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Abstract

This paper studies stochastic ordering under nonlinear expectations EG generated
by solutions of G-Backward Stochastic Differential Equations (G-BSDEs) defined on
G-expectation spaces. We derive sufficient conditions for the convex, increasing con-
vex, and monotonic G-stochastic orderings of G-diffusion processes at terminal time.
Our approach relies on comparison properties for G-Forward-Backward Stochastic Dif-
ferential Equations (G-FBSDEs) and on relevant extensions of convexity, monotonicity
and continuous dependence properties for the solutions of associated Hamilton-Jacobi-
Bellman (HJB) equations. Applications of G-stochastic ordering to contingent claim
superhedging price comparison under ambiguous coefficients are provided.
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1 Introduction

Partial orderings of probability distributions have various applications in risk management,

reliability, economics, finance, actual sciences, operation research, biology, option evaluation,

etc., see e.g. Müller and Stoyan (2002), Denuit et al. (2005), Shaked and Shanthikumar

(2007), Sriboonchita et al. (2009), Levy (2015), Belzunce et al. (2015), Perrakis (2019). For

example, in utility theory, a portfolio return X is said to be dominated by another portfolio

return Y in the convex order if E[ϕ(X)] ≤ E[ϕ(Y )] holds for all convex utility functions

ϕ : R → R. When X and Y are modeled as the terminal values of continuous diffusion

processes, such comparison bounds have been established in El Karoui et al. (1998) by a

stochastic calculus approach, which has been generalized to discontinuous processes in e.g.
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Gushchin and Mordecki (2002), Bergenthum and Rüschendorf (2006; 2007), Klein et al.

(2006), Arnaudon et al. (2008). With the aim of dealing with financial problems under

uncertain volatility, stochastic ordering has been studied in Ly and Privault (2021) under

the nonlinear g-expectations and g-evaluations introduced in Peng (2004).

On the other hand, a new form of stochastic calculus has been developed in Peng (2007b)

on sublinear expectation spaces, which generalize usual probability spaces with the con-

struction of a sublinear expectation EG called the G-expectation and the corresponding

G-Brownian motion, G-Itô’s formula, G-Itô stochastic integral, and G-stochastic differential

equations. Sublinear expectations have been used to establish a central limit theorem for G-

normal distributions Peng (2008), and for the study of dynamic risk measures Peng (2007a),

Peng et al. (2018). Those results have been applied to contingent claim pricing in financial

markets with uncertain volatility Hu and Ji (2013), Vorbrink (2014), as well as to stochastic

control Xu (2010), Hu et al. (2014c) and to robust mean-variance hedging in Biagini et al.

(2019). Recently, Stein’s method has extended to G-normal approximation under sublinear

expectations in Song (2019a;b).

In this paper, we consider stochastic ordering in the framework of nonlinear EG-expectations

and EG-evaluations generated by G-BSDEs defined on G-expectation spaces, which are not

sublinear in general. In comparison with the standard linear expectation setting, this leads to

more general ordering concepts which are suitable for the modeling of volatility uncertainty

in finance. See also Tian and Jiang (2016) for the construction of uncertainty orders on the

sublinear expectation space, and Grigorova (2014b;a) for the construction of monotonic and

increasing convex stochastic orders using Choquet’s expectation, and application to financial

optimization.

Namely, we use the EG-expectation and EG-evaluation EG[ξ] of a random variable ξ, defined

by Hu et al. (2014b), as the initial value Y0 for a triple (Yt, Zt, Kt)t∈[0,T ] of adapted processes

which solve a G-BSDE of the form

− dYt = f(t,Xt, Yt, Zt)dt+ g(t,Xt, Yt, Zt)d〈B〉t − ZtdBt − dKt, 0 ≤ t ≤ T, (1.1)

with coefficients G = {f, g}, terminal condition YT = ξ, (Bt)t∈R+ is a G-Brownian mo-

tion, (Xt)t∈R+ is a G-diffusion process driven by (Bt)t∈R+ , and (Kt)t∈R+ is a decreasing

G-martingale, see Section 2 for details.

In comparison with the g-stochastic ordering setting of Ly and Privault (2021), treating

2



the G-stochastic ordering involves additional ingredients from G-stochastic calculus, and we

need to assume under additional boundedness conditions.

In Theorems 3.1 and 3.7 we derive sufficient conditions on two G-BSDE generators

fi(t, x, y, z), gi(t, x, y, z), i = 1, 2 for the convex ordering

EG1
[
ϕ
(
X

(1)
T

)]
≤ EG2

[
ϕ
(
X

(2)
T

)]
, (1.2)

where ϕ(x) is convex with polynomial growth and X
(1)
T and X

(2)
T are the terminal values of

the solutions of the G-Forward Stochastic Differential Equations (G-FSDEs)
dX

(1)
t = b1

(
t,X

(1)
t

)
dt+ h1

(
t,X

(1)
t

)
d〈B〉t + σ1

(
t,X

(1)
t

)
dBt,

dX
(2)
t = b2

(
t,X

(2)
t

)
dt+ h2

(
t,X

(2)
t

)
d〈B〉t + σ2

(
t,X

(2)
t

)
dBt,

with X
(1)
0 = X

(2)
0 , under the bound 0 < σ1(t, x) ≤ σ2(t, x), (t, x) ∈ [0, T ] × R. In an option

pricing setting, the forward processes X
(i)
t , i = 1, 2, represents the prices of risky assets driven

by G-Brownian motion under uncertain volatility, and the Y
(i)
t in (1.1), i = 1, 2, represent the

portfolio wealth processes, or superhedging prices, of a contingent claim. The processes Z
(i)
t

in (1.1), i = 1, 2, play a crucial role in hedging the claim with payoff ϕ
(
X

(i)
T

)
at maturity time

T , as π
(i)
t := Z

(i)
t /σi

(
t,X

(i)
t

)
is the amount invested in the risky asset X

(i)
t at time t ∈ [0, T ],

see e.g. Section 4 and also Vorbrink (2014). In addition, the quantity EGi
[
− ϕ

(
X

(i)
T

)]
,

makes sense as a risk measure. Here, the choice of generator functions fi and gi determines

the investor’s portfolio strategy and the corresponding risk measures, and inequalities in

G-stochastic ordering (1.2) can be interpreted as comparisons of portfolios values, option

prices, and risk measures relating to underlying assets with uncertain volatility.

The G-stochastic ordering can be used for the comparison of expected utilities when ϕ

represents a utility function, X
(i)
t represents a state process, and Y

(i)
t is used as the value

function of a stochastic control problem, see Touzi (2004), Xu (2010), Hu et al. (2014c), and

as such they are also applicable to risk management. Precisely, they enable one to study the

behavior of risk seeking (resp. risk averse) investors based on the convexity (resp. concavity)

of ϕ, see e.g. Sriboonchita et al. (2009).

First, in Theorem 3.1 we show that the convex ordering (1.2) can be derived as a conse-

quence of the comparison Theorem C.2.5 in Peng (2019), provided that
zb1(t, x) + f1(t, x, y, zσ1(t, x)) ≤ zb2(t, x) + f2(t, x, y, zσ2(t, x)), x, y, z ∈ R, t ∈ [0, T ],

zh1(t, x) + g1(t, x, y, zσ1(t, x)) ≤ zh2(t, x) + g2(t, x, y, zσ2(t, x)), x, y, z ∈ R, t ∈ [0, T ],
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and both functions (x, y, z) 7→ zbi(t, x) + fi(t, x, y, zσi(t, x)) and (x, y, z) 7→ zhi(t, x) +

gi(t, x, y, zσi(t, x)) are convex in (x, y) and in (y, z) on R2 for both i = 1, 2 and t ∈ [0, T ].

Then in Theorem 3.7 we show, using G-stochastic calculus, that this condition can be relaxed

into a single convexity assumption in (x, y) and in (y, z) for the functions
(x, y, z) 7→Mi(t, x, y, z) := zbi(t, x) + fi(t, x, y, zσi(t, x)), i = 1 or i = 2,

(x, y, z) 7→ Ni(t, x, y, z) := zhi(t, x) + gi(t, x, y, zσi(t, x)), i = 1 or i = 2.

Increasing convex ordering is dealt with in Theorems 3.2, and in Theorem 3.4 under order-

ing conditions on the drifts bi(t, x), hi(t, x), fi(t, x, y, z) and gi(t, x, y, z). In Theorem 3.8,

increasing convex ordering is considered under weaker convexity conditions on the functions

Mi(t, x, y, z) and Ni(t, x, y, z) which only need to be convex for i = 1 or i = 2. Monotonic

ordering is considered in Corollary 3.3, and the particular cases of equal drifts and equal

volatilities are treated in Corollaries 3.5 and 3.6 for the convex and monotonic orderings.

Applications of the G-stochastic ordering to superhedging price comparison of the contingent

claim under ambiguous coefficients are provided in Section 4.

The proofs of Theorems 3.1-3.2 and 3.7-3.8 rely on an extension of convexity property of

the solutions of associated HJB equations types proved in Appendix A, see Theorem 2.9. The

convexity properties of solutions of nonlinear PDEs have been studied by several authors,

see e.g. Theorem 3.1 in Lions and Musiela (2006), Theorem 2.1 in Giga et al. (1991), and

Theorem 1.1 in Bian and Guan (2008), see also Theorem 1 in Alvarez et al. (1997) in the

elliptic case. Those works typically require global convexity of nonlinear drifts in all state

variables (x, y, z), a condition which is too strong for even the Black-Scholes-Barenblatt

equation to be satisfied. For this reason, in Theorem 2.9 below we extend Theorem 1.1 of

Bian and Guan (2008) in dimension one, by replacing the global convexity of nonlinear drifts

with convexity in (x, y) and (y, z), i = 1, 2.

Appendices B and C deal with monotonicity properties and continuous dependence re-

sults for the solutions of G-FBSDEs and associated HJB equations, which are used in the

proofs of Theorems 3.1-3.8 and Corollaries 3.3-3.6. Due to the lack of a full dominated

convergence theorem without monotonic continuity property, see Theorem 3.2 in Hu and

Zhou (2019) and Cohen et al. (2011), we solely rely on LpG convergence arguments based on

Proposition 4.1 in Hu et al. (2014b) and Proposition 6.1.22 in Peng (2019).
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2 Preliminaries

2.1 Sublinear expectations

Let Ω be a given sample space, and let H be a linear space of real-valued functions defined

on Ω, such that c ∈ H for all constant c ∈ R, and |X| ∈ H if X ∈ H. Furthermore, if

X1, X2, . . . , Xn ∈ H, we assume that ϕ(X1, . . . , Xn) ∈ H, for each ϕ ∈ Cl-Lip(Rn), where

Cl-Lip(Rn) denotes the linear space of locally Lipschitz functions satisfying

|ϕ(x)− ϕ(y)| ≤ C(1 + |x|m + |y|m)|x− y|, (2.1)

for some constant C and m depending only on ϕ.

Definition 2.1 (Sublinear expectation) A sublinear expectation Ê on H is a functional

Ê : H :→ R satisfying the following properties for all X, Y ∈ H:

(i) Monotonicity: If X ≤ Y , then Ê[X] ≤ Ê[Y ].

(ii) Constant preserving: Ê[c] = c, c ∈ R.

(iii) Sub-additivity: Ê[X + Y ] ≤ Ê[X] + Ê[Y ].

(iv) Positive homogeneity: Ê[λX] = λÊ[X], λ ≥ 0.

The triple
(
Ω,H, Ê

)
is called a sublinear expectation space.

In case Ê satisfies only the monotonicity and the constant preserving properties, Ê is called

a nonlinear expectation.

Theorem 2.2 (Peng (2019), Theorem 1.2.1.) Let
(
Ω,H, Ê

)
be a sublinear expectation

space. Then there exists a family {Eθ : θ ∈ Θ} of linear expectations defined on H, such

that Ê[X] = sup
θ∈Θ

Eθ[X], X ∈ H, and for each X ∈ H, there exist θX ∈ Θ such that

Ê[X] = EθX [X].

Given X ∈ H, the distribution of X is the function FX defined by

FX [ϕ] := Ê[ϕ(X)], ϕ ∈ Cl-Lip(R), (2.2)

and (R, Cl-Lip(R),FX) is also a sublinear expectation space and by Theorem 2.2, FX admits

the representation

FX [ϕ] = sup
θ∈Θ

∫
R
ϕ(x)FX(θ, dx), (2.3)
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where (FX(θ, dx))θ∈Θ is a family of probability distributions in the usual sense. The distri-

bution of X ∈ H defines the parameters

µ := −Ê[−X], µ̄ := Ê[X], and σ2 := −Ê[−X2], σ̄2 := Ê[X2], (2.4)

and the intervals [µ, µ̄] and [σ2, σ̄2] characterize the mean-uncertainty and the variance-

uncertainty of X, respectively. Two random variables X1, X2 defined on sublinear expecta-

tion spaces
(
Ω1,H1, Ê1

)
and

(
Ω2,H2, Ê2

)
are said to be identically distributed, i.e. X1

d
=X2,

if Ê1[ϕ(X1)] = Ê2[ϕ(X2)] for all ϕ ∈ Cl-Lip(R). If in addition Ê1[ϕ(X1)] ≤ Ê2[ϕ(X2)], for all

ϕ ∈ Cl.Lip(R) we say that the distribution of X2 is stronger than the distribution of X1, in

which case we have {FX1(θ1, ·) : θ1 ∈ Θ1} ⊂ {FX2(θ2, ·) : θ2 ∈ Θ2}. Given two random

variables X and Y on the sublinear expectation space, we say that Y is independent from

X under Ê if for all test functions ϕ ∈ Cl-Lip(R2), we have

Ê[ϕ(X, Y )] = Ê
[
Ê[ϕ(x, Y )]|x=X

]
.

