Chapter 7
Expected Shortfall

This chapter presents the construction of Tail Value at Risk (TVaR) and
the Expected Shortfall (ES), which, unlike Value at Risk, are coherent risk
measures. The Tail Value at Risk at the confidence level p € (0,1) is defined
as the average of losses suffered in the worst (1 —p)% of events. Expected
Shortfall provides an alternative computation of Tail Value at Risk (TVaR)
by averaging potential losses above the VaR level. Experiments based on
financial data sets are also included.
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7.1 Tail Value at Risk (TVaR)

A basic shortcoming of Value at Risk is failing to provide information on
the behavior of probability distribution tails beyond V)’é. The next figure
illustrates the limitations of Value at Risk, namely its inability to capture
the properties of a probability distribution beyond V;;.T

f “Value at Risk is like an airbag that works all the time, except when you have a car
accident”. - D. Einhorn, hedge fund manager.
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Fig. 7.1: Two distributions having the same Value at Risk V7% = 2.145.

The Tail Value at Risk (or Conditional Value at Risk) aims at providing a
solution to the tail distribution problem observed with Value at Risk at the
level p € (0,1) by averaging over confidence levels ranging from p to 1.

Definition 7.1. The Tail Value at Risk (TVaR) of a random variable X at
the level p € (0,1) is defined by the average

1

1
TV = L Vidg. (7.1)

We note the following property.
Proposition 7.2. The Tail Value at Risk (TVaR) and Value at risk (VaR)
satisfy the following inequality:

TVE > V%, pe(0,1).

Proof. Since the function p — V)’; is non-decreasing by Proposition 6.11, we
have

1 1 1 1
TVE = — Vidg> —— VPdg=VP.
X 17p_[p xaq l—pjp xaq X

7.2 Conditional Tail Expectation (CTE)
Recall that by Lemma A.15, given an event A such that P(A) > 0, the
conditional expectation of X : Q) — IN given the event A satisfies

ELX | 4) = 5o E XL,
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see Section 6.1 for an example.

Definition 7.3. Consider a random variable X such that ]P(X > V)’;) > 0.
The Conditional Tail Expectation of X at the level p € (0,1) is the quantity

1
CTEY :=E[X | X >V}] = ME[X]I(XW,@}]

The use of the strict inequality “>" in the definition of the Conditional Tail
Expectation allows us to avoid any dependence on P(X = V)’;), and to
consider risky values strictly beyond V{. The Conditional Tail Expectation
is also called Conditional Value at Risk (CVaR).

Proposition 7.4. The Conditional Tail Expectation CTEg( at the level p €
(0,1) can be written as the distortion risk measure

CTEY := E[X fx(X)], (7.2)
where fx is the function defined by

1
PX > V) evky

Proof. We check that the function fx defined in (7.3) is a distortion function
according to Definition 6.4. Indeed, by Proposition 6.15 we have

fx (@) = z€R, (7.3)

1

I S

P(u+ X > VP ) el
1

I S

P(u+X >p+Vg) {pta>p+VE}

1

Tt TP

P(X > V%) {z>VE}

= fx(z), =z€R, pekR,

f/L+X(/“ + T) =

and
() = S
Fax (M) = POX > V7)oV
1
TP s avg) e
1

TP s V) Ve

= fx(z), zeR, A>0.
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Finally, we note that

E[fx(X)] = E

P(X > V) lWVfé}]
1
TRV [tev]
_ P(X >VR)
P(X > VE)
-1

O

Examples of Conditional Tail Expectations can be computed using the follow-
ing ‘R code in which computation is done on sign-changed data, i.e. according
to the “practitioner” point of view.

1| library(quantmod); getSymbols("~HSI",from="2013-06-01",t0="2014-10-01",src="yahoo")
2 | returns <- as.vector(diff(log(Ad( HSI")))); library(PerformanceAnalytics)
var=VaR(returns, p=.95, method="historical")

1 | cte=mean(returns[returns<as.numeric(var)],na.rm=TRUE)

The next proposition shows more precisely by which amount the Conditional
Tail Expectation exceeds the Value at Risk.

Proposition 7.5. Let X be a random variable X such that ]P(X > V)’;) > 0.
For any p € (0,1] we have CTEL, > E[X] and CTEY > V¥ with, more
precisely,
+
CTEX =E[X | X >VE] =VE+E[(X-VE)" | X>VE].
Proof. We have

E[X|X >V} = mmxn{bv@]
= b7 EX VB v |+ VEE o)
= por s vy Bl 1))+ iR 1)
=V s Bl

=VE+E[(X -VE)T|Xx > VE].

