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Abstract

This paper studies stochastic ordering under nonlinear expectations £ generated
by solutions of G-Backward Stochastic Differential Equations (G-BSDEs) defined on
G-expectation spaces. We derive sufficient conditions for the convex, increasing con-
vex, and monotonic G-stochastic orderings of G-diffusion processes at terminal time.
Our approach relies on comparison properties for G-Forward-Backward Stochastic Dif-
ferential Equations (G-FBSDEs) and on relevant extensions of convexity, monotonicity
and continuous dependence properties for the solutions of associated Hamilton-Jacobi-
Bellman (HJB) equations. Applications of G-stochastic ordering to contingent claim
superhedging price comparison under ambiguous coefficients are provided.
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1 Introduction

Partial orderings of probability distributions have various applications in risk management,
reliability, economics, finance, actual sciences, operation research, biology, option evaluation,
etc., see e.g. Miiller and Stoyan (2002), Denuit et al. (2005), Shaked and Shanthikumar
(2007), Sriboonchita et al. (2009), Levy (2015), Belzunce et al. (2015), Perrakis (2019). For
example, in utility theory, a portfolio return X is said to be dominated by another portfolio
return Y in the convex order if E[p(X)] < E[p(Y)] holds for all convex utility functions
¢ : R —- R. When X and Y are modeled as the terminal values of continuous diffusion
processes, such comparison bounds have been established in El Karoui et al. (1998) by a

stochastic calculus approach, which has been generalized to discontinuous processes in e.g.



Gushchin and Mordecki (2002), Bergenthum and Riischendorf (2006; 2007), Klein et al.
(2006), Arnaudon et al. (2008). With the aim of dealing with financial problems under
uncertain volatility, stochastic ordering has been studied in Ly and Privault (2021) under

the nonlinear g-expectations and g-evaluations introduced in Peng (2004).

On the other hand, a new form of stochastic calculus has been developed in Peng (2007b)
on sublinear expectation spaces, which generalize usual probability spaces with the con-
struction of a sublinear expectation Eg called the G-expectation and the corresponding
G-Brownian motion, G-It6’s formula, G-1t6 stochastic integral, and G-stochastic differential
equations. Sublinear expectations have been used to establish a central limit theorem for G-
normal distributions Peng (2008), and for the study of dynamic risk measures Peng (2007a),
Peng et al. (2018). Those results have been applied to contingent claim pricing in financial
markets with uncertain volatility Hu and Ji (2013), Vorbrink (2014), as well as to stochastic
control Xu (2010), Hu et al. (2014¢) and to robust mean-variance hedging in Biagini et al.
(2019). Recently, Stein’s method has extended to G-normal approximation under sublinear

expectations in Song (2019a;b).

In this paper, we consider stochastic ordering in the framework of nonlinear £g-expectations
and &g-evaluations generated by G-BSDEs defined on G-expectation spaces, which are not
sublinear in general. In comparison with the standard linear expectation setting, this leads to
more general ordering concepts which are suitable for the modeling of volatility uncertainty
in finance. See also Tian and Jiang (2016) for the construction of uncertainty orders on the
sublinear expectation space, and Grigorova (2014b;a) for the construction of monotonic and
increasing convex stochastic orders using Choquet’s expectation, and application to financial

optimization.

Namely, we use the £g-expectation and Eg-evaluation &[] of a random variable &, defined
by Hu et al. (2014b), as the initial value Y; for a triple (Y3, Z;, Ki)tcjo,r) of adapted processes
which solve a G-BSDE of the form

- d}/t = f(ta Xt7 }/157 Zt)dt + g(ta Xta Yta Zt>d<B>t - thBt - th7 0 S t S T7 (]-]->

with coefficients G = {f, ¢}, terminal condition Y, = &, (B,)ier, is a G-Brownian mo-
tion, (Xi)ier, is a G-diffusion process driven by (Bi)icr,, and (K;)ier, is a decreasing

G-martingale, see Section 2 for details.

In comparison with the g-stochastic ordering setting of Ly and Privault (2021), treating
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the G-stochastic ordering involves additional ingredients from G-stochastic calculus, and we

need to assume under additional boundedness conditions.

In Theorems 3.1 and 3.7 we derive sufficient conditions on two G-BSDE generators

filt,z,y, 2), gi(t,z,y,2), i = 1,2 for the convex ordering

€ [0(X{)] < & [0 (X)) (1.2)
where () is convex with polynomial growth and X;l) and X?) are the terminal values of

the solutions of the G-Forward Stochastic Differential Equations (G-FSDEs)
dX{M = by (8, XY dt + by (8, X0V d(BY + o4 (8, X V) d By,

dX? = by (t, Xt@))dt + ha(t, Xt(2))d<B>t +oa(t, X?f@))dBt’

with X(()l) = X(()Z), under the bound 0 < oy(t,z) < o9(t, x), (t,z) € [0,T] x R. In an option
pricing setting, the forward processes Xt(i), i = 1,2, represents the prices of risky assets driven

) in (1.1),4 = 1,2, represent the

by G-Brownian motion under uncertain volatility, and the Y;(i
portfolio wealth processes, or superhedging prices, of a contingent claim. The processes Zt(i)
in (1.1), 7 = 1,2, play a crucial role in hedging the claim with payoff @(Xg)) at maturity time
T, as 7rti) = Zt(i)/ai (t, Xt(i)) is the amount invested in the risky asset Xt(i) at time ¢ € [0, 71,
see e.g. Section 4 and also Vorbrink (2014). In addition, the quantity Egi[ — go(X;i))],
makes sense as a risk measure. Here, the choice of generator functions f; and g; determines
the investor’s portfolio strategy and the corresponding risk measures, and inequalities in
G-stochastic ordering (1.2) can be interpreted as comparisons of portfolios values, option
prices, and risk measures relating to underlying assets with uncertain volatility.

The G-stochastic ordering can be used for the comparison of expected utilities when ¢

) is used as the value

represents a utility function, Xt(i) represents a state process, and Yt(i
function of a stochastic control problem, see Touzi (2004), Xu (2010), Hu et al. (2014c), and
as such they are also applicable to risk management. Precisely, they enable one to study the
behavior of risk seeking (resp. risk averse) investors based on the convexity (resp. concavity)

of ¢, see e.g. Sriboonchita et al. (2009).

First, in Theorem 3.1 we show that the convex ordering (1.2) can be derived as a conse-

quence of the comparison Theorem C.2.5 in Peng (2019), provided that
Zbl(t7 .T) + fl(t7 x,Y, ZO'1<t, [E)) S Zb?(ta I) + f?(ta z,Y, ZUQ(tv J])), r,Y,z € ]Ra te [07 T]u

Zhl(tax) +gl<t,$,y,20'1(t,l’)) < Zh2<t7$) +92(t7$7y7Z02<t7$))7 xr,y,z € Ra te [OaTL

3



and both functions (z,y,2) — 2b;(t,x) + fi(t,z,y,z0:(t,z)) and (x,y,z) — zh(t,x) +
gi(t,x,y, zo;(t, z)) are convex in (z,y) and in (y, z) on R? for both i = 1,2 and ¢t € [0,T].
Then in Theorem 3.7 we show, using G-stochastic calculus, that this condition can be relaxed

into a single convexity assumption in (z,y) and in (y, z) for the functions

(x,y,2) = M;(t,x,y, z) = zb;(t,x) + fi(t,x,y, z0:(t, x)), i1=1 or i=2,

(C(],y,Z) = Ni(t7$7y7z) = th(t,l‘) +gi(tax7yazo-i(tvx))7 =1 or 1=2.

Increasing convex ordering is dealt with in Theorems 3.2, and in Theorem 3.4 under order-
ing conditions on the drifts b;(¢,x), h;i(t,z), fi(t,z,y,z) and g;(¢t,z,y,2). In Theorem 3.8,
increasing convex ordering is considered under weaker convexity conditions on the functions
M;(t,x,y, z) and N;(t,z,y, z) which only need to be convex for i = 1 or ¢ = 2. Monotonic
ordering is considered in Corollary 3.3, and the particular cases of equal drifts and equal
volatilities are treated in Corollaries 3.5 and 3.6 for the convex and monotonic orderings.
Applications of the G-stochastic ordering to superhedging price comparison of the contingent

claim under ambiguous coefficients are provided in Section 4.

The proofs of Theorems 3.1-3.2 and 3.7-3.8 rely on an extension of convexity property of
the solutions of associated HJB equations types proved in Appendix A, see Theorem 2.9. The
convexity properties of solutions of nonlinear PDEs have been studied by several authors,
see e.g. Theorem 3.1 in Lions and Musiela (2006), Theorem 2.1 in Giga et al. (1991), and
Theorem 1.1 in Bian and Guan (2008), see also Theorem 1 in Alvarez et al. (1997) in the
elliptic case. Those works typically require global convexity of nonlinear drifts in all state
variables (x,y,z), a condition which is too strong for even the Black-Scholes-Barenblatt
equation to be satisfied. For this reason, in Theorem 2.9 below we extend Theorem 1.1 of
Bian and Guan (2008) in dimension one, by replacing the global convexity of nonlinear drifts

with convexity in (z,y) and (y,2), i =1,2.

Appendices B and C deal with monotonicity properties and continuous dependence re-
sults for the solutions of G-FBSDEs and associated HJB equations, which are used in the
proofs of Theorems 3.1-3.8 and Corollaries 3.3-3.6. Due to the lack of a full dominated
convergence theorem without monotonic continuity property, see Theorem 3.2 in Hu and
Zhou (2019) and Cohen et al. (2011), we solely rely on LY, convergence arguments based on

Proposition 4.1 in Hu et al. (2014b) and Proposition 6.1.22 in Peng (2019).



2 Preliminaries

2.1 Sublinear expectations

Let €2 be a given sample space, and let H be a linear space of real-valued functions defined
on 2, such that ¢ € H for all constant ¢ € R, and |X| € H if X € H. Furthermore, if
X1, Xo,..., X, € H, we assume that ¢(X,...,X,) € H, for each ¢ € Cr1;p(R"), where

Ci-Lip(R™) denotes the linear space of locally Lipschitz functions satisfying

o(z) = o(y)] < C(L+ [z]™ + |y[™) ]z — yl, (2.1)
for some constant C' and m depending only on ¢.

Definition 2.1 (Sublinear expectation) A sublinear expectation E onH isa functional

E:H: >R satisfying the following properties for all X, Y € H.:
(i) Monotonicity: If X <Y, then E[X] < E[Y].

(i) Constant preserving: IE[C] =c, ceR

(iii) Sub-additivity: E[X + Y] < E[X] + E[Y].

(iv) Positive homogeneity: E[AX] = AE[X], A > 0.

The triple (Q, H,IE) 18 called a sublinear expectation space.

In case [ satisfies only the monotonicity and the constant preserving properties, E is called

a nonlinear expectation.

