
Chapter 3
Processes with Jumps

Modeling insurance risk requires to use continuous-time stochastic processes
that allow for jumps in addition to a continuous component. This chapter
presents the construction of Poisson and compound Poisson processes which
are used for the modeling of insurance claim and reserve processes. Applica-
tions will be given to the closed form computation of ruin probabilities in the
Cramér-Lundberg model.
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3.1 The Poisson Process

The most elementary and useful jump process is
the standard Poisson process (Nt)t∈R+ which is a
counting process, i.e. (Nt)t∈R+ has jumps of size
+1 only and its paths are constant in between two
jumps, with N0 := 0.

" 75

This version: May 3, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html


N. Privault

The counting process (Nt)t∈R+ that can be used to model discrete arrival
times such as claim dates in insurance, or connection logs.
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Fig. 3.1: Sample path of a counting process (Nt)t∈R+ .

Using the indicator functions

1[Tk,∞)(t) =

{
1 if t ⩾ Tk,

0 if 0 ⩽ t < Tk, k ⩾ 1,

the value of Nt at time t can be written as

Nt =
∑
k⩾1

1[Tk,∞)(t), t ⩾ 0, (3.1)

where and (Tk)k⩾1 is the increasing family of jump times of (Nt)t∈R+ such
that

lim
k→∞

Tk = +∞.

The operation defined in (3.1) can be implemented in using the following
code.

 T=10; Tn=c(1,3,4,7,9); dev.new(width=T, height=5)
plot(stepfun(Tn,c(0,1,2,3,4,5)),xlim =c(0,T),xlab="t",ylab=expression('N'[t]),pch=1, cex=0.8,

col='blue', lwd=2, main="", cex.axis=1.2, cex.lab=1.4,xaxs='i'); grid()

In order for the counting process (Nt)t∈R+ to be a Poisson process, it has to
satisfy the following conditions:

1. Independence of increments: for all 0 ⩽ t0 < t1 < · · · < tn and n ⩾ 1 the
increments

Nt1 −Nt0 , . . . , Ntn −Ntn−1 ,

are mutually independent random variables.

2. Stationarity of increments: Nt+h − Ns+h has the same distribution as
Nt −Ns for all h > 0 and 0 ⩽ s ⩽ t.
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The meaning of the above stationarity condition is that for all fixed k ⩾ 0
we have

P(Nt+h −Ns+h = k) = P(Nt −Ns = k),

for all h > 0, i.e., the value of the probability

P(Nt+h −Ns+h = k)

does not depend on h > 0, for all fixed 0 ⩽ s ⩽ t and k ⩾ 0.
Based on the above assumption, given T > 0 a time value, a natural question
arises:

what is the probability distribution of the random variable NT ?
We already know that Nt takes values in N and therefore it has a discrete
distribution for all t ∈ R+.
It is a remarkable fact that the distribution of the increments of (Nt)t∈R+ ,
can be completely determined from the above conditions, as shown in the
following theorem.

As seen in the next result, cf. Theorem 4.1 in Bosq and Nguyen (1996),
the Poisson increment Nt −Ns has the Poisson distribution with parameter
(t− s)λ.
Theorem 3.1. Assume that the counting process (Nt)t∈R+ satisfies the above
independence and stationarity Conditions 1 and 2 on page 76. Then, for all
fixed 0 ⩽ s ⩽ t the increment Nt −Ns follows the Poisson distribution with
parameter (t− s)λ, i.e. we have

P(Nt −Ns = k) = e−(t−s)λ ((t− s)λ)k

k!
, k ⩾ 0, (3.2)

for some constant λ > 0.
The parameter λ > 0 is called the intensity of the Poisson process (Nt)t∈R+

and it is given by
λ := lim

h→0

1
h

P(Nh = 1). (3.3)

The proof of the above Theorem 3.1 is technical and not included here, cf. e.g.
Bosq and Nguyen (1996) for details, and we could in fact take this distribution
property (3.2) as one of the hypotheses that define the Poisson process.

Precisely, we could restate the definition of the standard Poisson process
(Nt)t∈R+ with intensity λ > 0 as being a stochastic process defined by (3.1),
which is assumed to have independent increments distributed according to
the Poisson distribution, in the sense that for all 0 ⩽ t0 ⩽ t1 < · · · < tn,
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(Nt1 −Nt0 , . . . ,Ntn −Ntn−1)

is a vector of independent Poisson random variables with respective param-
eters

((t1 − t0)λ, . . . , (tn − tn−1)λ).

In particular, Nt has the Poisson distribution with parameter λt, i.e.,

P(Nt = k) =
(λt)k

k!
e−λt, t > 0.

The expected value E[Nt] and the variance of Nt can be computed as

E[Nt] = Var[Nt] = λt, (3.4)

see Exercise A.1. As a consequence, the dispersion index of the Poisson
process is

Var[Nt]

E[Nt]
= 1, t ⩾ 0. (3.5)

Short time behaviour

From (3.3) above we deduce the short time asymptotics∗{
P(Nh = 0) = e−λh = 1 − λh+ o(h), h → 0,

P(Nh = 1) = λhe−λh ≃ λh, h → 0.

