
Numerical evaluation of ODE solutions by
Monte Carlo enumeration of Butcher series

Guillaume Penent∗ Nicolas Privault†

Division of Mathematical Sciences

School of Physical and Mathematical Sciences

Nanyang Technological University

21 Nanyang Link, Singapore 637371

August 25, 2022

Abstract

We present an algorithm for the numerical solution of ordinary differential equations
by random enumeration of the Butcher trees used in the implementation of the Runge-
Kutta method. Our Monte Carlo scheme allows for the direct numerical evaluation of
an ODE solution at any given time within a certain interval, without iteration through
multiple time steps. In particular, this approach does not involve a discretization step
size, and it does not require the truncation of Taylor series.

Keywords: Ordinary differential equations, Runge-Kutta method, Butcher series, random

trees, Monte Carlo method.

Mathematics Subject Classification (2020): 65L06, 34A25, 34-04, 05C05, 65C05.

1 Introduction

Butcher series [But63], [But16] are a powerful tool used to represent the Taylor expansions

appearing in the Runge-Kutta methods for the numerical solution of ordinary differential

equations (ODEs), see Chapters 4-6 of [DB02], and [MMMKV17] for a recent review starting

from the early work of [Cay57]. Those series are making use rooted tree enumeration,

which have many applications ranging from geometric numerical integration to stochastic

differential equations, see for instance [HLW06] and references therein, and [Gub10], [BHZ19],

∗pene0001@e.ntu.edu.sg
†nprivault@ntu.edu.sg

1

mailto:PENE0001@e.ntu.edu.sg
mailto:nprivault@ntu.edu.sg

[Fos21] for the use of decorated trees for stochastic partial differential equations and their

connections with the Butcher-Connes-Kreimer Hopf algebra [CK99].

It is known that the solution y(t) of the autonomous d-dimensional ODE system{
y′(t) = f(y(t))

y(0) = y0 ∈ Rd, t ∈ R+,
(1.1)

where f(y) = (f1(y), . . . , fd(y)) is a smooth Rd-valued function of y in a domain of Rd, can

be expressed as

y(t) = y0 + tf(y0) +
t2

2
f ′(y0)f(y0) +

t3

6
f ′(y0)f(y0)

′f(y0) +
t3

6
f ′′(y0)[f(y0), f(y0)] + · · · (1.2)

where we use the notation

f ′(y0)f(y0) :=

(
d∑

i2=1

∂fi1
∂xi2

(y0)fi2(y0)

)
i1=1,...,d

, (1.3)

f ′(y0)f
′(y0)f(y0) :=

(
d∑

i2,i3=1

∂fi1
∂xi2

(y0)
∂fi2
∂xi3

(y0)fi3(y0)

)
i1=1,...,d

, (1.4)

f ′′(y0)[f(y0), f(y0)] :=

(
d∑

i2,i3=1

∂2fi1
∂xi2∂xi3

(y0)fi2(y0)fi3(y0)

)
i1=1,...,d

, (1.5)

etc. In addition, the expansion (1.2) can be coded and enumerated using the following

sequence of Butcher trees, which can also be represented without referring to the derivatives

of f , see for example Table 1.1 page 53 of [HLW06].

Order Coefficient Butcher tree Order Coefficient Butcher tree Order Coefficient Butcher tree

0 y0 ∅ 1 f(y0) f 2 f ′f(y0)
f ′

f

3 f ′f ′f(y0)

f ′

f ′

f

3 f ′′[f, f](y0)
f ′′

ff

The numerical evaluation of Butcher series involves tree enumeration up to a certain order

that determines the level of precision of the algorithm.

2

In this paper, we propose an alternative method to the numerical evaluation of ODE so-

lutions, based on a random enumeration of Butcher trees by Monte Carlo simulation. Prob-

abilistic methods based on the Feynman-Kac formula provide alternatives to finite difference

schemes, and have been successfully applied to the solution of partial differential equations.

In particular, stochastic branching mechanisms have been used to represent the solutions of

partial differential equations in [Sko64], [INW69], [NS69], [McK75], [LM96], [CLM08]. This

branching argument has been recently extended in [HLOT+19] to the treatment of polyno-

mial non-linearities in gradient terms, see also [PP22] for nonlocal and fractional PDEs.

In Theorem 4.2, under suitable integrability conditions we express ODE solutions as the

expected value of a functional of random Butcher trees which encode nonlinearities. Then in

Proposition 4.3 we provide sufficient conditions ensuring that the representation formula of

Theorem 4.2 holds at any time within certain interval. Numerical values of ODE solutions can

be computed beyond that initial interval by iterating the method and by piecing together the

solutions obtained on adjacent intervals. As noted before Proposition 4.3, the integrability

conditions are stronger in higher dimensions.

This approach complements the use of the Feynman-Kac formula for the numerical es-

timation of the solutions of partial differential equations, see also [SH21] for a different ap-

proach to the Feynman-Kac representation of ODE solutions. Other links between Butcher

trees and probability theory have been pointed out in [Maz04], see also [Ski92] for the nu-

merical solution of ODEs as an inference problem by Bayesian techniques.

In comparison with integrators in the Runge-Kutta method, our method requires the

evaluation of f and its partial derivatives up to any order, whereas the Runge-Kutta method

uses only f . The complexity of our algorithm grows linearly with dimension, as d trees

are used to solve a d-dimensional ODE system, whereas the complexity of finite difference

methods is generally polynomial in the dimension d, depending on the order chosen in the

truncation of (1.2). Complexity in time can be estimated via the mean length of binary

trees, which grows exponentially in time independently of dimension d ≥ 1 in the case of

exponentially distributed branch lifetimes, as noted in Section 4. On the other hand, our

method can be used to exactly approximate the solution at any given time on a (possibly

infinite) time interval. Our approach also benefits from the advantages of Monte Carlo

estimators whose computation can be paralleled straightforwardly.

In Section 2 we introduce the construction of coding trees that will be used for the

numerical solution of ODEs. Section 4 presents the probabilistic representation formula of

3

ODE solutions obtained by the random generation of coding trees. In Section 5 we consider

examples and in Section 6 we describe the correspondance between Butcher trees and coding

trees, namely we show how any Butcher tree can be recovered by performing a depth first

search on the corresponding coding tree, showing how Butcher series can be rewritten as

series of expected values. Section 7 considers numerical applications, and the appendix

contains the corresponding computer codes in Maple, Mathematica and Python.

2 Codes and mechanism

This section introduces the random coding trees used for the probabilistic representation of

ODE solutions. We consider a multidimensional autonomous system of the form

y1(t) = y1(0) +

∫ t

0

f1(y1(s), . . . , yd(s))ds

y2(t) = y2(0) +

∫ t

0

f2(y1(s), . . . , yd(s))ds

...

yd(t) = yd(0) +

∫ t

0

fd(y1(s), . . . , yd(s))ds,

(2.1)

t ∈ R+, where fi is a smooth Lipschitz function defined on a domain of R+×Rd, i = 1, . . . , d.

In order to solve (2.1) iteratively, we can start by expanding fi(y1(s), . . . , yd(s)) as

fi(y1(s), . . . , yd(s)) = fi(y1(0), . . . , yd(0))+
d∑

j=1

∫ s

0

fj(y1(u), . . . , yd(u))∂jfi(y1(u), . . . , yd(u))du

(2.2)

by differentiating v(s) := fi(y1(s), . . . , yd(s)), where we use the notation ∂jfi = ∂fi/∂yj,

i, j = 1, . . . , d. In the sequel, given g a function from Rd into R, we let g∗ denote the

mapping

g∗ : (Rd)R+ −→ RR+

(t 7→ y(t)) 7−→ g∗(y) := (t 7→ g(y(t))), (2.3)

where (Rd)R+ represents the set of functions from R+ to Rd. In order to formalize and

extend the iteration initiated in (2.2), we introduce the following definitions. In the sequel

we let Idi denotes the i-th canonical projection from (Rd)R+ to RR+ with Idi(y1, . . . , yd) = yi,

i = 1, . . . , d.