Theorem 2.2 (Peng (2019), Theorem 1.2.1.) Let (Q,H,]/E\l) be a sublinear expectation

space. Then there exists a family {Eq : 0 € O} of linear expectations defined on H, such

that IE[X] = supEy[X]|, X € H, and for each X € H, there exist Ox € O such that
)

E[X] = Eo, [X].

Given X € H, the distribution of X is the function Fx defined by

Fxlg] :=E[p(X)], ¢ € Crrip(R), (2.2)

and (R, Ci-ip(R),Fx) is also a sublinear expectation space and by Theorem 2.2, Fx admits

the representation

Fxl] = sup / o(2)Fx (0, dr), (2.3)
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where (Fx(6,dz))gco is a family of probability distributions in the usual sense. The distri-

bution of X € H defines the parameters
po=—E[-X], @:=E[X], and o°:=-E-X?, &%:=E[X?, (2.4)

and the intervals [y, 1] and [0?, 6] characterize the mean-uncertainty and the variance-
uncertainty of X, respectively. Two random variables X;, X, defined on sublinear expecta-
tion spaces (Ql, Hi, IAEl) and (QQ, Ho, Eg) are said to be identically distributed, i.e. X; < X,
if By [p(X1)] = Eap(X3)] for all ¢ € Crpip(R). If in addition B [o(X;)] < Ey[p(Xy)], for all
¢ € Crip(R) we say that the distribution of X, is stronger than the distribution of X7, in
which case we have {Fx, (61,:) : 01 € ©1} C {Fx,(02,) : 05 € Oy}. Given two random

variables X and Y on the sublinear expectation space, we say that Y is independent from

X under E if for all test functions ¢ € Cr-Lip(R?), we have
Elp(X,Y)] = E[E[p(z,Y)]jz=x].

A random variable X in the sublinear expectation space (2, H, ]/F:) is said to be G-normally
distributed if aX + bX < Va2 + 02X, a,b > 0, where X is an independent copy of X and,
G : R — R is the function defined by G(a) = E[aXQ]/Z a € R. By Peng (2007b; 2008),
letting 0?2 := —]/F:[ ~X ?] and 52 := IE[)A( 2], X is G-normally distributed if and only if for
each ¢ € Crip(R), the function u, (¢, z) == ]E[Lp (z+ \/f)?)} solves the G-heat equation

du 0*u
Pt - 6 (G (00)) =0, 0,00.0) = o). (25)
where
1 2 1 —92 + 2 1 2 =2
G(a) == sup (c’a)==(c"a* —c’a”) = - max {ac® a7°}, a€R, (2.6)
2 22§0'2§52 2 2
with a™ = max(a,0) and ¢~ = —min(a,0). In particular, we have IE[QO()A()] = PF(p) =

u,(1,0), and the function G : R — R in (2.6) is sublinear and monotonic, with —g?|a|/2 <
G(a) < 7% al/2, a € R. In the sequel we only deal with non-degenerate G-normal distribu-
tions A/ ({0}, [0,5%]) for which ¢® > 0, in which case G defined is (2.6) and non-degenerate,

1.e.

Mllqw

G(b)—-Gla) =z = (b—a), 0<a<h,

and (2.5) admits a unique classical solution u(t,z) € C**([0,T) x R), see e.g. Peng (2019).



2.2 (G-Expectation, G-Brownian motion and G-It6 integral

Let Q := Cy(Ry) denote the space of R—valued continuous paths (w;)ier, with wy = 0,

equipped with the distance p(w’ L w? 22 max (1 m[%x] |wt — wy ’) For each t €
te|0,2

[0, 00), we set
Wii={wr 1 weQ}, Fpi=By(W)=BW,), Fiy:=B(W)=[)B(W)
s>t
and F := \/ F,, where (€, F) is the canonical space equipped with its natural filtration

s>t
(Ft)e>0, and Bi(w) = (wt)i>o is the corresponding canonical process. For each fixed T > 0,

we also let Lip(F) := |J Lip(F,), where

n=1
Lip(Fr) := {X(w)=p(wy,...,wp,,) : m>1, t1,..., b, €[0,T)], ¢ € Crip(R™)}, T > 0.
Definition 2.3 (Peng (2019), §3.2)

i) The G-expectation is the sublinear expectation defined on L?p(fT> by

Eq[X] = E[p(VE — €1, s Vm — tm1&m)],

for X of the form X = @(By, — By, B, — Bt,,..., B, — By,,_,), where &,...,&n
are identically G-normally distributed random variables in a sublinear expectation space
(Q,”H,IE), such that 1 is independent from (&1,...,&),1=1,2,...,m—1. The corre-

sponding canonical process By(w) := wy, w € Q, t > 0, is called a G-Brownian motion.

ii) The conditional G-expectation of X = @(By, — By, Bt, — Bty ..., By
Fi, is defined by

— By,,_,) given

m

]EG[X | ]:tj] = EG[QO(BIH - Bto:""Btm By, 1) | Ft]} - (Btl Btov T 7Btj - Btj—1)7
where §(x1, ..., 1y;) i= E[@(zl,...,xtj,\/tth — &5, Vit =t m)]

For 0 < s < t, we have Eg[B; — By|Fs] = 0 and Eg[(B; — B,)? | Fi| = 7%(t — s). Peng
(2007b) proved that E¢[-] consistently defines a sublinear expectation on the vector lattice
Lip(Fr) as well as on Lip(F). These spaces can be continuously extended to Banach spaces
denoted respectively by Lé(]—}) and LL(F), under the norm Eq[|X|], X € Lin(Fr), resp.
Lip(F). For p > 1 we let LE(F) :== {X € LL(F) : |X|P € LL(F)}, which is a Banach
space under the norm [|X||, := (Eg[|X|p])1/p



We note that by e.g. Theorem 6.2.5 in Peng (2019), the G-expectation Eg can be

represented as

Eclg] = supEp[¢], & € Lo(F), (2.7)

PeP

where P is a weakly compact family of probability measures on (2, F).
Given 7 := {ty = 0,t1,...,tx = T} a subdivision of the interval of [0,T], denote by

MY, (0, 7) the collection of simple processes of the form ne(w S )1 1T where
J [

J+1)

& eIl (F.),i=0,1,2,...,N—1,p>1. For p, € M2’ O,T,theGIto integral is defined
i & LaVt G

as
[(77> = /0 nsdB Z 6] Btg+1 - j)‘

Let M2(0,T), HZ(0,T) and S%(0,T) denote the respective completions of M%’(0, T) under

the norms | - e, || - s || - ls» defined by
T p/
( / !m|”dt)
0

Lemma 2.4 (Peng (2019)) The linear mapping I : MZ22(0,T) — L%(Fr) can be continu-
G G

ously extended to M%(0,T) — L& (Fr) with
T T
(/ fr]sst) < o°Eq [/ n?ds] .
0 0

T T
Eq { / nsst} =0 and o’Eg { / nzds] < Eg¢
0 0

The following property of the G-1t6 integral will be useful, see Proposition 3.3.6-(¢i¢) in Peng
(2019):

2

T
e = Eo | [ ]l = Bo

s, = E[ sup |ntrp].

te[0,7

2

T
Ec {X+ / ndB,

fs} =Eg[X], X€Li(F), 0<s<r<t<T. (2.8)
Moreover, by Proposition 4.1.4 of Peng (2019), the process

M= [t =2 [ G

is a G-martingale, which will be used in the proof of Theorem 3.7 below, where the
t
(B); = B? — 2/ B,dBs,, t€0,7],
0

is called the quadratic variation of G-Brownian motion.



2.3 G-forward-backward stochastic differential equations

Let (By)i>0 be a G-Brownian motion with —Eg[—B?] = ¢? and Eg[B?] = 2, where G is

given by (2.6) in dimension one. We consider G-FSDEs of the form

dX5P" = b(s, X2")ds + h(s, X!")d(B)s + o (s, X"")dBs, 0<t<s<T, (2.9)
with X} = , and the associated G-BSDEs are defined by

T T
Vi =X [ R XY 2 [ gl XY 2B,
. S S
— / ZbdB, — (Kp* — Kb, 0<t<s<T, (2.10)

where K5* is a decreasing G-martingale and b,h,0 : [0,T] xR - R, ¢ : R = R, f,g:
[0, 7] x R® — R are deterministic functions satisfying the following conditions:

(A1) The functions b(t,z), h(t,z) are continuous and bounded on [0,7] x R, the function
o(t, ) is strictly positive and continuous in ¢ € [0,7] for all z € R, and they satisfy

the uniform Lipschitz condition
b(t, z) — b(t,y)|+|h(t,x) — h(t,y)|+|o(t,z) —o(t,y)| < Clzr—y|, =z,yeR, tel0,T],
for some constant C' > 0.

(As) The functions f(t,x,y, z) and ¢(t, z,y, z) are continuous in ¢t € [0,T] for all (z,y,2) €
R3, and there exist an integer m > 0 and a constant C' > 0 such that
() 1f(tx,y,2) = f(t, 'y, 2)] < C(A+ |2™ + |2/ [™)]e — 2| + |y — /| + |2 = 2]),
(i) Ig(t.2,9.2) — 9(t,2", 1/ )| < C((L+ la™ + &™) — ']+ |y — of | + |2 — =),
(iii) [p(x) —p(y)] < C(+ [z[™ + |y|™) |z -y,
x, 2, y,y, 2 2 €R.
(A3) Furthermore, we assume that f(¢,z,0,0) = g(¢t,2,0,0) =0, (¢t,x) € [0,T] x R.

Under (A;), the G-FSDE (2.9) admits a unique solution (X;)iejor € ME(0,T) by Theo-
rem 5.2.2 of Peng (2019), while by Theorem 4.1 in Hu et al. (2014a), under (As)-(As) the
G-BSDE (2.10) admits a unique solution (Y»*, Zb® Kb%) e such that (Y2", Z0%) senm €
S2(0,T) x HZL(0,T) and K4 € LY(Fr), s € [t,T], for p(X5") € LE(Fr) and 9 € (1,2).
Condition (Aj3) is needed for the later definition of G-evaluations, however in general it is

sufficient to assume that f(-,z,0,0) and g(-,x,0,0) are in M%(0,T) for all x € R.
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Definition 2.5 Given ¢ € L% (Fr) and the G-Backward SDE
A" = —f(t, X2", V.00, Z07Vdt — g(t, X Y, Z0VA(B), + Z0 dBy 4+ dK, 0 <t < T,
Yt =¢,

we respectively call E[€] = Yy and &l | F] = Y the Eg-evaluation and the Fi-
conditional Eg-evaluation of £, t € [0,T], where G := {f,g} denotes the generators of the
G-BSDE.

