
Chapter 6
Value at Risk

Value at risk (VaR) is probably the most basic and widely used measure of
risk. It relies on estimating the amount that can potentially be lost on a
given investment within a certain time range. This chapter starts with a re-
view the concept of risk measure in general, including quantile risk measures,
before providing a mathematical treatment of Value at Risk, together with
experiments based on actual financial data sets.

6.1 Risk Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.2 Quantile Risk Measures . . . . . . . . . . . . . . . . . . . . . . . . 156
6.3 Value at Risk (VaR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
6.4 Numerical estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

6.1 Risk Measures

Risk measures have two objectives:
i) to provide a measure for risk, and
ii) to determine an adequate level of capital reserves that matches the cur-

rent level of risk.
In what follows, the potential losses associated to a given risk will be modeled
by the values of a random variable X.
Definition 6.1. A risk measure is a mapping that assigns a value VX to a
given loss random variable X.
For insurance companies, which need to hold a capital in order to meet future
liabilities, the capital CX required to face the risk induced by a potential loss
X ⩾ 0 can be defined as
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CX := VX −LX , (6.1)

where

a) VX stands for an upper “reasonable” estimate of the potential loss asso-
ciated to X.

b) LX represents the liabilities of the company.

In other words, managing risk means here determining a level VX of pro-
vision or capital requirement that will not be “too much” exceeded by X.
When LX < 0 the amount −Lx > 0 corresponds to a debt owed by the
company, while LX > 0 corresponds to positive liabilities such as deferred
revenue or to a debt owed to the company.

Some examples of risk measures (Hardy (2006))

a) The expected value premium principle is the risk measure defined by

VX := E[X ] + αE[X ]

for some α ⩾ 0. For α = 0, VX := E[X ] it is called the pure premium risk
measure.

b) The standard deviation premium principle is the risk measure defined by

VX := E[X ] + α
√

Var[X ]

for some α ⩾ 0, where Var[X ] denotes the variance of X.

In order to proceed with more examples of risk measures, we will need to use
conditional expectations, see e.g. Lemma A.15 for the following proposition.
The what follows, we let 1A denote the indicator function of any event A
subset of Ω, defined as

1A(ω) =

1 if ω ∈ A,

0 if ω /∈ A.

Lemma 6.2. Let A be an event such that P(A) > 0. The conditional expec-
tation of X : Ω −→ N given the event A satisfies the relation

E[X | A] :=
1

P(A)
E [X1A] .

For example, consider the sample space Ω = {1, 3, −1, −2, 5, 7} with the
non-uniform probability measure given by
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P({−1}) = P({−2}) = P({1}) = P({3}) = P({7}) = 1
7 , P({5}) = 2

7 ,

and the random variable
X : Ω −→ Z

given by
X(k) = k, k = 1, 3, −1, −2, 5, 7.

Here, E[X | X > 1] denotes the expected value of X given the event

A := {X > 1} = {3, 5, 7} ⊂ Ω,

i.e. the mean value of X given that X is strictly greater than one. This
conditional expectation can be computed as

E[X | X > 1]
= 3 × P(X = 3 | X > 1) + 5 × P(X = 5 | X > 1) + 7 × P(X = 7 | X > 1)

= 3 × 1
4 + 5 × 2

4 + 7 × 1
4

=
3 + 2 × 5 + 7

4 .

On the other hand, we have

1
P(X > 1)E

[
X1{X>1}

]
=

1
P(X > 1) (3 × P(X = 3) + 5 × P(X = 5) + 7 × P(X = 7))

=
1

4/7

(
3 × 1

7 + 5 × 2
7 + 7 × 1

7

)
=

3 + 5 × 2 + 7
4 ,

where P(X > 1) = 4/7 and the truncated expectation E
[
X1{X>1}

]
is given

by
E
[
X1{X>1}

]
=

3 + 2 × 5 + 7
7 .

c) The Conditional Tail Expectation (CTE) of X given that X > 0 is the
risk measure defined as the conditional mean

V X := E[X | X > 0] =
E[X1{X>0}]

P(X > 0) . (6.2)
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Next, we consider the following market returns data.

 library(quantmod)
 getSymbols("^HSI",from="2013-06-01",to="2014-10-01",src="yahoo")

stock<-Ad(`HSI`);returns <- as.vector((stock-lag(stock))/lag(stock));
 times=index(stock);m=mean(returns[returns<0],na.rm=TRUE)

dev.new(width=16,height=7);par(oma=c(0,1,0,0))
 plot(times,returns,pch=19,cex=0.4,col="blue", ylab="", xlab="", main = '', las=1, cex.lab=1.8,

cex.axis=1.8, lwd=3)
segments(x0 = times, x1 = times, y0 = 0, y1 = returns,col="blue")

 abline(h=m,col="red",lwd=3); length(returns)

2020 2021

−0.10

−0.05

0.00

0.05

0.10

Fig. 6.1: Estimating liabilities by the conditional mean E[X | X < 0] over 346 market
returns.

