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Abstract

In this paper, we consider fog radio access networks (F-RANs) consisting of cache-enabled device-

to-device (D2D) transmitters and fog access points (F-APs), which deliver data by exploiting cached

contents or leveraging a cloud processing. We consider three types of modes at a typical user, namely

D2D, F-AP and cooperative modes. In the D2D and the F-AP modes, when the user requests a content,

the user receives the content from a D2D transmitter and an F-AP caching the content, respectively. In

the cooperative mode, F-APs located near the user send data aided by a centralized cloud processing

unit. We also examine a mode selection algorithm in which the user adaptively selects one of the three

modes. In practical scenarios, to mitigate interference, the transmitters may not be placed close to each

other, and thus there may exist a form of repulsion among the transmitters’ locations. In this context,

we model the spatial distributions of the D2D transmitters and the F-APs as β-Ginibre point processes,

which reflect the repulsive behavior and contain the Poisson point process as a special case. Then, we

provide analytical expressions for the coverage probabilities in the F-RANs. Our results are corroborated

by Monte-Carlo simulations.

Index Terms

Fog computing, radio access networks, edge caching, device-to-device communications, repulsive

point process, Ginibre point process, stochastic geometry.

I. INTRODUCTION

With the growth of various multimedia services, demand for high data rate communications

has been explosively increasing [1]. Recently, as a promising solution to meet the demand, fog
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radio access networks (F-RANs) have attracted a lot of attention [2]. In the F-RANs, fog access

points (F-APs) are connected via fronthaul links to a centralized baseband signal processing

unit, and are endowed with caching capabilities to cache contents proactively. In this paper, we

investigate the performance of the F-RANs by modeling the spatial distribution of F-APs in the

networks as a β-Ginibre point process (GPP), which accounts for repulsion among the locations

of the F-APs and includes the Poisson point process (PPP) as a particular case.

A. Related Work and Motivations

Lately, cloud radio access networks (C-RANs), which mitigate the baseband signal processing

from distributed remote radio heads (RRHs) to centralized processors, have been recognized as

a technique to achieve a high spectral and energy efficiencies [3]. In the C-RANs, the RRHs

are linked to centralized control units via finite-capacity fronthaul links which carry information

about the baseband signals. In [4], a robust distributed compression strategy for uplink C-RANs

was developed. The authors in [5] proposed a precoding method for downlink C-RANs. By

assuming PPP distributed RRHs, the performance of the C-RANs was characterized in [6]–

[9]. The authors in [6] analyzed the downlink coverage probability of heterogeneous C-RANs

and the work in [7] presented the outage performance of downlink C-RANs where RRHs are

equipped with multiple antennas. Also, the ergodic capacity of uplink C-RANs with a distributed

beamforming was examined in [8]. The coverage probability of a low complexity antenna

selection algorithm for uplink C-RANs was analyzed in [9].

It was reported in [10] that an exponential growth of mobile data traffic is mainly driven

by on-demand video streaming. Delivering large volume of data from content providers to end

users incurs traffic congestion in backhaul links, which results in slow transmission rate and

high latency. As a means to alleviate the congestion, caching popular contents at the edge

of the networks has garnered significant interest [11]. The authors in [12] studied the content

placement problem in a wireless network consisting of caching helpers and wireless users. In [13],

both deterministic caching and random caching strategies for a wireless device-to-device (D2D)

caching network were proposed. The performance of caching wireless networks was investigated

in [14]–[17]. The work in [14] and [15] analyzed the outage probability of cache-enabled small-

cell networks with/without underlying macro cellular network, respectively, when the locations

of nodes in the networks are assumed to follow PPPs. Additionally, the coverage probability
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of cache-enabled D2D networks was characterized by modeling the spatial distribution of the

devices as a PPP in [16] and a Poisson cluster process in [17].

Recently, inspired by the advantages of C-RANs and caching networks, an evolution of the

C-RAN, called F-RAN, which allows the RRHs to be equipped with local caches, has been

considered as an emerging architecture for the next generation wireless networks [2]. In the

F-RANs, the RRHs with cache storage, called F-APs, deliver data to users by exploiting cached

contents or leveraging processing at a centralized unit. The authors in [18] developed joint cloud

and edge processing methods for the maximization of the minimum delivery rate considering

the fronthaul capacity. In [19], the interplay between cloud processing and edge caching in

the F-RANs was introduced by examining the fundamental information-theoretic limits of the

normalized delivery time. Tractable expressions for the effective capacity, which is defined as

a link-level quality of service metric, were derived in [20] when the locations of nodes follow

PPPs. In addition, the work in [21] investigated the coverage probability and the ergodic capacity

of the F-RANs with PPP distributed F-APs and D2D users.

In practical networks, in order to alleviate interference or increase coverage area, transmitters

in wireless networks may not be placed close to each other, and hence there may exist repulsion

among the locations of the transmitters [22], [23]. In this context, determinantal point processes

(DPPs), which can take the repulsive nature into account, have been adopted as the models for

various wireless networks [24]–[29]. In [24], the signal-to-interference ratio (SIR) distribution in

cellular networks modeled by Gauss, Cauchy and generalized gamma DPPs was characterized.

The GPP [30] is a special case of the DPP. The α-GPP (−1 ≤ α < 0) is a superposition

of −1/α independent GPPs [31]. The authors in [25] and [26] provided analytical expressions

for the performance of wireless sensor networks with/without a fractional channel inversion

power control, respectively. Another kind of parametrization of the GPP is the so-called β-GPP

(0 < β ≤ 1) which is a thinned and re-scaled GPP, generated by retaining each point of the GPP

independently with probability β [32]. Exploiting the specificities of the β-GPP, the coverage

probabilities in single-tier and heterogeneous cellular networks were analyzed in [27] and [28],

respectively. In addition, in [29], it has been observed that the β-GPP is a realistic model for

the locations of base stations.

It should be remarked that the previous works on F-RANs in [20] and [21] assumed that

the locations of nodes in the F-RANs follow PPPs due to its analytical simplicity. Despite the

fact that F-APs in practical F-RANs may experience a repulsive nature, the performance of the
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F-RANs, which takes the repulsion into account has not been studied yet. Therefore, in this

paper, we analyze the coverage probability of the F-RANs by modeling the spatial distribution

of the F-APs in the F-RANs as a β-GPP.

B. Contributions and Organization

In this paper, we study F-RANs consisting of cache-enabled D2D transmitters and F-APs.

Three types of user access modes are considered when a typical user requests a content, namely

D2D, F-AP and cooperative modes. In the D2D mode, the user receives the content from a D2D

transmitter which caches the content. An F-AP possessing the content delivers data to the user

in the F-AP mode. Lastly, in the cooperative mode, multiple F-APs transmit the content aided by

the centralized unit. Considering the three types of modes, we derive analytical expressions for

the coverage probability, which is the probability that the received SIR is higher than a certain

SIR threshold, when the locations of the D2D transmitters and the F-APs are assumed to follow

independent β-GPPs. The contributions of this paper are detailed as follows.

• In the D2D (or F-AP) mode, the typical user is associated with the closest D2D transmitter

(or F-AP) which caches the requested content and is within a distance. Under this setup,

the interference can be decomposed into three terms. For example, in the F-AP mode, there

exist interferences from the D2D transmitters and the F-APs with/without the requested

content. Unlike what happens in the PPP setting, when the locations of the F-APs follow a

β-GPP, the interferences from the F-APs with/without the requested content are correlated.

We obtain analytical expressions for the coverage probabilities in the D2D and the F-AP

modes by accounting for the correlation.

• In the cooperative mode, all F-APs within a distance from the user simultaneously transmit

data using a distributed beamforming [8]. We provide an approximation of the coverage

probability in this mode. In the specific case wherein the spatial distributions of the D2D

transmitters and the F-APs are modeled by the PPP and the β-GPP, respectively, we

derive another approximation of the coverage probability which has a lower computational

complexity.

• In addition, as a method to take full advantage of the centralized processing and the edge

caching in F-RANs, we consider a mode selection algorithm, which adaptively chooses

one of the three modes. The coverage probability of the network with the mode selection
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algorithm is investigated. From numerical simulation results, it is shown that a higher

coverage probability can be achieved by adopting the mode selection.

• For the β-GPP, the parameter β presents the degree of the repulsion, and the β-GPP weakly

converges to the PPP as β → 0. Motivated by this fact, we derive analytical results in the

PPP by letting β → 0 in our general results. In this sense, our analysis can be considered

as a generalization of the previous work in the networks driven by PPPs [21].