Under (Aj3) it can be shown that the map & — Eg[€] preserves all properties of the expectation
Eq, except for sublinearity and the constant preserving property. Under the (stronger than

(A3)) condition
(A3) f(t,2,y,0) =g(t,z,y,0) =0 for all t € [0,T], z,y €R,

the Eg-evaluation satisfies the property Eg[c] = ¢ for constant ¢ € R. The results of Sec-

tions 3.1 and 3.2 remain valid for g-expectations if we assume (A%) instead of (As).
Definition 2.6 Assume (A;)-(A3). For any XV, X® € L2(Fr), we say that

i) XU is dominated by X® in the monotonic G-ordering XM <g°g X if

€, [0 (XD)] < &g, [p(XP)], (2.11)
for non-decreasing ¢ € Ci-rip(R).

i) XU is dominated by X in the conver G-ordering X <&"%, X @ 4f (2.11) holds for

@ convex on R.

iii) X is dominated by X® in the increasing conver G-ordering XV <% X@) if (2.11)

holds for ¢ non-decreasing convex on R.

2.4 Associated G-PDE

Under (A;)-(Az), let (Y2")serr) denote the solution of the G-BSDE (2.10). Then, accord-

s

ing to the nonlinear Feynman-Kac formula of Hu et al. (2014b), the function u defined as

u(t,z) ==Y}, (t,z) € [0,T] x R, is the unique viscosity solution of the HJB equation

) ) 0?
a—?(t,x) +F (t, 2, u(t, ), a—Z(t,x), a_;;@’ x)) — 0, (2.12)
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with u(7T, z) = p(z), where
F(t,z,y,z,w) :=2G(H(t,xz,y,z,w)) + M(t, z,y, z),

and

H(t,z,y,z,w) = %0‘2<t,I) + N(t,x,y, 2),

where

M(t,x,y,2) = zb(t,x) + f(t,x,y,z0(t,x)), N(t,z,y,2):=zh(t,z)+ g(t,z,y,z0(t,x)).
(2.13)
We refer to Douglas et al. (1996) for the following definition.

Definition 2.7 i) Let CP([0,7] x R) denote the space of functions v(t,z) which are
p times continuously differentiable in t € [0,T] and q times differentiable in x € R,

forp,qg=>1.

i1) Let CPY([0,T] x R™) denote the subspace of functions in CP4([0,T] x R) whose partial

) b ’ D ) p
derivatives with respect to x (resp. t) of orders 1 to q (resp. 1 to p) are bounded on R™
(resp. on [0,T]).

In addition to (A;)-(As), we consider the following conditions.

(A;) The functions f(t,z,y,2) and g(t,z,y,z) are in Cp*([0,T] x R?) and they satisfy the

homogeneity condition

f<t7$7 y? Z) = 5f(t’ x? y/(S’ Z/(S)’ g(t’ x7y’ Z) = (Sg(t7 :E’ y/57 2/5)7 (t7'1:’ y? Z) e [O’ T]XR?)’
for every § > 0.

(As) The functions f(t,z,y, z) and ¢(t, z,y, z) satisfy the bounds

2

o0 f C g
w(txagﬁz) @(txay?Z')

< C
- (1 + x2)(m+1+g)/2+1’

and < (1 + x2)(m+1+g)/2+1’

for some positive constants C' > 0 and ¢ > 0, (¢,z) € [0,7] x R.

The next result provides C?([0,T] x R) solutions of (2.12) with polynomial growth, based
on Krylov (1983).

Proposition 2.8 In addition to (A;)-(A4), assume that

11



(Hy) @ is in C3(R), b, h, o are in C,*([0,T] x R), and f, g are in Cp°([0,T] x R?),
(Hs) o(t,x) is lower and upper bounded on [0,T] x R by positive constants.

Then the PDE (2.12) admits a unique solution u(t,z) € CY?([0,T] x R), such that u(t,z)
and its partial derivatives have polynomial growth of order at most m + 1 in x € R, for all

te[0,7].

Proof.  When ¢ is bounded in C3(R), the existence of a bounded solution with bounded
derivatives in C12([0, 7] x R) is a consequence of Theorem 1.1 in Krylov (1983). If ¢ has poly-

(m+1

nomial growth in C}(R), we apply the above to $(x) := @(z)/(1 + 22)™*1/2 by proceeding

as in Case 3 of the proof of Theorem C.3.4 pages 193-194 of Peng (2019). O

In Theorem 2.9 we extend the convexity result Theorem 4.1 in Bian and Guan (2008) to
HJB equations of the form (2.12) by only assuming convexity in (x,y) and in (y, z) of the
function M (t,z,y,z) and N(t,x,y, z) in (2.13), instead of the joint convexity of (z,y,z) —
M(t,z,y,2) and (z,y,2) — N(t,z,y, 2).

Theorem 2.9 Assume that Conditions (A;)-(As) hold. Suppose that u(t, z) is a C*([0,T) x
R) solution of (2.12) with terminal condition u(T,x) = ¢(x), together with the conditions

(H3) (x,y) — M(t,z,y,2) and (x,y) — N(t,x,y,z) are convex on R?, (t,2) € [0,T] x R,
(Hy) (y,2) — M(t,x,y,2) and (y,2) — N(t,x,y,2) are convex on R?, (t,x) € [0,T] x R.

Then the function x — u(t,x) is convex on R for all t € [0,T], provided that u(T,x) = p(x)

1s convez in x € R.

Theorem 2.9 is proved in Appendix A and will be used in the proofs of Theorems 3.1-3.2,
Corollaries 3.4-3.5, and Theorems 3.7-3.8. The next result is proved in Appendix B.

Proposition 2.10 Assume that (Ay)-(As) hold. If p(x), f(t,x,y,z), and g(t,z,y,2) are
non-decreasing in x € R for all t € [0,T] and y,z € R, then the solution Y of (2.10) is
q.s. non-decreasing inx € R for all s € [t,T]. As a consequence, if u(t,x) solves the backward

PDE (2.12), then u(t,z) is also a non-decreasing function of x € R for all t € [0,T.

12



3 Comparison in G-stochastic ordering

In this section, under (A;)-(As5) we derive comparison results Eg-expectation by considering

two systems of G-FBSDEs given by

X1 =bi(s, XP)ds + hi (s, X)d(B)s + 0i(s, XP)dB,, X' =ap),  (3.)
YO = o(xP) + / filr, X0, Y9, 20 dr + / gi(r, X3, Y9, Z10)d(B),

T - .
—/ Z9dB, — (KY — K®),  i=1,2. (3.2)

3.1 Ordering with convex drifts

In the sequel, we will use the notation G; = {fi, ¢:}, ¢ = 1,2, and the functions
M;(t,z,y, z) := zbi(t,x) + fi(t,z,y, zo;(t,x)), i=1,2,
Ni(t,z,y,z) = zh(t,x) + ¢;(t,x,y, z04(t,x)), i=1,2.

Theorem 3.1 (Convex order). Assume that X(()l) = X(()Q) and that 0 < o1(t,z) < o9(t, ),
(t,x) € [0, T] x R, together with the conditions

(B1> Ml(t7x7yaz) < Mz(t,l’,y,Z), T,Y,z € R; te [OaT];
(BQ) Nl(t7$’yaz) S N2<t,1[‘,y, Z)a T,Y,z € Rr te [OuT];

(B3) (z,y,2) — M(t,z,y,2) and (z,y, 2) — Ni(t,z,y, z) are both convex in (x,y) € R?* and
in (y,2) e R te€0,T],i=1,2.

Then we have X:(Fl) <G/, X(TQ), i.e.,
ggl [()0 (Xé’l))] < 5@2 [90 (XT(?))}’

for ¢ convex on R.

Proof.  We start by assuming that (H;)-(Hy) hold. By Proposition 2.8, the functions

ui(t,z) = Y;(l)’m and wus(t, ) = Y;(Q)’t’x are continuous in ¢ and x, and they solve the
backward PDEs

E(T’ QZ‘) = Fz (T,.’I?,Ui(T, il?), %(Ta .T), W(Ta l‘)) with ul(()?x) = 90(‘%)7 1= 17 27 (34)
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by setting 7 := T — t, where Fi(7,z,y, z,w) := 2G(H;(7, x,y, z,w) + M;(1,z,y, 2)) and

Hi(r.a.y,2,w) = 5 o7(r.a) + Nilr,2,.2). (3.5)

In addition, under (Bs), both solutions u; (¢, z) and us(t, x) of (3.4) are convex functions of
2

97, ,
x by Theorem 2.9, hence we have 8—u2(7', x) >0, (1,2) € [0,7] x R. Therefore, in (3.4) we
T

can replace H;(7,x,y, z,w) with

~ 1
Hi(r,z,y,z,w) :== N;(T, 2,9, 2) + §w+ai2(t, ), i=1,2, (3.6)

where w* = max(w, 0), and rewrite the backward PDEs (3.4) as

8ui ~

) 2.
5 (r,2) =F; <T,x,ui(7, x), Ou; O
-

a—x(T, ), W(T, x)) with u;(0,2) = p(z), i=1,2.

where

E(t, T, Y, Z, W) = QG(fIi(t,x, Y, 2, w)) + M;(t,z,y, z).

By the conditions 0 < 04(t,z) < 09(t,x), and (By)-(B2), we check that

ﬁQ(T,IL’, Y, Z,w) — ﬁl(T,x, Y, 2z, w)

2
> 0 (Na(r, 2, 2) = Milr,2,y,2)) + St (o3(r, ) — o3(r, 2))

+ Ms(T,x,y,2) — My(7,2,y,2) >0, r,y,z,w €R, 7€[0,T].

Moreover, by Conditions (A;) and (Hs) the coefficients b;, h; and o;, i = 1,2 are bounded,
hence we have

=2

jad ~ [
|E(Tax7ylazlawl) - E(Tax7y27227w2)| S 70—2

i (7, 2)|wy — we
+ 2 INi(T 2, 1, 21) — Ni(T, @, 92, 22)| + [ Mo (7, 2,910, 21) — Mi(7, 2,9, 20))

< C'(lyr — ol + |21 — 20| + |lwr —w2|),  (1,2) €[0,T] X R, (y1,21,w1), (Y2, 22, w2) € R?,
hence E(t,x,y, z,w) is Lipschitz in (y,z,w) € R? uniformly in (7,2) € [0,7] x R. In
addition, E(T, x,y, z,w), i = 1,2 is positive homogeneous in (y, z, w) by Condition (A,) and
pages 188-189 of Peng (2019), and E(T, x,y, z, w) satisfies Condition (G’) therein. Therefore,

by the Comparison Theorem C.2.5 under (G’), see page 188 of Peng (2019), it follows that
u(t,x) < ug(t,x) for all (¢,z) € [0,T] x R, from which we conclude to