4

Definition 2.1 We let C denote the set of functions from (Rd)R+ to RR+ called codes, defined

as

C :=
{
Idi,

(
∂i1
1 · · · ∂id

d fi
)∗

: i1, . . . , id ≥ 0, i = 1, . . . , d
}

By (2.3), the elements of C are operators mapping a function h ∈ (Rd)R+ to another function

c(h) ∈ RR+ . We also consider a mappingM, called the mechanism, defined on C by matching

a code c ∈ C to a set M(c) of code tuples.

Definition 2.2 The mechanism M is defined by M(Idi) = {fi} and

M(g∗) =
{
(f ∗

1 , (∂1g)
∗), (f ∗

2 , (∂2g)
∗), . . . , (f ∗

d , (∂dg)
∗)
}
, (2.4)

for g a smooth function from Rd into R.

In the next key lemma we show that c(y) satisfies a system of equations indexed by c ∈ C.

Lemma 2.3 For any code c ∈ C we have

c(y)(t) = c(y)(0) +
∑

Z∈M(c)

∫ t

0

∏
z∈Z

z(y)(s)ds, t ∈ R+. (2.5)

Proof. When c = Idi we have

c(y)(t) = yi(t) = yi(0) +

∫ t

0

fi(y1(s), . . . , yd(s))ds = yi(0) +

∫ t

0

f ∗
i (y1, . . . , yd)(s)ds,

hence (2.5) holds since M(Idi) = {f ∗
i }, i = 1, . . . , d. When c = g∗ ∈ C with c ̸= Idi, the

equation

g(y1(t), . . . , yd(t)) = g(y1(0), . . . , yd(0)) +
d∑

j=1

∫ t

0

fj(y1(s), . . . , yd(s))∂jg(y1(s), . . . , yd(s))ds

satisfied by g∗(y)(t) reads

g∗(y)(t) = g∗(y)(0) +
d∑

j=1

∫ t

0

f ∗
j (y)(s)(∂jg)

∗(y)(s)ds,

and (2.5) follows by the definition (2.4) of M. □

We note that for any g∗ ∈ C it is always possible to compute g∗(y)(0) by applying the code

g∗ to the solution y of the ODE and then evaluating it at time 0 as g∗(y)(0) = g(y0). In

particular, the full knowledge of the function y is not necessary to compute g∗(y)(0).

5

Example - One-dimensional autonomous ODE

Consider the solution y(t) of the one-dimensional ODE

y(t) = y0 +

∫ t

0

f(y(s))ds, t ∈ R+,

where f(y(s)) is expanded as

f(y(s)) = f(y0) +

∫ s

0

f(y(u))f ′(y(u))du, s ∈ R+.

Here, g∗ denotes the mapping

g∗ : RR+ −→ RR+

(t 7→ y(t)) 7−→ g∗(y) := (t 7→ g(y(t))),

for g a smooth function from R to R, the set of codes is given by

C :=
{
Id,

(
f (k)
)∗
, k ≥ 0

}
,

where
(
f (k)
)∗
, k ≥ 0, denotes the operator acting as(

f (k)
)∗
(y)(s) := f (k)(y(s)), s ∈ R+,

and the mechanism M is given by M(Id) = {f ∗} and M(g∗) =
{
(f ∗, (g′)∗)

}
.

Example - Non-autonomous ODE

Consider the non-autonomous ODE

y(t) = y0 +

∫ t

0

f2(s, y(s))ds, t ∈ R+, (2.6)

where f2 is a smooth Lipschitz function defined on a domain of R+ × R. This ODE can be

rewritten as the system
y1(t) = t = y1(0) +

∫ t

0

f1(y1(s), y2(s))ds

y2(t) = y(t) = y2(0) +

∫ t

0

f2(y1(s), y2(s))ds

(2.7)

by taking f1 ≡ 1 and y1(s) = s, s ∈ R+. Here, the set of codes satisfies

C : =
{
Id1, Id2,

(
∂i1
1 ∂

i2
2 f1
)∗
,
(
∂j1
1 ∂j2

2 f1
)∗
, i1, i2, j1, j2 ≥ 0

}
6

=
{
Id1, Id2, 0, 1,

(
∂j1
1 ∂j2

2 f1
)∗
, j1, j2 ≥ 0

}
,

where 0 and 1 denote constant functions. The mechanism M is given by M(Id1) = {f ∗
1} =

{1}, M(Id2) = {f ∗
2}, and M(g∗) =

{
(f ∗

1 , (∂1g)
∗), (f ∗

2 , (∂2g)
∗)
}
=
{
(1, (∂1g)

∗), (f ∗
2 , (∂2g)

∗)
}

for g a smooth function from R2 into R.

More generally, any non autonomous system can be transformed into an autonomous

system by addition of a dimension. In particular, any higher order ordinary differential

equation of the form

y(d)(t) = f
(
t, y(t), y′(t), . . . , y(d−1)(t)

)
can be written as a system of the form (2.1) by taking f1(y1, . . . , yd) ≡ 1, fi(y1, . . . , yd) :=

yi+1, i = 2, . . . , d− 1 and fd(y1, . . . , yd) := f(y1, . . . , yd), with y1(t) = t and yi(t) = y(i−1)(t),

i = 2, . . . , d.

3 Coding trees

For each code c ∈ C we denote by Ic a uniformly distributed random variable on M(c). For

example, when c = g∗, since M(g∗) =
{
(f ∗

1 , (∂1g)
∗), (f ∗

2 , (∂2g)
∗), . . . , (f ∗

d , (∂dg)
∗)
}
, we have

P(Ig∗ = (f ∗
i , (∂ig)

∗)
)
=

1

d
, i = 1, . . . , d.

In the sequel we will use the notation

qc(b) := P(Ic = b), b ∈ M(c), c ∈ C.

In addition, we consider a probability density function ρ : R+ → (0,∞) and

• an i.i.d. family (τ i,j)i,j≥1 of random variables with distribution ρ(t)dt on R+,

• for each c ∈ C, an i.i.d. family (I i,jc)i,j≥1 of discrete random variables, with

P
(
I i,jc = b

)
= qc(b) > 0, b ∈ M(c),

where the sequences (τ i,j)i,j≥1 and (I i,jc)c∈C,i,j≥1 are assumed to be mutually independent.

For every n ≥ 1 we also consider an injection πn : Nn → N.

Let t > 0. For each i ∈ {1, . . . , d} we construct a random tree starting from an initial

particle labelled 1 := (1) bearing the code Idi at time 0, which lives up to a random time

τ 1,1 distributed according to ρ. If τ 1,1 > t, the branching process stops. Otherwise, if

7

τ 1,1 ≤ t, a new particle with label (1, 1) is created, and bears the code f ∗
i since M(Idi) =

{f ∗
i }, and independently follows the same pattern as the first one. This new branch lives

during the time τ 2,π2(1,1). If τ (1,1) + τ 2,π2(1,1) > t then the tree stops branching, otherwise, if

τ 1,1 + τ 2,π2(1,1) ≤ t, the particle branches in two branches (f ∗
i , (∂jfi)

∗) chosen uniformly in

M(f ∗
i) =

{
(f ∗

1 , (∂1fi)
∗), (f ∗

2 , (∂2fi)
∗), . . . , (f ∗

d , (∂dfi)
∗)
}
.

