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Abstract

We propose an approximation scheme for the pricing of yield options in
the CIR model using conditional moment matching based on the gamma and
lognormal distributions. This method is fast and simple to implement, and
it shows a high degree of accuracy without being subject to the numerical
instabilities that can be encountered with more sophisticated approaches.
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1 Introduction

Bonds and bond options on the Cox-Ingersoll-Ross [4] (CIR) stochastic differential

equation

dS, = (a — bSy)dt 4+ o/ S, dW, (1.1)

have been priced by closed form expressions in [11] and [13] using the Girsanov theorem

and change of numeraire. As for average rate options on the time integral

T
AT = / Stdt
0



of the mean reverting process (S;)icr, , no closed form solutions are available and such
options have been priced in [8] and in [3] by numerical Laplace and Fourier transform
inversion. Closed form series expansions for the joint probability density function of
(St, Ar) and for the marginal density of Ar have been derived in [6] and [5], respec-
tively using special functions and complex recursion arguments. These expressions

have been used for pricing via truncated series when a = 0 in [6], and when a > 0 in

[5]-

In this paper we develop a conditional moment matching technique for the fast ap-
proximation of option prices on average yields, using single and double integrals. For
this, we fit the parameters of the lognormal and gamma densities based on the condi-
tional moments of Ay given S = y. An option with payoff ¢(Sr, Ar) will be priced

via the approximation

Elo(Ar. 57)] = / / 6, 9) finp, 50y y)ddy

~ [ ] den)ius)dofs )i
o Jo
where f(a,,sp) is the joint probability density of (Ar,Sr), fs,(y) is the probability

density of Sr, and fAT|ST:x(y) is a lognormal or gamma approximation of the condi-
tional density of Ar given Sp = y. This approach can be regarded as an extension of
existing moment matching techniques for the pricing of Asian options, see e.g. [10]
for the approximation of fOT Sudu by a lognormal random variable, and [12] for the

conditional case.

While retaining a high degree of accuracy, our method provides a simpler alternative in
comparison with the existing literature that involves either numerical Fourier-Laplace
inversion [8], [3], or complex recursions and series expansions [5], [6]. It is also more
stable numerically, see e.g. the rows 3-5 of Table 1 and Figure 3, and it performs
significantly faster, cf. Table 2. We note that in the CIR model, the gamma ap-
proximation is consistently better than the lognormal approximation, whereas in the
geometric Brownian motion model the lognormal approximation performs better, cf.

12].



Other approaches to the approximation of average and Asian option prices based on
(unconditional) moments and cumulants include [14] which relies on Gram-Charlier
expansions, [2] which applies moment matching in exponential Lévy models, and [7]

which deals with stochastic volatility.

We proceed as follows. After recalling the basics of the CIR model in Section 2, we
present the conditional moment matching technique in Section 3. This technique is
used for the approximations of option prices presented in Section 4, which contains

numerical simulations for comparison with existing algorithms.

2 CIR model

The probability density function of S is known to be the non-central chi-square

probability density function

2b . 2b(Sp + yebT) yetT a/gzi;ﬂ 2b\/ySy
02(1 — e?T) P o?(etT — 1) So 20/0% =1\ g2 smh(bT/ ’

y > 0, where

fST (y) =

2
=5 ) kvrA+/4k+ o orEk

is the modified Bessel function of the first kind, cf. Corollary 24 in [1], and

I'(\) ::/ o tetdr
0

denotes the gamma function. Under the Feller condition 2a/0? < 1 the value of fs,.(z)
is not defined at x = 0 and the probability distribution of S7 admits a point mass at
0. In large time T with a,b > 0, due to the asymptotics