By stationarity of the Poisson process we also find more generally that
P(Nt+h −Nt = 0) = e−λh = 1 − λh+ o(h), h → 0,

P(Nt+h −Nt = 1) = λhe−λh ≃ λh, h → 0,

P(Nt+h −Nt = 2) ≃ h2λ
2

2 = o(h), h → 0, t > 0,

(3.6)

for all t > 0. This means that within a “short” time interval [t, t+h] of length
h, the increment Nt+h −Nt behaves like a Bernoulli random variable with
parameter λh. This fact can be used for the random simulation of Poisson
process paths.
∗ The notation f(h) = o(hk) means limh→0 f(h)/hk = 0, and f(h) ≃ hk means
limh→0 f(h)/hk = 1.
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The next code and Figure 3.2 present a simulation of the standard Poisson
process (Nt)t∈R+ according to its short time behavior (3.6).

 lambda = 0.6;T=10;N=1000*lambda;h=T*1.0/N
 t=0;s=c();for (k in 1:N) {if (runif(1)<lambda*h) {s=c(s,t)};t=t+h}

dev.new(width=T, height=5)
 plot(stepfun(s,cumsum(c(0,rep(1,length(s))))),xlim

=c(0,T),xlab="t",ylab=expression('N'[t]),pch=1, cex=0.8, col='blue', lwd=2, main="",
cex.axis=1.2, cex.lab=1.4,xaxs='i'); grid()
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Fig. 3.2: Sample path of the Poisson process (Nt)t∈R+ .

More generally, for k ⩾ 1 we have

P(Nt+h −Nt = k) ≃ hk λ
k

k!
, h → 0, t > 0.

Time-dependent intensity

The intensity of the Poisson process can in fact be made time-dependent (e.g.
by a time change), in which case we have

P(Nt −Ns = k) = exp
(

−
w t

s
λ(u)du

) (r t
s λ(u)du

)k

k!
, k = 0, 1, 2, . . . .

Assuming that λ(t) is a continuous function of time t we have in particular,
as h tends to zero,

P(Nt+h −Nt = k)
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=


exp

(
−
r t+h
t λ(u)du

)
= 1 − λ(t)h+ o(h), k = 0,

exp
(

−
r t+h
t λ(u)du

) r t+h
t λ(u)du = λ(t)h+ o(h), k = 1,

o(h), k ⩾ 2.

The intensity process (λ(t))t∈R+ can also be made random, as in the case of
Cox processes.

Poisson process jump times

In order to determine the distribution of the first jump time T1 we note that
we have the equivalence

{T1 > t} ⇐⇒ {Nt = 0},

which implies

P(T1 > t) = P(Nt = 0) = e−λt, t ⩾ 0,

i.e., T1 has an exponential distribution with parameter λ > 0.

In order to prove the next proposition we note that more generally, we
have the equivalence

{Tn > t} ⇐⇒ {Nt ⩽ n− 1},

for all n ⩾ 1. This allows us to compute the distribution of the random
jump time Tn with its probability density function. It coincides with the
gamma distribution with integer parameter n ⩾ 1, also known as the Erlang
distribution in queueing theory.

Proposition 3.2. For all n ⩾ 1, the probability distribution of Tn has the
gamma probability density function

t 7−→ λne−λt tn−1

(n− 1)!

with shape parameter n ⩾ 1 and scaling parameter λ > 0 on R+, i.e., for all
t > 0 the probability P(Tn ⩾ t) is given by

P(Tn ⩾ t) = λn
w ∞

t
e−λs sn−1

(n− 1)!ds.
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Proof. We have

P(T1 > t) = P(Nt = 0) = e−λt, t ⩾ 0,

and by induction, assuming that

P(Tn−1 > t) = λ
w ∞

t
e−λs (λs)

n−2

(n− 2)! ds, n ⩾ 2,

we obtain

P(Tn > t) = P(Tn > t ⩾ Tn−1) + P(Tn−1 > t)

= P(Nt = n− 1) + P(Tn−1 > t)

= e−λt (λt)
n−1

(n− 1)! + λ
w ∞

t
e−λs (λs)

n−2

(n− 2)! ds

= λ
w ∞

t
e−λs (λs)

n−1

(n− 1)! ds, t ⩾ 0,

where we applied an integration by parts to derive the last line. □

In particular, for all n ∈ Z and t ∈ R+, we have

P(Nt = n) = pn(t) = e−λt (λt)
n

n!
,

i.e., pn−1 : R+ → R+, n ⩾ 1, is the probability density function of the
random jump time Tn.

In addition to Proposition 3.2 we could show the following proposition which
relies on the strong Markov property, see e.g. Theorem 6.5.4 of Norris (1998).

Proposition 3.3. The (random) interjump times

τk := Tk+1 − Tk

spent at state k ⩾ 0, with T0 = 0, form a sequence of independent iden-
tically distributed random variables having the exponential distribution with
parameter λ > 0, i.e.,

P(τ0 > t0, . . . , τn > tn) = e−(t0+t1+···+tn)λ, t0, t1, . . . , tn ⩾ 0.

As the expectation of the exponentially distributed random variable τk with
parameter λ > 0 is given by
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E[τk] = λ
w ∞

0
xe−λxdx =

1
λ

,

we can check that the nth jump time Tn = τ0 + · · · + τn−1 has the mean

E[Tn] =
n

λ
, n ⩾ 1.

Consequently, the higher the intensity λ > 0 is (i.e., the higher the probability
of having a jump within a small interval), the smaller the time spent in each
state k ⩾ 0 is on average.

As a consequence of Proposition 3.2, random samples of Poisson process
jump times can be generated from Poisson jump times using the following

code according to Proposition 3.3.

 lambda = 0.6;T=10;Tn=c();n=0;
 S=0; while (S<T) {S=S+rexp(1,rate=lambda); Tn=c(Tn,S); n=n+1}

Z<-cumsum(c(0,rep(1,n))); dev.new(width=T, height=5)
 plot(stepfun(Tn,Z),xlim =c(0,T),ylim=c(0,8),xlab="t",ylab=expression('N'[t]),pch=1, cex=1,

col="blue", lwd=2, main="", las = 1, cex.axis=1.2, cex.lab=1.4,xaxs='i',yaxs='i'); grid()
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Fig. 3.3: Sample path of the Poisson process (Nt)t∈R+ .

