,∞)) = β/2.

Proof. Letting

g±a (t) =
1

2a2t
+

1

a
±

√(
1

2a2t
+

1

a

)2

− 1

a2
> 0, t > 0, (3.4)

with

g+a : (0,∞) −→ (1/a,∞) and g−a : (0,∞) −→ (0, 1/a), (3.5)
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g−a (t)g+a (t) = 1/a2, t > 0, and

lim
a→0

g−a (t) = t, lim
a→0

g+a (t) =∞, t ∈ R+.

Letting µ+
a,2(dt), resp. µ−a,2(dt) denote the image measures of µ0,2(dt) by g+a , resp. g−a ,

by (2.3) and Lemma 2.2 we have

ΨaXβ+X
2
β
(s) = E[e−s(aXβ+X

2
β)]

= exp

(
−
∫ ∞
0

log
(

(1 + as)2 +
s

t

)
µ0,2(dt)

)
= exp

(
−
∫ ∞
0

log

(
1 +

(
1

t
+ 2a

)
s+ a2s2

)
µ0,2(dt)

)
= exp

(
−
∫ ∞
0

log

((
1 +

s

g+a (t)

)(
1 +

s

g−a (t)

))
µ0,2(dt)

)
= exp

(
−
∫ ∞
0

log

(
1 +

s

g−a (t)

)
µ0,2(dt)−

∫ ∞
0

log

(
1 +

s

g+a (t)

)
µ0,2(dt)

)
= exp

(
−
∫ 1/a

0

log
(

1 +
s

t

)
µ−a,2(dt)−

∫ ∞
1/a

log
(

1 +
s

t

)
µ+
a,2(dt)

)
,

s ∈ R+, which shows that the Thorin measure µa,2(dx) of aXβ +X2
β satisfies

µa,2(dx) = µ+
a,2(dx) + µ−a,2(dx).

Next, denoting by Fa,2(x) = µa,2([0, x]) the cumulative distribution function of the

Thorin measure µa,2(dx), we have

Fa,2(x) =

∫ ∞
0

1[0,x](g
−
a (t))µ0,2(dt) +

∫ ∞
0

1[0,x](g
+
a (t))µ0,2(dt)

= 1{x≤1/a}

∫ ∞
0

1[0,x](g
−
a (t))µ0,2(dt) + 1{x>1/a}

β

2
+ 1{x>1/a}

∫ ∞
0

1[0,x](g
+
a (t))µ0,2(dt)

= 1{x≤1/a}

∫ (g−a )−1(x)

0

µ0,2(dt) + 1{x>1/a}

(
β

2
+

∫ ∞
(g+a )−1(x)

µ0,2(dt)

)
= 1{x≤1/a}

∫ (g−a )−1(x)

0

µ0,2(dt) + 1{x>1/a}

(
β −

∫ (g+a )−1(x)

0

µ0,2(dt)

)

= F0,2

(
x

(1− ax)2

)
1{x≤1/a} +

(
β − F0,2

(
x

(1− ax)2

))
1{x>1/a}, (3.6)

x ∈ R+, a > 0. This shows in particular that

Fa,2(1/a) = F0,2(+∞) = µ0,2((0,∞)) = β/2,
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by (1.3), and

Fa,2(∞) = µa,2((0,∞)) = β,

a > 0.

By Proposition 6.1 below the function F0,2 is absolutely continuous and by differenti-

ation with respect to x we obtain

ϕa,1(x) =
1 + ax

|1− ax|3
ϕ0,1

(
x

(1− ax)2

)
, x > 0,

which gives ϕa,b(x) in (3.1) by (3.3) and the rescaling relation

ϕa,b(x) = bϕa/b,1(bx), x > 0,

for a ∈ R+ and b > 0.

In order to conclude that aXβ+X2
β is a GGC with Thorin measure µa,2(dt) = µ+

a,2(dt)+

µ−a,2(dt) it suffices to check that Condition (1.2) holds. We have∫ 1/a

0+
| log t|µ−a,2(dt) +

∫ ∞
1/a

1

t
µ+
a,2(dt)

=

∫ ∞
0+

∣∣∣∣log
1

g−a (t)

∣∣∣∣µ0,2(dt) +

∫ ∞
0+

1

g+a (t)
µ0,2(dt)

≤ ca
β

2
+ ca

∫ ∞
0+
| log t|µ0,2(dt) + aµ0,2((0,∞))