A random variable X in the sublinear expectation space (Ω,H, Ê) is said to be G-normally

distributed if aX + bX
d
=
√
a2 + b2X, a, b ≥ 0, where X is an independent copy of X and,

G : R → R is the function defined by G(a) := Ê[aX2]/2, a ∈ R. By Peng (2007b; 2008),

letting σ2 := −Ê
[
− X̂2

]
and σ2 := Ê

[
X̂2
]
, X̂ is G-normally distributed if and only if for

each ϕ ∈ Cl-Lip(R), the function uϕ(t, x) := Ê
[
ϕ
(
x+
√
tX̂
)]

solves the G-heat equation

∂uϕ
∂t

(t, x)−G
(
∂2uϕ
∂x2

(t, x)

)
= 0, uϕ(0, x) = ϕ(x), (2.5)

where

G(a) :=
1

2
sup

σ2≤σ2≤σ2

(σ2a) =
1

2

(
σ2a+ − σ2a−

)
=

1

2
max

{
aσ2, aσ2

}
, a ∈ R, (2.6)

with a+ = max(a, 0) and a− = −min(a, 0). In particular, we have Ê
[
ϕ
(
X̂
)]

= PG
1 (ϕ) :=

uϕ(1, 0), and the function G : R→ R in (2.6) is sublinear and monotonic, with −σ2|a|/2 ≤
G(a) ≤ σ2|a|/2, a ∈ R. In the sequel we only deal with non-degenerate G-normal distribu-

tions N
(
{0}, [σ2, σ2]

)
for which σ2 > 0, in which case G defined is (2.6) and non-degenerate,

i.e.

G(b)−G(a) ≥ σ2

2
(b− a), 0 ≤ a ≤ b,

and (2.5) admits a unique classical solution u(t, x) ∈ C1,2([0, T )× R), see e.g. Peng (2019).
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2.2 G-Expectation, G-Brownian motion and G-Itô integral

Let Ω := C0(R+) denote the space of R-valued continuous paths (ωt)t∈R+ with ω0 = 0,

equipped with the distance ρ(ω1, ω2) :=
∞∑
i=1

2−i max
(

1,max
t∈[0,i]

∣∣ω1
t − ω2

t

∣∣ ). For each t ∈

[0,∞), we set

Wt := {ω.∧t : ω ∈ Ω}, Ft := Bt(W) = B(Wt), Ft+ := Bt+(W) =
⋂
s>t

Bs(W),

and F :=
∨
s>t

Fs, where (Ω,F) is the canonical space equipped with its natural filtration

(Ft)t≥0, and Bt(ω) = (ωt)t≥0 is the corresponding canonical process. For each fixed T ≥ 0,

we also let L
0
ip(F) :=

∞⋃
n=1

L
0
ip(Fn), where

L
0

ip(FT ) :=
{
X(ω) = ϕ(ωt1 , . . . , ωtm) : m ≥ 1, t1, . . . , tm ∈ [0, T ], ϕ ∈ Cl-Lip(Rm)

}
, T > 0.

Definition 2.3 (Peng (2019), §3.2)

i) The G-expectation is the sublinear expectation defined on L
0
ip(FT ) by

EG[X] = Ê
[
ϕ
(√

t1 − t0ξ1, . . . ,
√
tm − tm−1ξm

)]
,

for X of the form X = ϕ(Bt1 − Bt0 , Bt2 − Bt1 , . . . , Btm − Btm−1), where ξ1, . . . , ξm

are identically G-normally distributed random variables in a sublinear expectation space

(Ω,H, Ê), such that ξi+1 is independent from (ξ1, . . . , ξi), i = 1, 2, . . . ,m− 1. The corre-

sponding canonical process Bt(ω) := ωt, ω ∈ Ω, t ≥ 0, is called a G-Brownian motion.

ii) The conditional G-expectation of X = ϕ(Bt1 − Bt0 , Bt2 − Bt1 , . . . , Btm − Btm−1) given

Ftj is defined by

EG[X | Ftj ] := EG[ϕ(Bt1 −Bt0 , . . . , Btm −Btm−1) | Ftj ] = ϕ̃(Bt1 −Bt0 , . . . , Btj −Btj−1
),

where ϕ̃(x1, . . . , xtj) := Ê
[
ϕ
(
x1, . . . , xtj ,

√
ttj+1
− tjξj, . . . ,

√
tm − tm−1ξm

)]
.

For 0 ≤ s ≤ t, we have EG[Bt − Bs|Fs] = 0 and EG[(Bt − Bs)
2 | Fs] = σ2(t − s). Peng

(2007b) proved that EG[ · ] consistently defines a sublinear expectation on the vector lattice

L
0
ip(FT ) as well as on L

0
ip(F). These spaces can be continuously extended to Banach spaces

denoted respectively by L1
G(FT ) and L1

G(F), under the norm EG[|X|], X ∈ L0
ip(FT ), resp.

L
0
ip(F). For p > 1 we let LPG(F) :=

{
X ∈ L1

G(F) : |X|p ∈ L1
G(F)

}
, which is a Banach

space under the norm ‖X‖p := (EG[|X|p])1/p.
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We note that by e.g. Theorem 6.2.5 in Peng (2019), the G-expectation EG can be

represented as

EG[ξ] = sup
P∈P

EP [ξ], ξ ∈ L1
G(F), (2.7)

where P is a weakly compact family of probability measures on (Ω,F).

Given πNT := {t0 = 0, t1, . . . , tN = T} a subdivision of the interval of [0, T ], denote by

Mp,0
G (0, T ) the collection of simple processes of the form ηt(ω) =

N∑
j=0

ξj(ω)I[tj ,tj+1)(t) where

ξj ∈ LpG(Fti), i = 0, 1, 2, . . . , N − 1, p ≥ 1. For ηt ∈Mp,0
G (0, T ), the G-Itô integral is defined

as

I(η) =

∫ T

0

ηsdBs :=
N−1∑
j=0

ξj(Btj+1
−Btj).

LetMp
G(0, T ), Hp

G(0, T ) and SpG(0, T ) denote the respective completions ofMp,0
G (0, T ) under

the norms ‖ · ‖Mp , ‖ · ‖Hp , ‖ · ‖Sp defined by

‖ηt‖pMp := EG
[∫ T

0

|ηt|pdt
]
, ‖ηt‖pHp := EG

[(∫ T

0

|ηt|pdt
)p/2]

, ‖ηt‖pSp := EG
[

sup
t∈[0,T ]

|ηt|p
]
.

Lemma 2.4 (Peng (2019)) The linear mapping I : M2,0
G (0, T ) → L2

G(FT ) can be continu-

ously extended to M2
G(0, T )→ L2

G(FT ) with

EG
[∫ T

0

ηsdBs

]
= 0 and σ2EG

[∫ T

0

η2
sds

]
≤ EG

[(∫ T

0

ηsdBs

)2
]
≤ σ2EG

[∫ T

0

η2
sds

]
.

The following property of the G-Itô integral will be useful, see Proposition 3.3.6-(iii) in Peng

(2019):

EG
[
X +

∫ T

r

ηtdBt

∣∣∣∣ Fs] = EG[X], X ∈ L1
G(F), 0 ≤ s ≤ r ≤ t ≤ T. (2.8)

Moreover, by Proposition 4.1.4 of Peng (2019), the process

Mt :=

∫ t

0

ηsd〈B〉s − 2

∫ t

0

G(ηs)ds

is a G-martingale, which will be used in the proof of Theorem 3.7 below, where the

〈B〉t := B2
t − 2

∫ t

0

BsdBs, t ∈ [0, T ],

is called the quadratic variation of G-Brownian motion.
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2.3 G-forward-backward stochastic differential equations

Let (Bt)t≥0 be a G-Brownian motion with −EG[−B2
1 ] = σ2 and EG[B2

1 ] = σ2, where G is

given by (2.6) in dimension one. We consider G-FSDEs of the form

dX t,x
s = b(s,X t,x

s )ds+ h(s,X t,x
s )d〈B〉s + σ(s,X t,x

s )dBs, 0 ≤ t ≤ s ≤ T, (2.9)

with X t,x
t = x, and the associated G-BSDEs are defined by

Y t,x
s = ϕ(X t,x

T ) +

∫ T

s

f(r,X t,x
r , Y t,x

r , Zt,x
r )dr +

∫ T

s

g(r,X t,x
r , Y t,x

r , Zt,x
r )d〈B〉r

−
∫ T

s

Zt,x
r dBr − (Kt,x

T −K
t,x
s ), 0 ≤ t ≤ s ≤ T, (2.10)

where Kt,x
s is a decreasing G-martingale and b, h, σ : [0, T ] × R → R, ϕ : R → R, f, g :

[0, T ]× R3 → R are deterministic functions satisfying the following conditions:

(A1) The functions b(t, x), h(t, x) are continuous and bounded on [0, T ] × R, the function

σ(t, x) is strictly positive and continuous in t ∈ [0, T ] for all x ∈ R, and they satisfy

the uniform Lipschitz condition

|b(t, x)− b(t, y)|+|h(t, x)− h(t, y)|+|σ(t, x)− σ(t, y)| ≤ C |x− y| , x, y ∈ R, t ∈ [0, T ],

for some constant C > 0.

(A2) The functions f(t, x, y, z) and g(t, x, y, z) are continuous in t ∈ [0, T ] for all (x, y, z) ∈
R3, and there exist an integer m ≥ 0 and a constant C > 0 such that

(i) |f(t, x, y, z)− f(t, x′, y′, z′)| ≤ C
(
(1 + |x|m + |x′|m)|x− x′|+ |y − y′|+ |z − z′|

)
,

(ii) |g(t, x, y, z)− g(t, x′, y′, z′)| ≤ C
(
(1 + |x|m + |x′|m)|x− x′|+ |y − y′|+ |z − z′|

)
,

(iii) |ϕ(x)− ϕ(y)| ≤ C(1 + |x|m + |y|m) |x− y|,

x, x′, y, y′, z, z′ ∈ R.

(A3) Furthermore, we assume that f(t, x, 0, 0) = g(t, x, 0, 0) = 0, (t, x) ∈ [0, T ]× R.

Under (A1), the G-FSDE (2.9) admits a unique solution (Xt)t∈[0,T ] ∈ M2
G(0, T ) by Theo-

rem 5.2.2 of Peng (2019), while by Theorem 4.1 in Hu et al. (2014a), under (A2)-(A3) the

G-BSDE (2.10) admits a unique solution (Y t,x
s , Zt,x

s , Kt,x
s )s∈[t,T ] such that (Y t,x

s , Zt,x
s )s∈[t,T ] ∈

SϑG(0, T ) × Hϑ
G(0, T ) and Kt,x

s ∈ LϑG(FT ), s ∈ [t, T ], for ϕ(X t,x
T ) ∈ L2

G(FT ) and ϑ ∈ (1, 2).

Condition (A3) is needed for the later definition of G-evaluations, however in general it is

sufficient to assume that f(·, x, 0, 0) and g(·, x, 0, 0) are in M2
G(0, T ) for all x ∈ R.
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Definition 2.5 Given ξ ∈ L2
G(FT ) and the G-Backward SDE

dY 0,x
t = −f(t,X0,x

t , Y 0,x
t , Z0,x

t )dt− g(t,X0,x
t , Y 0,x

t , Z0,x
t )d〈B〉t + Z0,x

t dBt + dK0,x
t , 0 ≤ t ≤ T,

Y 0,x
T = ξ,

we respectively call EG[ξ] := Y 0,x
0 and EG[ξ | Ft] := Y 0,x

t the EG-evaluation and the Ft-
conditional EG-evaluation of ξ, t ∈ [0, T ], where G := {f, g} denotes the generators of the

G-BSDE.

Under (A3) it can be shown that the map ξ 7→ EG[ξ] preserves all properties of the expectation

EG, except for sublinearity and the constant preserving property. Under the (stronger than

(A3)) condition

(A′3) f(t, x, y, 0) = g(t, x, y, 0) = 0 for all t ∈ [0, T ], x, y ∈ R,

the EG-evaluation satisfies the property EG[c] = c for constant c ∈ R. The results of Sec-

tions 3.1 and 3.2 remain valid for EG-expectations if we assume (A′3) instead of (A3).

Definition 2.6 Assume (A2)-(A3). For any X(1), X(2) ∈ L2
G(FT ), we say that

i) X(1) is dominated by X(2) in the monotonic G-ordering X(1) ≤mon
G1,G2 X

(2), if

EG1
[
ϕ
(
X(1)

)]
≤ EG2

[
ϕ
(
X(2)

)]
, (2.11)

for non-decreasing ϕ ∈ Cl-Lip(R).

ii) X(1) is dominated by X(2) in the convex G-ordering X(1) ≤conv
G1,G2 X

(2), if (2.11) holds for

ϕ convex on R.

iii) X(1) is dominated by X(2) in the increasing convex G-ordering X(1) ≤icon
G1,G2 X

(2), if (2.11)

holds for ϕ non-decreasing convex on R.

2.4 Associated G-PDE

Under (A1)-(A2), let (Y t,x
s )s∈[t,T ] denote the solution of the G-BSDE (2.10). Then, accord-

ing to the nonlinear Feynman-Kac formula of Hu et al. (2014b), the function u defined as

u(t, x) := Y t,x
t , (t, x) ∈ [0, T ]× R, is the unique viscosity solution of the HJB equation

∂u

∂t
(t, x) + F

(
t, x, u(t, x),

∂u

∂x
(t, x),

∂2u

∂x2
(t, x)

)
= 0, (2.12)
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with u(T, x) = ϕ(x), where

F (t, x, y, z, w) := 2G(H(t, x, y, z, w)) +M(t, x, y, z),

and

H(t, x, y, z, w) :=
w

2
σ2(t, x) +N(t, x, y, z),

where

M(t, x, y, z) := zb(t, x) + f(t, x, y, zσ(t, x)), N(t, x, y, z) := zh(t, x) + g(t, x, y, zσ(t, x)).

(2.13)

We refer to Douglas et al. (1996) for the following definition.

Definition 2.7 i) Let Cp,q([0, T ] × R) denote the space of functions v(t, x) which are

p times continuously differentiable in t ∈ [0, T ] and q times differentiable in x ∈ R,

for p, q ≥ 1.

ii) Let Cp,qb ([0, T ] × Rn) denote the subspace of functions in Cp,q([0, T ] × R) whose partial

derivatives with respect to x (resp. t) of orders 1 to q (resp. 1 to p) are bounded on Rn

(resp. on [0, T ]).

In addition to (A1)-(A3), we consider the following conditions.