Yo = (0, X§") < Yo = us(0, X§") = ua (0, X5,
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hence we have &g, [gp(Xj(}))} < &g, [gp (X:(g))} for convex ¢ € C}(R). In order to relax Condi-
tion (H;) we apply Theorem C.1 under Conditions (A;)-(As) after regularizing the functions
o, b, h, o, f, g, as in e.g. Problem 1.4.14 in Zhang (2017). For example, when mollifying ¢
into ¢, by convolution with p,(y) := np(ny) where p is a mollifier on R, n > 1, and using
the representation (2.7), Condition (As) and Proposition 4.1 in Hu et al. (2014b), for p > 1

we have
BelloXr) = eu(Xn)P] = swpBe || [~ (00Xn) = oCtr = ()] |
< sup /OO Ep[le(Xt) — (X1 —y/n)["] p(y)dy
< = / sup B [(1+ X"+ [Xo = y/ml" )l plo)dy
< 2 O (0 faol 4 2 4y ) )y,

which tends to zero as n tends to infinity. Finally, to relax Condition (H,) using Theorem C.1,
we approximate o(t,z) by o,(t,x) := min(max(c(¢,z),1/n),n), n > 1, and note that by

sublinearity we have
1
Ec(lo(t, X2) — ou(t, X)) < — +Eel(lo(t, X)[* —n)*], te[0.7],

which tends to zero as n tends to infinity by Proposition 6.1.22 of Peng (2019), since
o(t, X;) € L;” therein for p > 1, as by (A;) we have

Ec [lo(t, X)|*1owxzesnt] < CEa (14 | X)) 1114 1x, 200501
< CE[Laspxpmsny) + C(Ee[1X:7)) " (B [Lisxy5my])
CEc [t xnysny] + C'(1+ 20") " (Bo [Larpxpmsn])

1/2

IN

which tends to 0 as n tends to infinity by Proposition 4.1 in Hu et al. (2014b). O

Theorem 3.2 (Increasing convex order). Assume that Xél) < X((]Z) and 0 < oy(t,z) <
oo(t,x), (t,x) € [0,T] X R, together with the conditions

(Bi) Ml(t7x7y7 Z) S Mg(t,l’,y,Z), le [OvT]? T,y € R) KAS R-‘r;
(By) Ni(t,x,y,z) < No(t,z,y,2), t € [0,T], z,y € R, z € Ry,

(B}) (z,y,2) = M;(t,z,y,2) and (z,y, z) — N;(t,z,y, z) are both convez in (x,y) € R* and
n(y,z) ERxRy, fori=1,2,t€[0,T],
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(B)) © — fi(t,x,y,2) and x — g;(t,z,y,z) are non-decreasing on R, fori = 1,2, y € R,
zeR,, t€][0,T).

Then we have X;l) <E°%, X;g), ie., €, [ (X;l))} < &g lp (Xi(f))} , for non-decreasing convex
© on R.

Proof. Under (Bj)), when ¢(x), fi(t,x,y, z) and g;(t,x,y, 2), i = 1,2, are non-decreasing in
x, Proposition 2.10 states that the PDE solutions us (¢, z) and us(t, x)satisfy

0
%(t,x) >0 and

Ous

()20, (La)e0.TI xR

hence Conditions (Bj)-(Bs) only need to hold for z > 0, and the conclusion follows by
repeating the arguments in the proof of Theorem 3.1. 0]

We note that in case o1(t,x) = o9(t,z), the convexity of u;(t,z), i = 1,2, is no longer
required in the proofs of Theorems 3.1-3.2, and one can then remove Condition (Bj) to

obtain a result for the monotonic order.

Corollary 3.3 (Monotonic order with equal volatilities). Assume that Xél) < Xéz) and
0<o(t,x):=o0(t,x) = oa(t, ), (t,x) € [0,T] x R, together with the conditions

(BY) Mi(t,z,y,z) < Ms(t,z,y,2), t € [0,T], z,y € R, z € Ry,
(BY) Ni(t,z,y,2) < No(t,z,y,2), t €[0,T], z,y € R, z € Ry,

(BY) = — fi(t,z,y,2) and x — g¢;(t,x,y,z) are non-decreasing on R, fori =1,2, y € R,
zeR,, t€][0,T].

Then we have X;l) <G 6 Xg), i.e., &g, [@(Xél))] < &g, [go(Xg))} , for non-decreasing ¢ on
R.

Proof. When o4(t,z) = o9(t, ), we can repeat the proof of Theorem 3.1 by using H; in
(3.5), without defining H; in (3.6) and without assuming (Bs), and then follow the proof

argument of Theorem 3.2 without requiring the convexity of u;(t,z), i =1, 2. 0

Theorem 3.4 (Increasing convex order). Assume that X(()l) < X(()2) and

bi(t,x) < bsy(t,x), hi(t,z) < ho(t,z) and 0<oi(t,z) <oo(t,x), (t,x)€[0,T] xR,
together with the conditions
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(Cl) fl(t,l',y,Z) < f2<taxay7 Z): S [O>T]7 T,y € R; S RJr;
(02) gl(t7x7y7 Z) S g2(tax7y7z)7 te [O7T]7 z,y € R; VAS RJr;

(C3) z — filt,z,y,2) and z — gi(t,x,y,2) are both non-decreasing on R, , for i = 1 or
i=2z,yeR, tel0,T],

(Cy) z — filt,z,y,z) and x — g;(t,x,y,2) are both non-decreasing on R, for i = 1,2,
r,yeR, zeR,, t €[0,T],

(Cs) (m,y,2) — M;(t,z,y, z) and (x,y,2) — N;(t,z,y,2) are both convez in (x,y) € R? and
in (y,2) ERxRy, fori=1,2, z,y €R, (t,2) € [0,T] x R,.

Then we have X}l) §ig°;)22 Xg), i.e., &g, [gp (X;l))] < &g, [go (X;Q))}, for non-decreasing convex

p on R.

Proof. Under (Cy), since ¢(x), fi(t,x,y,z) and ¢;(t,x,y, z), i = 1,2, are non-decreasing in
x, by Proposition 2.10 the solutions u; (¢, z) and us (¢, ) of (3.4) are non-decreasing in x and,
%(t, x) > 0. Assuming that e.g.
fi(t,z,y, z) and g1 (t, z, y, z) are non-decreasing in z under (C), then by zoy (¢, x) < zos(t, z),

(t,x) € [0,T] xR, z € Ry, and (C})-(Cy), we have

as in the proof of Theorem 3.2, one can take z > 0 since

fl(t7'r7y7zo-1(t7x)) < fl(t,x,y,z@(t,x)) < f2(t7'r7y7zo-2(t7x))7

and

gl(ta z,Y, 20'1(t, JZ)) < gl<t7 z,Y, ZUQ(ta lL‘)) < 92(t7 z,y, 202<t7 ZE))
Combining the above with the inequality zb; (¢, x) < zby(t,x) and zhy(t,z) < zho(t, z), for
(t,x) € [0,T] xR, z € Ry, one finds

Mi(t,z,y,z) < My(t,z,y,z) and Ni(t,x,y,z) < No(t,x,y, 2),

and by Theorem 3.2 we conclude that &g, [@(X}l))} < &g, [@(X:(FQ))], for non-decreasing
convex ¢ on R. U
When the drift coefficients, b(t, x) := by (t,z) = ba(t,x) and h(t,z) := hy(t,z) = ha(t, x), are
equal and f;(¢,z,y, z) and g¢;(t, z,y, z) are independent of z, i = 1,2, the following corollary
can be proved for the convex G-ordering similarly to Theorem 3.4, by applying Theorem 3.1

which deals with convex ordering, instead of Theorem 3.2.
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Corollary 3.5 (Convex order with equal drifts). Assume that X" = XéZ) and
bi(t,x) = ba(t,x), hi(t,x) = ha(t,x), and 0 < o1(t,x) < o9(t, ), (t,x) € [0,T] x R,
together with the conditions
(CY) filt,z,y,2) = filt,x,y) and gi(t,z,y,2) = g;(t,x,y) are independent of z € R, t €
0,T], z,y e R, 1 =1,2,

(Cé> fl(t,l’,y) < fz(tv'ray> and gl(t,x,y) < 92<t,l’,y), te [OvTL T,y € R;

(CY) (z,y,2) — M(t,z,y,2) and (z,y, z) = Ni(t,z,y, z) are both convez in (z,y) € R* and
in (y,2) €R% t€(0,T],i=1,2.

Then we have X(Tl) <GG» X;Q), ie. Eg, [p (Xi(pl))} < &g, [ (X;Q))} , for non-decreasing convex
@ on R.

We note that the convexity of u;(¢,z) and us(t, ) is not needed in the proof of Theorem 3.1
when oy (t,z) = o2(t, ), and in this case we can remove Condition (Bj) in Theorem 3.2 as

in the next corollary.

Corollary 3.6 (Monotonic order with equal volatilities). Assume that Xél) < XSZ) and
0<o(t,x):=o0(t,x) = oa(t, ), (t,x) € [0,T] x R, together with the conditions

(D1) bi(t,x) < bo(t,x) and hy(t,z) < ho(t,x), (t,z) € [0,T] X R,

(DQ) fl(t7$7yaz) S fZ(taxaya Z) and gl(taxaya Z) S 92(t7$7y72)} fO’f’ all T,y €eR and z € R—i—a
te[0,7],

(D3) = — fi(t,x,y,2) and x — g¢;(t,x,y,z) are non-decreasing on R, t € [0,T], y € R,
z € R+, Z - 1’ 2

Then we have X:(Fl) <G X?), i.e., &g [@(Xj(}))] < &g, [(,D(Xj(?)” , for non-decreasing ¢ on
R.

Proof.  Similarly to the proof of Corollary 3.3, under the condition oy(t,z) = o3(t, z) the
convexity of wu;(t,z) and the non-decreasing property of f;(¢,x,y,z) and g;(t,x,y, z) with

respect to z, 2 = 1 or ¢ = 2, are no longer required. In addition, the conditions
M (t,z,y,2) < My(t,z,y,2), Ni(t,z,y,2) < No(t,z,y,2), z,y e R, z€ Ry, t€[0,T],

clearly hold from (D;)-(D5), and we can conclude as in the proof of Theorem 3.4. O
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3.2 Ordering with partially convex drifts
Theorems 3.1 and 3.2 require the convexity assumptions (By) and (Bj) on
(t,z,y,2) = M;(t,z,y, z) := zbi(t,x) + fi(t,z,y, z04(t, ))
and
(t,x,y,2) — Ni(t,x,y, z) := zhi(t,x) + gi(t, z,y, z04(t, x))

in (z,y) and (y, z) to hold for both ¢ = 1,2. In this section, we develop different convex G-
ordering results under weaker convexity conditions, based on a measurable functions ((¢, z)

and 7(t, z) such that

bi(t, X)) — ¢ (t, X7

ha(t, XY —n(t, x7)

0;(t, X\ := and (1, X\V) = . i=1,2,

are bounded processes.

Theorem 3.7 (Convex order). Assume that X(()l) = Xéz) and 0 < oy(t,x) < o9(t, ),
(t,xz) € [0, T] x R, together with the conditions

(Ey) Mi(t,x,y,2) < z2((t,z) < May(t,x,y,2), t €[0,T], z,y,z € R,
(Ey) Ni(t,z,y,2) < zn(t,z) < No(t,z,y,2), t €[0,T), z,y,z € R,

(Es) (x,y,z) = M;(t,x,y,2) and (x,y, z) — Ni(t,z,y, z) are convex in (x,y) and in (y,z) €
R? fori=1ori=2,t€[0,7T].

Then we have X:(Fl) <&c, X:(FZ), i.e.,

€0, [P (X)) < 0, [0 (X57)].
for non-decreasing convex p on R.