See Exercise 7.2-(d) for a proof of CTEL, > E[X]. a

178 S

This version: May 3, 2024
https://personal.ntu.edu.sg/nprivault/indext.html


https://personal.ntu.edu.sg/nprivault/indext.html

Notes on Financial Risk and Analytics

Next, we check that when ]P(X = V)’g) = 0, the Conditional Tail Expectation
coincides with the Tail Value at Risk. Note that in this case, we have

P(X>V8)=1-p>0
by (6.8) in Proposition 6.12.
Proposition 7.6. Assume that P(X = VE) = 0. Then we have
CTEY, = TVE,

i.e.

CTEY, =E[X | X > VZ] =E[X | X > V7] :%jlv§dq:TV§(.
P

1 —
(7.4)

Proof. By Lemma 6.18 we construct X as X = V}(] where U is uniformly
distributed on [0, 1], with

Uzp=V{>2VE<= X>VE,

and
U<p=V{ <V = X <VE,

hence
X>VE=V{>VE=U>p

Since IP(X = V%) = 0 we find that, with probability 1,
Uzpe=Uspe=V{2Vle= X>V] <= X >V,
hence
CTEY =E[X | X > V{]
—E[VY | V¥ > V]
]E[Vx \U>p}

»)

>
= ['via
= T—pJp v dq.

1
“Puspt VX1 w=p)]
1

O

Figure 7.2 shows the locations of Value at Risk and Conditional Tail Ex-
pectation on a given data set. Note that here, the computation is done on
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sign-changed data according to Proposition 6.14, i.e. the output is computed
according to the “practitioner” point of view.

Market returns Frequency histogram Empirical CDF

-I‘H‘H m gDQJ
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stock.rtn 5

Fig. 7.2: Value at Risk and Conditional Tail Expectation.

The Conditional Tail Expectation of a Gaussian N (y, %) random variable
is computed in the next proposition, see also Proposition 6.16.

Proposition 7.7. Gaussian CTE. Given X ~ N (ux,0%) we have

g ag _ 2
CTEY = px + ﬁtﬁ(q’é) = px + e ()2 (7.5)

(1-p)var ’
where ¢y = ®1(p) is the Gaussian quantile of Z ~ N(0,1) at the level
p€(0,1) and

1 2
(z) = —e %72, z € R,
V2

is the standard normal probability density function.

Proof. Using the relation P(X > V{) = P(X > V{) = 1 —p, cf. Proposi-
tion 6.13, by Proposition 7.6 we have

CTEY = TV%

=E[X|X > V]

= ;]E[X]l v ]
P(X > V%) >V

L[5 getemm)?/(2r3) 02

T1pJw Ty
pUVx 271'03(
_ lﬂx % o lemnx)?/20%) 2 : ! [ (0= et 273 dz
—pIVx 27ro'§( —pIVx 27r0§(
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= H—X]P(X >VE)+ 9% [76—(1—;;)()2/(203()]"1
l-p (1-p)y/2m0% Vx
2 P
= ux + Uixcf((‘/;’(*ux)/ﬂx)zﬂ
(1—p)y/2m0%
o ox _(qP)Z/Q
=px +————=—=e "z
(L-p)vor
oxX
= px + Tp¢(qg)7
due to the rescaling relation Vfé =pux + qug, cf. (6.12). d

7.3 Expected Shortfall (ES)

There are several variants for the definition of the Expected Shortfall ES’;(.
Next is a frequently used definition.

Definition 7.8. The Expected Shortfall ESI;( of a random variable X at the
level p € (0,1) is defined by

1
ESK = VP + ﬂ115[()( Vi)t (7.6)

. . S . . p
The next proposition provides an alternative expression for ES.

Proposition 7.9. The Ezpected Shortfall of X at the level p € (0,1) can be
written as
P

1 1%
ES% = EIE[X]I{)@V};}} + 1j(p(1 —p—P(X > V%))

Proof. By Lemma 6.2, we have

1
ESR =VX+1— 7p1E[(X -Vt
1

= V)’;Jr—l_plE[(XfV};)]l{X;V);;}}
P(X >V
:V§;+7( T X)IE[X7V§;|X>V§}

1
= Vk+ 1 (BXTpevgy] - VRE[Lpeiy))

1
=VE+ E(JE [(Xpxoyry] - VRP(X > V3))
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1 Ve
= T EN ey ]+

(1-p—P(x >1}).

When P(X = V%) = 0, Proposition 7.9 also yields
X

1 145
ESh = EJE[H{XW},;}] + 1_Xp (1-p-P(X >VE)).