< ∞,

by (3.5) for some ca > 0 since

g−a (t) =
1

2a2t
+

1

a
−

√(
1

2a2t
+

1

a

)2

− 1

a2

=
1

2a2t
+

1

a
− 1

2a2t

√
1 + 4at

=
1

2a2t
+

1

a
− 1

2a2t

(
1 + 2at− 1

8
42a2t2

)
+ o(t)

= t+ o(t), t↘ 0,
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which implies

log
1

g−a (t)
= − log g−a (t)

= − log(t+ o(t))

= − log t− log(1 + o(t)/t)

≤ c+ | log t|, 0 < t < 1,

for some c > 0. �

Note that from (3.6) we have

Fa,2(x/a) = F0,2

(
x

a(1− x)2

)
1{x≤1} +

(
β − F0,2

(
x

a(1− x)2

))
1{x>1},

which converges to

lim
a→∞

Fa,2(x/a) = β1[1,∞)(x)

as a goes to infinity, and we recover

lim
b→0

ϕa,b(x)dx = βδ1/a(dx),

which is the Thorin measure of a Γ(a, β) random variable.

By (3.1) we also find

ϕa,b(1/a) =
21−ββ

Γ(1/2 + β/2)

a3/2

π3/2b1/2
, a, b > 0,

and when β = 1 we have

ϕa,b(x) =
1 + ax

2π3/2b1/2x3/2
e|1−ax|

2/(4bx)

1 + F 2
(
|1− ax|/(2

√
bx)
) , x > 0.

Figure 1 below shows a graph of the Thorin density

ϕp,1−p(x) = (1− p) 1 + px

|1− px|3
ϕ0,1

(
(1− p)x
(1− px)2

)
=

1 + px

2π3/2(1− p)1/2x3/2
e(1−px)

2/(4(1−p)x)

1 + F 2
(
|1− px|/(2

√
x(1− p))

) , x > 0,

of pX1 + (1 − p)X2
1 for β = 1 and different values of p ∈ [0, 1], which interpolate

between the Thorin measure δ1(dx) of X1 and the Thorin density ϕ0,1(x) of X2
1 .
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Figure 1: Graphs of x 7→ ϕp,1−p(x) for p = 0, p = 0.97, and p = 0.997.

Here the shape parameter is plotted as a function of the scale parameter. Note that

the total mass of the Thorin density ϕp,1−p on (0,∞) is 1 for p > 0 and 1/2 for p = 0.

Wiener-gamma representation

By Proposition 1.1 of [5], the gamma square X2
β can be written as the Wiener-gamma

integral

X2
β '

∫ β/2

0

h0,1(s)dγs =

∫ ∞
0

1

t
dγF0,2(t),

with

h0,1(s) =
1

(F0,2)−1(s)
, 0 ≤ s < β/2,

where (γs)s∈R+ is a standard gamma process, i.e. the Lévy process whose increments

γt − γs are gamma distributed with shape parameter t− s, 0 ≤ s ≤ t, where

F0,2(x) = µ0,2([0, x]), x > 0,

is the cumulative distribution function of the Thorin measure µ0,2 of X2
β, with total

mass β/2. By inverting F0,2 in (6.3), i.e.

F0,2(y) =
β

π
arctan

(
Γ(β/2 + 1/2)

21−βF (1/(2
√
y))

)
,

we find

h0,1(y) =
1

(F0,2)−1(y)
= 4

∣∣F−1 (2β−1Γ(1/2 + β/2) cot(πy/β)
)∣∣2 , y ∈ (0, β/2),

(3.7)
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where F (x) is the complex error function (3.2) and cot x = 1/ tanx, x ∈ R \ {0}.

In particular when β = 1 we have

h0,1(y) = 4
∣∣F−1 (cot(πy))

∣∣2 , y ∈ [0, 1/2].

The Wiener-gamma integral representation provides a stochastic integral expression

of the Lévy process associated to aXβ + bX2
β and indexed by the shape parameter.

Proposition 3.4 For all a, b ∈ R+ and β > 0 the random variable aXβ +bX2
β admits

the representation

aXβ + bX2
β '

∫ β

0

ha,b(s)dγs, (3.8)

in law, with

ha,b(s) =


a+

b

2

(
1 +

√
1 +

4a

bh0,1(s)

)
h0,1(s), 0 < s < β/2,

a+
b

2

(
1−

√
1 +

4a

bh0,1(β − s)

)
h0,1(β − s), β/2 < s ≤ β,

(3.9)

where h0,1(s) is given by (3.7).