Proof. (i) We assume that (Fs3) holds with ¢ = 1. Let

b2(t>$) - C(t,{L‘) hQ(t’x) —77(7575”)
oo(t, x) oo(t, x) ’

Oo(t, z) := and  A\y(t,x) := (t,x) € [0,T] x R.

are bounded functions. By the G-Girsanov transformation, see e.g. Theorems 3.2 and 5.2

in Hu et al. (2014b), the process
B t t
Bf := B, +/ 0y (s, X?)ds +/ Ao (s, XP)d(B),,  te0,T],
0 0
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is a G-Brownian motion under the G-expectation ]EQ defined by

Eo[X] := E¢ [X exp ( - /T Ao (s, X@)dB, — %/T (Ag(s,XL(g?)))Qd(B}S

0 0
T
—/ 02 (5, X)) Ao (s, X2>)ds—/ B, (s, X@)dB, —%/ (02(3,X§2)))2d(§>3)},
0 0 0
where (B , E) is an auxiliary extended G-Brownian motion, and

v 1
tr | A
s efa(y L)),

for A in the set Sy of 2 x 2 symmetric matrices. The forward SDEs (3.1) can be rewritten as

G(A) =

DO | —

dxM = (b (t, X" )—92(tX )Jl(tX )dt
+ (hn (6, X) = Mo (t, X oy (8, X)) d(BY, + o (£, X\ V) d B,

dx? = c(t, XPdt +n(t, XP)d(B); + o5 (t, X*)dBE,
with the associated BSDEs

1)

(av) = — (A (6, X2, v\, Z29) + 2 ”92 (t, X)) dt
J — (g (6, X, v 2 4 2% (8, X)) d(B), + 2 dBE + dKY,

av? = —(f(t, X2, v,®, 28 + % (t, X)) dt (3.7a)
\ — (ga2(t, X2, y;@), ZN + 2P0 (4, X)) d(B), + 2P dBE + dK?,

where Y( ) = go(X () ) and Y = @(Xém) at terminal time 7. By Proposition 2.8 we have
v\ = uy (2, X! ) and ;¥ = u, (t,Xt(Q)), where the functions u,(¢,z) and uy(t, z) are in
CY%([0,T] x R) and solve the PDEs

ou; 0*u; Ou;
St a:)+2G< 2(t,z) ( 2)+ Nt 7 wilt 2), S (8 ) ) )
+ M, (t 2, u(t, @ ( )) —0, (3.8)
with u; (T, z) = ¢(x), 1 = 1,2 and
G(a) = 1 sup (0%a) = 1(52a+ —cg%a”), a€R.
2 QQSUZSEQ 2

Applying the G-1t6 formula to w4 (t, Xt(z)) and using (3.8), we have

t
(X = 0.5 + [ G s x D)+ [ ol X G 5, X D)

0
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ou ! ou
(s,Xs(z))a—;(s,Xf))ds—/ My (5, X2, (s, X ), T (5. X(2) ) ds

t 2
—2/ G(laf(s,Xf’)a—f( X)) N (5, X2, (5, X2, Our X)) )ds
0

ox
t ou 1 0%u
—l—/o <n(s,X§2))a—;(s,X§2)) + §a§(s,X§2)) 89521 (s,X@)) d(B)

5’2u1
ox?

S

> (0,X7) =2 | G(503(s, X2) 55 (5, X2) 4 N (5, X2, (5, X12), oz T (s, X)) )ds
0

+ /Ot (n(s,XS(Q))%(s,Xf)) + %03 (S,XS@))%Q;L; (3,X5(2))) d(B)s

+/0t02(s X)L (5, x)aB,
where we used the first part of (Ey). Since usy(t,z) is a solution of the equation (3.8), we
know that Y% = uQ(s e ) and Z(Q) = 09 (s X( )>88x (s,XS(Q)), hence, plugging those
terms in the second G-BSDE (3.7a) we find

t
wlt. %) = w0 50) - [ 1 (8,X5(2),u2(s,X5(2)),JQ(S,XS )2 X<2>)) ds
0

t
_ / o2 (5, X2) 22 (5, X9, (5, X)) ds
0 Ox

8U2

t
—/ g2 (S,XLSQ),UQ(S,XS(2)),UQ(S,XéQ))%(S;X,gQ))) d(B)s
0

t t
_/ (s, X )8“2( XY 2y (s, X )))d<B)s+/ 02(3,X§2>)8“2( ,X®)dBE + K
0 Ox 0 Ox
2) t Nz v @ @y 2 )
— us(0, X)) + / s XO) T2 (5, X) = My (5, X0, s, X2), T2 (5, X)) ) s
(77 6UQ X(Q)) N2 (57 XS(2),'U,2 (Sva(2))7 881:;2 ( X<2)))> d<B>s

+/ 2 (s, X2 )8“2( X®)dBS + K.
0 3:1}

Next, given that u, (T, X(TQ)) = Usy (T, X:(FQ)) = SO(X;Q)) a.s. at the terminal time T, we have

(0, X2) — uy (0, X2) > /0

T

(MQ(S,X@,UQ(S,XS@)),%(s,xs@)) (s, X )88“2(5 X(2))) ds
X X
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T ou ou
+ /0 (NQ(S,X@) us (s, X2), 52 (s, X)) —n(s,XE))a—;(s,Xf’)) d(B),
T 8u1

1 0%u
—2/0 G (2 (5, X9) o 21( LX) +N1<S,X§2),U1(S,Xs(2))>%(SaXs(g)))) ds

t ou 0%u
X (s, X XY= "L(s, X)) d(B
+/0 (77(37 s ) or (8 )_l_ 02( s ) o2 (87 s ) d( >5

T
U (5, X2)dBC —/ o2 (s, X )%“2( X®)dBC — K2
0

i

ou
( ,XS(Z)) + N (S,X( ) ul(s x® ) (9&:1 (S,Xs(z))>) ds

t ou 1 0*u
+/0 (N1<S,X() me X<2) 8; (s,X§2>)) +35 o2(s, X)) - —— (s ,Xs(?))) d(B),

T Ouy ~ r Ougy ~ )
+ / a1(s, X&) 5~ (s, XP)dBS — / a5, X)) == (s, X B — Ky (3.9)
0 x 0 Ox
where we applied the second parts of (E})-(F2) and the first part of (E£;), with the conditions

2
|01(t7$)‘ < ‘Uz(t,x)’ and aul—(t’x)

5— > 0. Finally, taking expectations under E, using (2.8)
x

and the facts that K\” < 0, a.s., and that fot nsd(B) Qfo (ns)ds is a G-martingale,
ns € ME(0,T), see Proposition 4.1.4 of Peng (2019), we obtain us (0, x4 )) —uy (0, Xé )) > 0.
Since X(()2) X ) and Y = ui(O,Xéi)), 1 = 1,2, we get Yo(l) < Y[)(Q). Therefore, by
definition, we have &g, [¢ (X} )] <&ale (X}Q))}, for ¢ convex on R. (ii) The case i =2 in

Assumption (F3) can be proved similarly. O

The next theorem deals with the increasing convex order, for which only the conditions

(E7)-(EY) and Xél) < XéZ) are required in addition to (3.10) and Condition (F}) below.
Theorem 3.8 (Increasing convex order). Assume that X(()l) < X(()2) and

0<oi(t,z) <oy(t,x), (t,x)€[0,T] xR, (3.10)
together with the conditions
(EY) My(t,z,y,2) < 2((t,z) < Ma(t,x,y,2), t € [0,T], 2,y €R, z € Ry,
(EY) Ni(t,z,y,2) < zn(t,x) < No(t,z,y,2), t €[0,T], z,y €R, z € Ry,

(Eé) (x7y> = Mi(tax>yaz) and <I7y) = Ni(taxvyaz) are convexr on RQ; (y,Z) — Mi(taxvyaz)

and (y, z) — N;(t,z,y,2) are convex on R X Ry fori=1 ori=2,

(E) x — fi(t,z,y,2) and x — g;(t,z,y,z) are non-decreasing on R for i = 1,2, y € R,
z€R,, te€[0,T].
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Then we have Xj(}) <%, Xf), ie., &g o (X;l))} < &g, [ (X:(FQ))} , for non-decreasing convex
p on R.

Proof. 1f ¢(x), fi(t,x,y,2) and ¢;(t,x,y, z) are non-decreasing in = by (E}), i = 1,2, then
by Proposition 2.10 the solutions wu; (¢, z) and us(t, ) of the PDE (3.8) are non-decreasing

in x and satisfy
(9u1

Ox
a.s., t € [0, 7], hence conditions (F;)-(E3) only need to hold for z > 0, showing the sufficiency

of (EI),i=1,2,3. In addition, we have Yo(l) =u (O, X(gl)) < ul(O,Xé2)) by the assumption

(£, X?)>0 and %(t,xt@)) >0,

X(()l) < X(()Z), hence by repeating arguments in the proof of Theorem 3.7 for ¢ = 1 we find by
(3.9) that Y0(2) - Yo(l) > Uy (O,Xé2)) —uy (O,Xéz)) > 0 under Assumption (£%) for i = 1. The

case ¢ = 2 is treated similarly according to the proof of Theorem 3.7. U
Corollary 3.9 (Increasing order). Assume that X(()l) < XSQ) and 0 < oy(t,z) = oa(t, ),
(t,z) € [0, T] x R, together with the conditions

(E)) My(t,z,y,2) < z((t,x) < My(t,z,y,2), t € [0,T], z,y € R, z € Ry,

(EY) Ni(t,x,y,2) < zn(t,x) < Na(t,x,y,2), t € [0,T], x,y € R, z € Ry,

(EY) o — fi(t,z,y,2) and v — g;(t,z,y,2) are non-decreasing on R for i = 1,2, y € R,
zeR,, te€[0,T].

Then we have X;l) <G X;Q), i.e., &g [@(X;l))] < &g, [gp(Xg))} , for non-decreasing ¢ on
R.