Proposition 7.10. When P(X = Vi) = 0 the Expected Shortfall ES%
coincides with the Conditional Tail Expectation CTEI)’( and with the Tail
Value at Risk TVg(, i.e., we have

ESE, =E[X | X >VE] =E[X | X > V}] =TVL.
Proof. By Relation (6.9) in Proposition 6.12, when P(X = V%) = 0 we have

p=PX<VE) and 1-p=P(X>VE)=P(X >V%),

hence
1
ESY = EIE[XH{DVJT;}]
1
= T, EX L]
= ! E[X1
- m [ {X>V§}}
=E[X|X >V}]
=TVE,
by Proposition 7.6. d

From Propositions 7.9 and 7.10, we deduce that
Tp]E[X]l{X%,};;}] =E[X|X>VE]=TVL iP(X=VE) =0,

! E[X1 1+ Y
1-p eV T

ES% =

(1-p-P(X > VL)) if P(X = V2) > 0.

In particular, by Propositions 7.7 and 7.10, the Gaussian Expected Shortfall
of X ~ N (u,0?) at the level p € (0,1) is also given by

ES? = CTED, = i+ -2 (@ 1(p)) = p+ — 2@ 0)*/2,
X X N+17p¢( () lt+(17p)me
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Proposition 7.11. The Ezpected Shortfall ES’;( at the level p € (0,1) can
be written as the distortion risk measure

ES% = E[Xfx (X)), (7.7)
where the function fx defined by
1 1-p—-P(X >V%)
Ix(@) = 1 Lsypy + H{P(X:v§)>o}ml{z:v§}v
z € R, is a distortion function.
Proof. By Proposition 7.9, we have
D

1 V.
BS% = 1 E[X Loy + 12 (10— P(X > 1)

1 vk
T EX Lpcvy ] + 1{]P(X:V§)>O}ﬁ(l —p-P(X >V3))

1-p—P(X > V%)
]1{X>V§g} + 1{P(X:V§)>o}—1{xzv)§} X

1
= E
PX=V])

1-p

1
= fp]E K]l{xwgg} ~ Lpx=v2)>or Lix=vey

1-p-P(X >V%)
+]1{1P(X:v§;)>o)—]P(X —VD) Lixovey | X
1

= FE
1-p

1-p-P(X >V%)
Lixsyey+ 1{P(X:V§)>0}W1{X:v§) X|.

In order to show that fx is a distortion function according to Definition 6.4
we can proceed as in the proof of Proposition 7.4, and in particular we can
check that

1 1—p—P(X > VP
E[fx(X)] = 7—FE |1{xsvpy + 1{1>(xv§>>o}]P(X(Vp)X)1{XV§}]
- 'X

1-p

1
=15, (E[ﬂ{xw;;}] +1-p-P(X > V)]?))

- ﬁ(P(X>V§)+1fprP(X>V§))
=1

(7.8)
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By Lemma 6.18 and Proposition 7.11, we also have
1
ES% = [, Vi fx(Vi)da,

and we check that the distortion function fx of Proposition 7.11 is a non-
decreasing function that satisfies
Fx(e) < o R
z T T ,
) sy

by (6.8). The following proposition, see Acerbi and Tasche (2001), shows that
in general, the Expected Shortfall at the level p € (0,1) coincides with the
Tail Value at Risk TVE.

Theorem 7.12. The Ezpected Shortfall ES& coincides with the Tail Value
at Risk TV];( for any p € (0,1), i.e. we have

1 1
P _ y q
ESX_TVX—lipLVqu.

Proof. Constructing X as X = V}(] where U is uniformly distributed on [0, 1]
as in Lemma 6.18, by Proposition 6.11 we have

Uzp=V{>2VE=X>V}
and

U<pand X >VE) = (V¥ < VP and X > V2

X X X X
=>(X<V§ andX}V)];)
= X =V}

Hence by (7.6) and the relations

1=p=E[lzy] and P(X2VE) =E[Lixoyry],

we have
VE(A—p-P(X > V%)) = -VRE[Lixovry — Livsp]
= —VRE[1xovepwsp)
= _V)I;]E[]I{X>V)’(’}O{U<p}]
= _]E[X]l{x>v§;}m{U<p}}’
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hence
ESk = %IE[XIL{)OVP}] + Vi (1-p-P(X >VE))
-p “rx 1-p

= ﬁE[X]l{)@v;;)] - ﬁE[X]l{X>V)’;}ﬁ{U<p}}

= ﬁﬁ[v)gl{v}pv)’;}] - ﬁE[Vgl{v}{w)’i}ﬂ{U@ﬂ

= ﬁﬂg V¥ Lvysvey Lwsp]

= ﬁl’ﬂ V¥ 1w=p]

-5y v
which is the Tail Value at Risk TVX. O

Theorem 7.13. Expected Shortfall ES‘;( and Tail Value at Risk TVI;( are
coherent risk measures.