Proof. By (3.6) we have

Fa,2(x) = F0,2

(
x

(1− ax)2

)
1{x≤1/a} +

(
β − F0,2

(
x

(1− ax)2

))
1{x>1/a}

=

(
1

h0,1

)−1(
x

(1− ax)2

)
1{x≤1/a} +

(
β −

(
1

h0,1

)−1(
x

(1− ax)2

))
1{x>1/a}

=

(
1

h0,1

)−1 (
(g−a )−1(x)

)
1{x≤1/a} +

(
β −

(
1

h0,1

)−1 (
(g+a )−1(x)

))
1{x>1/a},

x > 0, where

(g+a )−1 : (1/a,∞) −→ (0,∞)

x 7−→ x

(1− ax)2
,

and

(g−a )−1 : (0, 1/a) −→ (0,∞)

13



x 7−→ x

(1− ax)2
,

hence the Wiener-gamma representation of aXβ +X2
β is given by

ha,1(s) =
1

(Fa,2)−1(s)

=


1

g−a (1/h0,1(s))
, 0 < s < Fa,2(1/a) = β/2,

1

g+a (1/h0,1(β − s))
, β/2 = Fa,2(1/a) < s ≤ β,

=


a2g+a

(
1

h0,1(s)

)
, 0 < s < β/2,

a2g−a

(
1

h0,1(β − s)

)
, β/2 < s ≤ β,

(3.10)

=



1

2
h0,1(s) + a+

√
h20,1(s)

4
+ ah0,1(s), 0 < s < β/2,

1

2
h0,1(β − s) + a−

√
h20,1(β − s)

4
+ ah0,1(β − s), β/2 < s ≤ β.

=


a+

1

2
h0,1(s)

(
1 +

√
1 +

4a

h0,1(s)

)
, 0 < s < β/2,

a+
1

2
h0,1(β − s)

(
1−

√
1 +

4a

h0,1(β − s)

)
, β/2 < s ≤ β.

(3.11)

To conclude the proof we use the rescaling relation

ha,b(s) = bha/b,1(s), s > 0,

for b > 0. �

We note that ha,b(β/2) = a, and ha,0(s) = a, s ∈ (0, β]. When b > 0 we also have

h0,b(0) = +∞, and ha,b(β) = 0 since

lim
x→∞

x

2
+ a−

√
x2

4
+ ax = lim

x→∞

x

2

(
1 +

2a

x
−
√

1 +
4a

x

)
= 0.
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Figure 2 below shows a graph of the Wiener-gamma integrand x 7→ hp,1−p(x) of

pX1 + (1− p)X2
1 for β = 1 and different values of p ∈ [0, 1]. Here the scale parameter

is plotted as a function of the shape parameter.

Figure 2: Graphs of x 7→ hp,1−p(x) for p = 0, p = 0.7, p = 0.99, and p = 1.

As can be expected, by (3.9) we also have

lim
b→0

ha,b(y) = ha,0(y) = a, y ∈ (0, β).

Finally, denoting by (γ̃s)s∈R+ another standard gamma process independent of (γs)s∈R+ ,

by (3.10) and (3.11) we have

aXβ +X2
β =

∫ β

0

ha,1(s)dγs

= a2
∫ β/2

0

g+a

(
1

h0,1(s)

)
dγs + a2

∫ β

β/2

g−a

(
1

h0,1(β − s)

)
dγs

= a2
∫ β/2

0

g+a

(
1

h0,1(s)

)
dγs + a2

∫ β/2

0

g−a

(
1

h0,1(s)

)
dγ̃s

=
1

2

∫ β/2

0

h0,1(s)dγs +

∫ β/2

0

adγs +

∫ β/2

0

√
h20,1(s)

4
+ ah0,1(s)dγs

+
1

2

∫ β/2

0

h0,1(s)dγ̃s +

∫ β/2

0

adγ̃s −
∫ β/2

0

√
h20,1(s)

4
+ ah0,1(s)dγ̃s

= a(γ(β/2) + γ̃(β/2)) +

∫ β/2

0

h0,1(s)dγs

15



+

∫ β/2

0

h0,1(s)

2

(
−1 +

√
1 + a

4

h0,1(s)

)
(dγs − dγ̃s)

= a(γ(β/2) + γ̃(β/2)) +

∫ β/2

0

h0,1(s)dγs

+2a

∫ β/2

0

(
1 +

√
1 +

4a

h0,1(s)

)−1
(dγs − dγ̃s),

where we also used (3.8).