The conditional tail expectation (CTE) (6.2) estimated in Figure 6.1 can also
be computed using the next code, which also implements the statement
of Lemma 6.2.

 returns <- returns[!is.na(returns)]
 condmean<-mean(returns[returns<0])

n <- length(returns); sum<-sum(returns[returns<0])
 proportion<-length(returns[returns<0])/length(returns)

condmean; sum/proportion/n
 condmean<-mean(returns[returns<(-0.025)])

n <- length(returns); sum<-sum(returns[returns<(-0.025)])
 proportion<-length(returns[returns<(-0.025)])/length(returns)

condmean; sum/proportion/n

Coherent risk measures

Definition 6.3. A risk measure V is said to be coherent if it satisfies the
following four properties, for any two random variables X, Y :
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i) Monotonicity:
X ⩽ Y =⇒ VX ⩽ VY ,

ii) (Positive) homogeneity:

VλX = λVX , for constant λ > 0,

iii) Translation invariance:

Vµ+X = µ+ VX , for constant µ > 0,

iv) Subadditivity:
VX+Y ⩽ VX + VY .

Subadditivity means that the combined risk of several portfolios is lower than
the sum of risks of those portfolios, as happens usually through portfolio
diversification. For example, one person traveling might insure the unlikely
loss of her phone for VX = $100. However, two people traveling together
might want to insure the phone loss event at a level VX+Y lower than VX +
VY = $100 + $100 as the simultaneous loss of both phones during a same
trip seems even more unlikely.

The concept of subadditivity is common in most pricing engines, as shown
in the following example:

Price
( )

⩽ Price
( )

+ Price
( )

+ Price
( )

.

The expectation of random variables

VX := E[X ],

or pure premium risk measure, is an example of a coherent (and additive)
risk measure satisfying the above conditions (i)-(iv).

Definition 6.4. A distortion risk measure is a risk measure of the form

MX = E[XfX(X)],

where fX is a distortion function, i.e. a nonnegative, non-decreasing function
such that

i) fµ+X(µ+ x) = fX(x), x ∈ R, µ ∈ R,

ii) fλX(λx) = fX(x), x ∈ R, λ > 0,

iii) E[fX(X)] = 1.
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We note that distortion risk measures are positive homogeneous and trans-
lation invariant.

i) Positive homogeneity. For any λ > 0, we have

MλX = E[λXfλX(λX)] = E[λXfX(X)]

= λE[XfX(X)]

= λMX .

ii) Translation invariance. For any µ ∈ R, we have

Mµ+X = E[(µ+X)fµ+X(µ+X)]

= E[(µ+X)fX(X)]

= E[XfX(X)] + µE[fX(X)]

= µ+ E[XfX(X)]

= µ+MX .

See (7.2) and (7.7) below for examples of distortion risk measures.

6.2 Quantile Risk Measures

Definition 6.5. The Cumulative Distribution Function (CDF) of a random
variable X is the function

FX : R −→ [0, 1]

defined by
FX (x) := P(X ⩽ x), x ⩾ 0.

Any cumulative distribution function FX satisfies the following properties:

i) x 7→ FX (x) is non-decreasing,

ii) x 7→ FX (x) is right-continuous,

iii) limx→∞ FX (x) = 1,

iv) limx→−∞ FX (x) = 0.

Cumulative distribution functions can be discontinuous functions, as illus-
trated in Figure 6.2 with

P(X = 0) = P(X ⩽ 0) − P(X < 0) = 0.25 > 0.
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Fig. 6.2: Cumulative distribution function with discontinuities.∗

Proposition 6.6 shows in particular that cumulative distribution functions
admit left limits.