Proof. Since the Expected Shortfall ES’;( is a distortion risk measure by
Proposition 7.11, we can conclude to positive homogeneity and translation
invariance as done after Definition 6.4.

Alternatively, as ES% coincides with TVX for all p € (0,1) from The-
orem 7.12, we can use Relation (7.1) in Definition 7.1 or Relation (7.6) in
Definition 7.8 to proceed as follows.

(#) Monotonicity. If X < Y, since Value at Risk is monotone by Proposi-
tion 6.15, we have

ESh = TV
1
— q
=1 L Vxdq
1
Sip L Vyda
=TV
=ES}

for all p € (0,1).

(#4) Homogeneity and translation invariance. Similarly, since Value at Risk is
satisfies the homogeneity and translation invariance properties, for all © € R
and A > 0 we have
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ESZ-MX = TVZ+AX

1 1 4
_ 1—7pjp VuMqu
1

1
-1 L (1 +AVE)dg

=u+ )\ﬁ Ll V;dq
= pu+ATVY
= j+ \ESE,
for all p € (0,1).
(4¢) Sub-additivity. By Proposition 7.11, we have
(1-p) (ES%,, —ES% —ESY)
= ]E[(X +Y)fxv (X +Y)] —E[X/x(X)] - E[Y fy(Y)]
E[X (fx 4y (X +Y) = fx (X)) + BY (fx1v (X +Y) = fr(Y))]
= Vx]E[fX+Y(X +Y) = fx (O] + E[(X = VE) (fx1y (X +Y) = fx(X))]
+ WE[fx4y(X +Y) - fy(Y)] TE[(Y =) (fxy (X +Y) = fr(Y))]
=1 -V +E[(X - V) (fx4v(X +Y) - fx(X))]
+A-DWHE[Y - V) (fx+y (X +Y) = fy(Y))]
< 07
where we have used (7.8) and the following facts.

e When = — V}; < 0, we have

(L=p)(Uxsv(@+y) = fx(@) = Lgryove oy~ Lasvy

1-p-P(X+Y >V{,y)

+lip(x+y= V&, y)>0} P(X+Y =VZ,,)

Laty=vg.)
1-p—P(X >V%)
*ﬂ{n)(x:vg»o}wﬂ{x:v};}
1-p-P(X+Y>V{,y)
Il{ar:er> +Y} + ]1{][’(X+Y V)€+Y)>0} IP(X Y = V)I;JrY) ]1{:c+y Ve +Y}

>0, wx<Vg,

where we applied (6.8).
e When =z — V)I; > 0, we have
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(=) (xsv(z+y) = fx (@) = Lppyove )~ Lasvry
1-p-P(X+Y >VE.y)
Hlpxry= Ve )>0} P(X+Y =V,) Ligry=v, VEiv)
1-p—P(X >V%)
“Lp(x=v2)>0} TP(x=vD) Lip—vey

= larysve )~ Yasvey
1-p-P(X+Y >V{,y)
+lpxry= Ve )>0} P(X+Y =V, Ligty=ve iy}

S Larysve, )~ Yasvey t Laggve 3
=Llgigeve 3~ Lasvey
<0, z>VE,

where we applied (6.8).

O

Note that in general, the Conditional Tail Expectation is not a coherent risk
measure when P(X = V¥) > 0.

7.4 Numerical Estimates

We are using the PerformanceAnalytics ‘R package, see also § 6.1.1 of Mina
and Xiao (2001). In case we care about negative return values, Definitions 7.3
and 7.8 are replaced with

CTEY =E[X | X <VE] = ———=~
and 1
ES :=VE + T _p]E[(X - Vg()]l{xgvg(}].
From Proposition 6.14, when the cumulative distribution function Fy is con-

tinuous and strictly increasing we have

CTEY = ES%
=E[X|X < V%]
=E[X|X<-Vy7]
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1
~ pix < ) T )
1
Pxovin)" R

~E[-X | -X > Vg7
= -CTE"Y?

1—
- —Es'P.

library(PerformanceAnalytics)
ES(returns, p=.95, method="historical",invert="TRUE")
ES(returns, p=.95, method="historical",invert="FALSE")

The 95% historical Expected Shortfall is ESS;?% = —0.02087832, and can be
exactly recovered by the empirical Conditional Tail Expectation (CTE) as

1| mean(returns(returns<(VaR(returns, p=.95, method="historical")[1])],na.rm=TRUE) ‘

The Gaussian Expected Shortfall is given as —0.0191359 by

ES(returns, p=.95, method="gaussian",invert="FALSE")
ES(returns, p=.95, method="gaussian",invert="TRUE")

It can be recovered from (7.5) (after sign inversion) as
ESh = ~ES'?
=p- ﬁMVg)

T ~E2

i.e.