More generally, a particle with code c ∈ C at the generation n ≥ 1 is assigned a label

of the form k̄ = (1, k2, . . . , kn) ∈ Nn, while its parent label is k̄– := (1, k2, . . . , kn−1). The

birth time of particle k̄ is denoted by Tk̄–, and its lifetime τn,πn(k̄) is the element of index

j = πn(k̄) in the i.i.d. sequence (τn,j)j≥1. If Tk̄ := Tk̄– + τn,πn(k̄) < t, we draw a sample

I
n,πn(k̄)
c = (c1, . . . , cl) uniformly in M(c) with l ∈ {1, 2}, and the particle k̄ branches into∣∣In,πn(k̄)
c

∣∣ ∈ {1, 2} offsprings at generation (n + 1), which are labeled by k̄ = (1, . . . , kn, j),

j = 1, . . . ,
∣∣In,πn(k̄)

c

∣∣. The particle with label ending with an integer j will carry the code cj.

Finally, the code of particle k̄ will be denoted by ck̄ ∈ C. The death time of the particle k is

Tk, and its birth time is Tk–.

Definition 3.1 We denote by Tt,c the random tree constructed from the above argument started

from any code c ∈ C.

The family (Tt,Idi)i=1,...,d of trees will be used for the stochastic representation of the solution

y(t) = (y1(t), . . . , yd(t)) of the ODE system (2.1), while the trees Tt,c will be used for the

stochastic representation of c(y)(t). The next table summarizes the notation introduced so

far.

Object Notation

Initial time 0
Tree ending at time t with initial code c Tt,c

Particle (or label) of generation n ≥ 1 k = (1, k2, . . . , kn)
First branching time T1

Birth time of a particle k Tk–

Death time of a particle k Tk

Lifespan of a particle Tk − Tk–

Code of a particle k ck

The following graph represents a sample of the random tree Tt,Idi , i = 1, . . . , d.

8

0 T1 T(1,1)

T(1,1,2)

t

(1, 1, 2, 2)
(∂k∂jfi) ∗

t

(1, 1
, 2, 1

)

f
∗
k

(1, 1, 2)
(∂jfi) ∗

T(1,1,1)

t

(1, 1, 1, 2)
(∂lfj) ∗

t

(1, 1
, 1, 1

)

f
∗
l

(1, 1
, 1)

f
∗
j(1, 1)

f ∗
i

1

Idi

4 Probabilistic representation of ODE solutions

In this section we define the random multiplicative functional which will be used to represent

ODE solutions. We let F denote the tail distribution function of ρ, i.e.

F (t) :=

∫ ∞

t

ρ(u)du, t ∈ R+.

We denote by K◦ the set of particles that do not live until time t, and by K∂ the set of

particles that die after time t.

Definition 4.1 Given Tt,c a random coding tree started with the code c ∈ C and ending at

time t ≥ 0, we define the universal multiplicative functional H by

H(Tt,c) :=
∏
k∈K◦

1

qck(Ick)ρ(Tk − Tk–)

∏
k∈K∂

ck(y)
(
0
)

F (t− Tk–)
.

The next result gives the probabilistic representation of ODE solutions as an expected value

over random coding trees.

Theorem 4.2 Let T > 0 for which there exists K0 > 0 such that

E
[∣∣H(Tt,c)

∣∣] ≤ K0, c ∈ C, t ∈ [0, T].

Then, for any c ∈ C we have the probabilistic representation

c(y)(t) = E
[
H(Tt,c)

]
, t ∈ [0, T], (4.1)

where y(t) = (y1(t), . . . , yd(t)) is the solution of the system of ODEs (2.1). In particular,

taking c = Idi, we have

yi(t) = yIdi(t) = E
[
H(Tt,Idi)

]
, t ∈ [0, T], i = 1, . . . , d.

9

Proof. For c ∈ C we let

yc(t) := E
[
H(Tt,c)

]
, t ∈ [0, T].

By conditioning on the first branching time T1, for all i = 1, . . . , d the first particle bearing

the code Idi branches at time T1 into a new particle bearing the code f ∗
i as M(Idi) = {f ∗

i },
hence we have

yIdi(t) = E
[
H(Tt,Idi)1{T1>t} +H(Tt,Idi)1{T1≤t}

]
= E

[
yi(0)

F (t)
1{T1>t}

]
+ E

[
yf∗

i
(t− T1)

ρ(T1)
1{T1≤t}

]

= yi(0)
P(T1 > t)

F (t)
+

∫ t

0

yf∗
i
(t− s)

ρ(s)
ρ(s)ds

= yi(0) +

∫ t

0

yf∗
i
(s)ds, t ∈ [0, T].

Similarly, starting from any code g∗ ∈ C different from Idi, the particle branches at time T1

in d possible different ways into two particles with codes (f ∗
j , (∂jg)

∗), j = 1, . . . , d, hence we

have

yg∗(t) = E
[
H(Tt,g∗)1{T1>t} +H(Tt,g∗)1{T1≤t}

]
= E

[
g∗(y0)

F (t)
1{T1>t} + 1{T1≤t}

d∑
j=1

1{Ig∗=(f∗
j ,(∂jg)

∗)}
yf∗

j
(t− T1)y(∂jg)∗(t− T1)

qg∗(Ig∗)ρ(T1)

]

= E
[
g∗(y0)

F (t)
1{T1>t} + 1{T1≤t}

d∑
j=1

qg∗j ((f
∗
j , (∂jg)

∗))
yf∗

j
(t− T1)y(∂jg)∗(t− T1)

qg∗j ((f
∗
j , (∂jg)

∗))ρ(T1)

]
= E

[
g∗(y0)

F (t)
1{T1>t}

]
+

∑
Z∈M(g∗)

E
[
1{T1≤t}

1

ρ(T1)

∏
z∈Z

yz(t− T1)

]

= g∗(y)(0) +
∑

Z∈M(g∗)

∫ t

0

1

ρ(s)

(∏
z∈Z

yz(t− s)

)
ρ(s)ds,

= g∗(y)(0) +
∑

Z∈M(g∗)

∫ t

0

∏
z∈Z

yz(s)ds, (4.2)

which yields the system of equations

yc(t) = c(y)(0) +
∑

Z∈M(c)

∫ t

0

∏
z∈Z

yz(s)ds, t ∈ [0, T], c ∈ C. (4.3)

By the Cauchy-Lipschitz theorem on the Banach space of sequences ℓ∞, this system admits

a unique maximal solution. We conclude by noting that from Lemma 2.3, the family of

10

functions (c(y))c∈C is the solution of the system (4.3), hence (c(y))c∈C = (yc)c∈C, and

E
[
H(Tt,c)

]
= yc(t) = c(y)(t), t ∈ [0, T].

□

In numerical applications the expected value E
[
H(Tt,c)

]
in Theorem 4.2 is estimated as the

average

1

N

N∑
k=1

H(Tt,c)
(k)

where H(Tt,c)
(1), . . . ,H(Tt,c)

(N) are independent samples of H(Tt,c). In this case, the error on

the estimate of E
[
H(Tt,c)

]
from the Monte Carlo method can be estimated as the standard

deviation E

(E[H(Tt,c)
]
− 1

N

N∑
k=1

H(Tt,c)
(k)

)2
1/2

=
1√
N

√
Var

[
H(Tt,c)

]
.

Complexity of the algorithm

We note that the complexity of the algorithm grows linearly with the dimension d, as d trees

(Tt,Idi)i=1,...,d are used to generate the multidimensional solution (y1, . . . , yd), whereas the

complexity of finite difference methods is generally polynomial in the dimension d, depending

on the order chosen in the truncation of (1.2). On the other hand, all trees are at most binary

regardless of the dimension d, as shown by the construction (2.4) of the mechanism M.