Proposition 6.6. For any non-decreasing sequence (xn)n⩾1 converging to
x ∈ R, we have

lim
n→∞

FX (xn) = lim
n→∞

P(X ⩽ xn) = P(X < x). (6.3)

Proof. By (A.7), we have

P(X < x) = P(X ∈ (−∞,x))

= P

X ∈
⋃
n⩾1

(−∞,xn]


= lim

n→∞
P(X ∈ (−∞,xn])

= lim
n→∞

FX (xn).

□

As a consequence of Proposition 6.6, the gap generated by a discontinuity of
a CDF at a point x ∈ R is given by

FX (x) − lim
y↗x

FX (y) = P(X ⩽ x) − P(X < x) = P(X = x).

∗ Picture taken from https://www.probabilitycourse.com/.
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 x <- seq(-4, 4, length=1000)
plot(x, pnorm(x, mean=0, sd=1), type="l", lwd=3, xlab = 'x', ylab = '', main = '', col='blue',

ylim=c(-0.001,1.002), las=1, cex.lab=1, cex.axis=1, xaxs='i', yaxs='i'); grid(4, 10, lwd =
2)

 plot(x, pexp(x, 1), type="l", lwd=3, xlab = 'x', ylab = '', main = '', col='blue',
ylim=c(-0.001,1.002), las=1, cex.lab=1, cex.axis=1, xaxs='i', yaxs='i'); grid(4, 10, lwd =
2)

plot(x, ppois(x, 1), type="l", lwd=3, xlab = 'x', ylab = '', main = '', col='blue',
ylim=c(-0.001,1.002), las=1, cex.lab=1, cex.axis=1, xaxs='i', yaxs='i'); grid(4, 10, lwd =
2)

Figure 6.3-(a) shows the continuous Cumulative Distribution Function

FX (x) := P(X ⩽ x) =
1√
2π

w x

−∞
e−y2/2dy, x ⩾ 0,

of a Gaussian random variable X ≃ N (0, 1).
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(a) Normal CDF.
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(c) Poisson CDF.

Fig. 6.3: Cumulative distribution functions.

On the other hand, if FX (x) is differentiable in x ∈ R then the distribution of
the random variable X is said to admit a probability density function (PDF)
fX (x) given as the derivative

fX (x) = F ′
X (x), x ⩾ 0.

Definition 6.7. Given X a random variable with cumulative distribution
function FX : R −→ [0, 1] and a level p ∈ (0, 1), the p-quantile qp

X of X is
defined by

qp
X := inf{x ∈ R : P(X ⩽ x) ⩾ p}. (6.4)

We note that by (6.4), the function p 7→ qp
X is the generalized inverse F−1

X (x)
of the Cumulative Distribution Function

x 7→ FX (x) := P(X ⩽ x), x ⩾ 0.

of X, see Definition 1 in Embrechts and Hofert (2013). As a consequence, we
have the following.
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Proposition 6.8.

i) The function p 7→ qp
X is a non-decreasing, left-continuous function of

p ∈ [0, 1], and it admits limits on the right.
ii) For all p ∈ [0, 1] and x ∈ R, we have

p ⩽ FX (x) ⇐⇒ qp
X ⩽ x.

Proof. (i) follows from Proposition 1-(2) in Embrechts and Hofert (2013),
since FX (x) is non-decreasing in x ∈ R, and (ii) follows from Proposition 1-
(5) therein, since FX (x) is right-continuous in x ∈ R. □

Fig. 6.4: Example of quantiles given as percentiles.

Quantiles of common distributions

The quantiles of various distributions can be obtained in R.

- Gaussian distribution. The command

 qnorm(.95, mean=0, sd=1)

shows that the 95%-quantile of a N (0, 1) Gaussian random variable is
1.644854.
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(a) Gaussian quantile and CDF.
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(b) Gaussian quantile and CDF.

Fig. 6.5: Gaussian quantile qp
Z

= 1.644854 at p = 0.95.

- Exponential distribution. The command

 qexp(.95, 1)

displays the 95%-quantile of an exponentially distributed random variable
with CDF

P(X ⩽ x) = 1 − e−λx, x ⩾ 0.

By equating P(X ⩽ qp
X ) = p, we find

qp
X = inf

{
x ∈ R : P(X ⩽ x) ⩾ p

}
= − 1

λ
log(1 − p)

= E[X ] log 1
1 − p

,

and when p = 95% and λ = 1 this yields

qp
X = 2.995732 ≃ 2.996E[X ].
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(a) Exponential quantile and CDF.
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(b) Exponential quantile and CDF.

Fig. 6.6: Exponential quantile qp
X

= 2.995732 at p = 0.95.