1 | g=qnorm(.95, mean=0, sd=1)

2 | mu=mean(returns,na.rm=TRUE)
sigma=sd(returns,na.rm=TRUE)
+ | mu-sigma*dnorm(q)/0.05

with output —0.01916536.

The attached ‘R code 1 and ‘R code 2 compute the Expected Shortfall
from the practitioner and academic points of views, and compare their out-
puts to the that of the PerformanceAnalytics package, as illustrated in the
next Figure 7.3.
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library(quantmod)
library(PerformanceAnalytics)

getSymbols("0700.HK",from="2015-01-03",to="2016-02-01",src="yahoo")
stock=Ad(`0700.HK`)
stock.rtn=as.numeric((stock-lag(stock))/stock);
stock.rtn<-stock.rtn[!is.na(stock.rtn)]

stock.ecdf=ecdf(as.vector(stock.rtn))

widths=c(50,50,120)
layout(matrix(c(1,2,3), 1, 3, byrow = TRUE),widths)
par(mar=c(7, 5.4, 4.4, 3))

times=seq(1,length(stock.rtn))

plot(times,stock.rtn,pch=19,col="purple", ylab="", xlab="", main = 'Data samples',cex.axis=1.1,cex.main=1.4,cex.lab=1.4)
segments(x0 = times, x1 = times, lwd=1.8, y0 = 0, y1 = stock.rtn,col="purple")

VaR2 <- function(p){
ordered<-stock.rtn[order(stock.rtn)]
v=ordered[1]; i=1
while(length(stock.rtn[stock.rtn>=v])/length(stock.rtn)>=p)
{i=i+1;VaR2=v;v=ordered[i]}
return (VaR2)
}

CTE2 <- function(p){return (mean(stock.rtn[stock.rtn<VaR2(p)]))}

ES2 <- function(p){return (VaR2(p)+(mean(stock.rtn[stock.rtn<=VaR2(p)])-VaR2(p))*length(stock.rtn[stock.rtn<=VaR2(p)])/length(stock.rtn)/(1-p))}

p=0.95

cat("Number of samples=",length(stock.rtn),"\n")
cat("VaR",p*100,"=",VaR2(p),", Threshold=",length(stock.rtn[stock.rtn>=VaR2(p)])/length(stock.rtn),"\n")
cat("CTE",p*100,"=",CTE2(p),"\n")
cat("ES",p*100,"=",ES2(p),"\n")

axis(side = 4, at = c(VaR2(p),CTE2(p)), labels=c(paste("VaR",p*100),paste("CTE",p*100)),las = 1,lwd=0,lwd.ticks=1,tick=TRUE,cex.axis=1.1,cex.lab=1.4) 
axis(side = 2, at = c(ES2(p)), labels=c(paste("ES",p*100,"   ")),las = 1,lwd=0,lwd.ticks=1,tick=TRUE,cex.axis=1.1,cex.lab=1.4) 
abline(h = VaR2(p), lwd=0.8, col="red")
abline(h = CTE2(p), lwd=0.8, col="purple")
abline(h = ES2(p), lwd=0.8, col="orange")

hist(stock.rtn, main="Frequency histogram", xlab = '',ylab = '', col = "orange",cex.axis=1.1,cex.main=1.4,cex.lab=1.6)

plot(stock.ecdf, xlab = 'Sample Quantiles', lwd=2, ylab = '',main = 'Cumulative Distribution Function',col='blue',cex.axis=1.1,cex.main=1.4,cex.lab=1.4)

abline(h = 1-p, lwd=0.8, col="black")

axis(side = 2, at = c(1-p),cex.axis=1.1,cex.lab=1.4)

axis(side = 1, at = c(VaR2(p),CTE2(p)), labels=c(paste("VaR",p*100,"     "),paste("CTE",p*100,"    ")),cex.axis=1.1,cex.lab=1.4,las = 2)
axis(side = 3, at = c(ES2(p)), labels=c(paste("ES",p*100,"     ")),cex.axis=1.1,cex.lab=1.4,las = 2)

abline(v = VaR2(p), lwd=0.8, col="red")
abline(v = CTE2(p), lwd=0.8, col="purple")
abline(v = ES2(p), lwd=0.8, col="orange")