DO~ (G) . B

the density (2.1) becomes the gamma density

f(y) _ ; 2_b 2a/0y—1+2a/a26—2by/g2 y>0 (2 2)
I'(2a/0?) \ o2 ’ ’ '



with shape parameter 2a/0? and scale parameter o2 /(2b), which is also the invariant

distribution of (S;)cr, -

The joint density function fia, s,)(x,y) of (Ar, Sr) has been computed in Theorem 3
and Relation (30) in [6] using Hermite polynomials and parabolic cylinder functions

by inversion of the joint moment generating function

M\ n) =E [e’\STJF”AT} = e SovAm—ad(An) (2.3)
where B o -
AMO—=0b)4+e™(b+0b)+2n(1 —e”
s = AE= D+ TG 0) 4 291 i)
?A(1—e ) —b—b—e ¥ (b—10)
and

L 2 b+b4+etT(b—b)— 2 \1 —e T
(A, n) = ;(b—b)T—i—;log ( 22_) ( )7

with b := /b2 — 2no2. The next proposition will be used for the derivation of condi-

tional moments.

Proposition 2.1 The conditional moment generating function of Ar given Sy =y

can be expressed as

E [¢"7T | S =y] (2.4)
- _ Dajo2—1 (25— vySO)
inh(b71'/2 T T a/o”=1 \ 42 sinh(bT/2
bs?n (l_) /2) exp (S0 +y) bcoth b— — bcoth b— (772) ,
bsinh(bT'/2) o? 2 2 I 2b\/ySo
2a/0%-1 | 52 sinh(bT/2)

y>0,n<b?/(207).

Proof. We use (2.1) and the relation

E [enAT ‘ ST = y}

20 or 1 . e’ +1
= exp (—7—1-; (abT+b(So—y) _b(50+y)eET_ ))

o?(1 = e fs,(y) 1

a/o?— 7
« 2L [ I o _ 2vySe V?{SO y>0
So 20/ 1\ g2sinh(bT/2) ) ’

cf. Relation (27) in [9] and § 3.3 of [1]. O



We note that

]E eT]AT S — — .gb(/r/)7 > O7
[ | Sr =] 95(0) /
where
b b (0T T 41 201/ Sy
= —— | —+(S — | | ajori | ——————
9(n) Ty exp < s < 5 + (So +y)€bT — 1)) 2a/02~1 (02 sinh(bT/Q))
(2.5)
with the relation
9 y ajo?—1/2 b
Tse (W) = 59(0) | o exp | (T +S—y) |, y>0
3 Conditional moment matching
We have
Ewﬂ::&ﬁ*T+%(1—e4”y (3.1)
from which it follows
1—e T e T+ T —1
E[Ar] =Sy 5 +a B : (3.2)
We also have , ,
_ o9 (- _—wr\ , 90 —bT) 2
Var[ST]—SO?(e —e )+2—b2(1—e )7,
and from (2.3) we can derive the second moment as
1 — 2T T — =T AT L 9N + 4(bT + 1)e T — 5
Var[Ar] = 025, ebS ‘ + 0% i a 2(b4 +Le . (3.3)

We use the conditional moment generating function of Proposition 2.1 to compute

the conditional moments of A as in the next proposition.

Proposition 3.1 We have

2 1 2T
ElAr | Sr=y) = -2 + E (U (27 = 1) + (S + y) (" — AT — 1)

b2 b(etT —1 2
IQa/JQ <%> + Iga/gz_Q <%>
+/ySoeT (e (bT — 2) + bT + 2) sinh(bT/2) — sinh(bT/2)
y

2 1 T
=——+ (02 (T — 1) + (So + y)(e®" — 20T — 1)



*[2(1/0'272 < 267y S >

o2 sinh(bT inh(b71'/2
+ 1 /yS()ebT(ebT(bT — 2) + b1 + 2) Qb\/?(T%/Q) + (0’2 — 2@)%
IQa/O'Q—l <025T(19T/2)> y 0
(3.4)

Proof. We need to differentiate n +— gy(n) with b := 1/b? — 2no? and

by — —o’ = —072
b? — 2no? b
From (2.5) we have
, > 1 [ 02T (T 41 2T 2Tl — 1
91;(77):_(_7__,_: U_Q—F(So—f—y)e 5 I
wn) b\ 2 (T 1) (e =12

VYySee (8T (BT — 2) + T + 2) (I2a /o2 <—02 Qi@ /2)) + Lnajor 2 (—%WTSO ))

o2 sinh (bT/2)

— 9 2bv/4S0 |
b (ebT — 1) Ipa)52 -1 (m>

which yields (3.4) by taking n = 0 and using the relation

I(z) + I,o(x)  I,5(2) 1—v
I, 1(z) ) 2 r

In the next proposition we compute the conditional variance of Ar.