(A4) The functions f(t, x, y, z) and g(t, x, y, z) are in C1,2
b ([0, T ] × R3) and they satisfy the

homogeneity condition

f(t, x, y, z) = δf(t, x, y/δ, z/δ), g(t, x, y, z) = δg(t, x, y/δ, z/δ), (t, x, y, z) ∈ [0, T ]×R3,

for every δ > 0.

(A5) The functions f(t, x, y, z) and g(t, x, y, z) satisfy the bounds∣∣∣∣∂2f

∂z2
(t, x, y, z)

∣∣∣∣ ≤ C

(1 + x2)(m+1+%)/2+1
, and

∣∣∣∣∂2g

∂z2
(t, x, y, z)

∣∣∣∣ ≤ C

(1 + x2)(m+1+%)/2+1
,

for some positive constants C > 0 and % > 0, (t, x) ∈ [0, T ]× R.

The next result provides C1,2([0, T ] × R) solutions of (2.12) with polynomial growth, based

on Krylov (1983).

Proposition 2.8 In addition to (A1)-(A4), assume that

11



(H1) ϕ is in C3
b (R), b, h, σ are in C1,3

b ([0, T ]× R), and f , g are in C1,3
b ([0, T ]× R3),

(H2) σ(t, x) is lower and upper bounded on [0, T ]× R by positive constants.

Then the PDE (2.12) admits a unique solution u(t, x) ∈ C1,2([0, T ] × R), such that u(t, x)

and its partial derivatives have polynomial growth of order at most m + 1 in x ∈ R, for all

t ∈ [0, T ].

Proof. When ϕ is bounded in C3
b (R), the existence of a bounded solution with bounded

derivatives in C1,2([0, T ]×R) is a consequence of Theorem 1.1 in Krylov (1983). If ϕ has poly-

nomial growth in C3
b (R), we apply the above to ϕ̃(x) := ϕ(x)/(1 + x2)(m+1)/2 by proceeding

as in Case 3 of the proof of Theorem C.3.4 pages 193-194 of Peng (2019). �

In Theorem 2.9 we extend the convexity result Theorem 4.1 in Bian and Guan (2008) to

HJB equations of the form (2.12) by only assuming convexity in (x, y) and in (y, z) of the

function M(t, x, y, z) and N(t, x, y, z) in (2.13), instead of the joint convexity of (x, y, z) 7→
M(t, x, y, z) and (x, y, z) 7→ N(t, x, y, z).

Theorem 2.9 Assume that Conditions (A1)-(A5) hold. Suppose that u(t, x) is a C1,2([0, T )×
R) solution of (2.12) with terminal condition u(T, x) = ϕ(x), together with the conditions

(H3) (x, y) 7→M(t, x, y, z) and (x, y) 7→ N(t, x, y, z) are convex on R2, (t, z) ∈ [0, T ]× R,

(H4) (y, z) 7→M(t, x, y, z) and (y, z) 7→ N(t, x, y, z) are convex on R2, (t, x) ∈ [0, T ]× R.

Then the function x 7→ u(t, x) is convex on R for all t ∈ [0, T ], provided that u(T, x) = ϕ(x)

is convex in x ∈ R.

Theorem 2.9 is proved in Appendix A and will be used in the proofs of Theorems 3.1-3.2,

Corollaries 3.4-3.5, and Theorems 3.7-3.8. The next result is proved in Appendix B.

Proposition 2.10 Assume that (A1)-(A3) hold. If ϕ(x), f(t, x, y, z), and g(t, x, y, z) are

non-decreasing in x ∈ R for all t ∈ [0, T ] and y, z ∈ R, then the solution Y t,x
s of (2.10) is

q.s. non-decreasing in x ∈ R for all s ∈ [t, T ]. As a consequence, if u(t, x) solves the backward

PDE (2.12), then u(t, x) is also a non-decreasing function of x ∈ R for all t ∈ [0, T ].
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3 Comparison in G-stochastic ordering

In this section, under (A1)-(A5) we derive comparison results EG-expectation by considering

two systems of G-FBSDEs given by

dX(i)
s = bi

(
s,X(i)

s

)
ds+ hi

(
s,X(i)

s

)
d〈B〉s + σi

(
s,X(i)

s

)
dBs, X

(i)
0 = x

(i)
0 , (3.1)

Y (i)
s = ϕ

(
X

(i)
T

)
+

∫ T

s

fi
(
r,X(i)

r , Y (i)
r , Z(i)

r

)
dr +

∫ T

s

gi
(
r,X(i)

r , Y (i)
r , Z(i)

r

)
d〈B〉r

−
∫ T

s

Z(i)
r dBr −

(
K

(i)
T −K

(i)
s

)
, i = 1, 2. (3.2)

3.1 Ordering with convex drifts

In the sequel, we will use the notation Gi = {fi, gi}, i = 1, 2, and the functions
Mi(t, x, y, z) := zbi(t, x) + fi(t, x, y, zσi(t, x)), i = 1, 2,

Ni(t, x, y, z) := zhi(t, x) + gi(t, x, y, zσi(t, x)), i = 1, 2.

Theorem 3.1 (Convex order). Assume that X
(1)
0 = X

(2)
0 and that 0 < σ1(t, x) ≤ σ2(t, x),

(t, x) ∈ [0, T ]× R, together with the conditions

(B1) M1(t, x, y, z) ≤M2(t, x, y, z), x, y, z ∈ R, t ∈ [0, T ],

(B2) N1(t, x, y, z) ≤ N2(t, x, y, z), x, y, z ∈ R, t ∈ [0, T ],

(B3) (x, y, z) 7→Mi(t, x, y, z) and (x, y, z) 7→ Ni(t, x, y, z) are both convex in (x, y) ∈ R2 and

in (y, z) ∈ R2, t ∈ [0, T ], i = 1, 2.

Then we have X
(1)
T ≤convG1,G2 X

(2)
T , i.e.,

EG1
[
ϕ
(
X

(1)
T

)]
≤ EG2

[
ϕ
(
X

(2)
T

)]
,

for ϕ convex on R.

Proof. We start by assuming that (H1)-(H2) hold. By Proposition 2.8, the functions

u1(t, x) := Y
(1),t,x
t and u2(t, x) := Y

(2),t,x
t are continuous in t and x, and they solve the

backward PDEs

∂ui
∂τ

(τ, x) = Fi

(
τ, x, ui(τ, x),

∂ui
∂x

(τ, x),
∂2ui
∂x2

(τ, x)

)
with ui(0, x) = ϕ(x), i = 1, 2, (3.4)
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by setting τ := T − t, where Fi(τ, x, y, z, w) := 2G(Hi(τ, x, y, z, w) +Mi(τ, x, y, z)) and

Hi(τ, x, y, z, w) :=
w

2
σ2
i (τ, x) +Ni(τ, x, y, z). (3.5)

In addition, under (B3), both solutions u1(t, x) and u2(t, x) of (3.4) are convex functions of

x by Theorem 2.9, hence we have
∂2ui
∂x2

(τ, x) ≥ 0, (τ, x) ∈ [0, T ]× R. Therefore, in (3.4) we

can replace Hi(τ, x, y, z, w) with

H̃i(τ, x, y, z, w) := Ni(τ, x, y, z) +
1

2
w+σ2

i (t, x), i = 1, 2, (3.6)

where w+ = max(w, 0), and rewrite the backward PDEs (3.4) as

∂ui
∂τ

(τ, x) = F̃i

(
τ, x, ui(τ, x),

∂ui
∂x

(τ, x),
∂2ui
∂x2

(τ, x)

)
with ui(0, x) = ϕ(x), i = 1, 2.

where

F̃i(t, x, y, z, w) := 2G
(
H̃i(t, x, y, z, w)

)
+Mi(t, x, y, z).

By the conditions 0 < σ1(t, x) ≤ σ2(t, x), and (B1)-(B2), we check that

F̃2(τ, x, y, z, w)− F̃1(τ, x, y, z, w)

≥ σ2
(
N2(τ, x, y, z)−N1(τ, x, y, z)

)
+
σ2

2
w+
(
σ2

2(τ, x)− σ2
1(τ, x)

)
+M2(τ, x, y, z)−M1(τ, x, y, z) ≥ 0, x, y, z, w ∈ R, τ ∈ [0, T ].

Moreover, by Conditions (A1) and (H2) the coefficients bi, hi and σi, i = 1, 2 are bounded,

hence we have∣∣F̃i(τ, x, y1, z1, w1)− F̃i(τ, x, y2, z2, w2)
∣∣ ≤ σ2

2
σ2
i (τ, x)|w1 − w2|

+ σ2|Ni(τ, x, y1, z1)−Ni(τ, x, y2, z2)|+ |Mi(τ, x, y1, z1)−Mi(τ, x, y2, z2)|

≤ C ′(|y1 − y2|+ |z1 − z2|+ |w1 − w2|), (τ, x) ∈ [0, T ]× R, (y1, z1, w1), (y2, z2, w2) ∈ R3,

hence F̃i(t, x, y, z, w) is Lipschitz in (y, z, w) ∈ R2, uniformly in (τ, x) ∈ [0, T ] × R. In

addition, F̃i(τ, x, y, z, w), i = 1, 2 is positive homogeneous in (y, z, w) by Condition (A4) and

pages 188-189 of Peng (2019), and F̃i(τ, x, y, z, w) satisfies Condition (G′) therein. Therefore,

by the Comparison Theorem C.2.5 under (G′), see page 188 of Peng (2019), it follows that

u1(t, x) ≤ u2(t, x) for all (t, x) ∈ [0, T ]× R, from which we conclude to

Y
(1)

0 = u1

(
0, X

(1)
0

)
≤ Y

(2)
0 = u2

(
0, X

(1)
0

)
= u2

(
0, X

(2)
0

)
,
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hence we have EG1
[
ϕ(X

(1))
T

]
≤ EG2

[
ϕ
(
X

(2)
T

)]
for convex ϕ ∈ C3

b (R). In order to relax Condi-

tion (H1) we apply Theorem C.1 under Conditions (A1)-(A2) after regularizing the functions

ϕ, b, h, σ, f , g, as in e.g. Problem 1.4.14 in Zhang (2017). For example, when mollifying ϕ

into ϕn by convolution with ρn(y) := nρ(ny) where ρ is a mollifier on R, n ≥ 1, and using

the representation (2.7), Condition (A2) and Proposition 4.1 in Hu et al. (2014b), for p ≥ 1

we have

EG[|ϕ(XT )− ϕn(XT )|p] = sup
P∈P

EP
[∣∣∣∣∫ ∞
−∞

(ϕ(XT )− ϕ(XT − y))ρn(y)dy

∣∣∣∣p]
≤ sup

P∈P

∫ ∞
−∞

EP
[
|ϕ(XT )− ϕ(XT − y/n)|p

]
ρ(y)dy

≤ C

np

∫ ∞
−∞

sup
P∈P

EP
[
(1 + |XT |m + |XT − y/n|m)p

]
|y|pρ(y)dy

≤ 2p−1C
′

np

∫ ∞
−∞

(
1 + |x0|mp + 2(m−1)p(|x0|mp + |y/n|mp)

)
|y|pρ(y)dy,

which tends to zero as n tends to infinity. Finally, to relax Condition (H2) using Theorem C.1,

we approximate σ(t, x) by σn(t, x) := min(max(σ(t, x), 1/n), n), n ≥ 1, and note that by

sublinearity we have

EG
[
|σ(t,Xt)− σn(t,Xt)|2p

]
≤ 1

n2p
+ EG[(|σ(t,Xt)|2p − n)+], t ∈ [0, T ],

which tends to zero as n tends to infinity by Proposition 6.1.22 of Peng (2019), since

σ(t,Xt) ∈ L2p
b therein for p ≥ 1, as by (A1) we have

EG
[
|σ(t,Xt)|2p1{|σ(t,Xt)|2p>n}

]
≤ CEG

[
(1 + |Xt|2p)1{(1+|Xt|2p)>n}

]
≤ CEG

[
1{(1+|Xt|2p)>n}

]
+ C

(
EG
[
|Xt|4p

])1/2(EG[1{(1+|Xt|2p)>n}
])1/2

≤ CEG
[
1{(1+|Xt|2p)>n}

]
+ C ′

(
1 + x4p

0

)1/2(EG[1{(1+|Xt|2p)>n}
])1/2

which tends to 0 as n tends to infinity by Proposition 4.1 in Hu et al. (2014b). �

Theorem 3.2 (Increasing convex order). Assume that X
(1)
0 ≤ X

(2)
0 and 0 < σ1(t, x) ≤

σ2(t, x), (t, x) ∈ [0, T ]× R, together with the conditions

(B′1) M1(t, x, y, z) ≤M2(t, x, y, z), t ∈ [0, T ], x, y ∈ R, z ∈ R+,

(B′2) N1(t, x, y, z) ≤ N2(t, x, y, z), t ∈ [0, T ], x, y ∈ R, z ∈ R+,

(B′3) (x, y, z) 7→Mi(t, x, y, z) and (x, y, z) 7→ Ni(t, x, y, z) are both convex in (x, y) ∈ R2 and

in (y, z) ∈ R× R+, for i = 1, 2, t ∈ [0, T ],
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(B′4) x 7→ fi(t, x, y, z) and x 7→ gi(t, x, y, z) are non-decreasing on R, for i = 1, 2, y ∈ R,

z ∈ R+, t ∈ [0, T ].

Then we have X
(1)
T ≤icon

G1,G2 X
(2)
T , i.e., EG1

[
ϕ
(
X

(1)
T

)]
≤ EG2

[
ϕ
(
X

(2)
T

)]
, for non-decreasing convex

ϕ on R.

Proof. Under (B′4), when ϕ(x), fi(t, x, y, z) and gi(t, x, y, z), i = 1, 2, are non-decreasing in

x, Proposition 2.10 states that the PDE solutions u1(t, x) and u2(t, x)satisfy

∂u1

∂x
(t, x) ≥ 0 and

∂u2

∂x
(t, x) ≥ 0, (t, x) ∈ [0, T ]× R,

hence Conditions (B1)-(B3) only need to hold for z ≥ 0, and the conclusion follows by

repeating the arguments in the proof of Theorem 3.1. �

We note that in case σ1(t, x) = σ2(t, x), the convexity of ui(t, x), i = 1, 2, is no longer

required in the proofs of Theorems 3.1-3.2, and one can then remove Condition (B′3) to

obtain a result for the monotonic order.