In addition, conditionally to {NT = n}, the n jump times on [0,T ] of the
Poisson process (Nt)t∈R+ are independent uniformly distributed random vari-
ables on [0,T ]n, cf. e.g. § 11.1 in Privault (2018). This fact can also be useful
for the random simulation of Poisson process paths.
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 lambda = 0.6;T=10;n = rpois(1,lambda*T);Tn <- sort(runif(n,0,T)); Z<-cumsum(c(0,rep(1,n)));
dev.new(width=T, height=5)

 plot(stepfun(Tn,Z),xlim =c(0,T),ylim=c(0,8),xlab="t",ylab=expression('N'[t]),pch=1, cex=1,
col="blue", lwd=2, main="", las = 1, cex.axis=1.2, cex.lab=1.4,xaxs='i',tick.ratio = 0.5);
grid()

Compensated Poisson martingale

From (3.4) above we deduce that

E[Nt − λt] = 0, (3.7)

i.e., the compensated Poisson process (Nt −λt)t∈R+ has centered increments.

 lambda = 0.6;T=10;Tn=c();S=0;n=0;
 while (S<T) {S=S+rexp(1,rate=lambda); Tn=c(Tn,S); n=n+1}

Z<-cumsum(c(0,rep(1,n)));
 N <- function(t) {return(stepfun(Tn,Z)(t))};t <- seq(0,10,0.01)

dev.new(width=T, height=5)
 plot(t,N(t)-lambda*t,xlim = c(0,10),ylim =

c(-2,2),xlab="t",ylab=expression(paste('N'[t],'-t')),type="l",lwd=2,col="blue",main="",
xaxs = "i", yaxs = "i", xaxs = "i", yaxs = "i", las = 1, cex.axis=1.2, cex.lab=1.4)

abline(h = 0, col="black", lwd =2)
 points(Tn,N(Tn)-lambda*Tn,pch=1,cex=0.8,col="blue",lwd=2)
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Fig. 3.4: Sample path of the compensated Poisson process (Nt − λt)t∈R+ .

Since in addition (Nt − λt)t∈R+ also has independent increments, we get the
following proposition. We let

Ft := σ
(
Ns : s ∈ [0, t]), t ⩾ 0,

denote the filtration generated by the Poisson process (Nt)t∈R+ .

Proposition 3.4. The compensated Poisson process
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(Nt − λt)t∈R+

is a martingale with respect (Ft)t∈R+ .

The Poisson process belong to the family of renewal processes, which are
counting processes of the form

Nt =
∑
n⩾1

1[Tn,∞)(t), t ⩾ 0,

for which τk := Tk+1 − Tk, k ⩾ 0, is a sequence of independent identically
distributed random variables.

3.2 Compound Poisson Process

The Poisson process itself appears to be too limited to develop realistic price
models as its jumps are of constant size. Therefore there is some interest in
considering jump processes that can have random jump sizes.

Let (Zk)k⩾1 denote a sequence of independent, identically distributed
(i.i.d.) square-integrable random variables, distributed as a common ran-
dom variable Z with probability distribution ν(dy) on R, independent of the
Poisson process (Nt)t∈R+ . We have

P(Z ∈ [a, b]) = ν([a, b]) =
w b

a
ν(dy), −∞ < a ⩽ b < ∞, k ⩾ 1,

and when the distribution ν(dy) admits a probability density φ(y) on R, we
write ν(dy) = φ(y)dy and

P(Z ∈ [a, b]) =
w b

a
φ(y)dy, −∞ < a ⩽ b < ∞, k ⩾ 1.

Figure 3.5 shows an example of Gaussian jump size distribution.
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Fig. 3.5: Probability density function φ.
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Definition 3.5. The process (Yt)t∈R+ given by the random sum

Yt := Z1 + Z2 + · · · + ZNt =
Nt∑

k=1
Zk, t ⩾ 0, (3.8)

is called a compound Poisson process.∗

Letting Yt- denote the left limit

Yt- := lim
s↗t

Ys, t > 0,

we note that the jump size

∆Yt := Yt − Yt- , t ⩾ 0,

of (Yt)t∈R+ at time t is given by the relation

∆Yt = ZNt ∆Nt, t ⩾ 0, (3.9)

where
∆Nt := Nt −Nt- ∈ {0, 1}, t ⩾ 0,

denotes the jump size of the standard Poisson process (Nt)t∈R+ , and Nt- is
the left limit

Nt- := lim
s↗t

Ns, t > 0,

The next Figure 3.6 represents a sample path of a compound Poisson process,
with here Z1 = 0.9, Z2 = −0.7, Z3 = 1.4, Z4 = 0.6, Z5 = −2.5, Z6 = 1.5,
Z7 = −0.5, with the relation

YTk
= YT -

k
+ Zk, k ⩾ 1.

∗ We use the convention
n∑

k=1

Zk = 0 if n = 0, so that Y0 = 0.
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Fig. 3.6: Sample path of a compound Poisson process (Yt)t∈R+ .

Example. Assume that the jump sizes Z are Gaussian distributed with mean
δ and variance η2, with

ν(dy) =
1√

2πη2
e−(y−δ)2/(2η2)dy.