- Student distribution. The command
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 qt(.90, df=5)

displays the 90%-quantile of a Student t-distributed random variable with
5 degrees of freedom, which is 1.475884.

- Bernoulli distribution. Consider the Bernoulli random variableX ∈ {0, 1}
with the distribution

P(X = 1) = 2%, P(X = 0) = 98%.

In this case, we check from Figure 6.7 that q0.99
X = 1.

0.96

0.97

0.98

0.99

1.00

0 1 2 3 x

FX(x);FY (x)

0

p=

V 0.99
X

Fig. 6.7: Cumulative distribution function of X.

Empirical Cumulative Distribution Function

Definition 6.9. The empirical Cumulative Distribution Function (CDF) of
an N -point data set {x1,x2,x3, . . . ,xN } is estimated as

FN (x) :=
1
N

N∑
i=1

1{xi⩽x}, x ⩾ 0.

 getSymbols("^STI",from="1990-01-03",to="2015-01-03",src="yahoo")
getSymbols("1800.HK",from=Sys.Date()-50,to=Sys.Date(),src="yahoo")

 stock=Ad(`1800.HK`);stock.rtn=(stock-lag(stock))/lag(stock);
stock.rtn <- stock.rtn[!is.na(stock.rtn)]

 stock.ecdf=ecdf(as.vector(stock.rtn))
plot(stock.ecdf, xlab = 'Sample Quantiles', ylim=c(-0.001,1.002), xlim=c(-0.15,0.15), ylab = '',

lwd = 3, main = '',col='blue', las=1, cex.lab=1.5, cex.axis=1.5, xaxs='i', yaxs='i');
grid(4, 10, lwd = 2)
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 getSymbols("1800.HK",from=Sys.Date()-3650,to=Sys.Date(),src="yahoo")
 stock=Ad(`1800.HK`);stock.rtn=(stock-lag(stock))/lag(stock);

stock.ecdf=ecdf(as.vector(stock.rtn))
 plot(stock.ecdf, xlab = 'Sample Quantiles', ylim=c(-0.001,1.002), xlim=c(-0.15,0.15), ylab = '',

lwd = 2, main = '',col='blue', cex=1, las=1, cex.lab=1.5, cex.axis=1.5, xaxs='i', yaxs='i')
grid(4, 10, lwd = 2)
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(a) Empirical CDF on 50 samples.
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(b) Empirical CDF on 2463 samples.

Fig. 6.8: Empirical cumulative distribution functions.

Note that the empirical distribution function in Figure 6.8-a) has a visible
discontinuity (or gap) at x = 0, whose height 0.05483347 is given by

 length(stock.rtn[stock.rtn==0])/length(stock.rtn)

6.3 Value at Risk (VaR)

Consider a random variable X used to model the potential losses associated
to a given risk. The probability P(X > V ) that X exceeds the level V is of
a capital importance. Choosing the value of V such that for example

P(X ⩽ V ) ⩾ 0.95, i.e. P(X > V ) ⩽ 0.05,

means that insolvency will occur with probability less that 5%. In this setting,
the 95%-quantile risk measure is the smallest value of x ∈ R such that

P(X ⩽ x) ⩾ 0.95, i.e. P(X > x) ⩽ 0.05.

More precisely, we have the following definition.
Definition 6.10. The Value at Risk V p

X of a random variable X at the level
p ∈ (0, 1) is the p-quantile of X defined by
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V p
X := inf{x ∈ R : P(X ⩽ x) ⩾ p}. (6.5)

In other words, for some decreasing sequence (xn)n⩾1 such that

P(X ⩽ xn) ⩾ p for all n ⩾ 1,

we have
V p

X := lim
n→∞

xn. (6.6)

Similarly to the above, the function p 7→ V p
X is the generalized inverse F−1

X (x)
of the Cumulative Distribution Function 7→ FX of X, and from Proposi-
tion 6.8-(i) we have the following result.
Proposition 6.11. The function p 7→ V p

X is a non-decreasing, left-continuous
function of p ∈ [0, 1], and it admits limits on the right.
In particular, if FX is continuous and strictly increasing it admits an inverse
F−1

X , and in this case V p
X is given by

V p
X = F−1

X (p), p ∈ (0, 1).