Corollary 3.3 (Monotonic order with equal volatilities). Assume that X
(1)
0 ≤ X

(2)
0 and

0 < σ(t, x) := σ1(t, x) = σ2(t, x), (t, x) ∈ [0, T ]× R, together with the conditions

(B′′1 ) M1(t, x, y, z) ≤M2(t, x, y, z), t ∈ [0, T ], x, y ∈ R, z ∈ R+,

(B′′2 ) N1(t, x, y, z) ≤ N2(t, x, y, z), t ∈ [0, T ], x, y ∈ R, z ∈ R+,

(B′′3 ) x 7→ fi(t, x, y, z) and x 7→ gi(t, x, y, z) are non-decreasing on R, for i = 1, 2, y ∈ R,

z ∈ R+, t ∈ [0, T ].

Then we have X
(1)
T ≤mon

G1,G2 X
(2)
T , i.e., EG1

[
ϕ
(
X

(1)
T

)]
≤ EG2

[
ϕ
(
X

(2)
T

)]
, for non-decreasing ϕ on

R.

Proof. When σ1(t, x) = σ2(t, x), we can repeat the proof of Theorem 3.1 by using Hi in

(3.5), without defining H̃i in (3.6) and without assuming (B3), and then follow the proof

argument of Theorem 3.2 without requiring the convexity of ui(t, x), i = 1, 2. �

Theorem 3.4 (Increasing convex order). Assume that X
(1)
0 ≤ X

(2)
0 and

b1(t, x) ≤ b2(t, x), h1(t, x) ≤ h2(t, x) and 0 < σ1(t, x) ≤ σ2(t, x), (t, x) ∈ [0, T ]× R,

together with the conditions
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(C1) f1(t, x, y, z) ≤ f2(t, x, y, z), t ∈ [0, T ], x, y ∈ R, z ∈ R+,

(C2) g1(t, x, y, z) ≤ g2(t, x, y, z), t ∈ [0, T ], x, y ∈ R, z ∈ R+,

(C3) z 7→ fi(t, x, y, z) and z 7→ gi(t, x, y, z) are both non-decreasing on R+, for i = 1 or

i = 2, x, y ∈ R, t ∈ [0, T ],

(C4) x 7→ fi(t, x, y, z) and x 7→ gi(t, x, y, z) are both non-decreasing on R, for i = 1, 2,

x, y ∈ R, z ∈ R+, t ∈ [0, T ],

(C5) (x, y, z) 7→Mi(t, x, y, z) and (x, y, z) 7→ Ni(t, x, y, z) are both convex in (x, y) ∈ R2 and

in (y, z) ∈ R× R+, for i = 1, 2, x, y ∈ R, (t, z) ∈ [0, T ]× R+.

Then we have X
(1)
T ≤icon

G1,G2 X
(2)
T , i.e., EG1

[
ϕ
(
X

(1)
T

)]
≤ EG2

[
ϕ
(
X

(2)
T

)]
, for non-decreasing convex

ϕ on R.

Proof. Under (C4), since ϕ(x), fi(t, x, y, z) and gi(t, x, y, z), i = 1, 2, are non-decreasing in

x, by Proposition 2.10 the solutions u1(t, x) and u2(t, x) of (3.4) are non-decreasing in x and,

as in the proof of Theorem 3.2, one can take z ≥ 0 since
∂ui
∂x

(t, x) ≥ 0. Assuming that e.g.

f1(t, x, y, z) and g1(t, x, y, z) are non-decreasing in z under (C3), then by zσ1(t, x) ≤ zσ2(t, x),

(t, x) ∈ [0, T ]× R, z ∈ R+, and (C1)-(C2), we have

f1(t, x, y, zσ1(t, x)) ≤ f1(t, x, y, zσ2(t, x)) ≤ f2(t, x, y, zσ2(t, x)),

and

g1(t, x, y, zσ1(t, x)) ≤ g1(t, x, y, zσ2(t, x)) ≤ g2(t, x, y, zσ2(t, x)).

Combining the above with the inequality zb1(t, x) ≤ zb2(t, x) and zh1(t, x) ≤ zh2(t, x), for

(t, x) ∈ [0, T ]× R, z ∈ R+, one finds

M1(t, x, y, z) ≤M2(t, x, y, z) and N1(t, x, y, z) ≤ N2(t, x, y, z),

and by Theorem 3.2 we conclude that EG1
[
ϕ(X

(1))
T

]
≤ EG2

[
ϕ
(
X

(2)
T

)]
, for non-decreasing

convex ϕ on R. �

When the drift coefficients, b(t, x) := b1(t, x) = b2(t, x) and h(t, x) := h1(t, x) = h2(t, x), are

equal and fi(t, x, y, z) and gi(t, x, y, z) are independent of z, i = 1, 2, the following corollary

can be proved for the convex G-ordering similarly to Theorem 3.4, by applying Theorem 3.1

which deals with convex ordering, instead of Theorem 3.2.
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Corollary 3.5 (Convex order with equal drifts). Assume that X
(1)
0 = X

(2)
0 and

b1(t, x) = b2(t, x), h1(t, x) = h2(t, x), and 0 < σ1(t, x) ≤ σ2(t, x), (t, x) ∈ [0, T ]× R,

together with the conditions

(C ′1) fi(t, x, y, z) = fi(t, x, y) and gi(t, x, y, z) = gi(t, x, y) are independent of z ∈ R, t ∈
[0, T ], x, y ∈ R, i = 1, 2,

(C ′2) f1(t, x, y) ≤ f2(t, x, y) and g1(t, x, y) ≤ g2(t, x, y), t ∈ [0, T ], x, y ∈ R,

(C ′3) (x, y, z) 7→Mi(t, x, y, z) and (x, y, z) 7→ Ni(t, x, y, z) are both convex in (x, y) ∈ R2 and

in (y, z) ∈ R2, t ∈ [0, T ], i = 1, 2.

Then we have X
(1)
T ≤conv

G1,G2 X
(2)
T , i.e. EG1

[
ϕ
(
X

(1)
T

)]
≤ EG2

[
ϕ
(
X

(2)
T

)]
, for non-decreasing convex

ϕ on R.

We note that the convexity of u1(t, x) and u2(t, x) is not needed in the proof of Theorem 3.1

when σ1(t, x) = σ2(t, x), and in this case we can remove Condition (B′3) in Theorem 3.2 as

in the next corollary.

Corollary 3.6 (Monotonic order with equal volatilities). Assume that X
(1)
0 ≤ X

(2)
0 and

0 < σ(t, x) := σ1(t, x) = σ2(t, x), (t, x) ∈ [0, T ]× R, together with the conditions

(D1) b1(t, x) ≤ b2(t, x) and h1(t, x) ≤ h2(t, x), (t, x) ∈ [0, T ]× R,

(D2) f1(t, x, y, z) ≤ f2(t, x, y, z) and g1(t, x, y, z) ≤ g2(t, x, y, z), for all x, y ∈ R and z ∈ R+,

t ∈ [0, T ],

(D3) x 7→ fi(t, x, y, z) and x 7→ gi(t, x, y, z) are non-decreasing on R, t ∈ [0, T ], y ∈ R,

z ∈ R+, i = 1, 2.

Then we have X
(1)
T ≤mon

G1,G2 X
(2)
T , i.e., EG1

[
ϕ
(
X

(1)
T

)]
≤ EG2

[
ϕ
(
X

(2)
T

)]
, for non-decreasing ϕ on

R.

Proof. Similarly to the proof of Corollary 3.3, under the condition σ1(t, x) = σ2(t, x) the

convexity of ui(t, x) and the non-decreasing property of fi(t, x, y, z) and gi(t, x, y, z) with

respect to z, i = 1 or i = 2, are no longer required. In addition, the conditions

M1(t, x, y, z) ≤M2(t, x, y, z), N1(t, x, y, z) ≤ N2(t, x, y, z), x, y ∈ R, z ∈ R+, t ∈ [0, T ],

clearly hold from (D1)-(D2), and we can conclude as in the proof of Theorem 3.4. �
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3.2 Ordering with partially convex drifts

Theorems 3.1 and 3.2 require the convexity assumptions (B2) and (B′2) on

(t, x, y, z) 7→Mi(t, x, y, z) := zbi(t, x) + fi(t, x, y, zσi(t, x))

and

(t, x, y, z) 7→ Ni(t, x, y, z) := zhi(t, x) + gi(t, x, y, zσi(t, x))

in (x, y) and (y, z) to hold for both i = 1, 2. In this section, we develop different convex G-

ordering results under weaker convexity conditions, based on a measurable functions ζ(t, x)

and η(t, x) such that

θi
(
t,X

(i)
t

)
:=

bi
(
t,X

(i)
t

)
− ζ
(
t,X

(i)
t

)
σi
(
t,X

(i)
t

) and λi
(
t,X

(i)
t

)
:=

hi
(
t,X

(i)
t

)
− η
(
t,X

(i)
t

)
σi
(
t,X

(i)
t

) , i = 1, 2,

are bounded processes.

Theorem 3.7 (Convex order). Assume that X
(1)
0 = X

(2)
0 and 0 < σ1(t, x) ≤ σ2(t, x),

(t, x) ∈ [0, T ]× R, together with the conditions

(E1) M1(t, x, y, z) ≤ zζ(t, x) ≤M2(t, x, y, z), t ∈ [0, T ], x, y, z ∈ R,

(E2) N1(t, x, y, z) ≤ zη(t, x) ≤ N2(t, x, y, z), t ∈ [0, T ], x, y, z ∈ R,

(E3) (x, y, z) 7→Mi(t, x, y, z) and (x, y, z) 7→ Ni(t, x, y, z) are convex in (x, y) and in (y, z) ∈
R2 for i = 1 or i = 2, t ∈ [0, T ].

Then we have X
(1)
T ≤conv

G1,G2 X
(2)
T , i.e.,

EG1
[
ϕ
(
X

(1)
T

)]
≤ EG2

[
ϕ
(
X

(2)
T

)]
,

for non-decreasing convex ϕ on R.

Proof. (i) We assume that (E3) holds with i = 1. Let

θ2(t, x) :=
b2(t, x)− ζ(t, x)

σ2(t, x)
and λ2(t, x) :=

h2(t, x)− η(t, x)

σ2(t, x)
, (t, x) ∈ [0, T ]× R.

are bounded functions. By the G-Girsanov transformation, see e.g. Theorems 3.2 and 5.2

in Hu et al. (2014b), the process

B̃G
t := Bt +

∫ t

0

θ2

(
s,X(2)

s

)
ds+

∫ t

0

λ2

(
s,X(2)

s

)
d〈B〉s, t ∈ [0, T ],
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is a G-Brownian motion under the G-expectation Ẽ2 defined by

Ẽ2[X] := ẼG
[
X exp

(
−
∫ T

0

λ2

(
s,X(2)

s

)
dBs −

1

2

∫ T

0

(
λ2

(
s,X(2)

s

))2
d〈B〉s

−
∫ T

0

θ2

(
s,X(2)

s

)
λ2

(
s,X(2)

s

)
ds−

∫ T

0

θ2

(
s,X(2)

s

)
dB̃s −

1

2

∫ T

0

(
θ2

(
s,X(2)

s

))2
d〈B̃〉s

)]
,

where
(
B, B̃

)
is an auxiliary extended G̃-Brownian motion, and

G̃(A) :=
1

2
sup

σ2≤ν≤σ2

tr

[
A

(
ν 1
1 ν−1

)]
,

for A in the set S2 of 2× 2 symmetric matrices. The forward SDEs (3.1) can be rewritten as
dX

(1)
t =

(
b1

(
t,X

(1)
t

)
− θ2

(
t,X

(2)
t

)
σ1

(
t,X

(1)
t

))
dt

+
(
h1

(
t,X

(1)
t

)
− λ2

(
t,X

(2)
t

)
σ1

(
t,X

(1)
t

))
d〈B〉t + σ1

(
t,X

(1)
t

)
dB̃G

t ,

dX
(2)
t = ζ

(
t,X

(2)
t

)
dt+ η

(
t,X

(2)
t

)
d〈B〉t + σ2

(
t,X

(2)
t

)
dB̃G

t ,

with the associated BSDEs
dY

(1)
t = −

(
f1

(
t,X

(1)
t , Y

(1)
t , Z

(1)
t

)
+ Z

(1)
t θ2

(
t,X

(2)
t

))
dt

−
(
g1

(
t,X

(1)
t , Y

(1)
t , Z

(1)
t

)
+ Z

(1)
t λ2

(
t,X

(2)
t

))
d〈B〉t + Z

(1)
t dB̃G

t + dK
(1)
t ,

dY
(2)
t = −

(
f2

(
t,X

(2)
t , Y

(2)
t , Z

(2)
t

)
+ Z

(2)
t θ2

(
t,X

(2)
t

))
dt

−
(
g2

(
t,X

(2)
t , Y

(2)
t , Z

(2)
t

)
+ Z

(2)
t λ2

(
t,X

(2)
t

))
d〈B〉t + Z

(2)
t dB̃G

t + dK
(2)
t ,

(3.7a)

where Y
(1)
T = ϕ

(
X

(1)
T

)
and Y

(2)
T = ϕ

(
X

(2)
T

)
at terminal time T . By Proposition 2.8 we have

Y
(1)
t = u1

(
t,X

(1)
t

)
and Y

(2)
t = u2

(
t,X

(2)
t

)
, where the functions u1(t, x) and u2(t, x) are in

C1,2([0, T ]× R) and solve the PDEs

∂ui
∂t

(t, x) + 2G
(1

2
σ2
i (t, x)

∂2ui
∂x2

(t, x) +Ni

(
t, x, ui(t, x),

∂ui
∂x

(t, x)
))

+Mi

(
t, x, ui(t, x),

∂ui
∂x

(t, x)
)

= 0, (3.8)

with ui(T, x) = ϕ(x), i = 1, 2 and

G(a) =
1

2
sup

σ2≤σ2≤σ2

(σ2a) =
1

2

(
σ2a+ − σ2a−

)
, a ∈ R.