library(PerformanceAnalytics)
cat("Historical VaR",p*100,"=",as.numeric(VaR(stock.rtn, p, method="historical",invert=TRUE)),"\n")
cat("Gaussian VaR",p*100,"=",as.numeric(VaR(stock.rtn, p, method="gaussian",invert=TRUE)),"\n")
cat("Historical ES",p*100,"=",as.numeric(ES(stock.rtn, p, method="historical",invert=TRUE)),"\n")
cat("Gaussian ES",p*100,"=",as.numeric(ES(stock.rtn, p, method="gaussian",invert=TRUE)),"\n")




library(quantmod)
library(PerformanceAnalytics)

getSymbols("0700.HK",from="2015-01-03",to="2016-02-01",src="yahoo")
stock=Ad(`0700.HK`)
stock.rtn=as.numeric((stock-lag(stock))/stock);
stock.rtn<-stock.rtn[!is.na(stock.rtn)]

stock.ecdf=ecdf(as.vector(stock.rtn))

widths=c(50,50,120)
layout(matrix(c(1,2,3), 1, 3, byrow = TRUE),widths)
par(mar=c(7, 5.4, 4.4, 3))

times=seq(1,length(stock.rtn))

plot(times,stock.rtn,pch=19,col="purple", ylab="", xlab="", main = 'Data samples',cex.axis=1.1,cex.main=1.4,cex.lab=1.4)
segments(x0 = times, x1 = times, lwd=1.8, y0 = 0, y1 = stock.rtn,col="purple")

VaR1 <- function(p){
ordered<-stock.rtn[order(stock.rtn)]
v=tail(ordered,1); i=length(stock.rtn)
while(length(stock.rtn[stock.rtn<=v])/length(stock.rtn)>=p)
{i=i-1;VaR1=v;v=ordered[i]}
return (VaR1)
}

CTE1 <- function(p){return (mean(stock.rtn[stock.rtn>VaR1(p)]))}

ES1 <- function(p){return (VaR1(p)+(mean(stock.rtn[stock.rtn>=VaR1(p)])-VaR1(p))*length(stock.rtn[stock.rtn>=VaR1(p)])/length(stock.rtn)/(1-p))}

p=0.95

cat("Number of samples=",length(stock.rtn),"\n")
cat("VaR",p*100,"=",VaR1(p),", Threshold=",length(stock.rtn[stock.rtn>=VaR1(p)])/length(stock.rtn),"\n")
cat("CTE",p*100,"=",CTE1(p),"\n")
cat("ES",p*100,"=",ES1(p),"\n")

axis(side = 4, at = c(VaR1(p),CTE1(p)), labels=c(paste("VaR",p*100),paste("CTE",p*100)),las = 1,lwd=0,lwd.ticks=1,tick=TRUE,cex.axis=1.1,cex.lab=1.4) 
axis(side = 2, at = c(ES1(p)), labels=c(paste("ES",p*100,"   ")),las = 1,lwd=0,lwd.ticks=1,tick=TRUE,cex.axis=1.1,cex.lab=1.4) 
abline(h = VaR1(p), lwd=0.8, col="red")
abline(h = CTE1(p), lwd=0.8, col="purple")
abline(h = ES1(p), lwd=0.8, col="orange")

hist(stock.rtn, main="Frequency histogram", xlab = '',ylab = '', col = "orange",cex.axis=1.1,cex.main=1.4,cex.lab=1.6)

plot(stock.ecdf, xlab = 'Sample Quantiles', lwd=2, ylab = '',main = 'Cumulative Distribution Function',col='blue',cex.axis=1.1,cex.main=1.4,cex.lab=1.4)

abline(h = 1-p, lwd=0.8, col="black")

axis(side = 2, at = c(1-p),cex.axis=1.1,cex.lab=1.4)

axis(side = 1, at = c(VaR1(p),CTE1(p)), labels=c(paste("VaR",p*100,"     "),paste("CTE",p*100,"    ")),cex.axis=1.1,cex.lab=1.4,las = 2)
axis(side = 3, at = c(ES1(p)), labels=c(paste("ES",p*100,"     ")),cex.axis=1.1,cex.lab=1.4,las = 2)

abline(v = VaR1(p), lwd=0.8, col="red")
abline(v = CTE1(p), lwd=0.8, col="purple")
abline(v = ES1(p), lwd=0.8, col="orange")

library(PerformanceAnalytics)
cat("Historical VaR",p*100,"=",as.numeric(VaR(stock.rtn, p, method="historical",invert=FALSE)),"\n")
cat("Gaussian VaR",p*100,"=",as.numeric(VaR(stock.rtn, p, method="gaussian",invert=FALSE)),"\n")
cat("Historical ES",p*100,"=",as.numeric(ES(stock.rtn, p, method="historical",invert="FALSE")),"\n")
cat("Gaussian ES",p*100,"=",as.numeric(ES(stock.rtn, p, method="gaussian",invert="FALSE")),"\n")
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> source("comparison.R")