Regarding complexity in time, let ℓc(t) denote the mean size of the random tree Tt,c

generated until time t ≥ 0, with, by construction, ℓ(t) := ℓIdi(t) for all i = 1, . . . , d, and

m(t) := ℓc(t) for all c /∈ {Idi}i=1,...,d. The same argument as in the proof of Theorem 4.2

shows that (ℓ(t),m(t)) satisfies the sytem of integral equations
ℓ(t) =

∫ ∞

t

ρ(s)ds+

∫ t

0

ρ(s)m(t− s)ds,

m(t) =

∫ ∞

t

ρ(s)ds+ 2

∫ t

0

ρ(s)m(t− s)ds.

When τ has the exponential density ρ(s) = λe−λs with parameter λ > 0, this leads to the

system 
ℓ′(t) = −λe−λt − λ2

∫ t

0

e−λ(t−s)m(s)ds+ λm(t) = λ(m(t)− ℓ(t))

m′(t) = −λe−λt − 2λ2

∫ t

0

e−λ(t−s)m(s)ds+ 2λm(t) = λm(t),

11

with solution

ℓ(t) = cosh(λt), m(t) = eλt = E
[
2Nt
]
, t ≥ 0,

and where (Nt)t∈R+ is a standard Poisson process with intensity λ > 0. We note that this

estimate remains the same independently of dimension d ≥ 1.

Integrability condition

The following proposition provides sufficient conditions ensuring that the representation

formula (4.1) of Theorem 4.2 holds at any time within certain interval. In order to represent

an ODE solution beyond that time interval we may reuse the numerical value obtained close

to its boundary as new initial condition in order to represent the solution on an extended

time interval. We note that the constant K in the next proposition depends on y0 and f and

its derivatives, and is independent of the system dimension d ≥ 1. However, the integrability

condition (4.4) is stronger in higher dimensions.

Proposition 4.3 Assume that there exists K > 0 such that c(y)(0) ≤ K for any c ∈ C, that
the density function ρ is nonincreasing, and that

ρ(T) ≥ d, K ≤ F (T). (4.4)

Then, there exists K(T) > 0 such that

E
[∣∣H(Ts,c)

∣∣] ≤ K(T), c ∈ C, t ∈ [0, T]. (4.5)

Proof. Under Condition (4.4), since qmin := minc∈C qc(Ic) = 1/d, we have∏
k∈K◦

1

qminρ(Tk − Tk–)

∏
k∈K∂

K

F (t− Tk–)
≤ 1,

hence

E
[∣∣H(Tt,c)

∣∣] ≤ Ec

∏
k∈K◦

1

qminρ(Tk − Tk–)

∏
k∈K∂

K

F (t− Tk–)

 ≤ 1, t ∈ [0, T].

□

We note that trying to relax the integrability condition (4.4) by choosing a higher ρ(T) will

result into a smaller value of E[τ], therefore increasing the time complexity of the algorithm.

On the other hand, assuming that

Sc(t) := Ec

[∏
k∈K◦

1

qck(Ick)ρ(Tk − Tk–)

∏
k∈K∂

K

F (t− Tk–)

]
< ∞,

12

yields the system of equations
SIdi(t) = K +

∫ t

0

Sf∗
i
(s)ds

Sg∗(t) = K +
d∑

i=1

∫ t

0

Sf∗
i
(s)S(∂ig)∗(s)ds.

Since the corresponding trees Tt,f∗
i
, Tt,c have same random shape distribution, we have Sc(t) =

Sf∗
i
(t) for all codes c = g∗ ∈ C such that g = ∂i1

1 · · · ∂id
d fi, i1, . . . , id ≥ 0, i = 1, . . . , d. This

gives the system 
SIdi(t) = K +

∫ t

0

Sf∗
i
(s)ds

Sf∗
i
(t) = K + d×

∫ t

0

(Sf∗
i
(s))2ds,

which can be solved as

SIdi(t) = K − 1

d
log(1−Ktd), Sf∗

i
(t) =

K

1−Ktd
, i = 1, . . . , d,

hence the finiteness of Sc(t) holds at most until time

T <
1

Kd
. (4.6)

Remark 4.4 Although the non-autonomous ODE (2.6) can be treated using an autonomous

2-dimensional system of the form (2.7), the probabilistic representation (4.1) of its solution

can also be obtained using a single random tree. For this, we expand f2(s, y(s)) as

f2(s, y(s)) = f2(0, y0) +

∫ s

0

(
∂0f2(u, y(u)) + f2(u, y(u))∂1f2(u, y(u))

)
du.

In this case, the set of codes is defined as

C :=
{
Id,

(
∂k
0∂

l
1f2
)∗
, k, l ≥ 0

}
,

and the mechanism M is given by

M(Id) = {f ∗
2} and M(g∗) =

{
(∂0g)

∗, (f ∗
2 , (∂1g)

∗)
}
.

A sample of this random tree is presented below.

13

0 T1 T(1,1)

T(1,1,2)

t

(1, 1, 2, 2)
(∂ 2

1 f2) ∗

t

(1, 1
, 2, 1

)

f
∗
2

(1, 1, 2)
(∂1f2) ∗

T(1,1,1) t
(1, 1, 1, 1)

(∂0f2)
∗

(1, 1
, 1)

f
∗
2(1, 1)

f ∗
2

1

Id

In this case, the system of equations satisfied by Sc(t) can be written as
SId(t) = K +

∫ t

0

Sf∗
i
(s)ds

Sf∗
i
(t) = K +

∫ t

0

(Sf∗
i
(s))2ds+

∫ t

0

Sf∗
i
(s)ds,

which can be solved as

SId(t) = K − log(1 +K(1− et)), Sf∗
i
(t) =

Ket

1 +K(1− et)
, i = 1, . . . , d.

Therefore, the finiteness of Sc(t) holds until time

T < log

(
1 +

1

K

)
. (4.7)

Under the conditions ρ(T) ≥ 2 and K ≤ F (T), since qmin := minc∈C qc(Ic) = 1/2, we have∏
k∈K◦

1

qminρ(Tk − Tk–)

∏
k∈K∂

K

F (t− Tk–)
≤ 1,

hence

E
[∣∣H(Tt,c)

∣∣] ≤ Ec

∏
k∈K◦

1

qminρ(Tk − Tk–)

∏
k∈K∂

K

F (t− Tk–)

 ≤ 1, t ∈ [0, T].

In this setting the integrability condition (4.7) is stronger than (4.6) when K is sufficiently

large, and weaker otherwise. On the other hand, in comparison with the autonomous system

(2.7), time complexity of the algorithm is divided by at least two due the use of a single coding

tree with less branches.

14

5 Examples

Exponential series

We first consider the equation {
y′(t) = y(t)

y(0) = y0

rewritten in integral form as

y(t) = y0 +

∫ t

0

y(s)ds, t ∈ R+,

whose solution admits the power series expansion

y(t) = y0e
t = y0

∞∑
n=0

tn

n!
, t ∈ R+.

Here we have C = {Id}, and the mechanism M satisfies M(Id) = {Id}. The particle

of generation n bears the label k = (1, . . . , 1) ∈ Nn, and its parent is the particle k– =

(1, . . . , 1) ∈ Nn−1. When the random times (τ k)k≥1 are independent and exponentially

distributed, i.e. ρ(s) = e−s with F (t) = e−t, the total number of branches in the random

tree Tt is given by Nt + 1 where (Nt)t≥0 is a standard Poisson process with unit intensity.

0 T1 T(1,1) T(1,1,1) t
(1, 1, 1, 1)

Id

(1, 1, 1)

Id

(1, 1)

Id

1

Id

In this case, the multiplicative functional

H(Tt) :=
∏
k∈K◦

1

ρ(Tk − Tk–)

∏
k∈K∂

y0

F (t− Tk–)

simplifies to the deterministic expression

H(Tt) =

(
Nt∏
k=1

1

e−τk

)
y0

e−(t−
∑Nt

k=1 τ
k)

= y0e
t, t ∈ R+,

in which we take
∑0

n=1 1 := 0 and
∏0

n=1 1 := 1.