Proposition 6.12. The Value at Risk V p
X of X at the level p ∈ (0, 1) satisfies

the properties
P
(
X < V p

X

)
⩽ p ⩽ P

(
X ⩽ V p

X

)
, (6.7)

and
P
(
X > V p

X

)
⩽ 1 − p ⩽ P

(
X ⩾ V p

X

)
. (6.8)

In particular, if P(X = V p
X ) = 0, then we have

p = P
(
X < V p

X

)
= P(X ⩽ V p

X ). (6.9)
Proof. Using the decreasing sequence (xn)n⩾1 in (6.6) and the right conti-
nuity of the cumulative distribution function FX , we have

P
(
X ⩽ V p

X

)
= P(X ⩽ lim

n→∞
xn)

= FX

(
lim

n→∞
xn

)
= lim

n→∞
FX (xn)

= lim
n→∞

P(X ⩽ xn)

⩾ p.

On the other hand, if P
(
X < V p

X

)
> p then there is a strictly increasing

sequence (yn)n⩾1 such that

lim
n→∞

yn = V p
X
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and by (6.3) we have

P
(
X < V p

X

)
= lim

n→∞
P(X ⩽ yn) > p,

in which case there would exist n ⩾ 1 such that yn < V p
X and P(X ⩽ yn) > p,

which contradicts (6.5). Relations (6.8)-(6.9) are direct consequences of (6.7).
□

When P
(
X = V p

X

)
> 0 we may have P

(
X > V p

X

)
= 0, for example in the

case of a Bernoulli random variable X ∈ {0, 1} with the distribution

P(X = 1) = 2%, P(X = 0) = 98%,

see Figure 6.7. The next proposition also follows from the Definition 6.10 of
V p

X and Proposition 6.8-(ii).

Proposition 6.13. For all x ∈ R we have

V p
X ⩽ x ⇐⇒ P(X ⩽ x) ⩾ p. (6.10)

Proof. ⇐) If P(X ⩽ x) ⩾ p then we have

V p
X = inf{y ∈ R : P(X ⩽ y) ⩾ p} ⩽ x.

⇒) On the other hand, choosing a strictly decreasing sequence (xn)n⩾1 such
that

lim
n→∞

xn = V p
X and P(X ⩽ xn) ⩾ p, n ⩾ 1,

if V p
X ⩽ x we have

P(X ⩽ x) ⩾ P(X ⩽ V p
X ) = lim

n→∞
P(X ⩽ xn) ⩾ p

by the right continuity of the cumulative distribution function FX of X. □

On the other hand, the Value at Risk V p
X does not reveal any information

on how large losses can be beyond V p
X , see Chapter 7 for details. The next

proposition shows how to estimate Value at Risk when switching the sign of
the data.

Proposition 6.14. Assume that the cumulative distribution function FX is
continuous and strictly increasing. Then, we have

V p
−X = −V 1−p

X , p ∈ (0, 1). (6.11)

Proof. Since FX is continuous, we have

F−X (x) = P(−X ⩽ x)
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= P(X ⩾ −x)
= 1 − P(X < −x)
= 1 − P(X ⩽ −x)
= 1 − FX (−x),

hence, taking
x := F−1

−X (p),

we have
p = F−X

(
F−1

−X (p)
)
= 1 − FX

(
− F−1

−X (p)
)
,

or
FX

(
− F−1

−X (p)
)
= 1 − p

i.e.
F−1

−X (p) = −F−1
X (1 − p),

which yields

V p
−X = F−1

−X (p) = −F−1
X (1 − p) = −V 1−p

X , p ∈ (0, 1).

□
In Figure 6.9 we choose a continuous CDF FX with

F−X (x) = 1 − FX (−x), x ∈ R.

In this case, the continuity of FX ensures the symmetry property

V p
−X = −V 1−p

X

of Proposition 6.14.
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F−X↘
FX

↘

-6 -5 -4V1−p
−X

-2 -1 0 1 2 3Vp
X

4 5 6
0

1− p = 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

p = 0.9

1

Fig. 6.9: Continuous CDF.

On the other hand, in Figure 6.10 we consider X with distribution

P(X = 1) = 0.5, P(X = 2) = 0.3, P(X = 3.4) = 0.2,

hence

P(−X = −3.4) = 0.2, P(−X = −2) = 0.3, P(−X = −1) = 0.5,

and we check that in this discontinuous case the relation V q
−X = −V 1−q

X fails
for p = 0.8, although it still holds for p′ = 0.9.