This paper is organized as follows. Section II presents the system model and reviews the

background on the β-GPP. We analyze the coverage probabilities of the three user access modes

and the mode selection algorithm in Section III. In Section IV, numerical simulation results are

provided to validate our analysis. Finally, the conclusions are drawn in Section V.

Throughout the paper, we use the following notations. P(A) and E[X] represent the probability

of an event A and the expectation of a random variable X , respectively. The bold notation is

adopted to denote a point x ∈ R2. The notations ∥x∥, |x| and x∗ stand for the Euclidean 2-norm

of x, Euclidean norm and conjugate of a complex scalar x, respectively. Lastly, Φ ∼ PPP (λ)

and Φ ∼ GPP (λ, β) stand for the cases where a point process Φ follows a PPP with intensity

λ and a β-GPP with intensity λ and repulsion parameter β, respectively. The list of the symbols

used in this paper and their definitions is provided in Table I.

II. SYSTEM MODEL AND PRELIMINARIES

A. Network model

In this paper, we investigate F-RANs comprising of cache-enabled D2D transmitters and F-

APs, which are equipped with caching storage units and connected to a centralized unit as

illustrated in Fig. 1. As explained previously, we consider three types of user access modes

for a typical user requesting a content c, namely D2D, F-AP and cooperative modes. In the

D2D (or F-AP) mode, the user is connected to the nearest D2D transmitter (or F-AP) which

stores the content c and is within the distance rD (or rF ). Here, rD and rF represent for the

maximum distances in the D2D and the F-AP modes, respectively. In the cooperative mode,

all F-APs within the distance rC , simultaneously send data to the user employing a distributed

beamforming aided by the centralized processing unit [8]. Also, we examine the mode selection

algorithm choosing one of the three modes in Section II-D.

In order to take into account the repulsive nature in practical networks [22], [23], we model

the spatial distributions of the D2D transmitters and the F-APs by independent β-GPPs ΦD and
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TABLE I

LIST OF SYMBOLS

Symbol Definition Symbol Definition

rD Maximum distance for the D2D mode λD Spatial intensity of ΦD

rF Maximum distance for the F-AP mode λF Spatial intensity of ΦF

rC Maximum distance for the cooperative mode βD Repulsion parameter of ΦD

ΦD β-GPP which models the distribution of the D2D transmitters βF Repulsion parameter of ΦF

ΦF β-GPP which models the distribution of the F-APs C Set of all contents

sD Size of cache storage at the D2D transmitters M The number of all contents

sF Size of cache storage at the F-APs δ Parameter for the Zipf distribution

ηDm Probability that a content cm ∈ C is cached at a D2D transmitter α Path loss exponent

ηFm Probability that a content cm ∈ C is cached at an F-AP γth SIR threshold

ξm Probability that a typical user requests a content cm ∈ C PF Transmit power at the F-APs

PD Transmit power at the D2D transmitters

Fig. 1. The fog radio access networks.

ΦF , respectively. The intensities of ΦD and ΦF are λD and λF , respectively, and βD and βF

denote the repulsion parameters of ΦD and ΦF , respectively1. Note that the β-GPP includes

the PPP as a special case. Thus, for example, we obtain the case with PPP distributed D2D

1When a portion of D2D transmitters (or F-APs) send signal at a given resource block, the spatial distribution of the active

D2D transmitters (or F-APs) can be obtained by thinning ΦD (or ΦF ).
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transmitters by letting βD go to zero.

B. Caching

Let us define a finite content category C = {c1, c2, . . . , cM} where cm is the m-th most popular

content for m = 1, . . . ,M . It is assumed that all contents have the same size, which is normalized

to one [14], [18], [21]. We assume that each D2D transmitter and each F-AP has a cache storage

of sizes sD and sF , respectively. Let us denote by ηDm and ηFm the probabilities that a content

cm ∈ C is cached at a D2D transmitter and an F-AP, respectively.

We consider two types of pre-fetching strategies respectively called random caching strategy

(RCS) and popularity-based caching strategy (PCS). For the RCS, each node randomly caches

files regardless of their popularity, and thus

ηDm = sD/M and ηFm = sF/M. (1)

For the PCS, each D2D transmitter and each F-AP proactively stores the sD and sF most popular

files, respectively. Hence, we have

ηDm =


1, if m ≤ sD,

0, otherwise,
and ηFm =


1, if m ≤ sF ,

0, otherwise.
(2)

Since each D2D transmitter caches contents independently from other D2D transmitters, for

a given content cm, the D2D transmitters can be divided into two groups, namely the D2D

transmitters which cache cm (ΦDm) and the D2D transmitters which do not (Φ̃Dm) where ΦDm ∪

Φ̃Dm = ΦD. In a similar fashion, the spatial distribution of the F-APs which have cm, and

the locations of the F-APs which do not, are respectively defined as ΦFm and Φ̃Fm where

ΦFm ∪ Φ̃Fm = ΦF . Then, from (1) and (2), the intensities of ΦDm , Φ̃Dm , ΦFm and Φ̃Fm are equal

to ηDmλD, (1− ηDm)λD, ηFmλF and (1− ηFm)λF , respectively.

It is assumed that the content popularity follows the Zipf distribution [33], and therefore the

probability that the m-th most popular content cm is requested is given by

ξm =
1

mδ

(
M∑
j=1

1

jδ

)−1

. (3)

Note that the lower indexed content has a higher popularity, i.e., ξi > ξj if i < j. Here, δ(≥ 0)

models the skewness of the popularity profile. When δ is large, only a few popular contents are

frequently accessed. As a special case, when δ = 0, the content popularity follows the uniform

distribution, i.e., ξm = 1/M for all m.
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C. SIR

Thanks to the stationarity of the β-GPP [32], without loss of generality, we assume that the

typical user is located at the origin o. First let us focus on the D2D mode. When the user requests

the content cm and the user is connected to the nearest D2D transmitter in ΦDm , we express the

SIR γDm as

γDm =
PDhDm,o∥xDm,o∥−α

IDm + IF
, (4)

where

Dm,o = argmin
i∈N s.t. xi∈ΦDm

∥xi∥, IF =
∑

k∈N s.t. xk∈ΦF

PFgk∥xk∥−α, (5)

IDm =
∑

k∈N\{Dm,o} s.t. xk∈ΦD

PDhk∥xk∥−α = ÎDm + ĨDm , (6)

ÎDm ≜
∑

k∈N\{Dm,o} s.t. xk∈ΦDm

PDhk∥xk∥−α, ĨDm ≜
∑

k∈N s.t. xk∈Φ̃Dm

PDhk∥xk∥−α,

where PD and PF represent the transmit powers at the D2D transmitters and the F-APs, re-

spectively. Here, α and hk denote the path loss exponent and the gain of the small-scale fading

channel between the user and the D2D transmitter located at xk, and gk indicates for the gain

of the small-scale fading channel between the user and the F-AP located at xk.

Next, for the F-AP mode, when the user accesses the content cm and receives the content

from the closest F-AP in ΦFm , the SIR γFm is written as

γFm =
PFgFm,o∥xFm,o∥−α

ID + IFm

, (7)

where

Fm,o = argmin
i∈N s.t. xi∈ΦFm

∥xi∥, ID =
∑

k∈N s.t. xk∈ΦD

PDhk∥xk∥−α, (8)

IFm =
∑

k∈N\{Fm,o} s.t. xk∈ΦF

PFgk∥xk∥−α = ÎFm + ĨFm , (9)

ÎFm ≜
∑

k∈N\{Fm,o} s.t. xk∈ΦFm

PFgk∥xk∥−α, ĨFm ≜
∑

k∈N s.t. xk∈Φ̃Fm

PFgk∥xk∥−α.

Lastly, in the cooperative mode, the F-APs within the distance rC deliver content to the user

by leveraging the centralized unit. More specifically, the centralized unit first sends the content

to those F-APs, and then coordinates the F-APs to send data simultaneously. It is assumed that

the distributed beamforming transmission, which can achieve performance similar to maximal
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ratio combining, is employed [8]. Then, the F-AP at xk transmits a signal by multiplying the data

by
√
PF g̃

∗
k∥xk∥−α/2

(∑
xk∈Φ̃F

gk∥xk∥−α
)−1/2, where g̃k stands for the small-scale fading channel

between the user and the F-AP located at xk (|g̃k|2 = gk), Φ̃F ≜ ΦF ∩Bo(rC) and Bo(r) denotes

the ball centered at the origin with radius r. Then, the SIR γC is given by

γC =

∑
xk∈Φ̃F

PFgk∥xk∥−α∑
xk∈Φ̂F

PFgk∥xk∥−α + ID
, (10)

where Φ̂F ≜ ΦF \ Φ̃F .