One-dimensional autonomous ODE

Consider the autonomous ODE

y(t) = y0 +

∫ t

0

f(y(s))ds, t ∈ R+, (5.1)

15

where f ∈ C∞(R;R) is bounded together with its derivatives f (k) of order k ≥ 1, with∣∣f (k)(y0)
∣∣ ≤ K, k ≥ 0,

for some K > 0. For any k ≥ 0 we have the integral equation

f (k)(y(t)) = f (k)(y0) +

∫ t

0

f(y(s))f (k+1)(y(s))ds, t ∈ R+,

with the set of codes C :=
{
Id,

(
f (k)
)∗
, k ≥ 0

}
, and the mechanism M is defined by

M(Id) := {f ∗}, M(f ∗) :=
{
(f ∗, (f ′)∗)

}
, M

((
f (k)
)∗)

:=
{(

f ∗,
(
f (k+1)

)∗)}
, k ≥ 1.

Below is a representation of a sample of the random tree Tt,Id.

0 T1 T(1,1)

T(1,1,2)

t

(1, 1, 2, 2)(f ′′) ∗

t

(1,
1, 2

, 1)

f
∗

(1, 1, 2)
(f ′) ∗

t

(1,
1, 1

)

f
∗

(1, 1)

f ∗
1

Id

With yc(t) := E
[
H(Tt,c)

]
, c ∈ C, the system (4.2) reads

yId(t) = y0 +

∫ t

0

yf∗(s)ds

y(f (k))∗(t) = f (k)(y0) +

∫ t

0

yf∗(s)y(f (k+1))∗(s)ds, k ≥ 0.

6 Mapping of coding trees to Butcher trees

In this section we describe the connection between coding trees, Butcher series and Butcher

trees, by showing how any Butcher tree can be recovered by performing a depth first search

on the corresponding coding trees. The solution y(t) of the d-dimensional ODE system (1.1)

is written as the Butcher series

y(t) = y0 + tf(y0) +
t2

2
f(y0)f

′(y0)

16

+
t3

3!

(
f ′′(y0)f

2(y0) + f ′2(y0)f(y0)
)

+
t4

4!

(
f ′′′(y0)f

3(y0) + f ′′(y0)f
′(y0)f

2(y0) + f ′(y0)f
′(y0)f

2(y0) + f ′3(y0)f(y0)
)
+ · · ·

= y0 +
∑
B

t|B|

ν(B)
c(B) (6.1)

where the above summation over Butcher trees B is formal and may not converge. Here, the

order |B| denotes the number of vertices of the tree B, c(B) is a term also depending on the

derivatives of f at y0 as in (1.3)-(1.5), and ν(B) is a coefficient which is defined recursively,

see Relation (4) in [But10].

Proposition 6.1 Every Butcher tree B can be mapped to a unique tree bin(B), so that the

Butcher series (6.1) can be rewritten as

yi(t) = yi(0) +
∑
B

E
[
H(Tt,Idi)1

{
Tt,Idi≃ bin(B)

}] , i = 1, . . . , d.

where the notation Tt,Idi ≃ bin(B) means that the coding tree Tt,Idi has the tree structure

bin(B).

Proof. (i) The one-to-one mapping B ↔ bin(B) is constructed by performing a depth first

search on coding trees, as illustrated in the following examples which show how any Butcher

tree B of order k ≥ 1 can be mapped to a unique tree bin(B) generating kd coding trees

(Ti1,...,ik)1≤i1,...,ik≤d. Namely, every Butcher tree can be recovered by performing a depth first

search on the corresponding coding tree by matching leaves on Butcher trees to branches of

the same color in coding trees.

If a node in the initial coding tree branches into two new coding trees T1 (above) and T2

(below), the Butcher tree for the initial coding tree is obtained by sticking the Butcher tree

obtained from T1 to the root of the Butcher tree obtained from T2. If a tree is a leaf with

code of the form c =
(
∂j1 · · · ∂jlfi

)∗
with i ∈ {1, . . . , d}, then the corresponding Butcher tree

has a single node containing f (l).

Order k c(B) Butcher tree B Coding trees (Ti1)1≤i1≤d

1 f(y0) f 0 T1 t
(1, 1)

fi1

1

Idi1

Order k c(B) Butcher tree B Coding trees (Ti1,i2)1≤i1,i2≤d

2 ff ′(y0)

f ′

f

0 T1 T(1,1)

t

(1, 1, 2)∂
i2 fi1

t

(1,
1, 1

)

f i2(1, 1)

fi1

1

Idi1

17

Order k c(B) Butcher tree B Coding trees (Ti1,i2,i3)1≤i1,i2,i3≤d

3 f ′′f 2(y0)
f ′′

ff
0 T1 T(1,1)

T(1,1,2)

t

(1, 1, 2, 2)∂
i3 ∂i2 fi1

t

(1,
1, 2

, 1)

f i3

(1, 1, 2)∂
i2 fi1

t

(1,
1, 1

)

f i2(1, 1)

fi1

1

Idi1

3 f ′2f(y0)

f ′

f ′

f

0 T1 T(1,1)

t

(1, 1, 2)∂
i2 fi1

T(1,1,1)

t

(1, 1, 1, 2)∂
i3 fi2

t

(1,
1, 1

, 1)

f i3

(1,
1, 1

)

f i2(1, 1)

fi1

1

Idi1

Order k c(B) Butcher tree B Coding trees (Ti1,i2,i3,i4)1≤i1,i2,i3,i4≤d

4 f ′′′f 3(y0)
f ′′′

fff
0 T1 T(1,1)

T(1,1,2)

T(1,1,2,2)

t

(1, 1, 2, 2, 1)∂
i4 ∂i3 ∂i2 fi1

t

(1,
1, 2

, 2,
2)

f i4

(1, 1, 2, 2)∂
i3 ∂i2 fi1

t

(1,
1, 2

, 1)

f i3

(1, 1, 2)∂
i2 fi1

t

(1,
1, 1

)

f i2(1, 1)

fi1

1

Idi1

4 f ′′f ′f 2(y0)

f ′′

f ′

f

f 0 T1 T(1,1)

T(1,1,2)

t

(1, 1, 2, 2)∂
i3 ∂i2 fi1

t

(1,
1, 2

, 1)

f i3

(1, 1, 2)∂
i2 f

i1

T(1,1,1)

t

(1, 1, 1, 2)∂
i4 fi2

t

(1,
1, 1

, 1)

f i4

(1,
1, 1

)

f i2
(1, 1)

fi1

1

Idi1

4 f ′f ′′f 2(y0)

f ′

f ′′

ff

0 T1 T(1,1)

t

(1, 1, 2)∂
i2 fi1

T(1,1,1)

T(1,1,1,2)

t

(1, 1, 1, 2, 2)∂
i4 ∂i3 fi2

t

(1,
1, 1

, 2,
1)

f i4

(1, 1, 1, 2)∂
i3 fi2

t

(1,
1, 1

, 1)

f i3

(1,
1, 1

)

f i2(1, 1)

fi1

1

Idi1

18

4 f ′3f(y0)

f ′

f ′

f ′

f

0 T1 T(1,1)

t

(1, 1, 2)∂
i2 fi1

T(1,1,1)

t

(1, 1, 1, 2)∂
i3 fi2

T(1,1,1,1)

t

(1, 1, 1, 1, 2)∂
i4 fi3

t

(1,
1, 1

, 1,
1)

f i4

(1,
1, 1

, 1)

f i3

(1,
1, 1

)

f i2(1, 1)

fi1

1

Idi1

(ii) When B is a Butcher tree of order k = |B| ≥ 1, based on the construction of ν(B) =

σ(B)γ(B) on page 155 of [But10], the i1-th component of the term t|B|c(B)/ν(B) in the

expansion of yi1(t) is a sum of f and its partial derivatives at y0 as in (1.3)-(1.5). This sum

can be interpreted as a sum of H(Ti1,...,ik) over 1 ≤ i2, . . . , ik ≤ d, weighted by the probability

coefficients ∏
k∈K◦

(
qck(Ick)ρ(Tk − Tk–)

) ∏
k∈K∂

(
F (t− Tk–)

)
and integrated over the branching times Tk ∈ [0, t], which yields the identity

t|B|

ν(B)
c(B) =

(
E
[
H(Tt,Idi1

)1{
Tt,Idi1≃ bin(B)

}])
i1=1,...,d

.