F−X↘
FX↘

V1−p′

−X

-6 -5 -4V1−p
−X

-2 -1 0 1 Vp
X

3Vp′

X
4 5 6

0

1− p′ = 0.1

1− p = 0.2

0.3

0.4

0.5

0.6

0.7

p = 0.8

p′ = 0.9

1

Fig. 6.10: Discontinuous CDF.

Next, we check the properties of Value at Risk. Although Value at Risk
satisfies the monotonicity, positive homogeneity and translation invariance
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properties, it is not subadditive in general. Namely, the Value at Risk V p
X+Y

of X + Y may be larger than the sum V p
X + V p

Y .

Proposition 6.15. Value at Risk V p
X is a monotone, positive homegeneous

and translation invariant risk measure. However, it is not subadditive, and
therefore it is not a coherent risk measure.

Proof.

a) Monotonicity.

Value at Risk is a monotone risk measure. If X ⩽ Y then

P(Y ⩽ x) = P(X ⩽ Y ⩽ x) ⩽ P(X ⩽ x), x ⩾ 0,

hence
P(Y ⩽ x) ⩾ p =⇒ P(X ⩽ x) ⩾ p, x ⩾ 0,

which shows that
V p

X ⩽ V p
Y

by (6.5).
b) Positive homogeneity and translation invariance.

Value at Risk satisfies the positive homogeneity and translation invariance
properties. For any µ ∈ R and λ > 0, we have

V p
µ+λX = inf{x ∈ R : P(µ+ λX ⩽ x) ⩾ p}

= inf{x ∈ R : P(X ⩽ (x− µ)/λ) ⩾ p}
= inf{µ+ λy ∈ R : P(X ⩽ y) ⩾ p}
= µ+ λ inf{y ∈ R : P(X ⩽ y) ⩾ p}
= µ+ λV p

X .

c) Subadditivity and coherence.

We show that Value at Risk is not subadditive by considering two inde-
pendent Bernoulli random variables X,Y ∈ {0, 1} having the same distri-
bution P(X = 1) = P(Y = 1) = 2%,

P(X = 0) = P(Y = 0) = 98%,

hence V 0.975
X = V 0.975

Y = 0.
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0.96

0.97

0.98

0.99

1.00

FX(x);FY (x)

0 1 2 3
x

FX(x);FY (x)

0

p=0.975

Fig. 6.11: Cumulative distribution function of X and Y .

On the other hand, we have
P(X + Y = 2) = P(X = 1 and Y = 1) = (0.02)2 = 0.04%,

P(X + Y = 1) = 2 × 0.02 × 0.98 = 3.92%,

P(X + Y = 0) = P(X = 0 and Y = 0) = (0.98)2 = 96.04%,

hence
V 0.975

X+Y = 1 > V 0.975
X + V 0.975

Y = 0.

0.96

0.97

0.98

0.99

1.00

FX+Y (x)

0 1 2 3
x

FX+Y (x)

0

p=0.975

Fig. 6.12: Cumulative distribution function of X + Y .

□

In the next proposition, we use the standard Gaussian Cumulative Distribu-
tion Function (CDF)

Φ(x) :=
w x

−∞
e−y2/2 dy√

2πT
, x ∈ R,

of a standard normal random variable Z ≃ N (0, 1).

Proposition 6.16. Gaussian Value at Risk. Given X ≃ N (µX ,σ2
X ), we

have
V p

X = µX + σXq
p
Z (6.12)
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where the normal quantile qp
Z = V p

Z at the level p satisfies

Φ(qp
Z) = P(Z ⩽ qp

Z) = p for Z ≃ N (0, 1),

i.e.
qp

Z = Φ−1(p) and V p
X = µX + σX Φ−1(p).

Proof. We represent the random variable X ≃ N (µX ,σ2
X) as

X = µX + σXZ,

where Z ≃ N (0, 1) is a standard normal random variable, and use the relation

p = P(X ⩽ V p
X )

= P(µX + σXZ ⩽ V p
X )

= P(Z ⩽ (V p
X − µX)/σX)

= P(Z ⩽ qp
Z),

which holds provided that V p
X = µX + σXq

p
Z . □

We also note that if X ≃ N (µX ,σ2
X ) then −X ≃ N (−µX ,σ2

X ), hence

V p
−X = −µX + σXq

p
Z

= −µX − σXq
1−p
Z

= −V 1−p
X ,

which is consistent with (6.11).

The next remark shows that, although Value at Risk is not sub-additive
in general, it is sub-additive (and therefore coherent) on (not necessarily
independent) Gaussian random variables.