Applying the G-Itô formula to u1

(
t,X

(2)
t

)
and using (3.8), we have

u1

(
t,X

(2)
t

)
= u1

(
0, X

(2)
0

)
+

∫ t

0

∂u1

∂s

(
s,X(2)

s

)
ds+

∫ t

0

ζ
(
s,X(2)

s

)∂u1

∂x

(
s,X(2)

s

)
ds
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+

∫ t

0

(
η
(
s,X(2)

s

)∂u1

∂x

(
s,X(2)

s

)
+

1

2
σ2

2

(
s,X(2)

s

)∂2u1

∂x2

(
s,X(2)

s

))
d〈B〉s+

+

∫ t

0

σ2

(
s,X(2)

s

)∂u1

∂x

(
s,X(2)

s

)
dB̃G

s

= u1

(
0, X

(2)
0

)
+

∫ t

0

ζ
(
s,X(2)

s

)∂u1

∂x

(
s,X(2)

s

)
ds−

∫ t

0

M1

(
s,X(2)

s , u1

(
s,X(2)

s

)
,
∂u1

∂x

(
s,X(2)

s

))
ds

− 2

∫ t

0

G
(1

2
σ2

1

(
s,X(2)

s

)∂2u1

∂x2

(
s,X(2)

s

)
+N1

(
s,X(2)

s , u1

(
s,X(2)

s

)
,
∂u1

∂x

(
s,X(2)

s

)))
ds

+

∫ t

0

(
η(s,X(2)

s )
∂u1

∂x

(
s,X(2)

s

)
+

1

2
σ2

2

(
s,X(2)

s

)∂2u1

∂x2

(
s,X(2)

s

))
d〈B〉s

+

∫ t

0

σ2

(
s,X(2)

s

)∂u1

∂x

(
s,X(2)

s

)
dB̃G

s

≥ u1

(
0, X

(2)
0

)
− 2

∫ t

0

G
(1

2
σ2

1

(
s,X(2)

s

)∂2u1

∂x2

(
s,X(2)

s

)
+N1

(
s,X(2)

s , u1

(
s,X(2)

s

)
,
∂u1

∂x

(
s,X(2)

s

)))
ds

+

∫ t

0

(
η(s,X(2)

s )
∂u1

∂x

(
s,X(2)

s

)
+

1

2
σ2

2

(
s,X(2)

s

)∂2u1

∂x2

(
s,X(2)

s

))
d〈B〉s

+

∫ t

0

σ2

(
s,X(2)

s

)∂u1

∂x

(
s,X(2)

s

)
dB̃G

s ,

where we used the first part of (E2). Since u2(t, x) is a solution of the equation (3.8), we

know that Y
(2)
s = u2

(
s,X

(2)
s

)
and Z(2)

s = σ2

(
s,X(2)

s

)∂u2

∂x

(
s,X(2)

s

)
, hence, plugging those

terms in the second G-BSDE (3.7a) we find

u2

(
t,X

(2)
t

)
= u2

(
0, X

(2)
0

)
−
∫ t

0

f2

(
s,X(2)

s , u2

(
s,X(2)

s

)
, σ2

(
s,X(2)

s

)∂u2

∂x

(
s,X(2)

s

))
ds

−
∫ t

0

σ2

(
s,X(2)

s

)∂u2

∂x

(
s,X(2)

s

)
θ2

(
s,X(2)

s

))
ds

−
∫ t

0

g2

(
s,X(2)

s , u2

(
s,X(2)

s

)
, σ2

(
s,X(2)

s

)∂u2

∂x

(
s,X(2)

s

))
d〈B〉s

−
∫ t

0

σ2

(
s,X(2)

s

)∂u2

∂x

(
s,X(2)

s

)
λ2

(
s,X(2)

s

))
d〈B〉s +

∫ t

0

σ2

(
s,X(2)

s

)∂u2

∂x

(
s,X(2)

s

)
dB̃G

s +K
(2)
t

= u2

(
0, X

(2)
0

)
+

∫ t

0

(
ζ(s,X(2)

s )
∂u2

∂x
(s,X(2)

s )−M2

(
s,X(2)

s , u2(s,X(2)
s ),

∂u2

∂x
(s,X(2)

s )

))
ds

+

∫ t

0

(
η(s,X(2)

s )
∂u2

∂x
(s,X(2)

s )−N2

(
s,X(2)

s , u2

(
s,X(2)

s

)
,
∂u2

∂x

(
s,X(2)

s

)))
d〈B〉s

+

∫ t

0

σ2

(
s,X(2)

s

)∂u2

∂x

(
s,X(2)

s

)
dB̃G

s +K
(2)
t .

Next, given that u1

(
T,X

(2)
T

)
= u2

(
T,X

(2)
T

)
= ϕ

(
X

(2)
T

)
a.s. at the terminal time T , we have

u2

(
0, X

(2)
0

)
− u1

(
0, X

(2)
0

)
≥
∫ T

0

(
M2

(
s,X(2)

s , u2(s,X(2)
s ),

∂u2

∂x
(s,X(2)

s )
)
− ζ(s,X(2)

s )
∂u2

∂x
(s,X(2)

s )

)
ds
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+

∫ T

0

(
N2

(
s,X(2)

s , u2

(
s,X(2)

s

)
,
∂u2

∂x

(
s,X(2)

s

))
− η(s,X(2)

s )
∂u2

∂x
(s,X(2)

s )

)
d〈B〉s

− 2

∫ T

0

G

(
1

2
σ2

1

(
s,X(2)

s

)∂2u1

∂x2

(
s,X(2)

s

)
+N1

(
s,X(2)

s , u1

(
s,X(2)

s

)
,
∂u1

∂x

(
s,X(2)

s

)))
ds

+

∫ t

0

(
η(s,X(2)

s )
∂u1

∂x
(s,X(2)

s ) +
1

2
σ2

2(s,X(2)
s )

∂2u1

∂x2
(s,X(2)

s )

)
d〈B〉s

+

∫ T

0

σ1

(
s,X(2)

s

)∂u1

∂x

(
s,X(2)

s

)
dB̃G

s −
∫ T

0

σ2

(
s,X(2)

s

)∂u2

∂x

(
s,X(2)

s

)
dB̃G

s −K
(2)
T

≥ −2

∫ T

0

G

(
1

2
σ2

1

(
s,X(2)

s

)∂2u1

∂x2

(
s,X(2)

s

)
+N1

(
s,X(2)

s , u1

(
s,X(2)

s

)
,
∂u1

∂x

(
s,X(2)

s

)))
ds

+

∫ t

0

(
N1

(
s,X(2)

s , u1

(
s,X(2)

s

)
,
∂u1

∂x

(
s,X(2)

s

))
+

1

2
σ2

1(s,X(2)
s )

∂2u1

∂x2
(s,X(2)

s )

)
d〈B〉s

+

∫ T

0

σ1(s,X(2)
s )

∂u1

∂x
(s,X(2)

s )dB̃G
s −

∫ T

0

σ2(s,X(2)
s )

∂u2

∂x
(s,X(2)

s )dB̃G
s −K

(2)
T (3.9)

where we applied the second parts of (E1)-(E2) and the first part of (E1), with the conditions

|σ1(t, x)| ≤ |σ2(t, x)| and
∂2u1(t, x)

∂x2
≥ 0. Finally, taking expectations under Ẽ2 using (2.8)

and the facts that K
(2)
T ≤ 0, a.s., and that

∫ t
0
ηsd〈B〉s − 2

∫ t
0
G(ηs)ds is a G-martingale,

ηs ∈M1
G(0, T ), see Proposition 4.1.4 of Peng (2019), we obtain u2

(
0, X

(2)
0

)
−u1

(
0, X

(2)
0

)
≥ 0.

Since X
(2)
0 = X

(1)
0 and Y

(i)
0 = ui

(
0, X

(i)
0

)
, i = 1, 2, we get Y

(1)
0 ≤ Y

(2)
0 . Therefore, by

definition, we have EG1
[
ϕ
(
X

(1)
T

)]
≤ EG2

[
ϕ
(
X

(2)
T

)]
, for ϕ convex on R. (ii) The case i = 2 in

Assumption (E3) can be proved similarly. �

The next theorem deals with the increasing convex order, for which only the conditions

(E ′1)-(E ′3) and X
(1)
0 ≤ X

(2)
0 are required in addition to (3.10) and Condition (E ′4) below.

Theorem 3.8 (Increasing convex order). Assume that X
(1)
0 ≤ X

(2)
0 and

0 < σ1(t, x) ≤ σ2(t, x), (t, x) ∈ [0, T ]× R, (3.10)

together with the conditions

(E ′1) M1(t, x, y, z) ≤ zζ(t, x) ≤M2(t, x, y, z), t ∈ [0, T ], x, y ∈ R, z ∈ R+,

(E ′2) N1(t, x, y, z) ≤ zη(t, x) ≤ N2(t, x, y, z), t ∈ [0, T ], x, y ∈ R, z ∈ R+,

(E ′3) (x, y) 7→Mi(t, x, y, z) and (x, y) 7→ Ni(t, x, y, z) are convex on R2; (y, z) 7→Mi(t, x, y, z)

and (y, z) 7→ Ni(t, x, y, z) are convex on R× R+ for i = 1 or i = 2,

(E ′4) x 7→ fi(t, x, y, z) and x 7→ gi(t, x, y, z) are non-decreasing on R for i = 1, 2, y ∈ R,

z ∈ R+, t ∈ [0, T ].
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Then we have X
(1)
T ≤icon

G1,G2 X
(2)
T , i.e., EG1

[
ϕ
(
X

(1)
T

)]
≤ EG2

[
ϕ
(
X

(2)
T

)]
, for non-decreasing convex

ϕ on R.

Proof. If ϕ(x), fi(t, x, y, z) and gi(t, x, y, z) are non-decreasing in x by (E ′4), i = 1, 2, then

by Proposition 2.10 the solutions u1(t, x) and u2(t, x) of the PDE (3.8) are non-decreasing

in x and satisfy
∂u1

∂x

(
t,X

(2)
t

)
≥ 0 and

∂u2

∂x

(
t,X

(2)
t

)
≥ 0,

a.s., t ∈ [0, T ], hence conditions (E1)-(E3) only need to hold for z ≥ 0, showing the sufficiency

of (E ′i), i = 1, 2, 3. In addition, we have Y
(1)

0 = u1

(
0, X

(1)
0

)
≤ u1

(
0, X

(2)
0

)
by the assumption

X
(1)
0 ≤ X

(2)
0 , hence by repeating arguments in the proof of Theorem 3.7 for i = 1 we find by

(3.9) that Y
(2)

0 −Y (1)
0 ≥ u2

(
0, X

(2)
0

)
−u1

(
0, X

(2)
0

)
≥ 0 under Assumption (E ′3) for i = 1. The

case i = 2 is treated similarly according to the proof of Theorem 3.7. �

Corollary 3.9 (Increasing order). Assume that X
(1)
0 ≤ X

(2)
0 and 0 < σ1(t, x) = σ2(t, x),

(t, x) ∈ [0, T ]× R, together with the conditions

(E ′′1 ) M1(t, x, y, z) ≤ zζ(t, x) ≤M2(t, x, y, z), t ∈ [0, T ], x, y ∈ R, z ∈ R+,

(E ′′2 ) N1(t, x, y, z) ≤ zη(t, x) ≤ N2(t, x, y, z), t ∈ [0, T ], x, y ∈ R, z ∈ R+,

(E ′′3 ) x 7→ fi(t, x, y, z) and x 7→ gi(t, x, y, z) are non-decreasing on R for i = 1, 2, y ∈ R,

z ∈ R+, t ∈ [0, T ].

Then we have X
(1)
T ≤mon

G1,G2 X
(2)
T , i.e., EG1

[
ϕ
(
X

(1)
T

)]
≤ EG2

[
ϕ
(
X

(2)
T

)]
, for non-decreasing ϕ on

R.

Proof. If σ1(t, x) = σ2(t, x), we can check that the convexity of ui(t, x), i = 1, 2 is no longer

required, so one can remove Condition (E ′3). Then this result is a directly consequence of

Theorem 3.8. �

4 Superhedging with ambiguous coefficients

In this section we study the effects of ambiguous drift and volatility coefficients of G-FSDEs

on associated contingent claim superhedging prices and portfolio values. Consider a risk-free

asset priced Et := E0e
rt, and a risky asset with non-negative prices modeled by the G-FSDE

dXs = Xsα(s,Xs)ds+Xsβ(s,Xs)d〈B〉s +Xsγ(s,Xs)dBs, X0 = x0, 0 ≤ s ≤ T, (4.1)
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where the coefficients b(t, x) := xα(t, x), h(t, x) := xβ(t, x) and σ(t, x) := xγ(t, x) satisfy

Condition (A1). Denoting by (pt, qt)t∈[0,T ] the quantities (strategy process) respectively in-

vested in the risk-free asset and in the risky asset at time t ∈ [0, T ], we consider the wealth

process Yt := ptEt + qtXt − Ct, where (Ct)t≥0 is a cumulative consumption process with

C0 = 0, such that

dYt = rptEtdt+ qtdXt − dCt

= r(Yt − qtXt)dt+ qt
(
Xtα(t,Xt)dt+Xtβ(t,Xt)d〈B〉t +Xtγ(t,Xt)dBt

)
− dCt

= rYtdt+
α(t,Xt)− r
γ(t,Xt)

qtXtγ(t,Xt)dt+
β(t,Xt)

γ(t,Xt)
qtXtγ(t,Xt)d〈B〉t + qtXtγ(t,Xt)dBt − dCt.

Setting

θ(t, x) :=
α(t, x)− r
γ(t, x)

, λ(t, x) :=
β(t, x)

γ(t, x)
, Zt := qtXtγ(t,Xt), and Kt := −Ct,

for 0 ≤ t ≤ T , the wealth process can be rewritten as the G-BSDE

Yt = YT −
∫ T

t

(
rYs + Zsθ(s,Xs)

)
ds−

∫ T

t

Zsλ(s,Xs)d〈B〉s −
∫ T

t

ZsdBs − (KT −Kt),

(4.2)

for t ∈ [0, T ], or, by the G-Itô formula, as

Ỹt = ỸT −
∫ T

t

θ(s,Xs)Z̃sds−
∫ T

t

λ(s,Xs)Z̃sd〈B〉s −
∫ T

t

Z̃sdBs −
(
K̃T − K̃t

)
, (4.3)

t ∈ [0, T ], using the discounted processes Ỹt := e−rtYt, Z̃t := e−rtZt and K̃t = e−rtKt, and the

generator functions f̃(t, x, y, z) := −zθ(t, x) and g̃(t, x, y, z) := −zλ(t, x), (t, x) ∈ [0, T ]×R+,

y, z ∈ R.