Proposition 3.2 We have

ot (20T +1) —1) (o2
Var[AT ’ ST = y] = _2b_4 + 02( ég(ebT _ i) ) (b_2 + ]E[AT | ST = y])

1 26T 2T
y_ (—04T2€— _ 20_(5’0 +y) (27 — (T + 1))

BT —1)2 b b
4by/ySoe=tT ) <4b\ /ySoe—T )
+ I2a/02—2

I2a/02 <
ySoetT (" (3bT — 4) + bT + 4)

o2T o2(1—e—0T) o2(1—e—0T)
9 2b\/5S,
12‘1/‘72—1 <02 sinh?bﬂg/Q) >
ySOQbT bT 2 [2(1/02—3 + I2a/02+1 <[2a/<72—2 + ]2(1/02)2
—_— bl —2) + b1 + 2 2 —
b(l - e_bT>2 (e ( ) - - ) * 12(1/0'271 (IQa/o'2fl)2 ’

where we let I, .= 1, (# %), z € R.



Proof. Letting

we have

gy (n) = (he(n)gs(m))" = hy(m)ge(n) + (he(n))?ge(n),
hence by (2.5) we find

i 150 - 0
= hy(0) + (h(0))°
= Ry(0) + (E[Ar | St = y))?,

and Var[Ar | St = y] = hj(0). Next, we have

200 (1 — T (20T + 1))
R — — 0 — —
b4 b3(€bT _ 1)3

(a2T(625T —1)/2 4 (So + y)(e2T — BT — 1)

I 2 __2vySo + I 2 _2VySo
— _ 2a/0% \ 52 sinh(57/2) 2a/0°=2 \ 52 sinh(57/2)
+1/ySoeT (e (bT — 2) + bT + 2)

2bv/ySo
[2‘1/02_1 (0'2 sinh(l_)T/Q) )

hy (1) =

a?T

1 4 2@_ o4 20T BT
+ = o' — —2—(Sp+y) (e e (1+0bT)

b(ebl — 1)2 b b

25\/3,15'0 25\/y50
o2 sinh(l_JT/2) ) + IQCL/UQ_2 (02 sinh(l_)T/Q) )
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As an alternative to Proposition 3.2 one can also compute directly E[AZ | St = y]
and take advantage of algebraic cancellations for better numerical stability, before

subtraction of (IE[Ar | St = y])?.

Based on the first and second moments of Ar, we will fit its marginal density to the

gamma and lognormal densities.

Conditional gamma approximation

Under the conditional gamma approximation we have

N e=#/0TW) (/07 (y)) 1T W)
fATlsT:y(x) ~ QT(y) r (VT(y)) 7

z,y >0, (3.5)

where 07 (y), vr(y) are parameters estimated from Propositions 3.1 and 3.2, by match-
ing the first and second conditional moments of A7 to those of the gamma distribution,

as

. Var[AT | ST = y]

CElAr|Sr=y  (ElAr ]| Sr =)
W) = Ex, 5 =y

and VT(y) - 9T<y) o Var[AT | St = y] '
(3.6)




Conditional lognormal approximation

Under the conditional lognormal approximation we have

1
fATIST=y(fE) ~ W

where ur(y), or(y) are parameters estimated from Propositions 3.1 and 3.2, by match-

e—(—uT(y)-HOg$)2/(2TU%(9))’ x,y > 0, (37)

ing the first and second conditional moments
E[AT | ST = y] — 6MT(Z/)+U%(Z/)T/2 and ]E[A%« | ST — y] — eZ(uT(y)—i—U%(y)T)

to those of the lognormal distribution with mean ur(y) and variance o (y)T, i.e.