This provides a linearization of aXβ + bX2
β in γs, into the sum of a Γ(a, β) random

variable, a squared gamma variable, and a remainder which is an extended GGC in

the sense of Chapter 7 of [1], and goes to 0 as a tends to 0.

4 Multiple Wiener integrals

We now consider some examples of non-infinite divisibility of second order polynomials

in the case a < 0, with application to the fourth order multiple Wiener integral of

f⊗4, with ‖f‖L2(R+) = 1, which can be written as

I4(f
⊗4) = 4!

∫ ∞
0

f(t4)

∫ t4

0

f(t3)

∫ t3

0

f(t2)

∫ t2

0

f(t1)dBt1dBt2dBt3dBt4

= H4(I1(f))

= (I1(f))4 − 6(I1(f))2 + 3,

where (Bt)t∈R+ is a standard Brownian motion and H4(x) = x4−6x2+3 is the Hermite

polynomial of degree 4 and I1(f) =
∫∞
0
f(t)dBt is the first order Wiener integral, cf.

e.g. Proposition 5.1.3 of [6], and X1/2 = I1(f)2 is a gamma random variable with

shape parameter β = 1/2.

Proposition 4.1 The fourth order multiple Wiener integral I4(f
⊗4), with ‖f‖L2(R+) =

1, is not infinitely divisible.

Proof. It follows from Lemma 4.2 and Figure 3 below∗ that the function−
∂ log Ψ−6,1/2

∂s
(s)

is not to be completely monotone since its third derivative does not have constant

sign.

∗Figures 3 and 4 have been checked independently using Mathematica and Sage.
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Figure 3: Graph of s 7→ −∂3/∂s3 log Ψ−6,0.5(s).

Consequently the fourth order multiple Wiener integral

I4(f
⊗4) ' X2

1/2 − 6X1/2 + 3

of f⊗4, with ‖f‖L2(R+) = 1, is not infinitely divisible by Theorem 1.1. �

Lemma 4.2 Letting

Ψa,β(s) := E[e−s(Xβ+a/2)
2

], and Γa,β(s) =

∫ ∞
0

xβ−1e−s(x
2+ax)−xdx,

s ∈ R+, we have

− ∂

∂s
log Ψa,β(s) =

a2

4
+

∫∞
0
xβ(x+ a)e−s(x

2+ax)−xdx∫∞
0
xβ−1e−s(x2+ax)−xdx

=
a2

4
+

Γa,β+2(s) + aΓa,β+1(s)

Γa,β(s)
,

− ∂2

∂s2
log Ψa,β(s) = −Γa,β+4(s) + 2aΓa,β+3(s) + a2Γa,β+2(s)

Γa,β(s)
+

(Γa,β+2(s) + aΓa,β+1(s))
2

(Γa,β(s))2
,

and

− ∂3

∂s3
log Ψa,β(s) =

Γa,β+6(s) + 3aΓa,β+5(s) + 3a2Γa,β+4(s) + a3Γa,β+3(s)

Γa,β(s)

−3
(Γa,β+4(s) + 2aΓa,β+3(s) + a2Γa,β+2(s))(Γa,β+2(s) + aΓa,β+1(s))

(Γa,β(s))2

+2
(Γa,β+2(s) + aΓa,β+1(s))

3

(Γa,β(s))3
, s ∈ R+.
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Proof. It suffices to note that we have

Ψa,β(s) = e−sa
2/4Γa,β(s)

Γ(β)
,

and the relation

− ∂

∂s
Γa,β(s) = Γa,β+2(s) + aΓa,β+1(s), s ∈ R+.

�

When β = 1 we have

Ψa,1(s) =

√
π

s
ea/2+1/(4s)Φ

(
−a
√
s

2
− 1√

2s

)
,

and

− ∂

∂s
log Ψa,1(s) =

1

2s
+

1

4s2
+

(a− 1/s)e−s(
1
2s

+a/2)2

4
√
πsΦ

(
−(a+ 1/s)

√
s/2
) , s > 0.

5 Complete monotonicity

In this section we prove the complete monotonicity results used in Proposition 2.1.