D. Coverage Probability

We define the coverage probability as the probability that the SIR is larger than a pre-defined

SIR threshold γth. Then, the coverage probabilities for the three modes are respectively equal to

PDm ≜ P
(
γDm ≥ γth, ∥xDm,o∥ ≤ rD

)
, (11)

PFm ≜ P
(
γFm ≥ γth, ∥xFm,o∥ ≤ rF

)
, (12)

PC ≜ P (γC ≥ γth) . (13)

When the typical user always operates in the D2D mode or the F-AP mode, the average

coverage probabilities PD,cov and PF,cov are respectively given by

PD,cov =
M∑

m=1

ξmPDm , (14)

PF,cov =
M∑

m=1

ξmPFm , (15)

where ξm is the probability that the user requests the content cm in (3). Note that PC in (13)

does not depend on the requested content, and thus the average coverage probability for the

cooperative mode is equal to PC .

Let us consider the scenario wherein the typical user judiciously selects one of the D2D, the

F-AP and the cooperative modes. To be specific, when the user accesses the content cm, if the

nearest D2D transmitter in ΦDm is within the distance rD (i.e., ∥xDm,o∥ ≤ rD), the user receives

the content from the D2D transmitter. If ∥xDm,o∥ > rD, the user is associated with the closest

F-AP in ΦFm when ∥xFm,o∥ ≤ rF . When ∥xDm,o∥ > rD and ∥xFm,o∥ > rF , all F-APs within rC

transmit data to the user after receiving the requested content from the centralized unit. Then,

we write the average coverage probability for the mode selection algorithm as

Pcov =
M∑

m=1

ξmPm, (16)
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where

Pm ≜ PDm + P̃Fm + P̃Cm , (17)

P̃Fm ≜ P
(
γFm ≥ γth, ∥xFm,o∥ ≤ rF , ∥xDm,o∥ > rD

)
, (18)

P̃Cm ≜ P
(
γC ≥ γth, ∥xFm,o∥ > rF , ∥xDm,o∥ > rD

)
. (19)

One may consider the scenario where the user first attempts to receive the content from an F-AP

and then from a D2D transmitter. Our analysis in Section III can also be applied to this scenario.

E. Preliminaries

Let us consider the β-GPP Φ = {xk}k∈N with intensity λ and repulsion parameter β. Then,

the set {∥xk∥2}k∈N has the same distribution as the set χ constructed from an i.i.d. sequence

{Bi}i∈N by deleting each Bi independently and with probability 1− β where Bi ∼ G (i, β/πλ)

and G(a, b) denotes a gamma random variable with shape parameter a and scale parameter b [32].

In this model, the received signal at the user from the D2D transmitter at xk becomes

PDhk∥xk∥−α = PDhkB
−α/2
D,k where BD,k ∼ G (k, βD/πλD). In addition, the sum of the re-

ceived signals at the user from the D2D transmitters is expressed as
∑

xk∈ΦD
PDhk∥xk∥−α =∑∞

k=1 PDhkB
−α/2
D,k ΞD,k where {ΞD,k} indicates a set of independent discrete random variables

with E [ΞD,k] = βD and ΞD,k ∈ {0, 1}. Similarly, we represent the sum of the received signals

at the user from the F-APs as
∑

xk∈ΦF
PFgk∥xk∥−α =

∑∞
k=1 PFgkB

−α/2
F,k ΞF,k where BF,k ∼

G (k, βF/πλF ) and {ΞF,k} is a set of independent random variables with mean βF and ΞF,k ∈

{0, 1}. Here, the probability density functions (PDFs) of BD,k and BF,k are respectively given

by

fBD,k
(x) =

xk−1(
βD

πλD

)k
Γ (k)

exp

(
−πλD

βD

x

)
, fBF,k

(x) =
xk−1(

βF

πλF

)k
Γ (k)

exp

(
−πλF

βF

x

)
. (20)

Before analyzing the coverage probability, let us derive the Laplace transforms which is

utilized in Section III. We denote the Laplace transform of a random variable X as LX(s) ≜

E [exp (−sX)]. Then, the Laplace transforms of IF and ID in (5) and (8) are respectively derived

as

LIF (s) = E

[
exp

(
−s

∞∑
k=1

PFgkB
−α/2
F,k ΞF,k

)]
= E

[
∞∏
k=1

exp
(
−sPFgkB

−α/2
F,k ΞF,k

)]

= E

[
∞∏
k=1

1

1 + sPFB
−α/2
F,k ΞF,k

]
= E

[
∞∏
k=1

(
βF

1 + sPFB
−α/2
F,k

+ 1− βF

)]
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=
∞∏
k=1

(∫ ∞

0

βF

1 + sPFx−α/2
fBF,k

(x) dx+ 1− βF

)
, (21)

LID(s) =
∞∏
k=1

(∫ ∞

0

βD

1 + sPDx−α/2
fBD,k

(x) dx+ 1− βD

)
. (22)

Now, we introduce the distributions of the contact distances ∥xDm,o∥ and ∥xFm,o∥. The cumu-

lative distribution functions (CDFs) of ∥xDm,o∥ and ∥xFm,o∥ are identified as

F∥xDm,o∥(x) = P
(
∥xDm,o∥ ≤ x

)
= 1− P (∀xi ∈ ΦDm , ∥xi∥ > x)

= 1−
∞∏
k=1

(
ηDmβDP

(
BD,k > x2

)
+1−ηDmβD

)
=1−

∞∏
k=1

(
1− ηDmβD

Γ(k)
γ

(
k,

πλD

βD

x2

))
, (23)

F∥xFm,o∥(x) = 1−
∞∏
k=1

(
1− ηFmβF

Γ(k)
γ

(
k,

πλF

βF

x2

))
, (24)

where γ(a, b) =
∫ b

0
ta−1e−t dt is the lower-incomplete gamma function.

When ΦD ∼ PPP (λD) and ΦF ∼ PPP (λF ), the CDFs of ∥xDm,o∥ and ∥xFm,o∥ are

respectively represented as [34]

F∥xDm,o∥(x) = 1− exp
(
−πηDmλDx

2
)
, F∥xFm,o∥(x) = 1− exp

(
−πηFmλFx

2
)
. (25)

Additionally, the PDFs of ∥xDm,o∥ and ∥xFm,o∥ are respectively given by

f∥xDm,o∥(x)=2πηDmλDx exp
(
−πηDmλDx

2
)
, f∥xFm,o∥(x)=2πηFmλFx exp

(
−πηFmλFx

2
)
. (26)

When ΦF ∼ PPP (λF ) and ΦD ∼ PPP (λD), LIF in (21) and LID in (22) can be simplified

as [34]

LIF (s) = exp

(
− 2π2λF

α sin
(
2π
α

)(sPF )
2/α

)
, LID(s) = exp

(
− 2π2λD

α sin
(
2π
α

)(sPD)
2/α

)
. (27)

We remark here that proceeding as in the proof of Theorem 2, one can prove the convergence

of the quantities in (21)-(22) to those in (27), which is due to the fact that the β-GPP tends to

the PPP in law as β goes to zero, cf. [32].

In addition, when ΦD ∼ PPP (λD) and ΦF ∼ PPP (λF ), the Laplace transform of IFm in (9)

is computed as

LIFm
(s, ∥xFm,o∥) = LÎFm

(s, ∥xFm,o∥)LĨFm
(s), (28)

LÎFm
(s, ∥xFm,o∥) = E

exp
−s

∑
xk∈ΦFm

PFgk∥xk∥−α
1{∥xk∥>∥xFm,o∥}


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= exp

(
−2πηFmλF

∫ ∞

∥xFm,o∥

x

1 + xα/(sPF )
dx

)
,

LĨFm
(s) = E

exp
−s

∑
xk∈Φ̃Fm

PFgk∥xk∥−α

 = exp

(
−2π2 (1− ηFm)λF

α sin
(
2π
α

) (sPF )
2/α

)
.