Next, we apply our G-stochastic ordering results to a model misspecification problem where

we estimate the impact of uncertain or ambiguous bounded drift coefficients α(t, x), β(t, x)

and volatility coefficient γ(t, x) on the superhedging prices of a contingent call claim with

convex payoff ỸT = ϕ(XT ).

Scenario 1: Suppose that the volatility γ(t, x) is ambiguous or uncertain, i.e., γ(t) ≤
γ(t, x) ≤ γ(t), and assume for simplicity that the drift coefficients α(t, x) and β(t, x) are

precisely known to the hedgers. In this case, the ambiguity of γ(t, x) yields a bound on the

superhedging price of the contingent claim by Theorems 3.1 and 3.7. Letting

θγ(t, x) :=
α(t, x)− r

γ(t)
, θγ(t, x) :=

α(t, x)− r
γ(t)

, λγ(t, x) :=
β(t, x)

γ(t)
, λγ(t, x) :=

β(t, x)

γ(t)
,
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by the relations M(t, x, y, z) = xzα(t, x)− xzθ(t, x)γ(t, x) = rxz and

Mγ(t, x, y, z) = xzα(t, x)−xzγ(t)θγ(t, x) = rxz, Mγ(t, x, y, z) = xzα(t, x)−xzγ(t)θγ(t, x) = rxz,

we check that the function M(t, x, y, z) = Mγ(t, x, y, z) = Mγ(t, x, y, z) is convex in x ∈ R
and in z ∈ R separately. Similarly, we have N(t, x, y, z) = xzβ(t, x) − xzγ(t, x)λ(t, x) = 0,

and

Nγ(t, x, y, z) = xzβ(t, x)−xzγ(t)λγ(t, x) = 0, Nγ(t, x, y, z) = xzβ(t, x)−xzγ(t)λγ(t, x) = 0,

hence N(t, x, y, z) = Nγ(t, x, y, z) = Nγ(t, x, y, z), t ∈ [0, T ], x, y, z ∈ R, and xγ(t) ≤
xγ(t, x) ≤ xγ(t), (t, x) ∈ [0, T ] × R+. Hence, all conditions in Theorem 3.1 hold true

and Conditions (E1)-(E2) of Theorem 3.7 are satisfied with η(t, x) = 0 and ζ(t, x) = rx.

We deduce the portfolio value inequalities EGγ
[
ϕ
(
X
γ

T

)]
≤ EG[ϕ(XT )] ≤ EGγ

[
ϕ
(
Xγ
T

)]
for ϕ

convex on R, where
(
X
γ

t

)
t∈[0,T ]

and
(
Xγ
t

)
t∈[0,T ]

represent the misspecified risky price processes

defined using γ(t) and γ(t) in (4.1), respectively.

Scenario 2: Suppose that the ambiguous or uncertain drift α(t, x) satisfies α(t) ≤ α(t, x) ≤
α(t), while the coefficients β(t, x), and γ(t, x) are precisely known to the hedgers. Here, in

contrast to the first scenario, the superhedging price of the contingent claim are not affected

by the ambiguity of the drift α(t, x). Let (Xα
t )t∈[0,T ] and (Xα

t )t∈[0,T ] denote the risky asset

price processes given by

dXα
s = α(t)Xα

s ds+Xα
s β(s,Xα

s )d〈B〉s +Xα
s γ(s,Xα

s )dBs,

dXα
s = α(t)Xα

s ds+Xα
s β(s,Xα

s )d〈B〉s +Xα
s γ(s,Xα

s )dBs,

where Xα
0 = Xα

0 = x0, and let

Ỹ α
t = ϕ(Xα

T )−
∫ T

t

θα(s,Xα
s )Z̃α

s ds−
∫ T

t

λ(s,Xα
s )Z̃α

s d〈B〉s −
∫ T

s

Z̃α
s dBs − dK̃α

s ,

Ỹ α
t = ϕ

(
Xα
T

)
−
∫ T

t

θα(s,Xα
s )Z̃α

s ds−
∫ T

t

λ(s,Xα
s )Z̃α

s d〈B〉s −
∫ T

s

Z̃α
s dBs − dK̃α

s , (4.4)

denote the corresponding discounted wealth processes, where θα(t, x) := (α(t) − r)/γ(t, x)

and θα(t, x) := (α(t) − r)/γ(t, x). The true superhedging price of the contingent claim at

t = 0, is defined by Ỹ0 := EG[ϕ(XT )], where
(
Ỹt
)
t∈[0,T ]

solves the G-BSDE (4.3). We check

that the functions M(t, x, y, z) := xzα(t, x)− xzθ(t, x)γ(t, x) and

Mα(t, x, y, z) := xzα(t)(t, x)−xzθα(t, x)γ(t, x), Mα(t, x, y, z) := xzα(t)−xzθα(t, x)γ(t, x),
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are separately convex in x ∈ R and in z ∈ R, as they satisfy

M(t, x, y, z) = Mα(t, x, y, z) = Mα(t)(t, x, y, z) = rxz,

t ∈ [0, T ], x, y, z ∈ R. We also have

N(t, x, y, z) = Nα(t, x, y, z) = Nα(t, x, y, z) := xzβ(t, x)− xzγ(t, x)λ(t, x) = 0,

t ∈ [0, T ], x, y, z ∈ R. Therefore (B1)-(B2) hold as equalities and, since X
(1)
0 = X

(2)
0 and the

volatility γ(t, x) is precisely known, the G-PDE (3.4) is the same for α(t) and α(t), hence

we have EG[ϕ(XT )] = EGα
[
ϕ
(
Xα
T

)]
= EGα

[
ϕ
(
Xα
T

)]
for ϕ convex on R.

Similarly, if the second drift β(t, x) is ambiguous or uncertain, i.e., β(t) ≤ β(t, x) ≤ β(t),

while α(t, x) and γ(t, x) are precisely determined by the hedgers. As in Scenario 2, we find

that the ambiguity of β(t, x) does not affect the superhedging price of the contingent claim.

In fact, letting
(
X
β

t

)
t∈[0,T ]

and
(
Xβ
t

)
t∈[0,T ]

represent the risky price processes correspond-

ing to β(t, x) = β(t) and β(t, x) = β(t), respectively, then EG
[
ϕ(XT )

]
= EGβ

[
ϕ
(
X
β

T

)]
=

EGβ
[
ϕ
(
Xβ
T

)]
, for ϕ convex on R.

A Convexity of nonlinear G-PDE solutions

In the sequel, for δ > 0 we consider the mollification of G defined by

Gδ(a) :=
1

δ

∫ ∞
−∞

ρ

(
a− b
δ

)
G(b)db, a ∈ R, (A.1)

where ρ is a mollifier on R, and we let

Fδ(t, x, y, z, w) = 2Gδ(H(t, x, y, z, w)) +M(t, x, y, z), (A.2)

and H(t, x, y, z, w) := wσ2(t, x)/2 + N(t, x, y, z). Denote by uδ(t, x) is the solution of the

following G-PDE

∂uδ
∂t

(t, x) + Fδ

(
t, x, uδ(t, x),

∂uδ
∂x

(t, x),
∂2uδ
∂x2

(t, x)

)
= 0, (t, x) ∈ [0, T )× R, (A.3)

with terminal condition uδ(T, x) = ϕ(x).

Theorem 2.9 is proved by adapting arguments of Bian and Guan (2008), using the con-

stant rank Theorem 2.3 therein and a new Lemma A.1. In order to deal with the lack of

smoothness of G(a) we use a family of smooth approximations Gδ of G as in (A.1), which
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admit derivatives up to the desired orders and still yield the convexity of u(t, x) after taking

limits of the corresponding solutions uδ(t, x). We note that, in the one-dimensional setting,

the constant rank Theorem 2.3 in Bian and Guan (2008), see also Theorem 1.2 in Bian

and Guan (2009), only requires convexity of the nonlinear drift M(t, x, y, z) and N(t, x, y, z)

in (x, y) ∈ R2 for all (t, z) ∈ [0, T ] × R, instead of global convexity in (x, y, z). Namely,

Condition (2.6) in Theorem 2.3 of Bian and Guan (2008) reduces to the condition

∂2F

∂x2

(
t, x, u(t, x),

∂u

∂x
(t, x), 0

)
+ 2b

∂2F

∂x∂y

(
t, x, u(t, x),

∂u

∂x
(t, x), 0

)
+b2∂

2F

∂y2

(
t, x, u(t, x),

∂u

∂x
(t, x), 0

)
≥ 0, t ∈ [0, T ], b, x ∈ R. (A.4)

In the sequel, we let h%,m(x) := (1 + x2)(m+1+%)/2+1 with % > 0 given in Condition (A5), and

for any K ∈ R and ε > 0 we define

vK(t, x) := e−Kth%,m(x) and uδ,ε(t, x) := uδ(t, x) + εvK(t, x), (t, x) ∈ [0, T ]× R,

and

FK,δ,ε(t, x, y, z, w) := −ε∂vK
∂t

(t, x) +M
(
t, x, y − εvK(t, x), z − ε∂vK

∂x
(t, x)

)
(A.5)

+ 2Gδ

(
H
(
t, x, y − εvK(t, x), z − ε∂vK

∂x
(t, x), w − ε∂

2vK
∂x2

(t, x)
))

, (t, x, y, z, w) ∈ [0, T ]× R4.

Lemma A.1 Under Conditions (A1)-(A5) and (H1)-(H4), for T = T (ε, %, δ) small enough

we can choose K ∈ R such that (x, y) 7→ FK,δ,ε(t, x, y, z, 0) defined in (A.5) satisfies (A.4).

Proof. We need to show that

S(b) :=
∂2FK,δ,ε
∂x2

(
t, x, uδ,ε(t, x),

∂uδ,ε
∂x

(t, x), 0
)

+ 2b
∂2FK,δ,ε
∂x∂y

(
t, x, uδ,ε(t, x),

∂uδ,ε
∂x

(t, x), 0
)

+ b2∂
2FK,δ,ε
∂y2

(
t, x, uδ,ε(t, x),

∂uδ,ε
∂x

(t, x), 0
)
≥ 0, b ∈ R.

By (A.5), we have

∂FK,δ,ε
∂x

(t, x, y, z, 0) = −ε∂
2vK
∂x∂t

(t, x) +
∂M

∂x

(
t, x, y − εvK(t, x), z − ε∂vK

∂x
(t, x)

)
+ 2

∂H

∂x

(
t, x, y − εvK(t, x), z − ε∂vK

∂x
(t, x),−ε∂

2vK
∂x2

(t, x)

)
G′δ,

and

∂FK,δ,ε
∂y

(t, x, y, z, 0) =
∂M

∂y

(
t, x, y − εvK(t, x), z − ε∂vK

∂x
(t, x)

)
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+ 2
∂H

∂y

(
t, x, y − εvK(t, x), z − ε∂vK

∂x
(t, x),−ε∂

2vK
∂x2

(t, x)

)
G′δ,

where we write for short G′δ := G′δ

(
H
(
t, x, y− εvK(t, x), z− ε∂vK

∂x
(t, x),−ε∂2vK

∂x2
(t, x)

))
. Sim-

ilarly, we have

∂2FK,δ,ε
∂x2

(
t, x, y, z, 0

)
= −ε ∂

3vK
∂x2∂t

(t, x) +
∂2M

∂x2

(
t, x, y − εvK(t, x), z − ε∂vK

∂x
(t, x)

)
+ 2

∂2H

∂x2

(
t, x, y − εvK(t, x), z − ε∂vK

∂x
(t, x),−ε∂

2vK
∂x2

(t, x)

)
G′δ

+ 2

(
∂H

∂x

(
t, x, y − εvK(t, x), z − ε∂vK

∂x
(t, x),−ε∂

2vK
∂x2

(t, x)

))2

G′′δ ,

and

∂2FK,δ,ε
∂x∂y

(t, x, y, z, 0) =
∂2M

∂x∂y

(
t, x, y − εvK(t, x), z − ε∂vK

∂x
(t, x)

)
+ 2

∂H

∂x

(
t, x, y − εvK(t, x), z − ∂vK

∂x
(t, x),−ε∂

2vK
∂x2

(t, x)

)
× ∂H

∂y

(
t, x, y − εvK(t, x), z − ε∂vK

∂x
(t, x),−ε∂

2vK
∂x2

(t, x)

)
G′′δ ,

and

∂2FK,δ,ε
∂y2

(t, x, y, z, 0) =
∂2M

∂y2

(
t, x, y − εvK(t, x), z − ε∂vK

∂x
(t, x)

)
+ 2

∂2H

∂y2

(
t, x, y − εvK(t, x), z − ∂vK

∂x
(t, x),−ε∂

2vK
∂x2

(t, x)

)
G′δ

+ 2

(
∂H

∂y

(
t, x, y − εvK(t, x), z − ε∂vK

∂x
(t, x),−ε∂

2vK
∂x2

(t, x)

))2

G′′δ .