□

7 Numerical application

In this section we consider various ODE examples with different choices of probability density

functions ρ(t) satisfying (4.4), or under (4.6). The errors observed in Figures 3, 4, 5, only

occur at a time threshold after which the estimator H(Tt,c) is no longer integrable and the

estimates are unreliable. The following graphs are plotted with one million Monte Carlo

samples.

i) Taking f(y) := y2, we start with the quadratic ODE

y′(t) = y2(t), y(0) = y0 = 1, (7.1)

with solution

y(t) =
y0

1− y0t
, t ∈ [0, 1/y0).

In the framework of (5.1) we have

C =
{
Id,

(
f (k)
)∗
, k ≥ 0

}
=
{
Id, (x 7→ 0)∗, (x 7→ 2)∗, (x 7→ 2x)∗, (x 7→ x2)∗

}
,

19

hence we have c(y)(0) ≤ K := max(1, 2y0, y
2
0) = 2 for all c ∈ C, and in agreement

with (4.6) the representation formula (4.1) of Theorem 4.2 holds for t ∈ [0, 1/2), see

Figure 1. In this example and in the next two examples we take ρ to be the exponential

probability density function ρ(t) = e−t, t ≥ 0.

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 0.1 0.2 0.3 0.4 0.5

t

Exact solution
Numerical solution

Figure 1: Numerical solution of (7.1) with y0 = 1.

ii) Next, we take f(y) := cos(y) and consider the equation

y′(t) = cos(y(t)), y(0) = y0, (7.2)

with solution

y(t) = 2 tan−1

(
tanh

(
t+ 2 tanh−1(tan(y0/2))

2

))
, t ∈ R+.

in the framework of (5.1). When y0 = 1 we have K = supk∈N f
(k)(1) = 1, and in

agreement with (4.6) the representation formula (4.1) of Theorem 4.2 holds for t ∈ [0, 1),

see Figure 2.

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 0 0.2 0.4 0.6 0.8 1

t

Exact solution
Numerical solution

Figure 2: Numerical solution of (7.2).

20

iii) Taking f(t, y) := (y + t)/(y − t) we find Equation (201a) in [But16], i.e.

y′(t) =
y(t) + t

y(t)− t
, y(0) = 1, (7.3)

with solution

y(t) = t+
√
1 + 2t2.

In this case, the time interval of validity may not be determined explicitly because

supk,l≥0 |∂k
0∂

l
1f(0, 1/2)| = ∞ and the finiteness of this supremum is only a sufficient

condition for (4.5) to hold in Proposition 4.3. Figure 3 shows the convergence of the

Monte Carlo algorithm until t = 0.25.

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
t

Exact solution
Numerical solution

Figure 3: Numerical solution of (7.3).

iv) Taking f(t, y) := (y − t)/(y + t) yields Equation (316e) in [But16], i.e.

y′(t) =
y(t)− t

y(t) + t
, y(0) = 1, (7.4)

whose solution is given in parametric form as (t(u), y(u)) = (u sin log(u), u cos log(u)).

As in Example iii) above, the time interval of validity may not be determined explicitly,

see Figure 4. In this example and in the next one, we take ρ to be the gamma probability

density function ρ(t) = t−1/2e−t/Γ(1/2), t > 0.

21

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

t

Exact solution
Numerical solution

Figure 4: Numerical solution of (7.4).

v) Taking f(t, y) := yt+ y2 we find Equation (223a) in [But16], i.e.

y′(t) = ty(t) + y2(t), y(0) = 1/2, (7.5)

with solution

y(t) =
et

2/2

2−
∫ t

0
es2/2ds

.

In this case we have K = supk,l≥0 |∂k
0∂

l
1f(0, 1/2)| ≤ 2, and in agreement with (4.6)

the representation formula (4.1) of Theorem 4.2 is valid on the time interval [0, 0.5) ⊂
[0, 1/K], see Figure 5.

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

Exact solution
Numerical solution on [0,1]

Numerical Iteration on [0.5,1]

Figure 5: Numerical solution of (7.5).

In addition, after running the algorithm on the time interval [0, 0.5] we may reuse the

numerical evaluation at time t = 0.5 as a new initial condition and iterate the algorithm

on the time interval [0.5, 1] with more precise estimates, as shown in red in Figure 5.

We refer to this procedure as “patching”.

22

vi) Consider the ODE system (316f) page 177 in [But16], i.e.
y′1(t) =

y1(t) + y2(t)√
y21(t) + y22(t)

, y1(1) = 0,

y′2(t) =
y2(t)− y1(t)√
y21(t) + y22(t)

, y2(1) = 1,

(7.6)

with solution

y1(t) = t sin log t, y2(t) = t cos log t, t ≥ 1.

The graphs of Figure 6 are obtained using the Python code provided in appendix,

where we patch the algorithm 6 times over the time interval [1, 4] and take ρ to be the

exponential probability density function ρ(t) = e−t, t > 0.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 1.5 2 2.5 3 3.5 4

t

Exact solution
Numerical solution

(a) Graph of y1(t).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1 1.5 2 2.5 3 3.5 4

t

Exact solution
Numerical solution

(b) Graph of y2(t).

Figure 6: Numerical solution of (7.6).

A Computer codes

The following Maple and Mathematica codes implement the algorithm of Theorem 4.2 for

one-dimensional non-autonomous ODEs using the exponential distribution ρ(t) = e−t, t ≥ 0.

codetofunction := proc(f, c, t0, y0) if nops(c) = 0 then return y0; end if; if c = [0, 0] then return

f(t0, y0); else return eval(eval(diff(f(t, y), t $ c[1], y $ c[2]), t = t0), y = y0); end if; end

proc;

with(stats);

mcsample := proc(f, t, t0, y0, c, h) local A, tau; tau := random[exponential[1]](1); if t - t0 < tau then

return h*codetofunction(f, c, t0, y0)/exp(-t + t0); else if nops(c) = 0 then return mcsample(f, t -

tau, t0, y0, [0, 0], h/exp(-tau)); else if random[uniform](1) < 0.5 then return mcsample(f, t - tau,

t0, y0, [c[1] + 1, c[2]], 2*h/exp(-tau)); else A := mcsample(f, t - tau, t0, y0, [0, 0], 1); return

mcsample(f, t - tau, t0, y0, [c[1], c[2] + 1], 2*A*h/exp(-tau)); end if; end if; end if; end proc;

solution := proc(f, t, t0, y0, n) local i, temp; temp := 0; for i to n do temp := temp + mcsample(f, t,

t0, y0, [], 1); end do; return evalf(temp/n); end proc;

f := (t, y) -> y^2;solution(f, 0.5, 0, 1, 10000);

Maple code.