 N<-50;Tk<-cumsum(rexp(N,rate=0.5)); Zk<-rexp(N,rate=0.5); Yk<-cumsum(c(0,Zk))
 plot(stepfun(Tk,Yk),xlim = c(0,10),lwd=2,do.points = F,main="L=0.5",col="blue")

Zk<-rnorm(N,mean=0,sd=1); Yk<-cumsum(c(0,Zk))
 plot(stepfun(Tk,Yk),xlim = c(0,10),lwd=2,do.points = F,main="L=0.5",col="blue")

Given that {NT = n}, the n jump sizes of (Yt)t∈R+ on [0,T ] are independent
random variables which are distributed on R according to ν(dx). Based on
this fact, the next proposition allows us to compute the Moment Generating
Function (MGF) of the increment YT − Yt.
Proposition 3.6. For any t ∈ [0,T ] and α ∈ R we have

E
[
e(YT −Yt)α

]
= exp

(
(T − t)λ

(
E
[
eαZ

]
− 1
))

. (3.10)

Proof. Since Nt has a Poisson distribution with parameter t > 0 and is
independent of (Zk)k⩾1, for all α ∈ R we have, by conditioning on the value
of NT −Nt = n,

E
[
e(YT −Yt)α

]
= E

[
exp

(
α

NT∑
k=Nt+1

Zk

)]
= E

[
exp

(
α

NT −Nt∑
k=1

Zk+Nt

)]

= E

[
exp

(
α

NT −Nt∑
k=1

Zk

)]

=
∑
n⩾0

E

exp

αNT −Nt∑
k=1

Zk

∣∣∣∣NT −Nt = n

P(NT −Nt = n)

86 "

This version: May 3, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html


Notes on Financial Risk and Analytics

=
∑
n⩾0

E

[
exp

(
α

n∑
k=1

Zk

)]
P(NT −Nt = n)

= e−(T −t)λ
∑
n⩾0

λn

n!
(T − t)nE

[
exp

(
α

n∑
k=1

Zk

)]

= e−(T −t)λ
∑
n⩾0

λn

n!
(T − t)n

n∏
k=1

E
[
eαZk

]
= e−(T −t)λ

∑
n⩾0

λn

n!
(T − t)n

(
E
[
eαZ

])n
= exp

(
(T − t)λ

(
E
[
eαZ

]
− 1
))

.

□

As a consequence of Proposition 3.6, we can derive the following version of
the Lévy-Khintchine formula, after approximating f : [0,T ] −→ R a bounded
deterministic function of time by indicator functions:

E

[
exp

(w T

0
f(t)dYt

)]
= exp

(
λ
w T

0

w ∞

−∞

(
eyf (t) − 1

)
ν(dy)dt

)
. (3.11)

We note that we can also write

E
[
e(YT −Yt)α

]
= exp

(
(T − t)λ

w ∞

−∞
(eαy − 1)ν(dy)

)
= exp

(
(T − t)λ

w ∞

−∞
eαyν(dy) − (T − t)λ

w ∞

−∞
ν(dy)

)
,

since the probability distribution ν(dy) of Z satisfies

E
[
eαZ

]
=

w ∞

−∞
eαyν(dy) and

w ∞

−∞
ν(dy) = 1.

From the moment generating function (3.10) we can compute the expectation
and variance of Yt for fixed t. Note that the proofs of those identities require
to exchange the differentiation and expectation operators, which is possible
when the moment generating function (3.10) takes finite values for all α in a
certain neighborhood (−ε, ε) of 0.

Proposition 3.7. i) The expectation of Yt is given as the product of the
mean number of jump times E[Nt] = λt and the mean jump size E[Z],
i.e.,
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E[Yt] = E[Nt]E[Z] = λtE[Z]. (3.12)

ii) Regarding the variance, we have

Var [Yt] = E[Nt]E
[
|Z|2

]
= λtE

[
|Z|2

]
. (3.13)

Proof. (i) We use the relation

E[Yt] =
∂

∂α
E[eαYt ]|α=0 = λt

w ∞

−∞
yν(dy) = λtE[Z].

(ii) By (3.10), we have

E
[
Y 2

t

]
=

∂2

∂α2 E[eαYt ]|α=0

=
∂2

∂α2 exp
(
λt
(
E
[
eαZ

]
− 1
))

|α=0

=
∂

∂α

(
λtE

[
ZeαZ

]
exp

(
λt
(
E
[
eαZ

]
− 1
)))

|α=0

= λtE
[
Z2]+ (λtE[Z])2

= λt
w ∞

−∞
y2ν(dy) + (λt)2

(w ∞

−∞
yν(dy)

)2

= λtE[Z2] + (λtE[Z])2.

□

Relation (3.12) can be directly recovered using series summations, as

E[Yt] = E

[
Nt∑

k=1
Zk

]

=
∑
n⩾1

E

[
Nt∑

k=1
Zk

∣∣∣∣Nt = n

]
P(Nt = n)

= e−λt
∑
n⩾1

λntn

n!
E

[
n∑

k=1
Zk

∣∣∣∣Nt = n

]

= e−λt
∑
n⩾1

λntn

n!
E

[
n∑

k=1
Zk

]
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= λte−λtE[Z]
∑
n⩾1

(λt)n−1

(n− 1)!

= λtE[Z]

= E[Nt]E[Z].

As a consequence, the dispersion index of the compound Poisson process

Var [Yt]

E[Yt]
=

E
[
|Z|2

]
E[Z]

, t ⩾ 0.

coincides with the dispersion index of the random jump size Z. By a mul-
tivariate version of Theorem A.19, Proposition 3.6 can be used to show the
next result.