Therefore, we can write S(b) = −ε ∂
3vK

∂x2∂t
(t, x) + S1(b) + 2S2(b)G′δ + 2S3(b)G′′δ , where

S1(b) =
∂2M

∂x2

(
t, x, uδ,ε(t, x),

∂uδ,ε
∂x

(t, x)
)

+ 2b
∂2M

∂x∂y

(
t, x, uδ,ε(t, x),

∂uδ,ε
∂x

(t, x)
)

+ b2∂
2M

∂y2

(
t, x, uδ,ε(t, x),

∂uδ,ε
∂x

(t, x)
)
,

and

S2(b) =
∂2H

∂x2

(
t, x, uδ,ε(t, x),

∂uδ,ε
∂x

(t, x),−ε∂
2vK
∂x2

(t, x)
)

+2b
∂2H

∂x∂y

(
t, x, uδ,ε(t, x),

∂uδ,ε
∂x

(t, x),−ε∂
2vK
∂x2

(t, x)
)
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+b2∂
2H

∂y2

(
t, x, uδ,ε(t, x),

∂uδ,ε
∂x

(t, x),−ε∂
2vK
∂x2

(t, x)
)
,

and

S3(b) =

(
∂H

∂x

(
t, x, uδ,ε(t, x),

∂uδ,ε
∂x

(t, x),−ε∂
2vK
∂x2

(t, x)
)

+ b
∂H

∂y

(
t, x, uδ,ε(t, x),

∂uδ,ε
∂x

(t, x),−ε∂
2vK
∂x2

(t, x)
))2

,

for all b ∈ R. Note that since G(a) is a convex function on R, so is Gδ(a). Thus, we have

S3(b)G′′δ ≥ 0, b ∈ R. Besides, we have 0 ≤ G′δ(a) ≤ σ2 + σ2, a ∈ R. Hence, proceeding as

in the proof of Lemma 7.3 in Ly and Privault (2021), under (A1)-(A5) and (H3)-(H4), for

T = T (ε, %, δ) small enough we can choose a positive constant K = K(ε, %, δ) such that

S1(b)− ε

2

∂3vK
∂x2∂t

(t, x) ≥ 0, 2S2(b)
∂Gδ

∂a
− ε

2

∂3vK
∂x2∂t

(t, x) ≥ 0, b ∈ R,

we conclude to S(b) ≥ 0 for all b ∈ R. �

Proof of Theorem 2.9. We extend the proof argument of Theorem 4.1 in Bian and Guan

(2008) by applying Theorem 2.3 therein, see also Theorem 7.1 in Ly and Privault (2021), to

mollified equations.

We start by proving the convexity of uδ(t, x) under (H1)-(H2), with ϕ in C5
b (R). Since

the function Fδ(t, x, y, z, w) defined by (A.2) is in C1,2([0, T ) × R4), the solution uδ(t, x) of

(A.3) can be shown to be in C2,4([0, T ) × R) as in Theorem 2.2 of Douglas et al. (1996),

by successively applying Schauder interior estimates to the difference quotients used to ap-

proximate the derivatives of uδ(t, x), see e.g. the inequality (4.15) in Theorem 4.5 of Urbas

(1996), and Theorem 6.17 of D. Gilbarg and Trudinger (2001), and Theorem 5.1 in Krylov

(1983). Besides, we note that by Proposition 2.8 there exists C > 0 such that∣∣∣∣∂2uδ
∂x2

(t, x)

∣∣∣∣ ≤ C(1 + x2)(m+1)/2, (t, x) ∈ [0, T ]× R. (A.6)

Next, we let Eδ,ε :=

{
(t, x) ∈ [0, T ]× R :

∂2uδ,ε
∂x2

(t, x) ≤ 0

}
and suppose that Eδ,ε 6= ∅.

From the relation h′′%,m(x) ≥ (1 + x2)(m+%+1)/2 and the bound (A.6) we get

∂2uδ,ε
∂x2

(t, x) ≥ εe−Kt(1 + x2)(m+%+1)/2 − C(1 + x2)(m+1)/2,
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therefore there exists Rε > 0 such that
∂2uδ,ε
∂x2

(t, x) > 0 for all |x| ≥ Rε, and we have

Eδ,ε ⊆ [0, T ] × B(0, Rε), where B(0, Rε) is the centered open ball with radius Rε, so that

Eδ,ε is compact. Consequently, the supremum

τ0 := sup
{
t ∈ [0, T ] : (t, x) ∈ Eδ,ε for some x ∈ R

}
is attained at some (τ0, x0) ∈ Eδ,ε with x0 ∈ B(0, Rε), such that

∂2uδ,ε
∂x2

(τ0, x0) ≤ 0. In

addition, by the convexity assumption on x 7→ uδ(T, x) we have

∂2uδ,ε
∂x2

(T, x) =
∂2uδ
∂x2

(T, x) + ε
∂2vK
∂x2

(T, x) ≥ εe−KTh′′%,m(x) > 0, x ∈ R,

hence τ0 < T and by the continuity of uδ,ε we have
∂2uδ,ε
∂x2

(τ0, x) ≥ 0, x ∈ R, since

∂2uδ,ε
∂x2

(t, x) > 0 for all t ∈ (τ0, T ) and x ∈ R. Consequently, the function uδ,ε(t, x) is

convex in x on [τ0, T ] × B(0, Rε). On the other hand, we note that
∂2uδ,ε
∂x2

(τ0, x0) = 0 for

x0 ∈ B(0, Rε), and that uδ,ε(t, x) satisfies the equation

∂uδ,ε
∂t

(t, x) + FK,δ,ε

(
t, x, uδ,ε(t, x),

∂uδ,ε
∂x

(t, x),
∂2uδ,ε
∂x2

(t, x)

)
= 0,

where FK,δ,ε(t, x, y, z, w) is defined in (A.5). By the constant rank Theorem 2.3 in Bian

and Guan (2008), see also Theorem 7.1 in Ly and Privault (2021) and Lemma A.1, we

deduce that for small enough T = T (ε, %, δ) the second derivative
∂2uδ,ε
∂x2

(t, x) vanishes on

[τ0, T )× B(0, Rε) hence τ0 = T , which is a contradiction showing that Eδ,ε = ∅. Therefore,

we have
∂2uδ
∂x2

(t, x) + ε
∂2vK
∂x2

(t, x) =
∂2uδ,ε
∂x2

(t, x) > 0, (t, x) ∈ [0, T ]× R,

and after letting ε tend to 0, we conclude that
∂2uδ
∂x2

(t, x) ≥ 0, (t, x) ∈ [0, T ] × R for

small enough T = T (ε, %, δ). This conclusion extends to all T > 0 by decomposing [0, T ]

into subintervals of lengths at most T (ε, %, δ). The convexity of the original solution u(t, x)

follows by taking the limit as δ → 0, as in D. Gilbarg and Trudinger (2001) or page 49 of Bian

and Guan (2008), see also Theorem 3.1 in Jakobsen and Karlsen (2002). Finally, in order to

relax Conditions (H1)-(H2) and ϕ in C5
b (R) we apply the continuous dependence Theorem C.1

after mollifying ϕ, b, h, σ, f , g, and approximating σ by min(max(σ(t, x), 1/n), n), n ≥ 1,

as in the proof of Theorem 3.1. �
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B Monotonicity of G-FBSDEs solutions

Lemma B.1 Assume that (A1)-(A3) hold. The solution (X t,x
s )t∈[s,T ] of the G-forward diffu-

sion equation (2.9) is q.s. non-decreasing in x for all s ∈ [t, T ] and t ∈ [0, T ].

Proof. Letting X̂ t,x,y
s := X t,y

s −X t,x
s for y ≥ x, s ∈ [t, T ], the processes,

b̂s :=
b(s,X t,y

s )− b(s,X t,x
s )

X t,y
s −X t,x

s

1{Xt,y
s 6=Xt,x

s }, ĥs :=
h(s,X t,y

s )− h(s,X t,x
s )

X t,y
s −X t,x

s

1{Xt,y
s 6=Xt,x

s },

and σ̂s :=
σ(s,X t,y

s )− σ(s,X t,x
s )

X t,y
s −X t,x

s

1{Xt,y
s 6=Xt,x

s } are bounded in Mp
G(0, T ), p > 1, and X̂ t,x,y

s

satisfies the equation

X̂ t,x,y
s = (y − x) +

∫ s

t

b̂rX̂rdr +

∫ s

t

ĥrX̂rd〈B〉r +

∫ s

t

σ̂rX̂rdBr.

which by (3.3) in Hu et al. (2014b) yields

X̂ t,x,y
s = (y − x) exp

(∫ s

t

b̂rdr +

∫ s

t

ĥrd〈B〉r +

∫ s

t

σ̂rdBr −
1

2

∫ s

t

σ̂2
rd〈B〉r

)
≥ 0.

�

Following Hu et al. (2014b), we will construct an auxiliary extended G̃-expectation space(
Ω̃T , L

1
G̃

(
Ω̃T

)
, ẼG

)
with Ω̃T := C0([0, T ],R2), where for A in the space S2 of 2× 2 symmetric

matrices we let

G̃(A) :=
1

2
sup

σ2≤ν≤σ2

tr

[
A

(
ν 1
1 ν−1

)]
, A ∈ S2.

Let (Bt)t≥0 and
(
B̃t

)
t≥0

be the canonical process in the extended space, with 〈B, B̃〉t = t.

Proof of Proposition 2.10. Letting Ŷs = Y t,y
s − Y t,x

s , Ẑs = Zt,y
s − Zt,x

s , K̂s = Kt,y
s −Kt,x

s and

ŶT = ϕ
(
X t,y
T

)
− ϕ

(
X t,x
T

)
for y ≥ x, s ∈ [t, T ], we have

Ŷs = ŶT +

∫ T

s

(
f(u,X t,y

u , Y t,y
u , Zt,y

u )− f(u,X t,x
u , Y t,x

u , Zt,x
u )
)
du−

∫ T

s

ẐudBu

+

∫ T

s

(
g(u,X t,y

u , Y t,y
u , Zt,y

u )− g(u,X t,x
u , Y t,x

u , Zt,x
u )
)
d〈B〉u −

∫ T

s

dK̂u.

Defining the processes

pu := f(u,X t,y
u , Y t,y

u , Zt,y
u )− f(u,X t,x

u , Y t,y
u , Zt,y

u )

au :=
f(u,X t,x

u , Y t,y
u , Zt,y

u )− f(u,X t,x
u , Y t,x

u , Zt,y
u )

Y t,y
u − Y t,x

u

1{Y t,yu 6=Y t,xu },

bu :=
f(u,X t,x

u , Y t,x
u , Zt,y

u )− f(u,X t,x
u , Y t,x

u , Zt,x
u )

Zt,y
u − Zt,x

u

1{Zt,xu 6=Zt,xu }, u ∈ [0, T ],
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and

qu := g(u,X t,y
u , Y t,y

u , Zt,y
u )− g(u,X t,x

u , Y t,y
u , Zt,y

u )

cu :=
g(u,X t,x

u , Y t,y
u , Zt,y

u )− g(u,X t,x
u , Y t,x

u , Zt,y
u )

Y t,y
u − Y t,x

u

1{Y t,yu 6=Y t,xu },

du :=
g(u,X t,x

u , Y t,x
u , Zt,y

u )− g(u,X t,x
u , Y t,x

u , Zt,x
u )

Zt,y
u − Zt,x

u

1{Zt,xu 6=Zt,xu }, u ∈ [0, T ],

which are (Ft)t∈[0,T ]-adapted in M2
G(0, T ), and using the decompositions

f(u,X t,y
u , Y t,y

u , Zt,y
u )− f(u,X t,x

u , Y t,x
u , Zt,x

u )

= f(u,X t,y
u , Y t,y

u , Zt,y
u )− f(u,X t,x

u , Y t,y
u , Zt,y

u ) + f(u,X t,x
u , Y t,y

u , Zt,y
u )− f(u,X t,x

u , Y t,x
u , Zt,y

u )

+ f(u,X t,x
u , Y t,x

u , Zt,y
u )− f(u,X t,x

u , Y t,x
u , Zt,x

u ),

and

g(u,X t,y
u , Y t,y

u , Zt,y
u )− g(u,X t,x

u , Y t,x
u , Zt,x

u )

= g(u,X t,y
u , Y t,y

u , Zt,y
u )− g(u,X t,x

u , Y t,y
u , Zt,y

u ) + g(u,X t,x
u , Y t,y

u , Zt,y
u )− g(u,X t,x

u , Y t,x
u , Zt,y

u )

+ g(u,X t,x
u , Y t,x

u , Zt,y
u )− g(u,X t,x

u , Y t,x
u , Zt,x

u ),

we have

Ŷs = ŶT +

∫ T

s

(
auŶu + buẐu + pu

)
du−

∫ T

s

ẐudBu +

∫ T

s

(
cuŶu + duẐu + qu

)
d〈B〉u−

∫ T

s

dK̂u,

s ∈ [0, T ]. Hence, by Theorem 3.2 in Hu et al. (2014b) we get

Ŷs =
1

Γt
ẼG
[
ΓT ŶT +

∫ T

t

puΓudu+

∫ T

t

quΓud〈B〉u
∣∣∣Ft] , (B.1)

where Γs = exp

(∫ s

t

(au − budu)du+

∫ u

t

cud〈B〉u
)
EBs E B̃s , and

EBs := exp

(∫ s

t

dudBu −
1

2

∫ s

t

d2
ud〈B〉u

)
, E B̃s := exp

(∫ s

t

budB̃u −
1

2

∫ s

t

b2
ud〈B̃〉u

)
,

0 ≤ t ≤ s ≤ T . By Lemma B.1, the solution (X t,x
s )s∈[t,T ] of the forward SDE (2.9) satisfies

X̂s = X t,y
s −X t,x

s ≥ 0 for all s ∈ [t, T ] if x ≤ y, and since f(s, x, y, z) and g(s, x, y, z) are non-

decreasing in x we have ps ≥ 0 and qs ≥ 0 q.s., 0 ≤ t ≤ s ≤ T . Since ϕ(x) is non-decreasing

we have ŶT = ϕ(X t,x
T ) − ϕ(X t,y

T ) ≥ 0 q.s., hence by (B.1) we have Ŷs = Y t,x
s − Y t,y

s ≥ 0,

s ∈ [t, T ], if x ≤ y, which implies monotonicity of
(
Y t,x
s

)
s∈[t,T ]

, hence we also get u(t, x) ≤
u(t, y), x ≤ y, t ∈ [0, T ], since u(t, x) = Y t,x

t . �
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C Continuous dependence of G-FBSDEs solutions

Theorems C.1 and C.2 are stated using convergence in LpG, p ≥ 1, and we note that if

lim
n→∞

EG[|Yn,t−Yt|2] = 0 then by Proposition 6.1.21 in Peng (2019) there exists a subsequence

(Ynk,t)k≥1 converging to Yt quasi-surely, t ∈ [0, T ]. The following result deals with continuous

dependence of G-BSDEs solutions on coefficients, see also Theorem 4.1 of Zhang and Chen

(2011) for a related result.