Similarly to (28), the Laplace transform of IDm in (6) becomes

LIDm
(s, ∥xDm,o∥) = LÎDm

(s, ∥xDm,o∥)LĨDm
(s), (29)

LÎDm
(s, ∥xDm,o∥) = exp

(
−2πηDmλD

∫ ∞

∥xDm,o∥

x

1 + xα/(sPD)
dx

)
,

LĨDm
(s) = exp

(
−2π2 (1− ηDm)λD

α sin
(
2π
α

) (sPD)
2/α

)
.

III. PERFORMANCE ANALYSIS

In this section, we introduce expressions for the coverage probabilities in Section II-D. First,

we examine the D2D, the F-AP and the cooperative modes. Then, the performance of mode

selection algorithm will be investigated.

A. D2D mode

When the user requests the content cm and it is associated with the nearest D2D transmitter

which has the content cm, we rewrite the SIR γDm in (4) as

γDm =
PDhDm,oB

−α/2
D,Dm,o∑

k∈N\{Dm,o} PDhkB
−α/2
D,k ΞD,k + IF

, (30)

where IF =
∑∞

k=1 PFgkB
−α/2
F,k ΞF,k. The expression for the coverage probability PDm in (11) is

identified in the following theorem.

Theorem 1. When the typical user requests the content cm, the coverage probability PDm in (11)

is expressed as

PDm = 2πηDmλD

∫ rD

0

LIF

(
γthz

α

PD

)
exp

(
−πλDz

2

βD

)
ΥDm

(
πλDz

2

βD

)
∆Dm

(
πλDz

2

βD

)
z dz,

(31)

where LIF (s) is defined in (21) and, for any x > 0, we have defined

ΥDm(x) =
∞∑
i=1

xi−1

Γ (i)

(
AηDm ,βD,i(x, γthx

α/2)
)−1

, (32)
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∆Dm(x) =
∞∏
k=1

AηDm ,βD,k(x, γthx
α/2), (33)

An,b,k(x, τ) = 1− b+

∫ ∞

x

nbνk−1 exp(−ν)

Γ(k) (1 + τν−α/2)
dν +

∫ ∞

0

(1− n)bνk−1 exp(−ν)

Γ(k) (1 + τν−α/2)
dν. (34)

Proof. See Appendix A.

When ΦD ∼ PPP (λD) and ΦF ∼ PPP (λF ), we obtain an expression for the coverage

probability PDm by letting βD → 0 and βF → 0, as presented in the following theorem.

Theorem 2. When ΦD ∼ PPP (λD), the coverage probability PDm in (11) is given by

PDm =

∫ rD

0

LIF

(
γthz

α

PD

)
LIDm

(
γthz

α

PD

, z

)
f∥xDm,o∥(z) dz, (35)

where LIF , LIDm
and f∥xDm,o∥ are defined in (21), (29) and (26), respectively. When ΦF ∼

PPP (λF ), the Laplace transform LIF (s) is equal to (27).

Proof. See Appendix B.

B. F-AP mode

When the user is connected to the closest F-AP located at xFm,o , the SIR γFm in (7) is written

as

γFm =
PFgFm,oB

−α/2
F,Fm,o

ID +
∑

k∈N\{Fm,o} PFgkB
−α/2
F,k ΞF,k

, (36)

where ID =
∑∞

k=1 PDhkB
−α/2
D,k ΞD,k. We derive an expression for the coverage probability PFm

in the following theorem.

Theorem 3. When the typical user requesting the content cm is associated with the nearest F-AP

which has the content and is within the distance rF , the coverage probability PFm in (12) is

written as

PFm = 2πηFmλF

∫ rF

0

LID

(
γthz

α

PF

)
exp

(
−πλF z

2

βF

)
ΥFm

(
πλF z

2

βF

)
∆Fm

(
πλF z

2

βF

)
z dz, (37)

where LID(s) is defined in (22) and for any x > 0 we set

ΥFm(x) =
∞∑
i=1

xi−1

Γ (i)

(
AηFm ,βF ,i(x, γthx

α/2)
)−1

, (38)

∆Fm(x) =
∞∏
k=1

AηFm ,βF ,k(x, γthx
α/2). (39)
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Here, AηFm ,βF ,i is defined in (34). In addition, if ΦD ∼ PPP (λD), LID is equal to (27).

Proof. We omit the proof since it is similar to that of Theorem 1.

When ΦD ∼ PPP (λD) and ΦF ∼ PPP (λF ), PFm is given by the following theorem.

Theorem 4. When ΦD ∼ PPP (λD) and ΦF ∼ PPP (λF ), the coverage probability PFm in (12)

is expressed as

PFm =

∫ rF

0

LIFm

(
γthz

α

PF

, z

)
LID

(
γthz

α

PF

)
f∥xFm,o∥(z) dz, (40)

where LIFm
, LID and f∥xFm,o∥ are defined in (28), (27) and (26), respectively.

Proof. We skip the proof as (40) is obtained by proceeding precisely as in the proof of Theorem 2.

C. Cooperative mode

In the cooperative mode, as can be seen in (10), the desired signal and the interference terms

are correlated, and thus it is difficult to derive an exact expression for the coverage probability

PC . To circumvent this difficulty, we neglect the interference
∑

xk∈Φ̂F
PFgk∥xk∥−α since the

interferers in Φ̂F are located farther than the distance rC . The SIR γC in (10) is consequently

approximated as

γC ≈
∑

xk∈Φ̃F
PFgk∥xk∥−α

ID
. (41)

Then, an approximation of the coverage probability PC in (13) is given by

PC ≈ P
(∑

xk∈Φ̃F
PFgk∥xk∥−α

ID
≥ γth

)
= P (Q ≥ IDγth)

=

∫ ∞

0

P (Q ≥ xγth) fID(x) dx =

∫ ∞

0

(1− FQ(xγth)) fID(x) dx, (42)

where Q ≜
∑

xk∈Φ̃F
PFgk∥xk∥−α. Note that the Laplace transform of ID is given by (22) and

the Laplace transform of Q can be derived as

LQ(s) = E

[
exp

(
−s

∞∑
k=1

PFgkB
−α/2
F,k ΞF,k1{BF,k≤r2C}

)]

= E

[
∞∏
k=1

exp
(
−sPFgkB

−α/2
F,k ΞF,k1{BF,k≤r2C}

)]
= E

 ∞∏
k=1

1

1 + sPFB
−α/2
F,k ΞF,k1{BF,k≤r2C}


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=
∞∏
k=1

(∫ ∞

0

βF

1 + sPFx−α/21{x≤r2C}
fBF,k

(x) dx+ 1− βF

)

=
∞∏
k=1

(∫ r2C

0

βF

1 + sPFx−α/2
fBF,k

(x) dx+ βF

∫ ∞

r2C

fBF,k
(x) dx+ 1− βF

)

=
∞∏
k=1

∫ r2C

0

βF

1 + sPFx−α/2
fBF,k

(x) dx+ 1− βF

γ
(
k, πλF

βF
r2C

)
Γ (k)

 . (43)

Note that FQ(x) and fID(x) in (42) can be evaluated by using the inverse Laplace transform

(ILT) [35]. For a function F , the ILT is defined as L−1{F}(x)= 1
2πi

limT→∞
∫ c+iT

c−iT
exp(sx)F (s) ds

where i ≜
√
−1 and c is a constant. Then, by applying the ILT, we have

FQ(x) =

∫ x

−∞
L−1 {LQ(s)} (t) dt = L−1

{
1

s
LQ(s)

}
(x), (44)

fID(x) = L−1
{
LPID

(s)
}
(x). (45)

Finally, by substituting (43)-(45) into (42), we obtain an approximation of PC in (42). We remark

that the ILTs in (44) and (45) can be readily computed by modern techniques, see e.g. [36].

As a special case, when ΦD ∼ PPP (λD), ΦF ∼ PPP (λF ) and rC → ∞, FQ(x) and fID(x)

are expressed in closed-forms as [37]

FQ(x) = 1−
∫ ∞

0

1

πu
exp

(
−ux− 2π2λF (PFu)

2/α

α tan
(
2π
α

) )
sin

(
2π2λF (PFu)

2/α

α

)
du, (46)

fID(x) =

∫ ∞

0

1

π
exp

(
−ux− 2π2λD(PDu)

2/α

α tan
(
2π
α

) )
sin

(
2π2λD(PDu)

2/α

α

)
du. (47)

Although we can evaluate the approximation of PC in (42) using the ILTs with the method

in [36], motivated by the fact that FQ(x) and fID(x) have closed-form expressions when ΦD ∼

PPP (λD), ΦF ∼ PPP (λF ) and rC → ∞, we introduce an approximation of PC for the scenario

where ΦD ∼ PPP (λD) and ΦF ∼ GPP (λF , βF ), which has a low computational complexity.