Number of samples= 265

VaR 95 = -0.03420879 , Threshold= 0.9433962
CTE 95 = -0.04646176

ES 95 = -0.04623058

Historical VaR 95 0= -0.03316604

Gaussian VaR 95 = -0.03209374

Historical ES 95 = -0.04552403

Gaussian ES 95 = -0.04043227

8

Data samples Frequency histogram Cumulative Distribution Function
o
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e 3
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0 s 100 150 200 250 005 000 05 005 000 005
o Sample Quantiles

Fig. 7.3: Value at Risk and Expected Shortfall.

jaR 85

Value at Risk vs. Expected Shortfall

dev.new(width=16,height=8)
chart.VaRSensitivity (ts(returns), methods=c("HistoricalVaR","HistoricalES"),
colorset=Dbluefocus, lwd=4)
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Risk Confidence Sensitivity of
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Fig. 7.4: Value at Risk vs. Expected Shortfall.

Historical vs. Gaussian risk measures

0.985

dev.new(width=16,height=8)
chart.VaRSensitivity (ts(returns), methods=c("HistoricalVaR","GaussianVaR!
colorset=Dbluefocus, lwd=4)

%

The next Figure 7.5 uses the above ‘R code to compare the historical and

Gaussian values at risk.
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Fig. 7.5: Historical vs. Gaussian estimates of Value
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dev.new(width=16,height=8)
chart.VaRSensitivity (ts(returns), methods=c("HistoricalES","GaussianES"), colorset=bluefocus,
lwd=4)

In the next Figure 7.6 we compare the Gaussian and historical estimates of
Expected Shortfall.

Risk Confidence Sensitivity of DJI.Adjusted

-0.025 -0.020

Value at Risk

-0.045 -0.040 -0.035 -0.030

— Historical ES
- Gaussian ES

0.89 09 0.905 0.915 0.925 0.935 0.945 0.955 0.965 0975 0.985

Confidence Level

Fig. 7.6: Quantile function.

In Table 7.1 we summarize some properties of risk measures.

Risk Measure | Additivity | Homogeneity | Subadditivity | Coherence
Vx v v
CTEx v v X X
TV v v v v
ESx v v v v

Table 7.1: Summary of Risk Measures.

Note that Value at Risk V)’; is coherent on Gaussian random variables ac-
cording to Remark 6.17. Similarly, the Conditional Tail Expectation CTEI}](
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is coherent on random variables having a continuous CDF by Proposition 7.6
and Theorem 7.13.

Exercises

Exercise 7.1 Let X denote an exponentially distributed random variable with
parameter A > 0, i.e. the distribution of X has the cumulative distribution
function (CDF)

Fx(z) =P(X <z)=1-e, 220,
and the probability density function (PDF)

Ix(x) = Flie(z) = xe 7, x> 0.

Probability density

1 2 g 4 5 6

ES

(a) Exponential quantile and CDF. (b) Exponential PDF.
a) Compute the conditional tail expectation

1

XX Pl - [ .
E[X | X > VaR%] XS VAl fVaRg(IfX(I)d‘r

b) Compute the tail value at risk

1 1
P _ q
TVh = 1_pL Vidg.

Exercise 7.2 Consider X an (integrable) random variable and z € R such
that P(X > z) > 0.

a) Show that E[X | X > z] > 2.
b) Show that E[X | X > z] > E[X].
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c¢) Show that E[X | X > z] > E[X] if P(X < z) > 0.
d) Show that CTEL > E[X].

Exercise 7.3 Consider the following data set.

Data samples Frequency histogram ‘Cumulative Distribution Function
6 9 r 4 1.0 e-----
5 0.9
4 3 08
3+ L —
: 1
el - —
S _
i —
s _
-

-5 0 0.0 -

5 202 46 -5 3 -2 -1 0 1 2 3 4 6 7

Sample Quantiles

Find the Value at Risk VaR% and the Conditional Tail Expectation CTES, =
E [X | X > VaRI))(] and mark their values on the graph in the following cases.

a) p=0.9.
b) p=038.