Proposition 3.8. (i) The compound Poisson process

Yt =
Nt∑

k=1
Zk, t ⩾ 0,

has independent increments, i.e. for any finite sequence of times t0 < t1 <
· · · < tn, the increments

Yt1 − Yt0 , Yt2 − Yt1 , . . . , Ytn − Ytn−1

are mutually independent random variables.

(ii) In addition, the increment Yt − Ys is stationary, 0 ⩽ s ⩽ t, i.e. the
distribution of Yt+h − Ys+h does not depend of h ⩾ 0.

Proof. This result relies on the fact that the result of Proposition 3.6 can be
extended to sequences 0 ⩽ t0 ⩽ t1 ⩽ · · · ⩽ tn and α1,α2, . . . ,αn ∈ R, as

E

[
n∏

k=1
eiαk(Ytk

−Ytk−1 )

]
= E

[
exp

(
i

n∑
k=1

αk(Ytk
− Ytk−1)

)]

= exp
(
λ

n∑
k=1

(tk − tk−1)
w ∞

−∞
(eiαky − 1)ν(dy)

)
(3.14)

=
n∏

k=1
exp

(
(tk − tk−1)λ

w ∞

−∞
(eiαky − 1)ν(dy)

)
=

n∏
k=1

E
[
eiαk(Ytk

−Ytk−1 )
]
,
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which also shows the stationarity in distribution of Yt+h − Ys+h in h ⩾ 0, for
0 ⩽ s ⩽ t. □

Since the compensated compound Poisson process also has independent and
centered increments by (3.7) we have the following counterpart of Proposi-
tion 3.4.

Proposition 3.9. The compensated compound Poisson process

Mt := Yt − λtE[Z], t ⩾ 0,

is a martingale.

 lambda = 0.6;T=10;Tn=c();S=0;n=0;
 while (S<T) {S=S+rexp(1,rate=lambda); Tn=c(Tn,S); n=n+1}

Z<-cumsum(c(0,rep(1,n))); Zn<-cumsum(c(0,rexp(n,rate=2)));
 Y <- function(t) {return(stepfun(Tn,Zn)(t))};t <- seq(0,10,0.01)

par(oma=c(0,0.1,0,0))
 plot(t,Y(t)-0.5*lambda*t,xlim = c(0,10),ylim =

c(-2,2),xlab="t",ylab=expression(paste('Y'[t],'-t')),type="l",lwd=2,col="blue",main="", xaxs =
"i", yaxs = "i", xaxs = "i", yaxs = "i", las = 1, cex.axis=1.2, cex.lab=1.4)

 abline(h = 0, col="black", lwd =2)
points(Tn,Y(Tn)-0.5*lambda*Tn,pch=1,cex=0.8,col="blue",lwd=2);grid()

0 2 4 6 8 10

−2

−1

0

1

2

t

Y
t−

t

Fig. 3.7: Sample path of a compensated compound Poisson process (Yt − λtE[Z])t∈R+ .

3.3 Claim and Reserve Processes

We consider

• a number Nt of claims made until t ⩾ 0, which is modeled by a Poisson
process (Nt)t⩾0 with intensity λ > 0,

• a sequence (Zk)k⩾1 of nonnegative independent, identically-distributed
random variables, which represent the claim amounts.
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We assume that the claim amounts (Zk)k⩾1 and the process of arrivals
(Nt)t⩾0 are independent. In the next definition we use the convention
S(t) = 0 if Nt = 0.

Definition 3.10. The aggregate claim amount up to time t is defined as the
compound Poisson process

S(t) =
Nt∑

k=1
Zk.

The aggregate claim amount (S(t))t∈R+ can also be written as

S(t) = YNt , t ∈ R+,

where (Yk)k⩾1 is the sequence of random variables independent of (Nt)t∈R+

given by

Yk =
k∑

j=1
Zj = Z1 + · · · + Zk, k ⩾ 1,

with Y0 := 0. In the next definition, f : R+ → R+ is an increasing function
mapping t > 0 to the premium income f(t) received between time 0 and time
t, with f(0) = 0.

Definition 3.11. Standard compound Poisson risk model. The surplus (or
reserve) process (Rx(t))t⩾0 is defined as

Rx(t) = x+ f(t) − S(t), t ⩾ 0,

where x ⩾ 0 is the amount of initial reserves and f(t) is the premium income
received between time 0 and time t > 0.

In the next Figures 3.8 and 3.9 we take f(t) := ct with c = 0.5.

t

Rx

0

1

2

3

x

T1 T2 T3 T4 T5

Fig. 3.8: Sample path (without ruin) of a reserve process (Rx(t))t∈R+ .

Unlike the above figure, the next Figure 3.9 contains a ruin event.
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t

Rx

0

1

2

3

x

T1 T2 T3 T4 T5

Fig. 3.9: Sample path (with ruin) of a reserve process (Rx(t))t∈R+ .

3.4 Ruin Probabilities

We will consider the infinite time ruin probability

Ψ(x) = P
(

∃ t ⩾ 0 : Rx(t) < 0
)
,

with Ψ(x) = 1 for x < 0, and the finite-time ruin probability defined as

ΨT (x) = P
(

∃ t ∈ [0,T ] : Rx(t) < 0
)
,

given T > 0 a finite time horizon, with ΨT (x) = 1 for x < 0.

Denoting by mT
0 the infimum

mT
0 := min

0⩽t⩽T
(f(t) − S(t)),

the ruin probability ΨT (x) can also be written as

ΨT (x) = P
(
mT

0 < −x
)
, x ⩾ 0.

Cramér-Lundberg Model

In Proposition 3.12 we compute the ruin probability in infinite time starting
from an initial reserve x ⩾ 0.