Var[Ar | St = y] >
(E[Ar | Sr=y])?)’
(3.8)

where E[Ar | St = y] and Var[Ar | S = y] are computed from Propositions 3.1 and

2(y)T
pr(s) = =TT Hlog By | 87 =] and o ()T = 1og (14

3.2. Figure 1 presents an example of fitting of the marginal density

fAT(x) = / f(AT,ST)(xvy)dya T > 07
0

where fa,,s.)(2,y) is given by Theorem 3 of [6] with a = 0, using the gamma and

lognormal densities similarly to (3.6) and (3.8).

T
density
lognormal fit
gamma fit

Spo=1.9, a=0, b=-0.05, c=0.69, T=1

1 1
o 1 2 3 4 5

Figure 1: Marginal density fa,(x) fitted to the gamma and lognormal densities.

Figure 2 presents an example of the fitting of the conditional density function

f(AT,ST) (36’7 3/)

Taatse=el2:9) =725 )



where fg..(y) is given in (2.4).

1.8 T
conditional density
1.6 lognormal fit _
gamma fit o
1.4 -
So=1.9, St=1, a=0, b=-0.05
1.2 -

T=1

= I I I === 5
0.5 1 1.5 2 2.5 3

Figure 2: Conditional density fa,|s, fitted to the gamma and lognormal densities.

4 Option pricing
4.1 Equity Asian options
In this section we consider the Equity Asian call prices given by

()]

EA(K,T) =" E

Gamma approximation

Under the unconditional gamma approximation we have

1 I—1+VT

fag(z) = For) Gy (4.1)
where Var[As] BiAd  (E[Ad)?
Or = WA; and vp = HTT = Var[XT] : (4.2)

and E[Ar], Var[A7| are given by (3.2) and (3.3). Hence the Asian option price can

be approximated as

E[(Ar — KT)"] = /K O;(x — KT)" fo,(z)dx
~ ; 00 . e*fL"/@T I.71+Z/T .
= g e KD G

10



1 Oo KT [* —ltvr
= / e~ /0t (x/07)""dx — / eelor? gy
I KT

(vr) Jr ['(vr) (O7)r
0 & KT ©
— T / e_waTde’ — / €_x$_1+VTdI
U(vr) Jrrso, U(vr) Jxror
KT KT
- GTVTQ 1+VTa_ _KTQ vry, ———1,
Or O

where

1 oo
A\ 2) = —— e tdt
QA 2) P()\)/z e , 2> 0,

is the normalized upper incomplete gamma function, which yields

EA(K,T) = ebTEK%/oTStdt_KYI

£ (VTQTQ (]_ + v, E) - KTQ (VT, E)) . (43)

Q

T Or Or
Stratified gamma approximation

Under the conditional gamma approximation (3.5), the Asian equity call option price

will be approximated from (4.3) by

EA(K,T) =" E [(% /OT Syt — K) 1

ebT 00

- | E [(AT — KT)" ‘ST = y} fsz(y)dy

{T KT
~ [ (st (14wt s ) = K7Q () g o5 ) ) St
(4.4)
with fs,.(y) given by (2.1), where vr(y) and r(y) are given by (3.6).
Lognormal approximation
Under the unconditional lognormal approximation we have
Fan(@) A~ elirlors /TR (4.5)

rorvV 2nT ,

where

2
T
02T = log (1 + Var[Ar]/(E[Ar])?) and pg = —"72’ + log E[A7],

11



hence the lognormal approximation

('D

EAK,T) = ?]E (Ar — KT)"] (4.6)

- 7/ (¢ — KT)* fay (2)dz

('b

Q

7 (euT+aTT/2(I)<d1) _ KT@(dg)) 7 (4.7)

where ® denotes the standard Gaussian cumulative distribution function and

 log(E[AD/(KT)) | VT _
d1 = O-T\/T + o7 5 5 dg = d1 - O'Tﬁ.