Proof. 1f o1(t,z) = o9(t, x), we can check that the convexity of u;(t,x), i = 1,2 is no longer
required, so one can remove Condition (F%). Then this result is a directly consequence of

Theorem 3.8. L]

4 Superhedging with ambiguous coefficients

In this section we study the effects of ambiguous drift and volatility coefficients of G-FSDEs
on associated contingent claim superhedging prices and portfolio values. Consider a risk-free

asset priced E; := Eye™, and a risky asset with non-negative prices modeled by the G-FSDE
dX, = Xsa(s, Xq)ds + Xs0(s, Xs)d(B)s + Xsv(s, Xs)dBs, Xo=x9, 0<s<T, (4.1)
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where the coefficients b(t,z) := za(t,x), h(t,z) := zB(t,z) and o(t,x) = zy(t,x) satisfy
Condition (A;). Denoting by (p:, ¢:)ico,r) the quantities (strategy process) respectively in-
vested in the risk-free asset and in the risky asset at time t € [0, T], we consider the wealth
process Y; = p By + ¢ Xy — Cy, where (C})i>0 is a cumulative consumption process with

Cy = 0, such that

d}/;g = T'ptEtdt + Qtht - dOt
= ?"(}/;5 — tht)dt + q (Xta(t, Xt)dt + Xtﬂ(t, Xt)d<B>t + Xt")/(t, Xt)dBt) — dCt

alt,Xy) —r t, X
= rYydt + ﬁqﬁm(t, Xp)dt + %%Xﬂ(t, X)) d(B): + q:X¢y(t, Xi)dBy — dC.
Setting
Oé(t,&?) - T ﬁ(t,&:)
Ot x) =———— At,z):= Zy = Xy (t, X d K;:=-C
( ,ZL’) ’Y(t,l‘) ) ( ,ZL’) ")/(t,l’)’ t qt t7( ) t)7 an t ty

for 0 <t < T, the wealth process can be rewritten as the G-BSDE

T T T
Y, =Yr — / (rYs + Z,0(s, X;))ds — / Z (s, X,)d(B)s — / Z,dB, — (K1 — K,),
t t t
(4.2)

for t € [0,T], or, by the G-It6 formula, as
L T B T _ T B B
Y, =Yr— / 0(s, X,) Zods — / s, X,) Zod(B)s — / Z.dB, — (Kr — K,)),  (4.3)
t t t

t € [0, T], using the discounted processes Y, = e Y, 7, = e "7, and K, = e " K,, and the
generator functions f(t,x, y,2) = —z0(t,x) and g(t, z,y,2) = —z\(t,z), (t,z) € [0,T] xR,
Y,z € R.

Next, we apply our G-stochastic ordering results to a model misspecification problem where
we estimate the impact of uncertain or ambiguous bounded drift coefficients a(t, x), (¢, z)

and volatility coefficient (¢, ) on the superhedging prices of a contingent call claim with

convex payoff Y = o(Xr).

Scenario 1: Suppose that the volatility v(¢,7) is ambiguous or uncertain, i.e., y(t) <
v(t,x) < 7F(t), and assume for simplicity that the drift coefficients «(¢,z) and (¢, x) are
precisely known to the hedgers. In this case, the ambiguity of (¢, x) yields a bound on the
superhedging price of the contingent claim by Theorems 3.1 and 3.7. Letting

a(t,z) —r o) B(t,x) T(t ) —
—ﬁ(t) ;M) @) At ) 5(t)
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alt,z) —r
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0,(t, ) =

O5(t,x) =



by the relations M (¢, z,y, z) = xza(t,z) — x20(t, z)y(t,x) = rez and

M, (t,z,y, z) = vza(t, v)—xzy(t)0,(t, ) = raz, M=(t, z,y, 2) = vza(t, v)—x2y(t)05(t, ) = raz,

we check that the function M(t,r,y,2) = M,(t,7,y,2) = M5(t,z,y,2) is convex in z € R

and in z € R separately. Similarly, we have N(t,z,y,2) = zz((t, ) — zzy(t,x)A(t, ) = 0,

and
Ny(t 2y, 2) = w2B(t, v) —xzy(t)\(t, 2) = 0, Ny(t,z,y,2) = v28(t, ) — 2275(t) \5(t, 2) = 0,

hence N(t,z,y,2) = Ny(t,x,y,2) = Ny(t,z,y,2), t € [0,T], z,y,2 € R, and zy(t) <
xy(t,x) < 27(t), (t,z) € [0,7] x Ry. Hence, all conditions in Theorem 3.1 hold true
and Conditions (E;)-(Ey) of Theorem 3.7 are satisfied with n(t,2) = 0 and ((¢,z) = rz.
We deduce the portfolio value inequalities &g, [cp(X%)} < &lo(Xr)] < & [gp(X;)} for ¢

te[0,7T)] and (Xg)te[O,T]

defined using ~(t) and 7(¢) in (4.1), respectively.

convex on R, where (th) represent the misspecified risky price processes

Scenario 2: Suppose that the ambiguous or uncertain drift «a(t, z) satisfies a(t) < a(t,z) <
a(t), while the coefficients (¢, x), and (¢, z) are precisely known to the hedgers. Here, in
contrast to the first scenario, the superhedging price of the contingent claim are not affected
by the ambiguity of the drift a(t,z). Let (X)) and (X7 )ieo,r) denote the risky asset

price processes given by

dX® = a(t)Xds + X2B(s, XO)d(B), + X
dXSa a(t)des + Xfﬁ(s, Xf)d(B)s +

where X5 = X§ = x¢, and let

T T T
Vo= o)~ [0 X Z2ds [ N XR)Z2atB). - [ 22, - dRe,
t t s

T T T
V7 — o(XT) - / 07 (s, X7) Z%ds / A(s, X\ Z3d(B)., - / Z5dB, - dKF,  (4.4)
t t S

denote the corresponding discounted wealth processes, where 6%(t,z) = (a(t) — r)/v(t, z)
and 6%(t,x) := (a(t) — r)/v(t,x). The true superhedging price of the contingent claim at
t =0, is defined by Yy := Eg[p(X7)], where (}N/t)te[o,T} solves the G-BSDE (4.3). We check
that the functions M (¢, z,vy, z) := xza(t, z) — x20(t, z)y(t,x) and

My(t,x,y,2) = xza(t)(t,x) —x20,(t, x)y(t, ), Mg(t,x,y,z) = zza(t) —x20(t, x)y(t, ©),
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are separately convex in x € R and in z € R, as they satisfy
M(t,z,y,2) = My(t,z,y,2) = Maw(t,z,y,2) = rrz,
€ [0,T], x,y,z € R. We also have
N(t,z,y,z) = Nu(t,z,y,2) = Nx(t,z,y, 2) .= xzf(t,x) — zzy(t,x)\(t,x) = 0,

t €[0,7], z,y,z € R. Therefore (By)-(Bs) hold as equalities and, since Xél) = XéQ) and the
volatility (¢, x) is precisely known, the G-PDE (3.4) is the same for a(t) and @(t), hence
we have Elp(X7)] = &g, [p(XF)] = Eg.[¢(XT)] for ¢ convex on R.

Similarly, if the second drift 3(t,x) is ambiguous or uncertain, i.e., 8(t) < 8(t,r) < B(t),
while a(t, z) and (¢, z) are precisely determined by the hedgers. As in Scenario 2, we find
that the ambiguity of (¢, x) does not affect the superhedging price of the contingent claim.
: B B
In fact, letting (Xt )tE[OT and (X ) te0.7]

ing to B(t,z) = B(t) and B(t,z) = B(t), respectively, then & [QD(XT)] = Egﬁ [@(Xg)} =
Sgﬁ [@(Xg)}, for ¢ convex on R.

represent the risky price processes correspond-

A Convexity of nonlinear G-PDE solutions

In the sequel, for § > 0 we consider the mollification of G' defined by

5/ <a_b) G(b)db, a€ R, (A1)

where p is a mollifier on R, and we let

Fs(t, @y, 2,w) = 2G5(H (@, y, 2,w)) + M(t, 2, y, 2), (A.2)

and H(t,z,y,z,w) := wo?(t,z)/2 + N(t,z,y,2). Denote by us(t,z) is the solution of the
following G-PDE

6u5

2
s (1,2) + Fy (t,w,w(t,x),%(tw),%(t,x)) 0, (Lo)e[0.T) xR, (A3)

with terminal condition us(T, z) = ¢(z).
Theorem 2.9 is proved by adapting arguments of Bian and Guan (2008), using the con-
stant rank Theorem 2.3 therein and a new Lemma A.1. In order to deal with the lack of

smoothness of G(a) we use a family of smooth approximations Gs of G as in (A.1), which
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admit derivatives up to the desired orders and still yield the convexity of u(t, x) after taking
limits of the corresponding solutions us(t, z). We note that, in the one-dimensional setting,
the constant rank Theorem 2.3 in Bian and Guan (2008), see also Theorem 1.2 in Bian
and Guan (2009), only requires convexity of the nonlinear drift M(¢,x,y, z) and N(t,z,y, 2)
in (z,y) € R? for all (t,z) € [0,T] x R, instead of global convexity in (z,y,z). Namely,
Condition (2.6) in Theorem 2.3 of Bian and Guan (2008) reduces to the condition

OPF ou O*F ou
W (tu L, U(t, I)? %(ta I), 0) + Qbal‘—ay (t, L, U(t, I)? %(tu SL’), 0>
OP’F ou
22 © = >
G <t,:c,u(t, z), ax(t,x),()) >0, te[0,T], baeR (A.4)

In the sequel, we let h,,,(z) := (1 + 2%)"F1+9/2+1 with o > 0 given in Condition (45), and
for any K € R and € > 0 we define

vi(t,z) == e K h,m(z) and  wus(t,7) = us(t,z) +cvg(t,z), (t,z) €[0,T] x R,

and
Frse(t,z,y, z,w) '——5(%—[{(15 x)—l—M(t:z; —evk(t x)z—&tav—K(t :c)) (A.5)
K,6e\l, T, Y, 2, T ot ) y Ly Y EVK\T, ) o ) .
Ovk PPk 4
+ 2G5 (H(t,:c,y —evg(t,z), z — eg(t,x),w € (t,x))), (t,z,y,z,w) € [0,T] x R,

Lemma A.1 Under Conditions (Ay)-(As) and (Hy)-(Hy), for T = T(e, 0,0) small enough
we can choose K € R such that (z,y) — Fks.(t,x,y,2,0) defined in (A.5) satisfies (A.4).