Proposition 3.12. Assume that the premium income function satisfies
f(t) = ct with premium rate c > 0.

a) The ruin probability in infinite time starting from the initial reserve x = 0
is given by

Ψ(0) = P
(

∃ t ⩾ 0 : R0(t) < 0
)
=
λµ

c
,

provided that c ⩾ λµ, where µ = E[Z], and Ψ(0) = 1 if c < λµ.
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b) Assume that the claim sizes (Zk)k⩾1 form a sequence of independent, ex-
ponentially distributed random variables with mean µ > 0, i.e. with pa-
rameter 1/µ. Then, the ruin probability in infinite time starting from the
initial reserve x ⩾ 0 is given by

Ψ(x) =
λµ

c
e(λ/c−1/µ)x, x ⩾ 0, (3.15)

provided that c ⩾ λµ, with Ψ(x) = 1 if c < λµ.

Proof. Let
Φ(x) := 1 − Ψ(x) = P (Rx(t) ⩾ 0, ∀t ⩾ 0)

denote the probability of non-ruin starting from an initial reserve x ⩾ 0.
Since c ⩾ 0, letting

F (z) := P(Z1 ⩽ z), z ⩾ 0,

denote the cumulative distribution function of the claim size Z1, for all y ⩾ 0
we have

Φ(y) = P(Ry(t) ⩾ 0, ∀ t ⩾ 0)

= P

(
y+ ct−

Nt∑
k=1

Zk ⩾ 0, ∀ t ⩾ 0
)

= P

(
y+ ct−

Nt∑
k=1

Zk ⩾ 0, ∀ t ⩾ T1

)

= E

[
1{

y+cT1−Z1+c(t−T1)−
∑Nt

k=2 Zk⩾0, ∀ t⩾T1
}]

= E

[
E

[
1{

y+cT1−Z1+c(t−T1)−
∑Nt

k=2 Zk⩾0, ∀ t⩾T1
}∣∣∣ T1

]]
= E

[
P

(
y+ cT1 −Z1 + c(t− T1) −

Nt∑
k=2

Zk ⩾ 0, ∀ t ⩾ T1

∣∣∣∣ T1

)]
= E

[
Φ(y+ cT1 −Z1)

]
= λ

w ∞

0
e−λs

w ∞

0
Φ(y+ cs− z)dF (z)ds

= λ
w ∞

0
e−λs

w y+cs

0
Φ(y+ cs− z)dF (z)ds

=
λ

c

w ∞

0
e−λu/c

w y+u

0
Φ(y+ u− z)dF (z)du
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=
λ

c
eλy/c

w ∞

y
e−λu/c

w u

0
Φ(u− z)dF (z)du. (3.16)

By differentiating (3.16) with respect to y, we find

Φ′(y) =
λ

c

(
Φ(y) −

w y

0
Φ(y− z)dF (z)ds

)
, (3.17)

hence by integration by parts with respect to z ∈ [0, y], we get

Φ(y) = Φ(0) +
w y

0
Φ′(u)du

= Φ(0) + λ

c

w y

0
Φ(u)du− λ

c

w y

0

w u

0
Φ(u− z)dF (z)du

= Φ(0) + λ

c

w y

0
Φ(y− z)(1 − F (z))dz,

a) Case x = 0. Letting y tend to infinity in the above inequality, we deduce

Φ(∞) = Φ(0) + λ

c

w ∞

0
Φ(∞ − z)(1 − F (z))dz

= Φ(0) + λ

c
Φ(∞)

w ∞

0
(1 − F (z))dz

= Φ(0) + Φ(∞)
λ

c

w ∞

0
P(Z > z)dz

= Φ(0) + Φ(∞)
λ

c
E[Z]

= Φ(0) + Φ(∞)
λµ

c
, (3.18)

since
w ∞

0
P(Z1 > z)dz =

w ∞

0
E[1{Z1>z}]dz

= E
[w ∞

0
1{Z1>z}dz

]
= E

[w Z1

0
dz

]
= E[Z1]

= µ

is the average claim size. From (3.18) we have

Φ(∞) = Φ(0) + Φ(∞)
λµ

c
.

94 "

This version: May 3, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html


Notes on Financial Risk and Analytics

When λµ > c we find Φ(0) = Φ(∞) = 0, whereas when λµ ⩽ c we have
Φ(∞) = 1 and we obtain Φ(0) = 1 − λµ/c. In particular, the infinite time
ruin probability Ψ(0) starting from the initial reserve x = 0 is given by

Ψ(0) = 1 − Φ(0)
= P

(
∃ t ⩾ 0 : Rx(t) < 0

)
=
λµ

c
, (3.19)

provided that λµ ⩽ c.

b) Case x > 0. We refer to Exercise 3.2 for the computation of the ruin
probability Ψ(x) starting from any x > 0. when the claim sizes (Zk)k⩾1 are
exponentially distributed. □

Analytic expressions for finite time ruin probabilities have also been ob-
tained when (Yk)k⩾1 are independent, exponentially distributed random vari-
ables with parameter µ > 0 and f(t) = ct is linear, c ⩾ 0, Theorem 4.1 and
Relation (4.6) of Dozzi and Vallois (1997) show that

ΨT (x) = P
(
mT

0 < −x
)

= λ
w T

0

x∑
n⩾0

(λµt(x+ ct))n

(n!)2 + ct
∑
n⩾0

(λµt(x+ ct))n

n!(n+ 1)!

 e−µ(x+ct)−λt

x+ ct
dt,

see also Theorem 3.1 of León and Villa (2009) for other related expressions.