Stratified lognormal approximation

Under the conditional lognormal approximation (3.7) we have

ebT o0
BAK.T) = & | E [(Ar = KT)" [S7 = 2] fs. (w)dy (4.8)
~ = 0°° (err oA 0T20d, (y)) — KTD(da(y))) fr )y,
where
d1<y> _ log(E[AT | St = y]/(KT)) + UT(y)\/—T,

or(y)VT 2
and dy(y) = di(y) — op(y)VT, where ur(y) and op(y) are given by (3.8).

In Table 1 we compare our conditional (or stratified) and unconditional moment
matching estimates with the analytical prices computed in [6] with the parameters of
[3] and @ = 0. In this table and in Figure 3, the Monte Carlo method is implemented
with 100,000 sample paths via a numerical solution of the CIR equation (1.1) by the

Euler scheme, and the integrals are discretized over 100 time steps.

In rows 3-5 of Table 1 we note some differences with the values computed in [6],
possibly connected to the observation that the joint density method may fail for small
values of ¢?T, while our approximations remain consistent with the Monte Carlo

estimates.

12



b o T K S5 | DN*  JD!  SueG ' StrL 5 Gam Y Logl MC™
-0.05 0.69 1 2 1.9[01902 0.1908 0.1908 0.1908 0.1904 0.1878 0.1903
-0.05 0.72 1 2 21| 03098 0.3087 0.3087 0.3084 0.3075 0.3014 0.3099
002 014 1 2 2 | 00197 inf  0.0560 0.0560 0.0555 0.0554 0.0554
018 042 1 2 2 ||02189 inf 02179 02178 02174 0.2152 0.2190
001 035 2 2 2 | 01725 inf  0.1689 0.1688 0.1686 0.1670 0.1681
005 071 2 2 2 | 03339 0.3531 0.3531 0.3527 0.3508 0.3391 0.3567

Table 1: Equity Asian (EA) call prices.

Figure 3 presents a summary of Equity Asian call option prices compared to the

double numerical integration of the joint density function given in [6].

0.7 T T
0.6 |-
0.5 -
0.4
Sp=1.9, a=0, b=-0.05, 0=0.69, K=2
0.3 -
0.2 Joint density B
/ Stratified gamma o
0.1 Stratified lognormal < -
Gamma —>—
Lognormal ————
O 1 1 1 1 1 1 1
(o] 1 2 3 a 6 7 8 =} 10

s
L
Figure 3: Equity Asian (EA) call prices for T" € [0, 10].

Table 2 presents a sample of computation times for comparison of the different meth-
ods.

Parameters Time

So a b o T K StrG StrL Gam Log MC JD

21 0.0 -0.05 0.72 1.0 2.0 | 1.32e-02 1.23e-02 2.60e-5 1.80e-5 144.46 8.62

Table 2: Equity Asian (EA) call option - computation times in seconds.*

*Prices of [6].

"Double numerical integration of the joint density function Jar,s0)(x,y) of [6].
{Conditional or stratified gamma approximation (4.4).

$Conditional or stratified lognormal approximation (4.8).

YGamma approximation (4.3).

ILognormal approximation (4.6).
**Monte Carlo with 100,000 sample paths.

13



The Equity Asian put price can be computed from the parity relation

bT Ar !
EAP(K,T) = " E K—T
T
= KM - - E [Ar] + EA(K,T)
br bT b — 1
KebT_Sgb(e 1) + ae®( )+a+EA(K,T).
b2T
4.2 Cash Binary Asian caps
We consider the Cash Binary Asian cap price
CBA(K,T) :=E [e " 1{n,>x1] -
Under the unconditional gamma approximation (4.1) we have
E [e M Laorry] = / e " fap(x)dz
KT
~ /OO e‘$(1+/9T)x__1+VT dx
U(vr) Jrr (Or) ™
1 1 /OO _1+ T —
= e dx
(14 07)m D(vr) Jrras /o)

1 KT
= KT+ ——
e (”T’ 0, ) ’

where v and 0 are given by (4.2). By the conditional gamma approximation (3.5)
we find