Proof. We need to show that

aQFK,é,a aud,e aQFK,d,s aud,e
S(b) S50 (st 2), 525 (4,2),0) + 2 S0 (., wse(t,2), 2 (1), 0)
0’F ou
2 K)0,e d,e
> .
+b oy (t,.r,u(;ﬁ(t,a:), pe (t,x),O) >0, beR

By (A.5), we have

GFK@G . 82’UK oM 8vK
o (t,z,y,2,0) = 88I8t(t7x>+8_x t,x,y —evg(t,x), 2 5%(25@)
OH dui vk ,
#250 (o = 2l 0),2 — 55 ). e 5 1)) 6
and
aFK,ée

, o 8M 6vK
(t,x,y,2,0) = n (t,x,y evk(t, ),z 5%@@))
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81)[(

8H a2UK /
+2a_y <t,[[‘,y—€1}[((t,x),2—88—1‘(15,1‘),—6@&,1’)) &

where we write for short G := G (H (t,z,y —evk(t,z), S (t, ), 58 K(t, a:))) Sim-

ilarly, we have

82FK7575 83?][( 82M (%K
o2 (t, x,Y, 2, ()) = —5M(t,x) + e <t,x, y—evg(t,z),z — ew(t x))
2 2
e () I
OH v 9?v 2
% (t,x,y—va(t,x),z—58—;(15,33),—6 axf(tax)>) 6
and
82FK’576 0? vk
900y (t,z,y,2,0) = 8x8y (t x,y —evk(t,x), 2 EW(t,az))
oH i Puk
9" _ _ K _ LK
+ O (t,x,y EUK(t,.T),Z or (t,.’ll'), € o2 (tax))
OH Ovg a2UK 1"
X En (t,x,y—va(t,x) 2 _Ea_x(t x), —¢ 92 (, )) 55
and
0P Fr 5. 0*M

50, aUK
ayg (t,x,y,z,O) a .9 (t T,y — EUK(tax>?Z_€ ox (t,l‘))

2
5 <t,x,y—5vK(t,a:) z—aU—K(t ), —88 ;]K(t,x)> s

0H Ovg aQ'UK ’ 1"
(= et s = 5 0, 5 ) ) ) 5

83UK

a0t prErnG

aué,a
ox

au& €

O*M
-+ 62 ay2 <t, x, U575(t, 33'), a—x’(t, 37)),

Therefore, we can write S(b) = t,z) + S1(b) + 255(b)G5 4 255(b) G, where

*M
0xdy

0*M

Si(b) = e

(t, z,use(t, x), ——(t, )) + 20— (t, T, Use(t, ), %(@@)

and




and

2
OH Ous e vk
+hy (t, 7 s (t, @), S5 (b ), e @)) ,

for all b € R. Note that since G(a) is a convex function on R, so is Gs(a). Thus, we have
S3(b)GY > 0, b € R. Besides, we have 0 < Gj(a) < 0? + 7%, a € R. Hence, proceeding as
in the proof of Lemma 7.3 in Ly and Privault (2021), under (A;)-(A4s5) and (Hs)-(Hy), for
T =T(e,0,0) small enough we can choose a positive constant K = K (e, 0,6) such that

£ 8311]{ 8G5 3 631]]{
_ - 2 > E— >
Sl(b) 2 9120t (t,[[‘) = 07 QSQ(b) Ja 2 0220t (t,[L’) = 0, be R,
we conclude to S(b) > 0 for all b € R. O

Proof of Theorem 2.9. We extend the proof argument of Theorem 4.1 in Bian and Guan
(2008) by applying Theorem 2.3 therein, see also Theorem 7.1 in Ly and Privault (2021), to

mollified equations.

We start by proving the convexity of us(t, z) under (Hy)-(Hs), with ¢ in CJ(R). Since
the function Fj(t,z,y, z,w) defined by (A.2) is in CY%([0,T) x R?), the solution us(t, ) of
(A.3) can be shown to be in C>*([0,T) x R) as in Theorem 2.2 of Douglas et al. (1996),
by successively applying Schauder interior estimates to the difference quotients used to ap-
proximate the derivatives of us(t, x), see e.g. the inequality (4.15) in Theorem 4.5 of Urbas
(1996), and Theorem 6.17 of D. Gilbarg and Trudinger (2001), and Theorem 5.1 in Krylov
(1983). Besides, we note that by Proposition 2.8 there exists C' > 0 such that

2
%(t,x) < C(1 4 2?)m+b/2, (t,z) € [0,T] x R. (A.6)
82u§5
Next, we let Es. := {(t,x) €0, T] xR : 5 5> (tz) < 0} and suppose that Es. # 0.
T

From the relation A, (z) > (1 4 2%)(™Tet)/2 and the bound (A.6) we get

82 Use

W(t’x) > ee—Kt(l + $2)(m+9+1)/2 _ C’(l + $2)(m+1)/2’
T
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2

0 use
therefore there exists R. > 0 such that au(;’ (t,z) > 0 for all || > R., and we have
T

Es. C [0,T] x B(0, R.), where B(0, R.) is the centered open ball with radius R., so that

Es. is compact. Consequently, the supremum

7o :=sup {t € [0,T] : (t,x) € Es. for some z € R}

2

0*u
is attained at some (79, x¢) € Es. with zy € B(0, R.), such that (Tg,$0) < 0. In

Ox 2 -
addition, by the convexity assumption on x +— us(7T, ) we have
aQU5’5 agu(s 82 _KT
W(T’ x) = 52 (T,z)+¢ 52 (T, z) > ee Wy () >0, r € R,

2,,
o2 8x2
%(t,x) > 0 for all t € (79,7) and = € R. Consequently, the function wus.(t,z) is
x
52
convex in x on [19,T] x B(0, R.). On the other hand, we note that au2 (10, 20) = 0 for
xo € B(0, R.), and that us.(t, z) satisfies the equation

hence 7 < T and by the continuity of us. we have ——=(m5,2) > 0, z € R, since

865

ot

8u(;,5 62u(5,6
Do) + Ficse (1ot 5250, S2550,) ) =0,

where Fis.(t,2,y,z,w) is defined in (A.5). By the constant rank Theorem 2.3 in Bian

and Guan (2008), see also Theorem 7.1 in Ly and Privault (2021) and Lemma A.1, we
2

deduce that for small enough 7' = T'(¢, p,d) the second derivative ug’a (t,x) vanishes on
T

[70,T) x B(0, R.) hence 70 = T', which is a contradiction showing that Es;. = (). Therefore,

we have , ) )
0%us Pug 0 us .
W<t,$) +¢€ 02 (t,l’) = W(t,x) > 0, (t,x) € [O,T] X R,
2
and after letting € tend to 0, we conclude that au; (t,x) > 0, (t,z) € [0,T] x R for
x

small enough 7" = T'(¢,0,0). This conclusion extends to all T" > 0 by decomposing [0, T
into subintervals of lengths at most 7'(e, g, ). The convexity of the original solution u(t, x)
follows by taking the limit as § — 0, as in D. Gilbarg and Trudinger (2001) or page 49 of Bian
and Guan (2008), see also Theorem 3.1 in Jakobsen and Karlsen (2002). Finally, in order to
relax Conditions (H;)-(Hs) and ¢ in C7(R) we apply the continuous dependence Theorem C.1
after mollifying ¢, b, h, o, f, g, and approximating ¢ by min(max(c(¢,z),1/n),n), n > 1,
as in the proof of Theorem 3.1. 0
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B Monotonicity of G-FBSDEs solutions

Lemma B.1 Assume that (A;)-(As) hold. The solution (X1*)ers1) of the G-forward diffu-

S

sion equation (2.9) is q.s. non-decreasing in x for all s € [t,T] and t € [0,T].
Proof. Letting X!®¥ := X' — X' for y > x, s € [t, T], the processes,

h(s, X&) — h(s, X{*)

~ (s, XJY) — b(s, X{7) >
bo= Ty e bty M= T Lty
Xt,y _ Xt,:]c R
and 0, = ofs, X¥) —ols X, )1{X§’y¢X§’z} are bounded in M%(0,7), p > 1, and X"

X;vy _ X;'vm
satisfies the equation

)’(\,z,x,y = (y - I) +/ /I;r)?rd'r _'_/ /];T)?Td<B>7" +/ a\r)?TdBr'
t

t t

which by (3.3) in Hu et al. (2014b) yields

e S/\ S/\ S 1 S
X0 = (y — 2) exp ( / bydr + / hed(B), + / 6,dB, — 5 / 83d(B>r> > 0.
t t t t
O

Following Hu et al. (2014b), we will construct an auxiliary extended é—expectation space

(QT, L% (QT) , IEG) with Q7 := Cy([0, 7], R2), where for A in the space Sy of 2 x 2 symmetric

matrices we let
1
sup tr [A (y _1>} , AeS,.
02<v<z7? v

be the canonical process in the extended space, with (B, E)t =t.

G(A) =

N —

Let (Bt)tZO and (Et)

>0
Proof of Proposition 2.10. Letting Y, = YiY —Yh Z, = Zb — 7t K, = K — KU* and
?T = @(Xély) — gp(Xfp’x) for y > x, s € [t,T], we have

T T
A / (f (u, X0, Y9, Z59) — f(u, X5, Y%, 75%) ) du — / Z.dB,
. S ST R
+ / (g(u, XY, Y Z0Y) — g(u, X", Y0, Z55))d(B), — / dK,.
Defining the processes

pu = flu, Xp", Y Z,Y) — fu, X7 Y0, Z,Y)
flu, X0m, Yo, Z,Y) — fu, X507, Yo®, Z,Y)

Ay 1= Yt,y _ Yt,x - 1{Yzf’y7éy1f’z}’
Slu, X007 Y™, Z3Y) — f(u, X507 Y™, Z5°)
bu = Ztvy — thx 1{Z7tjx75ijx}’ (IS [O,T],
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and

Qu = g(u, X0V Y0¥, Z,Y) — g(u, X0, Y0¥, Z0Y)
g(u, th[xv YJ,y’ Zfly) - g(u, Xf[m? YJ,,:):’ Zf[y)

Cy = Yt,y _ Yt,x l{Yiy#quz}’
g(u, X5, Yo", Z3¥) — glu, Xp*, Y®, Z,7)
dy = S _ gie Liztosztoys u e (0,71,

which are (F)eom-adapted in MZ(0,T), and using the decompositions

flu, X2 Y0 Z,Y) = fu, X7 Y00, Z,7)
= f(u7 XitL’y7 Y’Lf’y7 Z’ltl,’y) - f<u7 X’ltljx7 YJ’y, Z’Z’y> —"_ f(u7 Xli’m7 Y’Ulf’y7 Z’ltl,’y) - f(u7 XZ;,’Z? YJ’CE7 thjy)
+ f(u, X7 Y0, ZY) = fu, X0, Y0, 2,7,

and
g(u, XV YV ZY) — g(u, X0° Y0 Z57)

= g(u, XgV YU, Z,Y) = g(u, Xp® Y0, Z,Y) + g(u, Xg® Yo, Z3Y) — g(u, X7, Y, Z,Y)
+g(u, X" Y0 Z7) — g(u, Xg*, Y, Z°),

we have

~

T T T T

s € [0,T]. Hence, by Theorem 3.2 in Hu et al. (2014b) we get

R 1 ~ R T T
t t t

where I'y = exp (/ (ay — bydy)du +/ cud<B)u> 853855, and
t t

s 1 S _ S . 1 S .
EP = exp ( / dydB, = 5 / did<B>u) , &8 =exp ( / budBu — 5 / bid<B>u) :
t t t t

0 <t<s<T. By Lemma B.1, the solution (X/*)scp1 of the forward SDE (2.9) satisfies
X, = X — Xt >0 forall s € [t,T]if x <y, and since f(s,x,vy,z) and g(s,x,y, z) are non-
decreasing in x we have p; > 0 and ¢s > 0 q.s., 0 <t < s <T'. Since p(z) is non-decreasing
we have Yy = o(X5%) — o(X4Y) > 0 q.s., hence by (B.1) we have Y, = Y — Y > 0,

s € [t,T], if z <y, which implies monotonicity of (Y;“”) hence we also get u(t,z) <

s€(t,T)’
u(t,y), x <y, t € [0,T), since u(t, ) = Y;"". O
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C Continuous dependence of G-FBSDEs solutions

Theorems C.1 and C.2 are stated using convergence in Lf,, p > 1, and we note that if
lim Eg[|Y,:—Y:[?] = 0 then by Proposition 6.1.21 in Peng (2019) there exists a subsequence
(i
dependence of G-BSDESs solutions on coefficients, see also Theorem 4.1 of Zhang and Chen

(2011) for a related result.