R simulation∗

The following code provides an approximation of the infinite time ruin
probability (3.15) of Proposition 3.12 by Monte Carlo simulation when T is
sufficiently large, see also (3.21) in Exercise 3.2.

∗ See Kaas et al. (2009), Example 4.3.7.
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 T=20; # Use T>=500 to approximate infinite time dev.new(width=T, height=5)
nSim = 50; lambda = 0.1; x = 7.5; mu = 10; c = 3; N <- rep(Inf, nSim)

 for (k in 1:nSim){tauk <- rexp(10*T*lambda,lambda);Ti <- cumsum(tauk)
n=length(Ti[Ti<T]);if (n>=1) {Zk <- rexp(n,1/mu);Si <- x + Ti*c

 Ri <- Si - cumsum(Zk);RRi <- Si - c(0,cumsum(Zk)[1:n-1]);
Si<-Si[Ti<T];Ri<-Ri[Ti<T];RRi<-RRi[Ti<T]

 Ri <- c(Ri,Ri[n]+c*(T-Ti[n]));RRi <- c(RRi,Ri[n+1]);Ti <- c(Ti[Ti<T],T);
ruin <- !all(Ri[1:n]>=0);}

 else {ruin<-FALSE;Ti=c(T);RRi=x+c*T;Ri=x+c*T;};color="blue";
if (ruin) {N[k] <- min(which(Ri<0));color="orange"}

 par(mgp=c(0.8,1,1));par(mar=c(2,2,2,2))
plot(c(0,rbind(Ti,Ti)),c(x,rbind(RRi,Ri)),xlab="Time

t",xlim=c(0,T*0.99),ylim=c(-c*T/3,x+c*T),lwd=3,ylab="R(t)",type="l",col=color,
main=paste(length(N[N<Inf]),"/",k,"=",format(length(N[N<Inf])/k,digits=4)),
axes=FALSE, cex.lab=1.4)

 axis(1, pos=0, las = 1, cex.axis=1.2);axis(2, pos=0, las = 1, cex.axis=1.2);Sys.sleep(0.2)}
N <- N[N<Inf];length(N);mean(N);sd(N);max(N)

 cat('Theoretical value:',lambda*mu*exp(-x*(1/mu-lambda/c))/c,'\n')
cat('Simulation:',length(N)/nSim,'\n')

Figure 3.10 computes an estimate of the infinite time ruin probability Ψ(x)
by generating the sample paths of the reserve process (Rx(t))t∈R+ .

Fig. 3.10: Sample paths of a reserve process (Rx(t))t∈R+ .∗

Probability density function

The probability density function of mT
0 at −x < 0 can be computed as

−∂ΨT

∂x
(x).

∗ The animation works in Acrobat Reader on the entire pdf file.
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An important practical problem is to obtain numerical values of the sensitiv-
ity of the finite-time ruin probability with respect to the initial reserve

∂ΨT

∂x
(x),

in particular due to new solvency regulations in Europe. The problem of
computing the corresponding sensitivity for the finite-time ruin probability
ΨT (x) has been covered in Loisel and Privault (2009) based on multiple
integration. Formulas for the finite-time ruin probability

ΨT (x) = P
(

∃ t ∈ [0,T ] : Rx(t) < 0
)

have been proposed in Picard and Lefèvre (1997), see also De Vylder (1999)
and Ignatova et al. (2001), Rullière and Loisel (2004). In Privault and Wei
(2004; 2007), the Malliavin calculus has been used to provide a way to com-
pute the sensitivity of the probability

P (Rx(T ) < 0)

that the terminal surplus is negative with respect to parameters such as the
initial reserve or the interest rate of the model.

Non-constant rate of income

When the company income is an arbitrary function f(t) of time such that
f(0) := 0 we clearly we have mT

0 ⩽ 0 = f(0), hence the distribution of mT
0

is supported on (−∞, 0]. On the other hand, we have mT
0 = 0 if and only

if NT = 0 or f(Tk) − Yk > 0 for all k ⩾ 1 such that Tk ⩽ T , hence the
distribution of mT

0 has a Dirac mass at 0 with weight

P
(
mT

0 = 0
)
= P(NT = 0) + P

(
{mT

0 ⩾ 0} ∩ {NT ⩾ 1}
)

= e−λT + e−λT E

∑
k⩾1

λk
w T

0

w tk

0
· · ·

w t2

0
1{f (t1)>Y1} · · ·1{f (tk)>Yk}dt1 · · · dtk

 ,

where we used the fact that Poisson jump times are independent uniformly
distributed on the square [0,T ]n given that {NT = n}.

On the other hand, since f is increasing we have

mT
0 = inf

Tk⩽T , k⩾0
(f(Tk) − Yk) = 1{NT ⩾1} inf

Tk⩽T , k⩾1
(f(Tk) − Yk),

with T0 = 0. Hence we have the integral expression
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P
({
mT

0 ⩾ y
}

∩ {NT ⩾ 1}
)

(3.20)

= e−λT E

∑
k⩾1

λk
w T

0

w tk

0
· · ·

w t2

0
1{y<inf1⩽l⩽k(f (tl)−Yl)}dt1 · · · dtk


= λe−λT E

∑
k⩾0

λk
w T

0

w tk+1

0
· · ·

w t2

0
1{f (t1)>Y1+y} · · ·1{f (tk+1)>Yk+1+y}dt1 · · · dtk+1


Random rate of income

Here, we consider the infimum

mT
0 = inf

0⩽t⩽T
(Xt − S(t))

where (Xt)t∈R+ is a stochastic process with independent increments and
X0 = 0, independent of (S(t))t∈R+ , and such that

inf
t∈[a,b]