First, assuming that rC → ∞ allows us to derive upper-bounds of FQ(x) when ΦF ∼ PPP (λ̄F )

and ΦF ∼ GPP (λF , βF ). When ΦF ∼ PPP (λ̄F ), we have

FQ(x) = P

(
∞∑
k=1

PFgk∥xk∥−α < x

)
≤ P

(
∀k ∈ N, PFgk∥xk∥−α < x

)
= E

[
∞∏
k=1

P
(
gk ≤

x∥xk∥α

PF

)]
= E

[
∞∏
k=1

(
1− exp

(
−x∥xk∥α

PF

))]

= exp

(
−2πλ̄F

∫ ∞

0

exp

(
−rαx

PF

)
r dr

)
= exp

(
−
2πλ̄FΓ

(
2
α

)
α

(
PF

x

)2/α
)
. (48)
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On the other hand, if ΦF ∼ GPP (λF , βF ), an upper-bound of FQ(x) is given by

FQ(x) ≤ P
(
∀k ∈ N, PFgk∥xk∥−α < x

)
= P

(
∀k ∈ N, PFgkB

−α/2
F,k ΞF,k < x

)
=

∞∏
k=1

(
βFP

(
gk <

B
α/2
F,k x

PF

)
+ 1− βF

)
=

∞∏
k=1

(
βFE

[
1− exp

(
−
B

α/2
F,k x

PF

)]
+ 1− βF

)

=
∞∏
k=1

(
1− βF

∫ ∞

0

exp

(
−uα/2x

PF

)
fBF,k

(u) du

)
≜ F̄Q(x). (49)

We then choose the intensity of the PPP λ̄F which makes the upper-bounds in (48) and (49)

equal. By comparing (48) and (49), λ̄F can be identified as

λ̄F (x) =
1

2π
ln

(
1

F̄Q(x)

)
α

Γ
(
2
α

) ( x

PF

)2/α

. (50)

Finally, by replacing λF in (46) with λ̄F (x) in (50), and by using the results in (42) and (47), we

can compute an approximation of PC when ΦD ∼ PPP (λD) and ΦF ∼ GPP (λF , βF ) without

using the ILTs in (44) and (45). We confirm in our numerical simulations in Fig. 8 that this

approximation is tight.

D. Mode selection

In this subsection, we examine the coverage probability for the mode selection algorithm

in (16). When ΦD ∼ GPP (λD, βD) and ΦF ∼ GPP (λF , βF ), we derive an expression for P̃Fm

in (18) in the following theorem.

Theorem 5. When ΦD ∼ GPP (λD, βD) and ΦF ∼ GPP (λF , βF ), P̃Fm in (18) is expressed as

P̃Fm = 2πηFmλF

∫ rF

0

L̂ID

(
γthz

α

PF

)
exp

(
−πλF z

2

βF

)
ΥFm

(
πλF z

2

βF

)
∆Fm

(
πλF z

2

βF

)
z dz,

(51)

where ΥFm(z) and ∆Fm(z) are defined in (38) and (39), respectively. Here,

L̂ID(τ) = 2πηDmλD

∫ ∞

rD

1

1 + τPDz−α

× exp

(
−πλDz

2

βD

)
Υ̂Dm

(
πλDz

2

βD

, z2, τ

)
∆̂Dm

(
πλDz

2

βD

, z2, τ

)
z dz, (52)

Υ̂Dm(x, z
2, τ) =

∞∑
q=1

xq−1

Γ(q)

(
AηDm ,βD,q

(
x, τPDx

α/2z−α
))−1

, (53)

∆̂Dm(x, z
2, τ) =

∞∏
l=1

AηDm ,βD,l

(
x, τPDx

α/2z−α
)
, (54)
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where AηDm ,βD,q is defined in (34). When ΦD ∼ PPP (λD), L̂ID is given by

L̂ID(τ) =

∫ ∞

rD

1

1 + τPDz−α
LIDm

(τ, z)f∥xDm,o∥(z) dz. (55)

Proof. See Appendix C.

When ΦD ∼ PPP (λD) and ΦF ∼ PPP (λF ), we compute P̃Fm in (18) in the following

theorem.

Theorem 6. When ΦD ∼ PPP (λD) and ΦF ∼ PPP (λF ), P̃Fm in (18) is given by

P̃Fm =

∫ rF

0

L̂ID

(
γthz

α

PF

)
LIFm

(
γthz

α

PF

, z

)
f∥xFm,o∥(z) dz, (56)

where L̂ID and LIFm
are defined in (55) and (28), respectively.

Proof. We omit the proof since the proof is similar to that of Theorem 2.

Now, we focus on P̃Cm in (19). Unlike in the PPP setting, the event {γC ≥ γth} is not

independent of the events {∥xFm,o∥ > rF} and {∥xDm,o∥ > rD}, and therefore it is difficult to

obtain an exact expression for P̃Cm . To overcome this difficulty, we assume that the three events

are independent. More precisely, our approximation of P̃Cm is given by

P̃Cm = P
(
γC ≥ γth | ∥xFm,o∥ > rF , ∥xDm,o∥ > rD

)
P
(
∥xFm,o∥ > rF

)
P
(
∥xDm,o∥ > rD

)
≈ P (γ̃C ≥ γth)

(
1− F∥xFm,o∥(rF )

)(
1− F∥xDm,o∥(rD)

)
, (57)

where F∥xDm,o∥(x) and F∥xFm,o∥(x) are defined in (23) and (24), respectively. Here, γ̃C ≜

Q/(
∑

xk∈Φ̂F
PFgk∥xk∥−α + ID) ≈ Q/ID where Q ≜

∑
xk∈Φ̃F

PFgk∥xk∥−α
1{∥xFm,o∥>rF } and

ID =
∑∞

k=1 PDhkB
−α/2
D,k ΞD,k1{∥xDm,o∥>rD}. Note that, similarly to (42), we have

P (γ̃C ≥ γth) ≈
∫ ∞

0

(1− FQ(xγth)) fID(x) dx. (58)

The Laplace transforms of Q and ID can be respectively represented as

LQ(s) = E

 ∞∏
k=1

 ηFmβF

1 + sPFB
−α/2
F,k 1{r2F<BF,k≤r2C}

+
(1− ηFm)βF

1 + sPFB
−α/2
F,k 1{BF,k≤r2C}

+ 1− βF


=

∞∏
k=1

(∫ ∞

0

ηFmβF

1+sPFx−α/21{r2F<x≤r2C}
fBF,k

(x) dx+

∫ ∞

0

(1− ηFm)βF

1+sPFx−α/21{x≤r2C}
fBF,k

(x) dx+1−βF

)

=
∞∏
k=1

(∫ r2C

r2F

ηFmβF

1 + sPFx−α/2
fBF,k

(x) dx+

∫ r2C

0

(1− ηFm)βF

1 + sPFx−α/2
fBF,k

(x) dx
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TABLE II

SYSTEM PARAMETERS

Symbol rD rF rC βD βF PD PF M α

Value 15 m 100 m 500 m 1 1 3 dBm 23 dBm 100 4

+ 1− βF

Γ(k)

(
γ

(
k,

πλF

βF

r2C

)
− ηFmγ

(
k,

πλF

βF

r2F

)))
, (59)

LID(s) = E

 ∞∏
k=1

 ηDmβD

1 + sPDB
−α/2
D,k 1{r2D<BD,k}

+
(1− ηDm)βD

1 + sPDB
−α/2
D,k

+ 1− βD


=

∞∏
k=1

(∫ ∞

r2D

ηDmβD

1 + sPDx−α/2
fBD,k

(x) dx+

∫ ∞

0

(1− ηDm)βF

1 + sPDx−α/2
fBD,k

(x) dx

+ 1− βD +
ηDmβDγ

(
k, πλD

βD
r2D

)
Γ(k)

)
. (60)

By adopting the ILTs in (44) and (45), P̃Cm in (57) can be evaluated.

IV. SIMULATION RESULTS

In this section, we illustrate numerical simulation results to validate our analysis. In Figs. 2-10,

the lines and symbols are used to indicate the analytical and simulated results, respectively. For

brevity of presentation, we denote by the networks with PPP distributed D2D transmitters and

β-GPP distributed F-APs as PPP-GPP. Also, PPP-PPP and GPP-GPP are defined in the same

manner. Unless otherwise stated, we use the network parameters listed in Table II.