23

codetofunction[f_, c__, t0_, y0_] := (If [c == {}, Return [y0],

Return[D[D[f[t, y], {t, c[[1]]}], {y, c[[2]]}] /. {t -> t0} /. {y -> y0}]])

MCsample[f_, t_, t0_, y0_, c__, h_] := (Module[{A, tau}, tau = RandomVariate[ExponentialDistribution[1]];

If[tau > t - t0, Return [h*codetofunction[f, c, t0, y0]/E^(-(t - t0))],

If[c == {}, Return[MCsample[f, t - tau, t0, y0, {0, 0}, h/E^(-tau)]],

If[RandomVariate[UniformDistribution[1]][[1]] <= 0.5,

Return[MCsample[f, t - tau, t0, y0, {c[[1]] + 1, c[[2]]}, 2*h/E^(-tau)]],

A = MCsample[f, t - tau, t0, y0, {0, 0}, 1];

Return[MCsample[f, t - tau, t0, y0, {c[[1]], c[[2]] + 1}, 2*A*h/E^(-tau)]]]]]])

Solution[f_, t_, t0_, y0_, n_] := (temp = 0; For[i = 1, i <= n, i++, temp += MCsample[f, t, t0, y0, {},

1]]; Return[temp/n])

f[t_, y_] := y^2;Solution[f, 0.5, 0, 1, 100000]

Mathematica code.

The following Python code implements the algorithm of Theorem 4.2 for systems of ODEs.

import time

import math

import torch

from scipy import special

from torch.distributions.exponential import Exponential

import matplotlib.pyplot as plt

import numpy as np

torch.manual_seed(0) # set seed for reproducibility

class ODEBranch(torch.nn.Module):

def __init__(

self,

fun,

t_lo=0.0,

t_hi=1.0,

y0=1.0,

nb_path_per_state=1000000,

nb_states=6,

outlier_percentile=1,

outlier_multiplier=1000,

patch=1,

epochs=3000,

device="cpu",

verbose=False,

**kwargs,

):

super(ODEBranch, self).__init__()

self.fun = fun

self.loss = torch.nn.MSELoss()

self.nb_path_per_state = nb_path_per_state

self.nb_states = nb_states

self.outlier_percentile = outlier_percentile

self.outlier_multiplier = outlier_multiplier

self.patch = patch

self.t_lo = t_lo

self.t_hi = t_hi

self.y0 = y0

self.dim = len(y0)

self.epochs = epochs

self.device = device

self.verbose = verbose

def forward(self, code=None):

start = time.time()

code = [-1] * self.dim if code is None else code # start from identity code if not specified

24

t = torch.linspace(self.t_lo, self.t_hi, steps=self.nb_states, device=self.device)

t = t.repeat(self.nb_path_per_state).reshape(self.nb_path_per_state, -1).T

nb_states_per_patch = math.ceil((self.nb_states - 1) / self.patch)

cur_start_idx, cur_end_idx = 0, nb_states_per_patch

mc_mean, mc_var = [], []

y0, t0 = torch.tensor(self.y0, device=self.device), torch.tensor(self.t_lo, device=self.device)

while cur_start_idx < cur_end_idx:

self.code_to_fun_dict = {}

t_this_patch = t[cur_start_idx:cur_end_idx]

H_tensor = torch.ones_like(t_this_patch)

mask_tensor = torch.ones_like(t_this_patch)

mc_mean_this_patch = []

mc_var_this_patch = []

for i in range(self.dim):

y = self.gen_sample_batch(

t_this_patch,

t0,

y0,

np.array(code),

H_tensor,

mask_tensor,

coordinate=i

)

widen (outlier_percentile, 1 - outlier_percentile) by outlier_multiplier times

everything outside this range is considered outlier

lo = y.nanquantile(self.outlier_percentile/100, dim=1, keepdim=True)

hi = y.nanquantile(1 - self.outlier_percentile/100, dim=1, keepdim=True)

lo, hi = lo - self.outlier_multiplier * (hi - lo), hi + self.outlier_multiplier * (hi - lo)

mask = torch.logical_and(lo <= y, y <= hi)

mc_mean_this_patch.append((y * mask).sum(dim=1) / mask.sum(dim=1))

y = y - mc_mean_this_patch[-1].unsqueeze(dim=-1)

mc_var_this_patch.append(torch.square(y * mask).sum(dim=1) / mask.sum(dim=1))

update y0, t0, idx

mc_mean.append(torch.stack(mc_mean_this_patch))

mc_var.append(torch.stack(mc_var_this_patch))

y0, t0 = mc_mean[-1][:, -1], t_this_patch[-1][-1]

cur_start_idx, cur_end_idx = cur_end_idx, min(cur_end_idx + nb_states_per_patch,

self.nb_states)

if self.verbose:

print(f"Time taken for the simulations: {time.time() - start:.2f} seconds.")

return t[:, 0], torch.cat(mc_mean, dim=-1), torch.cat(mc_var, dim=-1)

@staticmethod

def nth_derivatives(order, y, x):

"""

calculate the derivatives of y wrt x with order `order`
"""

for cur_dim, cur_order in enumerate(order):

for _ in range(int(cur_order)):

try:

grads = torch.autograd.grad(y.sum(), x, create_graph=True)[0]

except RuntimeError as e:

when very high order derivatives are taken for polynomial function

it has 0 gradient but torch has difficulty knowing that

hence we handle such error separately

logging.debug(e)

return torch.zeros_like(y)

update y

y = grads[cur_dim]

return y

def code_to_function(self, code, t, y0, coordinate):

code = tuple(code)

25

if (code, coordinate) not in self.code_to_fun_dict.keys():

code (-1, -1, ..., -1) -> identity mapping

if code == (-1,) * self.dim:

self.code_to_fun_dict[(code, coordinate)] = y0[coordinate]

else:

y = y0.clone().requires_grad_(True)

self.code_to_fun_dict[(code, coordinate)] = (

self.nth_derivatives(code, self.fun(y, coordinate), y).detach()

)

return self.code_to_fun_dict[(code, coordinate)]

def gen_sample_batch(self, t, t0, y0, code, H, mask, coordinate):

nb_states, _ = t.shape

tau = Exponential(

torch.ones(nb_states, self.nb_path_per_state, device=self.device)

).sample()

ans = torch.zeros_like(t)

############################### for t + tau >= T

mask_now = mask.bool() * (t0 + tau >= t)

if mask_now.any():

ans[mask_now] = (

H[mask_now]

* self.code_to_function(code, t0, y0, coordinate)

/ torch.exp(-(t - t0)[mask_now])

)

############################### for t + tau < T

mask_now = mask.bool() * (t0 + tau < t)

if (code == [-1] * self.dim).all():

if mask_now.any():

code (-1, -1,..., -1) -> (0, 0,..., 0)

tmp = self.gen_sample_batch(

t - tau, t0, y0, code + 1, H / torch.exp(-tau), mask_now, coordinate,

)

ans = ans.where(~mask_now, tmp)

else:

unif = torch.rand(nb_states, self.nb_path_per_state, device=self.device)

idx = (unif * self.dim).long()

for i in range(self.dim):

mask_tmp = mask_now * (idx == i)

if mask_tmp.any():

A = self.gen_sample_batch(

t - tau,

t0,

y0,

np.array([0] * self.dim),

torch.ones_like(t),

mask_tmp,

i,

)

code[i] += 1

tmp = self.gen_sample_batch(

t - tau,

t0,

y0,

code,

self.dim * A * H / torch.exp(-tau),

mask_tmp,

coordinate,

)

code[i] -= 1

ans = ans.where(~mask_tmp, tmp)

return ans

26

if __name__ == "__main__":

problem configuration

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

problem = [

"quadratic",

"cosine",

"example_3",

"example_5",

"example_6"