CBA(K,T) = / IE [G_ATIL{AT>KT} ‘ St =y fs,(y)dy
0

1 KT
/0 05 000 (”T(y)v KT + m) fsr(y)dy,

with fs,.(y) given by (2.1). Such formulas are not available for the lognormal ap-

Q

proximations (3.7) and (4.5), as the lognormal moment generating function does not
admit a closed form expression. In this case we will rely on discretizations of the

single integral

CBA(K,T) = /OO e’ fap(x)dx

KT

14



1 OO e*(tf(fuywkloga:) /(2To2) dJZ

orV2rT Jkr z

and double integral
CBA(K,T) = / E [e " 1npsrry | St =y] fsr(y)dy
0

_ / / L askr) Fam sy ()2 fy (4)dy

(—pr(y)+logz)? /(2T a5 ( d
\/F/ /[;T fST( ) Y,

similarly to the Asian caps considered in Sections 4.3 and 4.4. Table 3 shows that our

Q

stratified gamma approximation generally matches the results of [5].

Maturity Maturity

T=0.1 T=0.5

Strike | Type || DN*  StrG' StrL? Gam®  Log’ DN StrG StrL Gam Log
0.08 | CBA | 0.9631 0.9632 0.9678 0.9636 0.9732 | 0.8018 0.8020 0.8161  0.8019 0.8273
0.12 | CBA | 0.0387 0.0386  0.0451  0.0390 0.0489 || 0.1459 0.1458  0.1579  0.1458 0.1571
T=1 T=2

Strike | Type DN StrG StrL Gam Log DN StrG StrL Gam Log
0.08 | CBA || 0.7301 0.7306  0.7476  0.7302 0.7558 || 0.6644 0.6643  0.6832  0.6630 0.6867
0.12 | CBA | 0.1565 0.1563 0.1679  0.1575 0.1667 || 0.1317 0.1322  0.1421  0.1337 0.1421
T=5 T=10

Strike | Type DN StrG StrL Gam Log DN StrG StrL Gam Log
0.08 | CBA | 0.5354 0.5317  0.5465  0.5313 0.5474 || 0.3504 0.3480  0.3545  0.3479 0.3547
0.12 | CBA | 0.0631 0.0632 0.0704 0.0633 0.0704 || 0.0185 0.0179  0.0214  0.0179 0.0214

Table 3: Cash Binary Asian (CBA) cap prices, Sp = 0.1, a = 0.15, b = 1.5, 0 = 0.2.

Figure 4 uses the same parameters as in [3], [5], and Table 3. It shows that the
gamma approximation performs better than the lognormal approximation, which is
consistent with the fact that the limiting and invariant distribution of (S;)icr, is

gamma according to (2.2).

*Prices of [5].

tStratified gamma approximation.
IStratified lognormal approximation.
§Non-stratified gamma approximation.
YNon-stratified lognormal approximation.
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0.2
0.15 |- -
3
0.1 |- =1
Sp=0.1, a=0.15, b=1.5, c=0.2, K=0.12

0.05 - Monte Carlo —

Stratified gamma o

Gamma -+

Stratified lognormal <>

Lognormal —>¢—
O 1 1 1 1 1
o 0.5 1 1.5 2 2.5 3
T

Figure 4: Cash Binary Asian (CBA) cap prices for T" € [0, 3].

The Cash Binary floor price can be similarly estimated under the conditional gamma

approximation as

CBAY(K,T) = / E [e " Lnr<rry | ST =y] for (y)dy
0

” 1 KT
B /0 A+ ooy’ (VT(?!)’ KT + 0T<y)) s (y)dy,

where

1 z
P\ z) = m/o Ml ta, z >0,

is the normalized lower incomplete gamma function.