Figs. 2-4 exhibit the coverage probability for the D2D mode when λF = 5× 10−4. In Fig. 2,

we evaluate the coverage probability PDm in (31) when λD = 0.01 and ηDm = 1. We observe

that PDm is a decreasing function of γth. Also, PDm increases when rD grows as the probability

that there exist D2D transmitters having the accessed content becomes higher when rD gets

larger. Since a growth of the degree of repulsion results in a decrease of the contact distance,

PDm is enhanced when the distribution of the D2D transmitters follows a β-GPP. In addition,

it is shown that the impact of the distribution of the F-APs is marginal when rD = 5 and 7 m

since PDm is dominated by the signal from the associated D2D transmitter when rD is small.

Fig. 3 plots PDm in (31) in networks with γth = −15 dB. First, we see that PDm is an increasing

function of λD and ηDm as the intensity of the D2D transmitters caching the requested content

is equal to λDηDm . Note that PDm becomes lower when the spatial distribution of the F-APs is
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a β-GPP. This is due to the fact that the probability that interfering F-APs are located near the

typical user gets higher when there exists repulsion among the locations of the F-APs. Moreover,

it is observed that the influence of βD decreases as ηDm decays.

The average coverage probability PD,cov in (14) for PPP-GPP networks is examined in Fig. 4

when γth = −5 dB. Since the intensity of the D2D transmitters having the accessed content

grows as λD and sD become bigger, PD,cov decreases as λD and sD get smaller. Also, an increase

in δ leads to a growth of {ηDm}, and therefore PD,cov is an increasing function of δ. Moreover, by

comparing the cases “PCS (δ = 0)" and “RCS", we can infer that a higher PD,cov can be achieved
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Fig. 7. Coverage probability for the cooperative mode PC

as a function of rC .

by employing the PCS even when the content popularity follows the uniform distribution.

Figs. 5 and 6 present the coverage probability for the F-AP mode when λD = 10−3 and

γth = −5 dB. In Fig. 5, we plot the coverage probability PFm in (37) for various values of

ηFm . As λF and ηFm grow, the probability that there exist F-APs caching the requested content

becomes larger and the contact distance decreases, and hence PFm is an increasing function of

λF and ηFm . We remark that the interference from the F-APs gets bigger as λF increases. From

the observation that PFm is increased with λF , we deduce that the impact of the contact distance

is more pronounced than that of the interference. In addition, since the contact distance gets

smaller if there exists repulsion among the locations of the F-APs, PFm is enhanced when ΦF

follows a β-GPP.

Fig. 6 evaluates the average coverage probability for the F-AP mode PF,cov in (15) for the

networks where the locations of the D2D transmitters follow a PPP, λF = 10−4 and the PCS

strategy in (2) is employed. Since increases in sF and δ lead to a growth of the intensity of

ΦFm , PF,cov decays as sF and δ become lower. As expected, PF,cov increases as βF goes to one.

It is shown that PF,cov is sensitive to δ when sF is small. Also, the coverage probabilities with

different values of sF converge as δ increases since a small number of contents are frequently

requested by users when δ is large.

In Figs. 7 and 8, we illustrate the coverage probability for the cooperative mode PC in (13).

Fig. 7 establishes PC for the networks with λF = 10−4 and γth = −5 dB for different values of
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rC . Note that our approximation in (42) is tight when rC ≥ 150 m, which is a practical case.

The coverage probability PC decreases as λD increases since a higher λD results in a bigger

interference. In Fig. 8, we exhibit the coverage probability for the cooperative mode PC for

networks with λD = 10−3. It is shown that our approximation of PC for PPP-GPP networks

using (50) is accurate for various values of γth and λF . Moreover, we see from Figs. 7 and 8 that

PC decreases as the repulsion among the locations of the F-APs (or D2D transmitters) reduces

(or grows).

Figs. 9 and 10 examine the coverage probability for the mode selection algorithm when

rD = 10 m, rF = 50 m, sD = 30 and sF = 50. In Fig. 9, we demonstrate the coverage probability

Pm in (17) for GPP-GPP networks where the RCS in (1) is adopted and γth = −10 dB. In Fig. 9,

we consider the case where a typical user selects one of the D2D and the F-AP modes, and

therefore the coverage probability Pm in (17) is Pm = PDm + P̃Fm . First of all, it is confirmed

that our analysis for P̃Fm in (51) is valid. In addition, we observe that P̃Fm is increasing and

decreasing functions of λF and λD, respectively. A similar interpretation can be made for PDm .

An important point to note here is the fact that the trends of Pm with respect to λD for the

cases with λF = 10−4 and λF = 4 × 10−4 are different. More specifically, when λF = 10−4

(or λF = 4 × 10−4), Pm grows (or decays) as λD becomes larger. This phenomenon can be

explained by the fact that PDm (or P̃Fm) dominates Pm when λF is low (or high).

Fig. 10 evaluates the coverage probability Pcov in (16) for the PPP-GPP networks where
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the PCS in (2) is employed, λD = 2 × 10−3 and λF = 2 × 10−4. Here, we define P̂cov as

P̂cov ≜
∑M

m=1 ξm(PDm + P̃Fm) which indicates the coverage probability for the case where

the typical user selects one of the D2D and the F-AP modes. In Fig. 10, it is shown that the

approximation in (57) exhibits only negligible gaps compared to the simulated results. Also,

we see that by employing the mode selection algorithm, a high coverage probability can be

achieved, which is insensitive to δ. For example, when δ is low, the probability that there is no

D2D transmitter or F-AP having the accessed content increases, and therefore the user is more

likely to choose the cooperative mode. As a result, although PD,cov and P̂cov with δ = 0 are

smaller than those with δ = 1, Pcov with δ = 0 is almost identical to that with δ = 1.

V. CONCLUSION

In this paper, we have studied F-RANs where the locations of D2D transmitters and F-APs are

modeled as β-GPPs in order to reflect the repulsive nature of the networks. We have considered

three types of access modes, namely D2D, F-AP and cooperative modes. In the D2D and the F-AP

modes, requested contents are delivered by exploiting the proactive caching. In the cooperative

mode, data is transferred by leveraging a cloud processing. We have analyzed the coverage

probabilities for the three modes. Additionally, we have examined the coverage probability of the

mode selection algorithm which judiciously selects one of the three mode and takes full advantage

of the centralized processing and the edge caching. Numerical simulations have verified the

accuracy of our analytical results.



23

APPENDIX A

PROOF OF THEOREM 1

We begin by defining a sequence of discrete random variables {ϵD,i}i∈N which are independent

marks of ΦD such that ϵD,i ∈ {0, 1} and P(ϵD,i = 1) = ηDm . Here, {ϵD,i = 1} and {ϵD,i = 0}

are the events wherein the D2D transmitter at xi has the content cm and does not have it,

respectively. For any i ∈ N, we set

Ii :=
⋂

k∈N\{i}

{
BD,k ≥ BD,i or ϵD,k = 0 or ΞD,k = 0

}
,

as well as

Ji := Ii ∩ {ϵD,i = 1} ∩ {ΞD,i = 1},

and it is easy to check that the events {Ji}i∈N are disjoint almost surely. Additionally, on the

event Ji we have ∥xDm,o∥2 = BD,i. Consequently, we have

PDm ≜ P
(
γDm ≥ γth, ∥xDm,o∥ ≤ rD

)
=

∞∑
i=1

P
(
γDm ≥ γth, BD,i ≤ r2D, ϵD,i = 1, ΞD,i = 1, Ii

)
=

∞∑
i=1

P

(
PDhiB

−α/2
D,i∑

k∈N\{i} PDhkB
−α/2
D,k ΞD,k + IF

≥ γth, BD,i ≤ r2D, ϵD,i = 1, ΞD,i = 1, Ii

)
(61)

=
∞∑
i=1

P

(
hi ≥

γthB
α/2
D,i

PD

( ∑
k∈N\{i}

PDhkB
−α/2
D,k ΞD,k + IF

)
, BD,i ≤ r2D, Ii

)

× P(ϵD,i = 1, ΞD,i = 1)