.t)k>1 converging to Y; quasi-surely, ¢ € [0, 7). The following result deals with continuous

Theorem C.1 Consider the family of G-forward-backward stochastic differential equations

;

t t t
Xy = o+ / (s, Xoo)ds + / (s, X0 )d(B)s + / 0 (5, Xo0)dBs,
0 0 0

T T
< Yn,t = Spn(XmT) + / fn(sa Xn,sa Ymsa Zn,s)ds + / gn(57 Xn,sa Yn,sa Zn,s)d<B>s
t t

T T
- / Z, 5B, — / dK,,, tel0,T),
t t

\

where, forn > 1, the coefficients by, hy, 0n, fu, gn, pn and b, h, o, ¢, f,g satisfy (A1)-(As)

for a same C' > 0. Assume that lim,,_,o 0 = Zo,

lim (Eq[|bn(t, Xi) — b(t, Xo) ']+ Eal|ha(t, Xi) — h(t, Xo)|"] +Ecllon(t, Xi) — o(t, X;)[']) =0,

n—oo

and
nh—>120 (]EGan(ty Xt7 )/;37 Zt) - f(t7 Xt7 Y7 Zt)|2] + EG“Qn(@ Xt7 }/t) Zt) - g(ta Xtu }/tu Zt)F]) - 07

for all t € [0,T), and that lim,, o Eg[lpn(X7) — @(X7)|?] = 0. Then for all t € [0,T] we
have lim IE(;HYM — Y}ﬁ = 0, where (Yy)icr, solves the G-BSDE

n—oo
¢ t ¢
Xt:xo—l—/ b(s,Xs)ds—i—/ h(s,Xs)d<B>s+/ o(s, Xs)dBs,
0 0 0

T T T T
Y, = o(Xr) + / F(5 X, Yo, Z4)ds + / o(s, X0, Yo, Z)d(B), — / Z.dB, / iK,.
t t t t

PT’OOf. For n 2 1, let ?n,t = Yn,t — }/;/, )?n,t = Xn,t — Xt, Z\n,t = Zn,t — Zt, @n<x> =
on(x)—p(z), (t,x) € [0,T] x R. Applying the G-1t6 formula to ‘}Afmt‘z, taking G-expectation
on both sides and noting that ftT 237,%de$ is a martingale under Eg, this yields

T
EG HYn,t’2] S EG [(Spn(Xn,T) - (;D(XT>>2] + IEG |:/ 2Yn,s (fn(57 Xn,s7 Yn,sa Zn,s) — f(sa X57 YS? Zs))ds
t
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T T
+/ 2Yn,s(gn(87Xn,57Yn,svZn,s) _g<3aX87Ysyzs))d<B>s - / ‘Zn,s’2d<B>s:| .
t t
By the inequality 2ab < (12C%)a® + b*/(12C?), we have

2}/}71,8 (Qn(& Xn,sa Yn,s» Zn,s) - 9(3, Xs; st Zs))
1

< 1200Vl + 5

(9n (8, X s Yorsr Zn ) — 9(s, Xs, Ya, Z)) .

Letting g, (t, x,y, 2) := gn(t,z,y,2) — g(t,z,y,2), t € [0,T], z,y, 2z € R, we have

(gn(S, Xn,sa Yn,s; Zn,s) - g<57X87}/;7 Zs))2
< Q(Qn(37 Xn,s; Yn,s: Zn,s) - gn(S, Xs: }/57 Zs>)2 + 2(gn(37 Xs; Y;’ Zs)>2
< 602((1 + X:Z,ls + X;n)2|Xn,s - Xs|2 + |Yn,s - }/s|2 + |Zn,s - Zs|2) + 2(.@71(87)(57}/57 ZS))2'

Similarly, by the inequality 2ab < (12C?/a?)a? + b*/(12C?/a?), we have

2?71,5 (fn(37 Xn,sa Yn,su Zn,s) - f(S, XS7 )/87 Zs))
12C?

QZ

s o2

Yool + 562

< (Fa(8, X, Vs Zns) = f (5, X, Y5, 2,))"
Letting fn(t,x,y, 2) = fult,x,y,2) — f(t,x,y,2), t €0, T], x,y,z € R, we then have

(fuls: Xns: Yoss Zus) = [(5. X0, Y, 2,))
S 602(<1 + ngs + X;n)2‘Xn,s - XS’2 + ‘Yn,s - }/:9’2 + ‘Zn,s - ZSP) + 2(fn(S>Xsa sza Zs))za

In addition, by the locally Lipschitz property of ¢,,, we have

(Spn(Xn,T) - SO(XT))z = (Qpn(Xn,T) - Qpn(XT) + @n(XT))Q
< 2pn(Xn) — @l Xr))? +2(Bu(Xr)) " < 2021+ X+ X0 X — Xol? +2(Ba(X1))".

Combining the above estimates and noting that o> j;T ‘Zn7s|2ds < ftT |Z\n,s‘2d<B)s <52 ftT |2\n,s‘2ds,
by point of view of Corollary 3.5.5 in Peng (2019) we find

Ec[|Yoi]"] < 2C°Ec[(1 + Xy + X2 | X '] + 2Ea[($n( X))

2 2 72 T ~ ‘a7 [T X
+ (12(5 g—+120262+0_)/ Eq[| V| "]ds + E2 / Eo[(1+ XJ + X7") | X, s ] ds
o 2 2 t 7 2 ¢ | |
0_2 T N 2 62 T A 2
+ @ ¢ EG[(fn(S;Xm)/s;Zs)) ]ds‘f‘@ ¢ EG[gn(SaX&Y;?ZS)] dS,

By the Holder inequality, and then by the Gronwall inequality, we get

1/2

Eo[|Vos|] < € ((1+xif’g+x3m)(]EG[|)?n,T|4}) + o [P%(X7)]

34



T T
+ (1427 + ) / (Ba[|Xns|']) s + / (o [2(5. X, Vs, 2)] + Bg[32(s, X, Y, Z:)] )ds ).

t t
where we used Eq[|X|P] < C*(1 + |zo|P) for any s € [0,T] and p > 2, where C* > 0 is a
constant depending on p, C, T, G, see e.g. Proposition 4.1 in Hu et al. (2014b). Therefore,

we have
Eo[|Vel']

~ R 1/2
< " (424 ad") Bl Runl D + @ - 00+ a2+ ) (s el %0l ) )
sE|t,

T T
OB [F (X)) + " ( | Balfixavazlds+ [ Ec[gi(s,xs,m,zs)}ds).
t t

By Theorem C.2 below we have lim Eg[supte[o 7] ‘)?n,tﬁ = 0, hence, we conclude from the
n—+00 ’
bounds |f,,(t,z,y,2)| < 2C(|x|™ + |y| + |2]), |gn(t, 2.y, 2)] < 2C(Jz|™ + |y| + |2]) and

|@n(z)] < 2C|z/™*! and dominated convergence on the interval [0, 7. O

The following result extends Theorem 9.7 in Mishura and Shevchenko (2017) from SDEs
under linear expectation framework to G-SDEs under G-expectation framework, see also

Theorem 3.1 of Zhang and Chen (2011) for a related result.

Theorem C.2 Let p > 1. Assume that the coefficients b, h, o, by, h,, o,, n > 0, satisfy

(Ay)-(As) for a same C > 0. Assume that lim,, o 2,0 = zo and

lim (B [[ba (¢, X0)=b(t, X0)[P]+ B [|hn (8, Xo)—=h(t, X0)[P]+Eq [|on(t, Xi) o (t, X;)[*]) = 0,

n—oo

for allt € [0,T). Then we have lim Eg [SUPte[o 7] | Xt — Xt|2p} = 0.
n—00 ’

Proof. Letting A, (t) := Eg[supse[o,t] |Xn,t — thzp], we estimate

A,(t) < 92p—1 ‘xn,o — :E0|2p + Eqg | sup

s€[0,t]

/()s(bn(u,Xmu) — b(u, Xy))du

:

2p
+ Eq | sup
_se[o,t}

/0 (s, Xo) — h(u, X,))d(B).

2p

+ Eq | sup
_se[o,t}

/Os(crn(u,Xmu) —o(u, Xy))dB,

By the Burkholder-Davis-Gundy (B-D-G) inequality for G-Brownian motion, see Gao (2009),
we find

2p

Eq

sup / (on(uy, Xnu) — o(u, Xy))dB,
0

s€[0,¢]

¢
< Cltp_l/ EGUUn(uaXn,u) - U<U7Xu>|2p} du
0
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t t
< ¢y 221! < / Ec[|on(u, Xnw) — on(u, X,)| ] du + / Ec[lon(u, Xu) — o(u, X,)[*] du)
0 0

¢ ¢
< O 2%t <C’2p/ Ay (u)du —|—/ E¢[lon(u, Xu) — o(u, X,)|*] du) :
0 0

and

2p
Eq | sup

s€[0,¢]

t t
< Cp22 g2 ( / Ec[|hn(t, Xnw) — hulu, X,,)|*] du + / Eq[lon(u, X,) — h(u, X,)[**] du)
0 0

t
< 02t2p_1/ EGth(u’Xn,U) — h(u, Xu) ’217] du

0

/0 (s Xoa) — B, Xa))d(B)s

¢ ¢
< Cy2% 1yl (02;:/ An(u)du—i-/ Ec [[hn(u, Xu) — h(u, X,)|*] du) ,
0

0

for some C,Cy > 0. In the same fashion, by the Holder inequality, we get
sup

2p
s€[0,t] ]

t t
< Wiyl (O2p / Ap(u)du + / Ea[\bn(u,Xw—b(u,Xu)l”]dU)>
0 0

Eq

/0 S(bn(u,Xw) — b(u, X,))du

Summing up, we obtain
2 T ’
A(T) < ¢ (|xn,o — | p+/ An(u)du+/ Eg [[bn(u, Xu) = b(u, Xu) ] du
0 0
T T
+/ Ec [|hn(u, Xo) — h(u, X,)[*]du + / Eqlon(u, Xu) — o(u, X,)|[*]du |,
0 0
and hence by the Gronwall inequality, we have
) T
AL(T) < C" (\x — | + / Eg[[ba(u. X.) — b(u, X,)[*]du
0
T T
+ / Eq [lhn(ua Xu) - h(u7 Xu)|2p} du + / e [|0n(u7 Xu) - 0(“’7 Xu)|2p} du’)
0 0

Finally, by Proposition 4.1 in Hu et al. (2014b) we have

[ bn(u, Xu) = blu, X)[*] < 2% B [|bn (u, Xu)|? + [b(u, X,)[*]
< 22p02p]EG [1 + |Xu‘2p] < 22p02p0///(1 + |x0’2p) < 00

for some C" > 0, and similarly for the sequences (hy)n>1, (05)n>1, hence we conclude by

dominated convergence on the interval [0, 7. O
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