][4]

dim = 1

if problem == "quadratic":

exact_fun = (lambda t, y, coordinate: y[coordinate] / (1 - y[coordinate] * t))

f_fun = (lambda y, coordinate: y[coordinate] ** 2)

t_lo, t_hi = 0, 0.5

y0 = [1.0] * dim

nb_states = 6

elif problem == "cosine":

def exact_fun(t, y, coordinate):

return 2 * torch.atan(torch.tanh((t + 2 * math.atanh(math.tan(y[coordinate] / 2))) / 2))

f_fun = (lambda y, coordinate: torch.cos(y[coordinate]))

t_lo, t_hi = 0, 1.0

y0 = [1.0] * dim

nb_states = 6

elif problem == "example_3":

def exact_fun(t, y, coordinate):

if coordinate == 0:

return y[coordinate] + t

else:

return t + torch.sqrt(y[coordinate] + 2 * t ** 2)

def f_fun(y, coordinate):

if coordinate == 0:

return torch.ones_like(y[0])

else:

return (y[coordinate] + y[0]) / (y[coordinate] - y[0])

t_lo, t_hi = 0, 0.5

y0 = [t_lo] + [1.0] * dim

nb_states = 11

elif problem == "example_5":

def exact_fun(t, y, coordinate):

if coordinate == 0:

return y[coordinate] + t

else:

tensor_erfi = (lambda x: special.erfi(x.cpu()).to(device))

return torch.exp(t**2/2) / (1/y[coordinate] - (math.pi / 2) ** 0.5 * tensor_erfi(t / 2 **

0.5))

def f_fun(y, coordinate):

if coordinate == 0:

return torch.ones_like(y[0])

else:

return y[0] * y[coordinate] + y[coordinate]**2

t_lo, t_hi = 0, 1.0

y0 = [t_lo] + [.5] * dim

nb_states = 11

elif problem == "example_6":

def exact_fun(t, y, coordinate):

if coordinate == 0:

return t*torch.sin(torch.log(t))

else:

return t*torch.cos(torch.log(t))

def f_fun(y, coordinate):

if coordinate == 0:

27

return (y[1] + y[0]) / torch.sqrt(y[0]**2+y[1]**2)

else:

return (y[1] - y[0]) / torch.sqrt(y[0]**2+y[1]**2)

t_lo, t_hi = 1, 4

y0 = [0.0] + [1.0]

nb_states = 7

initialize model and calculate mc samples

model = ODEBranch(

f_fun,

t_lo=t_lo,

t_hi=t_hi,

y0=y0,

device=device,

nb_states=nb_states,

verbose=True,

patch=6,

outlier_percentile=0.1,

outlier_multiplier=100,

)

t, mc_mean, mc_var = model()

t_fine = torch.linspace(t_lo, t_hi, 100, device=device) # finer grid for plotting exact solution

torch.set_printoptions(precision=5, sci_mode=True)

plot exact vs numerical

for i in range(model.dim):

print(f"For dimension {i + 1}:")

print(f"The variance of MC is {mc_var[i]}.")

print(f"The error squared is {(mc_mean[i] - exact_fun(t, y0, i)) ** 2}.")

plt.plot(t.cpu(), mc_mean[i].cpu(), '+', label="Numerical solution")

plt.plot(t_fine.cpu(), exact_fun(t_fine, y0, i).cpu(), label="Exact solution")

plt.title(f"Dimension {i + 1}")

plt.legend()

plt.show()

Acknowledgement

We thank Jiang Yu Nguwi for producing the Python code dealing with systems of ODEs.

References

[BHZ19] Y. Bruned, M. Hairer, and L. Zambotti. Algebraic renormalisation of regularity structures.
Invent. Math., 215:1039–1156, 2019.

[But63] J.C. Butcher. Coefficients for the study of Runge-Kutta integration processes. J. Austral.
Math. Soc., 3:185–201, 1963.

[But10] J.C. Butcher. Trees and numerical methods for ordinary differential equations. Numerical
Algorithms, 53:153–170, 2010.

[But16] J.C. Butcher. Numerical methods for ordinary differential equations. John Wiley & Sons,
Ltd., Chichester, third edition, 2016.

[Cay57] A. Cayley. On the theory of the analytical forms called trees. Philosophical Magazine,
13(85):172–176, 1857.

[CK99] A. Connes and D. Kreimer. Lessons from quantum field theory: Hopf algebras and spacetime
geometries. Letters in Mathematical Physics, 48:85–96, 1999.

[CLM08] S. Chakraborty and J.A. López-Mimbela. Nonexplosion of a class of semilinear equations via
branching particle representations. Advances in Appl. Probability, 40:250–272, 2008.

28

[DB02] P. Deuflhard and F. Bornemann. Scientific Computing with Ordinary Differential Equations,
volume 42 of Texts in Applied Mathematics. Springer-Verlag, New York, 2002.

[Fos21] L. Fossy. Algebraic structures on typed decorated rooted trees. SIGMA, 17:1–28, 2021.
Contribution to the Special Issue on Algebraic Structures in Perturbative Quantum Field
Theory in honor of Dirk Kreimer for his 60th birthday.

[Gub10] M. Gubinelli. Ramification of rough paths. J. Differential Equations, 248(4):693–721, 2010.

[HLOT+19] P. Henry-Labordère, N. Oudjane, X. Tan, N. Touzi, and X. Warin. Branching diffusion
representation of semilinear PDEs and Monte Carlo approximation. Ann. Inst. H. Poincaré
Probab. Statist., 55(1):184–210, 2019.

[HLW06] E. Hairer, C. Lubich, and G. Wanner. Geometric numerical integration, volume 31 of
Springer Series in Computational Mathematics. Springer-Verlag, Berlin, second edition, 2006.
Structure-preserving algorithms for ordinary differential equations.

[INW69] N. Ikeda, M. Nagasawa, and S. Watanabe. Branching Markov processes I, II, III. J. Math.
Kyoto Univ., 8-9:233–278, 365–410, 95–160, 1968-1969.

[LM96] J.A. López-Mimbela. A probabilistic approach to existence of global solutions of a system of
nonlinear differential equations. In Fourth Symposium on Probability Theory and Stochastic
Processes (Spanish) (Guanajuato, 1996), volume 12 of Aportaciones Mat. Notas Investigación,
pages 147–155. Soc. Mat. Mexicana, México, 1996.

[Maz04] C. Mazza. Simply generated trees, B-series and Wigner processes. Random Structures Algo-
rithms, 25(3):293–310, 2004.

[McK75] H.P. McKean. Application of Brownian motion to the equation of Kolmogorov-Petrovskii-
Piskunov. Comm. Pure Appl. Math., 28(3):323–331, 1975.

[MMMKV17] R.I. McLachlan, K. Modin, H. Munthe-Kaas, and O. Verdier. Butcher series: a story of rooted
trees and numerical methods for evolution equations. Asia Pac. Math. Newsl., 7(1):1–11, 2017.

[NS69] M. Nagasawa and T. Sirao. Probabilistic treatment of the blowing up of solutions for a
nonlinear integral equation. Trans. Amer. Math. Soc., 139:301–310, 1969.

[PP22] G. Penent and N. Privault. Existence and probabilistic representation of the solutions of
semilinear parabolic PDEs with fractional Laplacians. Stochastics and Partial Differential
Equations: Analysis and Computations, 10:446–474, 2022.

[SH21] Z. Selk and H. Harsha. A Feynman-Kac type theorem for ODEs: Solutions of second order
ODEs as modes of diffusions. Preprint arXiv:2106.08525, 16 pages, 2021.

[Ski92] J. Skilling. Bayesian solution of ordinary differential equations. In C. R. Smith, G. J. Er-
ickson, and P. O. Neudorfer, editors, Proceedings of the Eleventh International Workshop on
Maximum Entropy and Bayesian Methods of Statistical Analysis, volume 50 of Fundamental
Theories of Physics, pages 23–38. Kluwer Academic Publishers Group, Dordrecht, 1992.

[Sko64] A.V. Skorokhod. Branching diffusion processes. Teor. Verojatnost. i. Primenen., 9:492–497,
1964.

29

	Introduction
	Codes and mechanism
	Coding trees
	Probabilistic representation of ODE solutions
	Examples
	Mapping of coding trees to Butcher trees
	Numerical application
	Computer codes