4.3 Rate Binary Asian caps

Next, we consider the Rate Binary Asian caps
RBA(K,T) := E [Are " Lia,> k3] -
Under the unconditional gamma approximation (4.1) we have

E [Are 1, orxry] = / ve " fa, (x)dx

KT

1 o
- - —x(1+1/67) 0-+)Td
= e x T
['(vr) /KT (v/61)

_ ! Or / h e
C(vr) (14 07)"7 Jras/o0)

HTVT KT
= — 1 KT+ —.
(1+9T)VT+1Q( trn B )
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Using (3.5) we obtain the stratified gamma approximation

RBA(K,T) = / ]E[ATe_AT:H-{AT>KT}ST:y}fST(y)dy
0

N /°° Or(y)vr(y) KT
o (1+0r(y))rw 07 (y)

given by (2.1). Such formulas are not available for the lognormal

2@ (14000 KT+ 5 ) foy b

where fg.(y) is
approximations (3.7) and (4.5), and in this case we rely on the discretization of single

and double integrals as in Section 4.2.

In Table 4 we compare our results with those obtained in [5] using the parameters of
[3]. Again, the gamma approximation performs significantly better than the lognormal

approximation, while it tends to slightly underestimate prices for large maturities.

Maturity Maturity
T=0.1 T =0.5
Strike | Type DN StrG StrL Gam Log DN StrG StrL Gam Log
0.08 | RBA || 0.0097 0.0097  0.0097  0.0097 0.0098 || 0.0421 0.0421  0.0427  0.0421 0.0430
0.12 | RBA | 0.0005 0.0005 0.0006  0.0005 0.0006 || 0.0097 0.0097 0.0104 0.0096 0.0104
T=1 T=2
Strike | Type DN StrG StrL Gam Log DN StrG StrL Gam Log
0.08 | RBA || 0.0777 0.0777  0.0790  0.0778 0.0796 || 0.1402 0.1404  0.1432  0.1403 0.1437
0.12 | RBA | 0.0211 0.0211  0.0225  0.0212 0.0224 || 0.0354 0.0355 0.0379  0.0358 0.0380
T=5 T=10
Strike | Type DN StrG StrL Gam Log DN StrG StrL Gam Log
0.08 | RBA | 0.2731 0.2719  0.2775  0.2718 0.2778 || 0.3495 0.3477  0.3528  0.3477 0.3530
0.12 | RBA || 0.0410 0.0409 0.0454  0.0409 0.0454 || 0.0234 0.0226  0.0269  0.0226 0.0269

Table 4: Rate Binary Asian (RBA) cap prices, So = 0.1, a = 0.15, b =1.5, 0 = 0.2.

Figure 5 uses increased values of the parameters Sy, a, b and K for a clearer compar-

ison between the proposed methods.

The Rate Binary Asian floor price can be similarly estimated under the conditional

gamma approximation as

RBA/(K,T)(K,T) = / E [Are ™ L, <xrySt = y) fs, (y)dy
0

KT

e (14000 KT+ 5 ) foploha

Or(y)vr(y)

= / (1+ Op ()0
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0.01 —
Monte Carlo

Stratified gamma o

0.005 |- Gamma —>¢— |
Lognormal ———
Stratified lognormal <>
o 1 1 1 1 1 1 1 1 1

o 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Figure 5: Rate Binary Asian (RBA) cap prices for T' € [0, 2].

4.4 Regular Asian caps

Finally we consider the regular Asian cap with price

AOY(K,T) =T le—AT (% - K) 1

which can be estimated as

A +
—Ar —T—K
(7 %)

= %RBA(K, T) — K x CBA(K,T)
Or <1/TQ (1 +vp, KT + ?) — (KT + E) Q (VT, KT + g))

(1 + Op)vrtt T Or T

AOY(K,T) :=E

Q

under the unconditional gamma approximation (4.1). Using the conditional gamma

approximation (3.5), we find

AOY(K,T) = E [e—AT (% /0 ! Stdt—K) 1

%/ooo (1+ Hic(pg))uﬂywl (VT(y)Q (1 o K %)

_ (KT i ef(z)) Q (VT(y), KT + %)) fsr(y)dy,

with fgs,.(y) given by (2.1). In Table 5 we compare our results to those of [5], with

the parameters of [3].
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Maturity Maturity