Lemma 5.1 Let a, η ∈ R+.

i) Let α ∈ [0, 1]. The function

s 7→ 1

ξ + ηs+ (1 + as)α
, s ∈ R+,

is completely monotone for all ξ ∈ R+.

ii) Let α ∈ [1, 2]. The function

s 7→ 1 + as

(1 + as)α + ηs
, s ∈ R+,

is completely monotone.
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Proof. If α ∈ [0, 1], consider the nonnegative function

h(s) = (1 + as)α + ηs+ ξ, s ∈ R+,

whose derivative

h′(s) = αa(1 + as)α−1 + η

is completely monotone on R+. By Criterion XIII.4.2 of [4], the function

s 7→ 1

h(s)
=

1

ξ + ηs+ (1 + as)α

is completely monotone on R+. Next if α ∈ [1, 2], consider the nonnegative function

h(s) = (1 + as)α−1 + η
s

1 + as
,

whose derivative

h′(s) = (α− 1)a(1 + as)α−2 +
η

(1 + as)2
≥ 0

is completely monotone on R+. Again by Criterion XIII.4.2 of [4] the function

s 7→ 1

h(s)
=

1

(1 + as)α−1 + ηs/(1 + as)
=

1 + as

(1 + as)α + ηs

is completely monotone on R+. �

Remark: Alternatively we may note that the function

s 7→ (1 + as)α + ηs

is a complete Bernstein function for all α ∈ [0, 1] from § 15.2.2 of [8], hence

s 7→ 1

ξ + ηs+ (1 + as)α

is a Stieltjes function for all ξ ≥ 0 by Theorem 7.5 of [8], hence it is completely

monotone. When α ∈ [1, 2], the function

s 7→ (1 + as)α−1 + η
s

1 + as

is also a complete Bernstein function from § 15.2.4 of [8], hence

s 7→ 1

(1 + as)α−1 + ηs(1 + as)−1
=

1 + as

(1 + as)α + ηs

is also a Stieltjes function which is completely monotone.
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Corollary 5.2 For all a, b, c, η ∈ R+ and all α ∈ [0, 2], the function

s 7→ c+ b(1 + as)α−1

ηs+ (1 + as)α
(5.1)

is completely monotone.

Proof. If α ∈ [0, 1], we multiply

s 7→ 1

ξ + ηs+ (1 + as)α
,

of Lemma 5.1-i) by the completely monotone function

s 7→ aη + α(1 + as)α−1.

If α ∈ [1, 2] we multiply

s 7→ 1 + as

(1 + as)α + ηs

of Lemma 5.1-ii) by the completely monotone function

s 7→ aα(1 + as)α−2,

to get that

s 7→ aα(1 + as)α−1

(1 + as)α + ηs
, s ∈ R+,

is completely monotone on R+.

On the other hand by Lemma 5.1, the function

s 7→ 1 + as

(1 + as)α + ηs
× 1

1 + as
=

1

(1 + as)α + ηs
s ∈ R+,

is also completely monotone on R+ for α ∈ [1, 2]. �

Remark 5.3 There exist values of α > 2 for which the function (5.1) is not com-

pletely monotone.

Remark 5.3 is illustrated for a = 1 and η = 100 in Figure 4 below, in which differ-

entiation up to the 18th order is required for α = 3, and the values taken by the

derivative are of order 10−20.
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Figure 4: Graphs of s 7→ ∂2/∂s2 log(100s+ (1 + s)4) and s 7→ ∂17/∂s17 log(100s+ (1 + s)3).

6 Appendix

In this appendix we prove Lemma 3.2 by extending to all values of β > 0 the results

stated for β = 1 in § 2.6a of [5] on the computation of Thorin measures for exponential

random variables. The function Λt, t > 0, is defined by

Λt(y) := 1− 1

πt
arctan

(
sin(πt)

y + cos(πt)

)
, y > 0.

We let f1/α denote the probability density function of a stable random variable with

parameter 1/α.

Proposition 6.1 Let Xβ be a gamma random variable with shape parameter β > 0.

Let α > 1. Then the distribution function F0,α of the Thorin measure µ0,α of Xα
β

satisfies

F0,α(y) =
β

α
− β

α
Λ1/α

(
Γ(1 + β/α)

Γ(1 + β)

sin(π/α)

πy

∫ ∞
y

1

(x− y)1/α
f1/α(x)

f1/α(y)
dx

)
, y ∈ R+.

(6.1)

In particular, F0,α(y) is absolutely continuous and µ0,α admits a density with respect

to the Lebesgue measure.