= ηDmβD

∞∑
i=1

E

exp
−

γthB
α/2
D,i

PD

 ∑
k∈N\{i}

PDhkB
−α/2
D,k ΞD,k + IF

1{
BD,i≤r2D, Ii

}
= ηDmβD

∞∑
i=1

E

LIF

(
γthB

α/2
D,i

PD

) ∏
k∈N\{i}

exp
(
−γthB

α/2
D,i hkB

−α/2
D,k ΞD,k

)
1{

BD,i≤r2D, Ii

}
= ηDmβD

∞∑
i=1

E

[
LIF

(
γthB

α/2
D,i

PD

)
1{

BD,i≤r2D

}
×

∏
k∈N\{i}

[
1

1 + γthB
α/2
D,i B

−α/2
D,k ΞD,k

1{
BD,k≥BD,i or ϵD,k=0 or ΞD,k=0

}]]
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= ηDmβD

∞∑
i=1

E

[
LIF

(
γthB

α/2
D,i

PD

)
1{

BD,i≤r2D

}
×

∏
k∈N\{i}

[
1

1 + γthB
α/2
D,i B

−α/2
D,k ΞD,k

(
1{

ΞD,k=1
}1{

BD,k≥BD,i or ϵD,k=0
} + 1{

ΞD,k=0
})]]

= ηDmβD

∞∑
i=1

E

[
LIF

(
γthB

α/2
D,i

PD

)
1{

BD,i≤r2D

}
×

∏
k∈N\{i}

[
1− βD +

βD

1 + γthB
α/2
D,i B

−α/2
D,k

1{
BD,k≥BD,i or ϵD,k=0

}]]. (62)

We remark that 1{BD,k≥BD,i or ϵD,i=0} = 1{BD,k≥BD,i and ϵD,i=1} + 1{ϵD,i=0}, and therefore PDm

in (62) is computed as

PDm = ηDmβD

∞∑
i=1

E

[
LIF

(
γthB

α/2
D,i

PD

)
1{

BD,i≤r2D

}
×

∏
k∈N\{i}

[
1− βD +

ηDmβD

1 + γthB
α/2
D,i B

−α/2
D,k

1{
BD,k≥BD,i

} +
(1− ηDm)βD

1 + γthB
α/2
D,i B

−α/2
D,k

]]

= ηDmβD

∞∑
i=1

∫ r2D

0

LIF

(
γthu

α/2

PD

)
fBD,i

(u)
∏

k∈N\{i}

(
1− βD

+

∫ ∞

u

ηDmβD

1 + γthuα/2x−α/2
fBD,k

(x) dx+

∫ ∞

0

(1− ηDm) βD

1 + γthuα/2x−α/2
fBD,k

(x) dx

)
du

= 2ηDmβD

∞∑
i=1

∫ rD

0

LIF

(
γthz

α

PD

)
fBD,i

(z2)
∏

k∈N\{i}

(
1− βD

+

∫ ∞

z2

ηDmβD

1 + γthzαx−α/2
fBD,k

(x) dx+

∫ ∞

0

(1− ηDm) βD

1 + γthzαx−α/2
fBD,k

(x) dx

)
z dz. (63)

Here, by (20) and a change of variable, the inner integral terms in (63) can be rewritten as∫ ∞

z2

ηDmβD

1 + γthzαx−α/2
fBD,k

(x) dx =

∫ ∞

πλDz2/βD

ηDmβDν
k−1 exp(−ν)

Γ(k)

(
1 + γth

(
πλDz2

βD

)α/2
ν−α/2

) dν, (64)

∫ ∞

0

(1− ηDm) βD

1 + γthzαx−α/2
fBD,k

(x) dx =

∫ ∞

0

(1− ηDm) βDν
k−1 exp(−ν)

Γ(k)

(
1 + γth

(
πλDz2

βD

)α/2
ν−α/2

) dν. (65)

By plugging (64) and (65) into (63), we obtain

PDm = 2πηDmλD

∞∑
i=1

∫ rD

0

LIF

(
γthz

α

PD

) (πλDz2

βD

)i−1

exp
(
−πλDz2

βD

)
Γ(i)
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×
∏

k∈N\{i}

(
1− βD +

∫ ∞

πλDz2/βD

ηDmβDν
k−1 exp(−ν)

Γ(k)

(
1 + γth

(
πλDz2

βD

)α/2
ν−α/2

) dν

+

∫ ∞

0

(1− ηDm) βDν
k−1 exp(−ν)

Γ(k)

(
1 + γth

(
πλDz2

βD

)α/2
ν−α/2

) dν

)
z dz,

which concludes the proof.

APPENDIX B

PROOF OF THEOREM 2

The aim of the proof is to compute the limit of (31) as βD goes to zero. First, note that for

any x > 0 we have

0 ≤
∫ ∞

x

ηDmβDν
k−1 exp(−ν)

Γ(k) (1 + γthxα/2ν−α/2)
dν ≤

∫ ∞

0

ηDmβDν
k−1 exp(−ν)

Γ(k)
dν = ηDmβD, (66)

and similarly

0 ≤
∫ ∞

0

(1− ηDm)βDν
i−1 exp(−ν)

Γ(i) (1 + γthxα/2ν−α/2)
dν ≤ (1− ηDm)βD. (67)

Thus, taking x = πλDz
2/βD we obtain

1 ≤ exp

(
−πλDz

2

βD

)
ΥDm

(
πλDz

2

βD

)
≤ (1− βD)

−1, (68)

which implies

exp

(
−πλDz

2

βD

)
ΥDm

(
πλDz

2

βD

)
−−−→
βD→0

1. (69)

Second, let us fix ε > 0 and x > 0. By (66) and (67), for any k ≥ 1 we have

0 ≤ βD −
∫ ∞

x/βD

ηDmβDν
k−1 exp(−ν)

Γ(k) (1 + γthxα/2(νβD)−α/2)
dν −

∫ ∞

0

(1− ηDm)βDν
k−1 exp(−ν)

Γ(k) (1 + γthxα/2(νβD)−α/2)
dν ≤ βD,

(70)

and additionally we note that

βD −
∫ ∞

x/βD

ηDmβDν
k−1 exp(−ν)

Γ(k) (1 + γthxα/2(νβD)−α/2)
dν −

∫ ∞

0

(1− ηDm)βDν
k−1 exp(−ν)

Γ(k) (1 + γthxα/2(νβD)−α/2)
dν

=

∫ x/βD

0

ηDmβDν
k−1 exp(−ν)

Γ(k) (1 + γthxα/2(νβD)−α/2)
dν +

∫ ∞

0

βDν
k−1 exp(−ν)

Γ(k) (1 + (νβD)α/2x−α/2/γth)
dν. (71)

For x sufficiently small, the inequalities −(1+ε)x ≤ ln(1−x) ≤ −x hold, and therefore by (70)

and (71), for βD sufficiently small we have

− (1 + ε)

(∫ x/βD

0

ηDmβDν
k−1 exp(−ν)

Γ(k) (1 + γthxα/2(νβD)−α/2)
dν +

∫ ∞

0

βDν
k−1 exp(−ν)

Γ(k) (1 + (νβD)α/2x−α/2/γth)
dν

)
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≤ ln

(
1−βD+

∫ ∞

x/βD

ηDmβDν
k−1 exp(−ν)

Γ(k) (1 + γthxα/2(νβD)−α/2)
dν+

∫ ∞

0

(1− ηDm)βDν
k−1 exp(−ν)

Γ(k) (1 + γthxα/2(νβD)−α/2)
dν

)
≤ −

∫ x/βD

0

ηDmβDν
k−1 exp(−ν)

Γ(k) (1 + γthxα/2(νβD)−α/2)
dν −

∫ ∞

0

βDν
k−1 exp(−ν)

Γ(k) (1 + (νβD)α/2x−α/2/γth)
dν,

for all k ≥ 1. We deduce from the above inequalities that for βD sufficiently small the following

holds:

exp

(
−(1+ε)

(∫ x/βD

0

ηDmβD dν

1 + γthxα/2(νβD)−α/2
+

∫ ∞

0

βD dν

1 + (νβD)α/2x−α/2/γth

))
≤ ∆Dm

(
x

βD

)
≤ exp

(
−
∫ x/βD

0

ηDmβD

1 + γthxα/2(νβD)−α/2
dν −

∫ ∞

0

βD

1 + (νβD)α/2x−α/2/γth
dν

)
,

and so by change of variable,

exp

(
−(1 + ε)

(∫ x

0

ηDm dy

1 + γthxα/2y−α/2
+

∫ ∞

0

dy

1 + yα/2x−α/2/γth

))
≤ ∆Dm

(
x

βD

)
≤ exp

(
−
∫ x

0

ηDm dy

1 + γthxα/2y−α/2
−
∫ ∞

0

dy

1 + yα/2x−α/2/γth

)
. (72)

Since the above is true for all ε > 0, we obtain

∆Dm

(
x

βD

)
−−−→
βD→0

exp

(
−
∫ x

0

ηDm dy

1 + γthxα/2y−α/2
−
∫ ∞

0

dy

1 + yα/2x−α/2/γth

)
= exp

(
−ηDm

∫ x

0

(
1− 1

1 + yα/2x−α/2/γth

)
dy −

∫ ∞

0

dy

1 + yα/2x−α/2/γth

)
= exp

(
−ηDmx− ηDm

∫ ∞

x

dy

1 + yα/2x−α/2/γth
−
∫ ∞

0

(1− ηDm) dy

1 + yα/2x−α/2/γth

)
.