T =0.1 T=0.5

Strike | Type DN StrG StrL Gam Log DN StrG StrL Gam Log
0.08 | AO® | 0.0199 0.0199 0.0199 0.0199 0.0199 || 0.0201 0.0210  0.0200  0.0201 0.0199
0.12 | AO® | 0.0002 0.0002 0.0002 0.0002 0.0002 || 0.0018 0.0018 0.0018 0.0018 0.0019
T=1 T=2

Strike | Type DN StrG StrL Gam Log DN StrG StrL Gam Log
0.08 | AO® | 0.0193 0.0193 0.0192 0.0194 0.0191 || 0.0170 0.0170 0.0169  0.0171 0.0169
0.12 | AO® | 0.0023 0.0023 0.0023  0.0023 0.0024 || 0.0019 0.0019 0.0019  0.0018 0.0019
T=5 T =10

Strike | Type DN StrG StrL Gam Log DN StrG StrL Gam Log
0.08 | AO° | 0.0118 0.0118 0.0118 0.0118 0.0118 || 0.0069 0.0069  0.0069  0.0069 0.0069
0.12 | AO® | 0.0006 0.0006 0.0006 0.0006 0.0006 || 0.0001 0.0001 0.0001 0.0001 0.0001

Table 5: Cash Regular Asian (AO) cap prices, Sy = 0.1, a = 0.15, b = 1.5, 0 = 0.2.

Figure 6 presents the evolution of prices according to maturity times. As can be seen

in Table 5, all five methods show consistent numerical results in this case.

0.0045 T T T
Stratified gamma o
| Gamma x _
0.004 Stratified lognormal |
Lognormal -+
0.0035 - Monte Carlo 1

0.003
0.0025
0.002
0.0015

Sp=0.2, a=0.3, b=2.0, 0=0.2, K=0.2
0.001

0.0005

Figure 6: Regular Asian (AO) cap prices for T € [0, 1].

The regular Asian floor price can be similarly estimated from

+
AO/ (K, T) =T e (K — %) = K x CBA/(K,T) — %RBAf(K, T).(K,T).

Regular Asian put-call parity

From the relation

Y

E |:677AT:| — o Sov(m—ad(n)

where b := /b2 — 2no? and

(e~ — 1) 1 - 2 b+b+e(b-10)
= = = — = — b - b T 1 T
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which satisfy

, B 2(€_BT - 1) 277TU26_ET
YO = e =1 T bbb e (o)
20 — 1) (2 h (2T BT (b — b) — T (02/B)
(b+b+e T (bh—1b))?
C2(e T = 1) + 2T 0% T 2o (e — 1)(1 — Te (b —b) + e7T)
bbb+ et (b D)) b(b+ b+ e T (b —b))?
and
o T 2(=0%/b+ (0*T/b)e™™ (b —b) + e T (=0%/b)) | 2(20%/b)
o) = -3+ 2+ b+ e (b— b)) M=o
T 1-eTh-b)T+e 2
b T bbtbte(b—b) B
with ¥ = —0%/b and n = —1, we find
E [Are 7] = =(Sov/(—1) + ag/(=1))e” ov D 7e0=D
b)T—|— e~tT)

b(b+b+e (b —b)) b(b+b+e T (b—

a 1—e (b —b)T +e ¥ 2 N
) A AZ5d _Z) Bl
+b< R S R CalE

S <2b<eb —1) = 202Te T 20%(e T —1)(1— e (b —
5, _

which allows us to estimate the regular Asian floor price from

AON(K,T) = E (K——)+—

= IE |e

= AOYK,T)+ KE[e "] — %IE [Are 7]

5 Conclusion

|- (%]E (Are ] — KE [eﬂ)

The conditional moment matching method provides a fast way to price options in

the CIR model, and it avoids technicalities linked to more sophisticated approaches

involving numerical Fourier-Laplace inversion or complex closed form recursions. Our

implementation of conditional moment matching shows that for yield options in the

CIR model, the stratified gamma approximation performs consistently better than

the lognormal approximations.
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