Proof. In this proof we use the notation of [5]. The random variable Xα
β is a (β/α,G)-

GGC, where G is a random variable with distribution function FG(x) = αF0,α(x)/β

and such that E[log+(1/G)] <∞. By Theorem 4.1.1 page 49 of [1], Xα
β can be written

as the gamma mixture

Xα
β ' Yβ/αD1/α(G),

where Yβ/α is a gamma random variable with parameter β/α, and D1/α(G) is a pos-

itive independent random variable which is an example of a Dirichlet mean, cf. [3]
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and Relation (38) in [5].

By the duality Theorem 2.1.3-(ii) in [5], the density

fXα
β
(x) =

1

|α|Γ(β)
xβ/α−1e−x

1/α

, x > 0,

rewrites as

fXα
β
(x) =

1

Γ(β/α)
xβ/α−1eβE[log(G)]/αE[e−xD1/α(1/G)], x > 0,

which, by identification, yields

eβE[log(G)]/α =
Γ(β/α)

|α|Γ(β)
=

Γ(1 + β/α)

Γ(1 + β)
, (6.2)

which extends Relation (158) of [5] to β > 1, and

E[e−xD1/α(1/G)] = e−x
1/α

, x ∈ R+,

i.e. D1/α(1/G) = S1/α is a stable random variable with exponent 1/α. For complete-

ness we need to check that the argument of page 385-386 of [5], which is stated therein

for β = 1, also extends to all β > 0. By Relation (42) in § 1.4.d-(iii) in [5] we have

D1

(
1

GZ1/α

)
' β1,1−1/αD1/α(1/G),

where Z1/α is a Bernoulli random variable with parameter 1/α and β1,1−1/α is a beta

random variable, which shows by convolution that the density of D1

(
1

GZ1/α

)
is

f
D1

(
1

GZ1/α

)(y) =
sin(π/α)

πy

∫ ∞
y

1

(x/y − 1)1/α
f1/α(x)dx.

Now, by Relation (4.19.2) on page 112 of [2] we have

Xα
β '

Xβ

S1/α

where S1/α is a stable random variable with parameter 1/α. Hence, since

Xβ

S1/α

' Xα
β ' Yβ/αD1/α(G) ' Yββ1,1−1/αD1/α(G) ' YβD1

(
G

Z1/α

)
,
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we get

D1

(
G

Z1/α

)
' 1

S1/α

,

and by Relation (164) page 386 of [5] we get

f
D1

(
G

Z1/α

)(x) =
1

x2
f1/α(1/x).

Next, Theorem 2.3-4) of [5] shows that the distribution function FG of G satisfies

1− α

β
F0,α(y) = F1/G(1/y)

= Λ1/α

fD1

(
1

GZ1/α

)(y)eβE[log(G)]/α

y1/α−2f
D1

(
G

Z1/α

)(1/y)


= Λ1/α

(
Γ(1 + β/α)

Γ(1 + β)

sin(π/α)

πy

∫ ∞
y

1

(x− y)1/α
f1/α(x)

f1/α(y)
dx

)
,

since eβE[logG]/α = Γ(1 + β/α)/Γ(1 + β) by (6.2). �

Finally we prove Lemma 3.2 as a corollary of Proposition 6.1.

Proof of Lemma 3.2. When α = 2 we have

Λ1/2(y) = 1− 2

π
arctan

1

y
=

2

π
arctan y, y > 0,

hence Relation (6.1) of Proposition 6.1 and Legendre’s duplication formula (cf. [4], p.

64):
Γ(1 + β/2)√
πΓ(1 + β)

=
1

2βΓ(1/2 + β/2)

give

F0,2(y) =
2β

απ
arctan

(
2−β

y
√
πΓ(1/2 + β/2)

∫ ∞
y

1

(x− y)1/2
f1/2(x)

f1/2(y)
dx

)−1
=

β

π
arctan

(
2−β
√
ye1/(4y)

√
πΓ(1/2 + β/2)

∫ ∞
y

1√
x− y

e−1/(4x)
dx

x3/2

)−1

=
β

π
arctan

(
22−β

√
πΓ(1/2 + β/2)

∫ 1/(2
√
y)

0

ez
2

dz

)−1
=

β

π
arctan

(
Γ(β/2 + 1/2)

21−βF (1/(2
√
y))

)
, (6.3)

where we applied the change of variable z2 = 1/(4y)− 1/(4x), x, y > 0. �
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