By taking x = πλDz
2 in the above series of equations, we get

∆Dm

(
πλDz

2

βD

)
−−−→
βD→0

exp

(
−πηDmλDz

2−ηDm

∫ ∞

πλDz2

dy

1+yα/2(πλDz2)−α/2/γth
−
∫ ∞

0

(1−ηDm) dy

1+yα/2(πλDz2)−α/2/γth

)
= exp

(
−πηDmλDz

2−2πλDηDm

∫ ∞

z

v dv

1+vαz−α/γth
−(1−ηDm)γ

2/α
th πλDz

2

∫ ∞

0

du

1+uα/2

)
= exp

(
−πηDmλDz

2 − 2πλDηDm

∫ ∞

z

v dv

1 + vα/(γthzα)
− 2π2(1− ηDm)(γthz

α)2/αλD

α sin(2π/α)

)
= exp(−πηDmλDz

2)LIDm

(
γthz

α

PD

, z

)
. (73)

By the bounds given in (68) and (72) and the almost sure convergence proved in (69) and (73),

one may apply the dominated convergence theorem to prove the convergence of (31) to (35) as

βD goes to zero.
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Lastly, when the locations of the F-APs are modeled by a PPP, LIF is given by (27), and this

concludes the proof.

APPENDIX C

PROOF OF THEOREM 5

We define the sequence {ϵF,i}i∈N analogously to {ϵD,i}i∈N in Appendix A. Additionally, for

any i ∈ N we set

Ki :=
⋂

k∈N\{i}

{
BF,k ≥ BF,i or ϵF,k = 0 or ΞF,k = 0

}
,

as well as

Li := Ki ∩ {ϵF,i = 1} ∩ {ΞF,i = 1}.

Letting ID = PDhqB
−α/2
D,q +

∑
l ̸=q PDhlB

−α/2
D,l ΞD,l and proceeding as in (61), we have

P̃Fm = P
(
γFm ≥ γth, ∥xFm,o∥ ≤ rF , ∥xDm,o∥ > rD

)
=

∞∑
i=1

∞∑
q=1

P
(

PFgiB
−α/2
F,i

ID +
∑

k∈N\{i} PFgkB
−α/2
F,k ΞF,k

≥ γth, BF,i ≤ r2F , BD,q > r2D,

ϵD,q = 1, ΞD,q = 1, Iq, ϵF,i = 1, ΞF,i = 1, Ki

)
= ηFmβFηDmβD

∞∑
i=1

∞∑
q=1

Ti,q. (74)

Additionally, Ti,q above can be computed as

Ti,q ≜ P

gi ≥
γthB

α/2
F,i

PF

 ∑
k∈N\{i}

PFgkB
−α/2
F,k ΞF,k + ID

 , BF,i ≤ r2F , Ki, BD,q > r2D, Iq


= E

exp
−

γthB
α/2
F,i

PF

 ∑
k∈N\{i}

PFgkB
−α/2
F,k ΞF,k + ID

1{
BF,i≤r2F , Ki

}1{
BD,q>r2D, Iq

}
= E

[ ∏
k∈N\{i}

exp
(
−γthB

α/2
F,i gkB

−α/2
F,k ΞF,k

)
1{

BF,i≤r2F , Ki

} exp(−γthB
α/2
F,i

PF

PDhqB
−α/2
D,q

)

×
∏

l∈N\{q}

exp

(
−
γthB

α/2
F,i

PF

PDhlB
−α/2
D,l

)
1{

BD,q>r2D, Iq

}]

= E

[ ∏
k∈N\{i}

1{
BF,i≤r2F , Ki

}
1 + γthB

α/2
F,i B

−α/2
F,k ΞF,k

· 1

1 +
γthB

α/2
F,i

PF
PDB

−α/2
D,q

∏
l∈N\{q}

1{
BD,q>r2D, Iq

}
1 +

γthB
α/2
F,i

PF
PDB

−α/2
D,l

]
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= E

[ ∏
k∈N\{i}

1{
BF,i≤r2F , Ki

}
1 + γthB

α/2
F,i B

−α/2
F,k ΞF,k

Tq

(
γthB

α/2
F,i

PF

)]
, (75)

where, recalling that AηDm ,βD,l is defined in (34), we set

Tq(τ) ≜ E

 1

1 + τPDB
−α/2
D,q

∏
l∈N\{q}

1{
BD,q>r2D, Iq

}
1 + τPDB

−α/2
D,l


= E

[
1

1 + τPDB
−α/2
D,q

∏
l∈N\{q}

(
1− βD +

βD

1 + τPDB
−α/2
D,l

1{
BD,l≥BD,q or ϵD,l=0

})1{BD,q>r2D}

]

= E

[
1

1 + τPDB
−α/2
D,q

∏
l∈N\{q}

1− βD +
ηDmβD1

{
BD,l>BD,q

}
1 + τPDB

−α/2
D,l

+
(1− ηDm)βD

1 + τPDB
−α/2
D,l

1{
BD,q>r2D

}]

=

∫ ∞

r2D

1

1 + τPDy−α/2
fBD,q

(y)
∏

l∈N\{q}

AηDm ,βD,l

(
πλDy

βD

, τPD

(πλD

βD

)α/2)
dy. (76)

Here, we have skipped some steps since the arguments are identical to those in (62). Defining

L̂ID(τ) = ηDmβD

∑∞
q=1 Tq(τ), by the change of variables z =

√
y, we find that L̂ID(τ) is equal

to (52).

Then, by plugging (75) into (74) and again proceeding as in Appendix A, we rewrite P̃Fm as

P̃Fm = ηFmβFηDmβD

∞∑
i=1

∞∑
q=1

E

[
Tq

(
γthB

α/2
F,i

PF

) ∏
k∈N\{i}

1{
BF,i≤r2F , Ki

}
1 + γthB

α/2
F,i B

−α/2
F,k ΞF,k

]

= ηFmβF

∞∑
i=1

E

[
L̂ID

(
γthB

α/2
F,i

PF

) ∏
k∈N\{i}

1{
BF,i≤r2F , Ki

}
1 + γthB

α/2
F,i B

−α/2
F,k ΞF,k

]

= ηFmβF

∫ πλF
βF

r2F

0

L̂ID

(
γth
PF

(
βFu

πλF

)α/2
)
exp (−u)ΥFm(u)∆Fm(u) du, (77)

where ΥFm(z) and ∆Fm(z) are defined in (38) and (39), respectively. Finally, by the change of

variable z =
√
βFu/(πλF ), we obtain (51).

It remains to prove that L̂ID is given by (55) when ΦD ∼ PPP (λD), and we prove this by

taking the limit as βD goes to zero. For this, it suffices to note that the proof of Appendix B

can be adapted to our setting by replacing γth with τPDz
−α; indeed this is clear by comparing

the definitions (32)-(33) with those in (53)-(54). In particular, for any fixed z > 0, by (69) we

deduce

exp

(
−πλDz

2

βD

)
Υ̂Dm

(
πλDz

2

βD

, z2, τ

)
−−−→
βD→0

1,
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and by (73) we get

∆̂Dm

(
πλDz

2

βD

, z2, τ

)
−−−→
βD→0

exp

(
−ηDmπλDz

2 − ηDm

∫ ∞

πλDz2

dy

1 + yα/2(πλD)−α/2/(τPD)
−
∫ ∞

0

(1− ηDm) dy

1 + yα/2(πλD)−α/2/(τPD)

)
= exp(−πηDmλDz

2)LIDm

(
τ, z
)
.

The dominated convergence theorem along with the almost everywhere convergence yields (55).
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