Theorem C.1 Consider the family of G-forward-backward stochastic differential equations

Xn,t = xn,0 +

∫ t

0

bn(s,Xn,s)ds+

∫ t

0

hn(s,Xn,s)d〈B〉s +

∫ t

0

σn(s,Xn,s)dBs,

Yn,t = ϕn(Xn,T ) +

∫ T

t

fn(s,Xn,s, Yn,s, Zn,s)ds+

∫ T

t

gn(s,Xn,s, Yn,s, Zn,s)d〈B〉s

−
∫ T

t

Zn,sdBs −
∫ T

t

dKn,s, t ∈ [0, T ],

where, for n ≥ 1, the coefficients bn, hn, σn, fn, gn, ϕn and b, h, σ, ϕ, f, g satisfy (A1)-(A3)

for a same C > 0. Assume that limn→∞ xn,0 = x0,

lim
n→∞

(
EG[|bn(t,Xt)− b(t,Xt)|4] +EG[|hn(t,Xt)−h(t,Xt)|4] +EG[|σn(t,Xt)−σ(t,Xt)|4]

)
= 0,

and

lim
n→∞

(
EG[|fn(t,Xt, Yt, Zt)− f(t,Xt, Y, Zt)|2] + EG[|gn(t,Xt, Yt, Zt)− g(t,Xt, Yt, Zt)|2]

)
= 0,

for all t ∈ [0, T ], and that limn→∞ EG[|ϕn(XT ) − ϕ(XT )|2] = 0. Then for all t ∈ [0, T ] we

have lim
n→∞

EG
[∣∣Yn,t − Yt∣∣2] = 0, where (Yt)t∈R+ solves the G-BSDE

Xt = x0 +

∫ t

0

b(s,Xs)ds+

∫ t

0

h(s,Xs)d〈B〉s +

∫ t

0

σ(s,Xs)dBs,

Yt = ϕ(XT ) +

∫ T

t

f(s,Xs, Ys, Zs)ds+

∫ T

t

g(s,Xs, Ys, Zs)d〈B〉s −
∫ T

t

ZsdBs −
∫ T

t

dKs.

Proof. For n ≥ 1, let Ŷn,t := Yn,t − Yt, X̂n,t := Xn,t − Xt, Ẑn,t := Zn,t − Zt, ϕ̂n(x) :=

ϕn(x)−ϕ(x), (t, x) ∈ [0, T ]×R. Applying the G-Itô formula to
∣∣Ŷn,t∣∣2, taking G-expectation

on both sides and noting that
∫ T
t

2Ŷn,sdKs is a martingale under EG, this yields

EG
[∣∣Ŷn,t∣∣2] ≤ EG

[
(ϕn(Xn,T )− ϕ(XT ))2

]
+ EG

[∫ T

t

2Ŷn,s
(
fn(s,Xn,s, Yn,s, Zn,s)− f(s,Xs, Ys, Zs)

)
ds
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+

∫ T

t

2Ŷn,s
(
gn(s,Xn,s, Yn,s, Zn,s)− g(s,Xs, Ys, Zs)

)
d〈B〉s −

∫ T

t

∣∣Ẑn,s∣∣2d〈B〉s] .
By the inequality 2ab ≤ (12C2)a2 + b2/(12C2), we have

2Ŷn,s
(
gn(s,Xn,s, Yn,s, Zn,s)− g(s,Xs, Ys, Zs)

)
≤ 12C2

∣∣Ŷn,s∣∣2 +
1

12C2

(
gn(s,Xn,s, Yn,s, Zn,s)− g(s,Xs, Ys, Zs)

)2
.

Letting ĝn(t, x, y, z) := gn(t, x, y, z)− g(t, x, y, z), t ∈ [0, T ], x, y, z ∈ R, we have(
gn(s,Xn,s, Yn,s, Zn,s)− g(s,Xs, Ys, Zs)

)2

≤ 2
(
gn(s,Xn,s, Yn,s, Zn,s)− gn(s,Xs, Ys, Zs)

)2
+ 2(ĝn(s,Xs, Ys, Zs))

2

≤ 6C2
((

1 +Xm
n,s +Xm

s

)2|Xn,s −Xs|2 + |Yn,s − Ys|2 + |Zn,s − Zs|2
)

+ 2(ĝn(s,Xs, Ys, Zs))
2.

Similarly, by the inequality 2ab ≤ (12C2/σ2)a2 + b2/(12C2/σ2), we have

2Ŷn,s
(
fn(s,Xn,s, Yn,s, Zn,s)− f(s,Xs, Ys, Zs)

)
≤ 12C2

σ2

∣∣Ŷn,s∣∣2 +
σ2

12C2

(
fn(s,Xn,s, Yn,s, Zn,s)− f(s,Xs, Ys, Zs)

)2
.

Letting f̂n(t, x, y, z) := fn(t, x, y, z)− f(t, x, y, z), t ∈ [0, T ], x, y, z ∈ R, we then have(
fn(s,Xn,s, Yn,s, Zn,s)− f(s,Xs, Ys, Zs)

)2

≤ 6C2
(
(1 +Xm

n,s +Xm
s )2|Xn,s −Xs|2 + |Yn,s − Ys|2 + |Zn,s − Zs|2

)
+ 2
(
f̂n(s,Xs, Ys, Zs)

)2
,

In addition, by the locally Lipschitz property of ϕn, we have

(ϕn(Xn,T )− ϕ(XT ))2 = (ϕn(Xn,T )− ϕn(XT ) + ϕ̂n(XT ))2

≤ 2(ϕn(Xn,T )− ϕn(XT ))2 + 2
(
ϕ̂n(XT )

)2 ≤ 2C2(1 +Xm
n,T +Xm

T )2|Xn,T −XT |2 + 2
(
ϕ̂n(XT )

)2
.

Combining the above estimates and noting that σ2
∫ T
t

∣∣Ẑn,s∣∣2ds ≤ ∫ Tt ∣∣Ẑn,s∣∣2d〈B〉s ≤ σ2
∫ T
t

∣∣Ẑn,s∣∣2ds,
by point of view of Corollary 3.5.5 in Peng (2019) we find

EG
[∣∣Ŷn,t∣∣2] ≤ 2C2EG

[
(1 +Xm

n,T +Xm
T )2
∣∣X̂n,T

∣∣2]+ 2EG
[(
ϕ̂n(XT )

)2]
+

(
12C2

σ2
+
σ2

2
+ 12C2σ2 +

σ2

2

)∫ T

t

EG
[∣∣Ŷn,s∣∣2]ds+

σ2 + σ2

2

∫ T

t

EG
[(

1 +Xm
n,s +Xm

s

)2∣∣X̂n,s

∣∣2]ds
+

σ2

6C2

∫ T

t

EG
[(
f̂n(s,Xs, Ys, Zs)

)2]
ds+

σ2

6C2

∫ T

t

EG
[
ĝn(s,Xs, Ys, Zs)

]2
ds,

By the Hölder inequality, and then by the Gronwall inequality, we get

EG
[∣∣Ŷn,t∣∣2] ≤ C ′

(
(1 + x2m

n,0 + x2m
0 )
(
EG
[∣∣X̂n,T

∣∣4])1/2
+ EG

[
ϕ̂2
n(XT )

]
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+
(
1 + x2m

n,0 + x2m
0

) ∫ T

t

(
EG
[∣∣X̂n,s

∣∣4])1/2
ds+

∫ T

t

(
EG
[
f̂ 2
n(s,Xs, Ys, Zs)

]
+ EG

[
ĝ2
n(s,Xs, Ys, Zs)

])
ds
)
,

where we used EG[|Xs|p] ≤ C∗(1 + |x0|p) for any s ∈ [0, T ] and p ≥ 2, where C∗ > 0 is a

constant depending on p, C, T,G, see e.g. Proposition 4.1 in Hu et al. (2014b). Therefore,

we have

EG
[∣∣Ŷn,t∣∣2]
≤ C ′′

((
1 + x2m

n,0 + x2m
0

)(
EG
[∣∣X̂n,T

∣∣4])1/2
+ (T − t)

(
1 + x2m

n,0 + x2m
0

)(
sup
s∈[t,T ]

EG
[∣∣X̂n,s

∣∣4])1/2)
+ C ′′EG

[
ϕ̂2
n(XT )

]
+ C ′′

(∫ T

t

EG
[
f̂ 2
n(s,Xs, Ys, Zs)

]
ds+

∫ T

t

EG
[
ĝ2
n(s,Xs, Ys, Zs)

]
ds

)
.

By Theorem C.2 below we have lim
n→∞

EG
[

supt∈[0,T ]

∣∣X̂n,t

∣∣4] = 0, hence, we conclude from the

bounds |f̂n(t, x, y, z)| ≤ 2C(|x|m+1 + |y| + |z|), |ĝn(t, x, y, z)| ≤ 2C(|x|m+1 + |y| + |z|) and∣∣ϕ̂n(x)
∣∣ ≤ 2C|x|m+1 and dominated convergence on the interval [0, T ]. �

The following result extends Theorem 9.7 in Mishura and Shevchenko (2017) from SDEs

under linear expectation framework to G-SDEs under G-expectation framework, see also

Theorem 3.1 of Zhang and Chen (2011) for a related result.

Theorem C.2 Let p ≥ 1. Assume that the coefficients b, h, σ, bn, hn, σn, n ≥ 0, satisfy

(A1)-(A3) for a same C > 0. Assume that limn→∞ xn,0 = x0 and

lim
n→∞

(
EG
[
|bn(t,Xt)−b(t,Xt)|2p

]
+EG

[
|hn(t,Xt)−h(t,Xt)|2p

]
+EG

[
|σn(t,Xt)−σ(t,Xt)|2p

])
= 0,

for all t ∈ [0, T ]. Then we have lim
n→∞

EG
[

supt∈[0,T ]

∣∣Xn,t −Xt

∣∣2p] = 0.

Proof. Letting ∆n(t) := EG
[

sups∈[0,t]

∣∣Xn,t −Xt

∣∣2p], we estimate

∆n(t) ≤ 22p−1

(∣∣xn,0 − x0

∣∣2p + EG

[
sup
s∈[0,t]

∣∣∣∣∫ s

0

(bn(u,Xn,u)− b(u,Xu))du

∣∣∣∣2p
]

+ EG

[
sup
s∈[0,t]

∣∣∣∣∫ s

0

(hn(u,Xn,u)− h(u,Xu))d〈B〉u
∣∣∣∣2p
]

+ EG

[
sup
s∈[0,t]

∣∣∣∣∫ s

0

(σn(u,Xn,u)− σ(u,Xu))dBu

∣∣∣∣2p
]
.

By the Burkholder-Davis-Gundy (B-D-G) inequality for G-Brownian motion, see Gao (2009),

we find

EG

[
sup
s∈[0,t]

∣∣∣∣∫ s

0

(σn(u,Xn,u)− σ(u,Xu))dBu

∣∣∣∣2p
]
≤ C1t

p−1

∫ t

0

EG
[
|σn(u,Xn,u)− σ(u,Xu)|2p

]
du

35



≤ C122p−1tp−1

(∫ t

0

EG
[
|σn(u,Xn,u)− σn(u,Xu)|2p

]
du+

∫ t

0

EG
[
|σn(u,Xu)− σ(u,Xu)|2p

]
du

)
≤ C122p−1tp−1

(
C2p

∫ t

0

∆n(u)du+

∫ t

0

EG
[
|σn(u,Xu)− σ(u,Xu)|2p

]
du

)
,

and

EG

[
sup
s∈[0,t]

∣∣∣∣∫ s

0

(hn(u,Xn,u)− h(u,Xu))d〈B〉u
∣∣∣∣2p
]
≤ C2t

2p−1

∫ t

0

EG
[∣∣hn(u,Xn,u)− h(u,Xu)

∣∣2p]du
≤ C222p−1t2p−1

(∫ t

0

EG
[
|hn(u,Xn,u)− hn(u,Xu)|2p

]
du+

∫ t

0

EG
[
|σn(u,Xu)− h(u,Xu)|2p

]
du

)
≤ C222p−1t2p−1

(
C2p

∫ t

0

∆n(u)du+

∫ t

0

EG
[
|hn(u,Xu)− h(u,Xu)|2p

]
du

)
,

for some C1, C2 > 0. In the same fashion, by the Hölder inequality, we get

EG

[
sup
s∈[0,t]

∣∣∣∣∫ s

0

(bn(u,Xn,u)− b(u,Xu))du

∣∣∣∣2p
]

≤ 22p−1t2p−1

(
C2p

∫ t

0

∆n(u)du+

∫ t

0

EG
[
|bn(u,Xu)− b(u,Xu)|2p

]
du

)
,

Summing up, we obtain

∆n(T ) ≤ C ′
(∣∣xn,0 − x0

∣∣2p +

∫ T

0

∆n(u)du+

∫ T

0

EG
[
|bn(u,Xu)− b(u,Xu)|2p

]
du

+

∫ T

0

EG
[
|hn(u,Xu)− h(u,Xu)|2p

]
du+

∫ T

0

EG
[
σn(u,Xu)− σ(u,Xu)|2p

]
du

)
,

and hence by the Gronwall inequality, we have

∆n(T ) ≤ C ′′
(∣∣xn,0 − x0

∣∣2p +

∫ T

0

EG
[
|bn(u,Xu)− b(u,Xu)|2p

]
du

+

∫ T

0

EG
[
|hn(u,Xu)− h(u,Xu)|2p

]
du+

∫ T

0

EG
[
|σn(u,Xu)− σ(u,Xu)|2p

]
du

)

Finally, by Proposition 4.1 in Hu et al. (2014b) we have

EG
[
|bn(u,Xu)− b(u,Xu)|2p

]
≤ 22p−1EG

[
|bn(u,Xu)|2p + |b(u,Xu)|2p

]
≤ 22pC2pEG

[
1 +

∣∣Xu

∣∣2p] ≤ 22pC2pC ′′′
(
1 + |x0|2p

)
<∞

for some C ′′′ > 0, and similarly for the sequences (hn)n≥1, (σn)n≥1, hence we conclude by

dominated convergence on the interval [0, T ]. �
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