Remark 6.17. If X and Y are two Gaussian random variables, we have

V p
X+Y ⩽ V p

X + V p
Y .

Proof. By (6.12), for any two random variables X and Y , we have

σ2
X+Y = Var[X + Y ]

= E
[
(X + Y )2]− (E[X + Y ])2

= E
[
X2]+ E

[
Y 2]+ 2E[XY ] − E[X ]2 − E[Y ]2 − 2E[X ]E[Y ]

= Var[X ] + Var[Y ] + 2(E[XY ] − E[X ]E[Y ])
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= Var[X ] + Var[Y ] + 2E[(X − E[X ])(Y − E[Y ])]

= Var[X ] + Var[Y ] + 2 Cov(X,Y ) (6.13)

⩽ Var[X ] + Var[Y ] + 2
√

E
[
(X − E[X ])2]√E

[(
Y − E[Y ]

)2]
= Var[X ] + Var[Y ] + 2

√
Var[X ]

√
Var[Y ] (6.14)

=
(√

Var[X ] +
√

Var[Y ]
)2,

where, from (6.13) to (6.14) we applied the Cauchy-Schwarz inequality, hence
σX+Y ⩽ σX + σY . Assuming that X and Y are Gaussian, by (6.12) we find

V p
X+Y = µX+Y + σX+Y q

p
Z

= µX + µY + σX+Y q
p
Z

⩽ µX + µY + (σX + σY )q
p
Z

= V p
X + V p

Y .

□

6.4 Numerical estimates

In this section we are using the PerformanceAnalytics package, see also
§ 6.1.1 of Mina and Xiao (2001). In case we care about negative return values,
Definition 6.10 is replaced with

V p
X := Sup{x ∈ R : P(X ⩽ x) ⩽ 1 − p}. (6.15)

In case the CDF of X is continuous, we note the relation

V p
X = Sup{x ∈ R : P(X ⩽ x) ⩽ 1 − p}

= − inf{−x ∈ R : P(X ⩽ x) ⩽ 1 − p}
= − inf{x ∈ R : P(X ⩽ −x) ⩽ 1 − p}
= − inf{x ∈ R : P(−X ⩾ x) ⩽ 1 − p}
= − inf{x ∈ R : 1 − P(−X ⩾ x) ⩾ p}
= − inf{x ∈ R : P(−X ⩽ x) ⩾ p}
= −V p

−X ,

hence the relation
V p

X = −V p
−X = V 1−p

X
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which is obtained from Proposition 6.14 when the cumulative distribution
function FX is continuous and strictly increasing.

 install.packages("PerformanceAnalytics")
library(PerformanceAnalytics)

 getSymbols("0700.HK",from="2010-01-03",to="2018-02-01",src="yahoo")
stock=Ad(`0700.HK`);chartSeries(stock,up.col="blue",theme="white")

 stock.rtn=(stock-lag(stock))/lag(stock)[-1];stock.rtn <- stock.rtn[!is.na(stock.rtn)]
dev.new(width=16,height=7); chart.CumReturns(stock.rtn, main="Cumulative Returns")

 var=VaR(stock.rtn, p=.95, method="historical");var
length(stock.rtn[stock.rtn<var[1]])/length(stock.rtn)

 times=index(stock);chartSeries(stock.rtn,up.col="blue",theme="white")
abline(h=var,col="red",lwd=3)

−0.10

−0.05

0.00

0.05

0.10

stock.rtn [2010−01−05/2018−01−31]

Last 0.00388268727923665

Jan 05
2010

Jul 02
2010

Jan 04
2011

Jul 04
2011

Jan 04
2012

Jul 03
2012

Jan 03
2013

Jul 02
2013

Jan 02
2014

Jul 02
2014

Jan 02
2015

Jul 02
2015

Jan 04
2016

Jul 04
2016

Jan 03
2017

Jul 03
2017

Dec 29
2017

Fig. 6.13: Market returns vs. Value at Risk level in red.

The historical 95%-Value at Risk over N samples (xi)i=1,2,...,N can be es-
timated by inverting the empirical cumulative distribution function FN (x),
and is found to be V 95%

X = −0.03165963.