Xt, 0 ⩽ a < b,

has a probability density function denoted by ϕa,b(x). For example, if
(Xt)t∈R+ is a standard Brownian motion then ϕa,b(x) is given by

w ∞

x
ϕa,b(z)dz = P

(
inf

t∈[a,b]
Xt ⩾ x

)
= E

[
1{Xa<x}P

(
inf

t∈[a,b]
Xt ⩾ x

∣∣∣ Xa

)]
+ E

[
1{Xa⩾x}P

(
inf

t∈[a,b]
Xt ⩾ x

∣∣∣ Xa

)]
= E

[
1{Xa<x}P

(
inf

t∈[0,b−a]
Bt ⩾ x−Xa

∣∣∣ Xa

)]
+ P(Xa ⩾ x)

= 2E
[
1{Xa<x}P (Bb−a ⩾ x−Xa | Xa)

]
+ P(Xa ⩾ x)

=
1

π
√
a(b− a)

w ∞

0
e−(x−y)2/(2a)

w ∞

y
e−z2/(2(b−a))dzdy+

1√
2πa

w ∞

x
e−z2/(2a)dz.

We have mT
0 ⩽ X0 = 0 a.s., hence the distribution of mT

0 is carried by
(−∞, 0].

Guaranteed Maturity Benefits

Variable annuity benefits offered by insurance companies are usually pro-
tected via different mechanisms such as Guaranteed Minimum Maturity Ben-
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efits (GMMBs) or Guaranteed Minimum Death Benefits (GMDBs). The com-
putation of the corresponding risk measures is an important issue for the
practitioner in risk management.

Given a fund value process (Ft)t∈R+ , an insurer is continuously charging
annualized mortality and expense fees at the rate m from the account of
variable annuities, resulting into a margin offset income Mt given by

Mt := mFt t ∈ R+.

Denoting by τx the future lifetime of a policyholder at the age x, the future
payment made by the insurer at maturity T is

(G− FT )
+
1{τx>T }

where G is the guarantee level expressed as a percentage of the initial fund
value F0, δ is a roll-up rate according to which the guarantee increases up to
the payment time. In this case, the random variable X is taken equal to

X := e−rT (G− FT )
+
1{τx>T } −

w min(T ,τx)

0
e−rsMsds.

Exercises

Exercise 3.1 Consider N a Poisson random variable with distribution

P(N = n) = e−λλ
n

n!
, n = 0, 1, 2, . . .

where λ > 0, and let Y :=
N∑

k=1
Zk, where (Zk)k⩾1 is a sequence of inde-

pendent centered N (0,σ2) Gaussian random variables with variance σ2 and
cumulative distribution function

P(Zk ⩽ x) =
1√

2πσ2

w x

−∞
e−y2/(2σ2)dy =

1√
2π

w x/σ

−∞
e−y2/2dy = Φ

(x
σ

)
,

x ∈ R+.

a) Compute P(Y ⩾ y) using the conditioning

P(Y ⩾ y) =
∑
n⩾1

P

(
N∑

k=1
Zk ⩾ y

∣∣∣ N = n

)
P(N = n) = · · ·
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b) Find E[Y ].

Exercise 3.2 Show that when the claim size distribution is exponential with
mean µ > 0, i.e. when F (z) = 1 − e−z/µ, z ⩾ 0, the ruin probability is given
by

Ψ(x) = P
(

∃ t ∈ R+ : Rx(t) < 0
)
=
λµ

c
e(λ/c−1/µ)x, x ⩾ 0, (3.21)

provided that c ⩾ λµ.

Exercise 3.3 An insurance company receives continuous-time premium in-
come at the rate $µ per year. Claim payments are filed by subscribers ac-
cording to a Poisson process (Nt)t∈R+ of intensity λ > 0 claims per year. All
claims have same constant amount $C > 0.

a) Compute the expected value E[RT ] and variance E[(RT − E[RT ])
2] of the

company’s reserve RT := R0 + µT −CNT at time T > 0, with constant
initial reserve R0.

b) Express the probability P(RT < 0) of ruin at time T using the Poisson
probability mass function P(NT = k) = e−λT (λT )k/k!, k ⩾ 0.

Exercise 3.4 Consider

• a number Nt of claims made until t ⩾ 0, which is modeled by a Poisson
process (Nt)t⩾0 with intensity λ > 0,

• a sequence (Zk)k⩾1 of nonnegative independent, identically-distributed
random variables, which represent the claim amounts.

We assume that the claim amounts (Zk)k⩾1 and the process (Nt)t⩾0 of ar-
rivals are independent. The aggregate claim amount made up to time t to an
insurance company is defined as the compound Poisson process

S(t) :=
Nt∑

k=1
Zk = Z1 + Z2 + · · · + ZNt , t ∈ [0,T ].

The initial reserve of the company is denoted by x ⩾ 0 and the premium
income received up to time t ⩾ 0 is denoted by f(t).

a) Give the mean and variance of S(T ).
Hint: Use the mean E[NT ] = λT and the moments E[Z1] and E[Z2

1 ].
b) Using the Chebyshev inequality (3.22), provide an upper bound for the

ruin probability P(x+ f(T ) − S(T ) < 0) at time T > 0, provided that
x+ f(T ) − λTE[Z1] > 0.
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Hint: By the Chebyshev inequality inequality, for any random variable X
with mean µ > 0 and variance σ2 we have

P(X ⩽ 0) = P(X − µ ⩽ −µ) ⩽ P(|X − µ| ⩾ µ) ⩽
σ2

µ2 . (3.22)
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