Exercise 7.4

Data samples Frequency histogram

6] r 4 1.0 1 -t

5 0.9 —

44 - s —

3 —

2

14 o 2

il —

i 1111 . —

2 L -—

3 - —

4 0 00 >
T T T T T T T T T T T
4 1135 4 8 2 4 0 1 2 3 4 5 6 7

Sample Quantiles
Let p = 0.9. For the above data set represented by the random variable X,
compute the numerical values of the following quantities.
a) VaR%,
b) I]“:[X]l{x>ngﬂ}]v
o) P(X > v,
90 _ 907 _ 90
d) CTEY = E[X | X > V'] = E[X1x y90,]/P(X > V{’),
e) ]E[X]l{x>v)9<0}},
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f) P(X > V),

g) ESY = ﬁ(JE (X1 (xsve0y] FVR(1-p-P(X > VY))),
wo_ L (i

h) TV — 1_pfp Vidg,

and mark the values of VaRg?%, CTE%?%, ES%?%, TV%?% on the above
graph.

Exercise 7.5 Consider a random variable X € {10,100, 150} with the distri-
bution

P(X = 10) = 96%, P(X =100) =3%, P(X =150) = 1%.

Compute

a) the Value at Risk V)%s%,

b) the Tail Value at Risk TV,

c) the Conditional Tail Expectation E[X | X > V)%S%}, and
d) the Expected Shortfall E37.

Exercise 7.6 Consider two independent random variables X and Y with
same distribution given by

P(X=0)=P(Y =0)=90% and P(X =100) =P(Y =100) = 10%.
a) Plot the cumulative distribution function of X on the following graph:

Fx(x)
102 4+
100
098 +
0.96 +
001 +
092 +
090 +
088

090 100 110 120 130 140 150 160 170 180 190 200 210

— —
=20 -0 0 10 20 30 40 50 60 70 8

Fig. 7.8: Cumulative distribution function of X.

b) Plot the cumulative distribution function of X +Y on the following graph:
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Fxiy(z)
100

7‘2" 7‘“\ ﬂ0 |‘U ‘l‘” 3‘(] |‘l] J‘l] f:‘ﬂ 7‘” ﬁ‘ﬂ ’)‘ﬂ “‘m ]1‘0 |£0 |«‘§U |‘Ul |")“ N‘)“ |-;“ |?‘)“ |5‘JU ‘ll‘l(l ‘l“ﬂ
Fig. 7.9: Cumulative distribution function of X + Y.

c¢) Give the values at risk V)%?ﬁ,, V)%Yg/, V)%(ﬂrlyg/‘

Compute the Tail Value at Risk

[=9
=

1 -1
TVR% = —— | Vid
X 1—p Jp x%

at the level p = 90%.
Compute the Tail Value at Risk

@
~

1 1
P q
TViyy = T—p L Viivdy

at the levels p = 90% and p = 80%.

Exercise 7.7 (Exercise 6.2 continued).

a) Compute the Tail Value at Risk
1 1
P . q
TVE =1 L, Vidg

for all p in the interval [0.99, 1], and give the value of TV%?%‘
b) Taking p = 0.98, compute the Conditional Tail Expectation

98% _ 98%] _ L
CTEP® = E[X | X >V ]7P(X>V)p()]E[X]1{X>V§}].

Exercise 7.8 We assume that the payoff X of a portfolio follows the standard
logistic distribution with cumulative distribution function (CDF)

1

Fx(z) =P(X <a) = 1

z € R,

and the probability density function (PDF)
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Ifx(@)=Fx(z)= ———3 zeR.

(a) Logistic quantile and CDF. (b) Logistic PDF.

a) Compute the quantile g5 = VaR%, of X at any level p € [0, 1], defined by
the relation
Fx(d%) =P(X < VaR%) =p.

b) Compute the conditional tail expectation

1 oo
P
E[X | X > VaR] = oo VAT fvmg afx (z)da.
Hint. We have
o ge * ae®
————dr =log(l+e*) — —— R.
L (1+e—1)2d$ og(1+e”) Tree a€
c) Compute the tail value at risk
1 1
P q
VE =1 L Vidg.

1
Hint. We have f loggdg=p—1—plogp, p € (0,1).
p

Exercise 7.9

a) Show that for any random variable Z with probability density function
fz : R — R4 we have

aP(Z > 0) SE[Ziz2g)] = [T afz(e)de,  q>0.  (19)
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Compute the left hand side and right hand side of the inequality (7.9)
when Z ~ N(0,1) has the standard normal distribution and ¢ is the
quantile ¢, of Z at the level p € [0,1].
Given X ~ N (ux,0%) a Gaussian random variable with mean px and
variance crg(7 show that the Gaussian Value at Risk

VR = pux +oxdy
is upper bounded by the Gaussian conditional tail expectation

ox
CTEY = px + ﬂﬁb(q%)

where

o(z) = \/12767”22/2, z € R,
P

is the standard normal probability density function.
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