 VaR(stock.rtn, p=.95, method="gaussian",invert="FALSE")
 VaR(stock.rtn, p=.95, method="gaussian",invert="TRUE")

The Gaussian 95%-Value at Risk is estimated from (6.12) with p = 0.95 as

V p
X = V 1−p

X = µ+ σq1−p
Z = µ− σqp

Z ,

where −µ = E[−X ] and σ2 = Var[−X ], and is found equal to

V 95%
X = −0.03115425.
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It can be recovered up to approximation according to Proposition 6.16 from
the following code, which yields −0.0311592.

 m=mean(stock.rtn,na.rm=TRUE); s=sd(stock.rtn,na.rm=TRUE)
 q=qnorm(.95, mean=0, sd=1); m-s*q

Note that here we are concerned about large negative returns, which explains
the negative sign in m− s ∗ q.

The next lemma is useful for random simulation purposes, and it will also be
used in the proof of Propositions 7.6 and 7.12 below.

Lemma 6.18. Any random variable X can be represented as

X = V U
X = F−1

X (U),

where U a uniformly distributed random variable on [0, 1].

Proof. It suffices to note that by (6.10) we have

P
(
V U

X ⩽ x
)
= P(U ⩽ P(X ⩽ x)) = P(X ⩽ x) = FX (x), x ⩾ 0.

□

Exercises

Exercise 6.1 Consider a random variable X having the Pareto distribution
with probability density function

fX(x) =
γθγ

(θ+ x)γ+1 , x ⩾ 0.

a) Compute the cumulative distribution function

FX (x) :=
w x

0
fX(y)dy, x ⩾ 0.

b) Compute the value at risk V p
X at the level p for any θ and γ, and then for

p = 99%, θ = 40 and γ = 2.

Exercise 6.2 Consider a random variable X with the following cumulative
distribution function:
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Fig. 6.14: Cumulative distribution function of X.

a) Give the value of P(X = 100).
b) Give the value of V q

X for all q in the interval [0.97, 0.99].
c) Compute the value of V q

X for all q in the interval [0.99, 1].

Hint: We have

FX (x) = P(X ⩽ x) = 0.99 + 0.01 × x− 100
50 , x ∈ [100, 150].

Exercise 6.3 Discrete distribution. Consider X ∈ {10, 100, 110} with the
distribution

P(X = 10) = 90%, P(X = 100) = 9.5%, P(X = 110) = 0.5%.

Compute the value at risk V 99%
X .

Exercise 6.4 Exponential distribution. Assume that X has an exponential
distribution with parameter λ > 0 and mean 1/λ, i.e.

P(X ⩽ x) = 1 − e−λx, x ⩾ 0.

a) Compute
V p

X := inf
{
x ∈ R : P(X ⩽ x) ⩾ p

}
and V 95%

X .
b) Assuming that the liabilities of a company are estimated by E[X ], com-

pute the amount of required capital CX from (6.1).

Exercise 6.5 Given X a random variable having the geometric distribution
with

P(X = k) = (1 − p)kp, k ⩾ 0,

compute the conditional expectation E[X | X ⩾ a] for a > 0.
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Exercise 6.6 Estimating risk probabilities from moments.

a) Show that for every r > 0

V p
X ⩽

(
E[|X|r]
1 − p

)1/r

=
∥X∥Lr(Ω)

(1 − p)1/r
,

where ∥X∥Lr(Ω) := (E[|X|r])1/r.

Hint: Use the argument of the Markov inequality.
b) Give an upper bound for V 95%

X when p = 95% and r = 1.

Exercise 6.7 We consider a discrete random variable X having the following
distribution.

a) Find the following quantities for the above data set, and mark their values
on the graph.

i) Historical “Academic” Value at Risk at p = 0.95. VaR95
Ac-H =

ii) Historical “Academic” Value at Risk at p = 0.80. VaR80
Ac-H =

iii) Historical “Practitioner” Value at Risk at p = 0.95. VaR95
Pr-H =

iv) Historical “Practitioner” Value at Risk at p = 0.80. VaR80
Pr-H =

b) Knowing that mean=1.15, sd=3.048, qnorm(0.95)=1.645 and qnorm(0.80)=0.842,
compute (from Proposition 6.16):

i) Gaussian “Academic” Value at Risk at p = 0.95. VaR95
Ac-G =

ii) Gaussian “Academic” Value at Risk at p = 0.80. VaR80
Ac-G =

iii) Gaussian “Practitioner” Value at Risk at p = 0.95. VaR95
Pr-G =

iv) Gaussian “Practitioner” Value at Risk at p = 0.80. VaR80
Pr-G =
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