
Nicolas Privault

Topics in Discrete Stochastic Processes

With interactions and algorithms

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html
https://personal.ntu.edu.sg/nprivault/indext.html

Preface

Data science, machine learning and artificial intelligence are now ubiquitous
in engineering applications and in everyday life. They rely on powerful algo-
rithms which are sometimes regarded as opaque when fed with input data and
producing output for analysis.

This book aims at providing foundations in random processes for the under-
standing of machine learning and data science algorithms that revolve around
the discrete-time Markov property. This includes mastering basic concepts in
stochastic modeling for the understanding of topics such as synchronizing au-
tomata, the Markov Chain Monte Carlo (MCMC) method, statistical mechan-
ics models, search engines, hidden Markov models, and reinforcement learning
by Markov decision processes (MDP). Those topics are covered from the angle
of discrete-time stochastic processes which are a central tool in this exposition.

The target audience of this book is the advanced undergraduate student in
a quantitative field, mainly assuming that the reader has taken a first course in
linear algebra, and a first course in probability and statistics, covering a basic
knowledge of conditional expectation and conditional probabilities. Elementary
knowledge of stochastic processes can be helpful as well, although it is not a
strict requirement as the necessary prerequisites on Markov chains are recalled
in Chapter 1.

The review presented in Chapter 1 is followed by applications to phase-
type distributions and synchronizing automata in Chapter 2 and 3 respectively,
that can be used as illustrative examples for a better understanding of the
Markov property. Random walks and their recurrence properties are considered
in Chapter 4, with an extension to cookie-excited random walks that consider
possible interaction with their environment in Chapter 5.

In Chapter 6 we consider the long-run behavior of Markov chains, and
present the Markov Chain Monte Carlo method which has multiple applica-
tions in biology, chemistry, physics, and computer science.

Next, in Chapter 7 we study the Ising model due to its applications in statis-
tical mechanics and to complex random networks such as the ones generated by
social media. The design of search engines considered in Chapter 8 also makes
use of the results on convergence to equilibrium presented in Chapter 6.

" v

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

The hidden Markov models treated in Chapter 9 have applications to e.g.
natural language processing (NLP), and the Markov decision processes (MDP)
of Chapter 10 are used in reinforcement learning.

Starting with Chapter 11, we switch to the time-independent setting of point
processes and their applications to the Boolean random sphere model in Chap-
ter 12. We conclude with Chapter 13 on general point processes, which includes
Hawkes and self-interacting point processes that can be used for the modeling
of viral phenomena.

Chapters 11 to 13 are more advanced and may require some familiarity with
measure theory concepts. Continuous-time stochastic processes (e.g. diffusion
processes) are not part of the scope of this book, to the exception of the jump
processes that can be built from the point processes presented in Chapter 13.

The following diagram shows the dependencies between the different chap-
ters of the book.

Chapter 1

Chapter 4Chapter 3Chapter 2 Chapter 6

Chapter 7 Chapter 8

Chapter 9 Chapter 10

Chapter 5

Chapter 11

Chapter 12 Chapter 13

Application examples are presented via experiments and simulations based
on computer codes, with 37 codes, 10 Python codes available at https://
github.com/nprivaul/discrete_stochastic_modeling, and 101 figures and
5 tables, including 7 animated figures that may require the use of Acrobat
Reader for viewing on the complete pdf file.

The material in this book has been used for graduate courses at the Nanyang
Technological University in Singapore, and for a GIAN course at the Indian
Institute of Technology Madras at the invitation of Dr Neelesh Upadhye.

This text also includes 37 original exercises and 19 new longer problems
whose solutions are completely worked out. Clicking on an exercise number
inside the solution section will send the reader to the original problem text
inside the file. Conversely, clicking on a problem number sends the reader to
the corresponding solution, however this feature should be used with caution.

Nicolas Privault
March 2024

vi "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://github.com/nprivaul/discrete_stochastic_modeling
https://github.com/nprivaul/discrete_stochastic_modeling
https://personal.ntu.edu.sg/nprivault/indext.html

Contents

1 A Summary of Markov Chains . 1
1.1 Markov property . 1
1.2 Hitting probabilities . 9
1.3 Mean hitting and absorption times . 12
1.4 Classification of states . 19
1.5 Hitting times of random walks . 36
Exercises . 40

2 Phase-Type Distributions . 47
2.1 Negative binomial distribution . 47
2.2 Markovian construction . 48
2.3 Hitting time distribution . 50
2.4 Mean hitting times . 55
Exercises . 56

3 Synchronizing Automata . 59
3.1 Pattern recognition . 59
3.2 Winning streaks . 67
3.3 Synchronizing automata . 70
3.4 Synchronization times . 72
Exercises . 76

4 Random Walks and Recurrence . 81
4.1 Distribution and hitting times . 81
4.2 Recurrence of symmetric random walks . 92
4.3 Reflected random walk . 99
4.4 Conditioned random walk . 102
Exercises . 109

vii

5 Cookie-Excited Random Walks . 117
5.1 Hitting times and probabilities . 117
5.2 Recurrence . 121
5.3 Mean hitting times . 127
5.4 Count of cookies eaten . 129
5.5 Conditional results . 135
Exercises . 140

6 Convergence to Equilibrium . 143
6.1 Limiting and stationary distributions . 143
6.2 Markov Chain Monte Carlo - MCMC . 151
6.3 Transition bounds and contractivity . 156
6.4 Distance to stationarity . 160
6.5 Mixing times . 165
Exercises . 168

7 The Ising Model . 185
7.1 Construction . 185
7.2 Irreducibility, aperiodicity and recurrence . 189
7.3 Limiting and stationary distributions . 190
7.4 Simulation examples . 194
Exercises . 197

8 Search Engines . 201
8.1 Markovian modeling of ranking . 201
8.2 Limiting and stationary distributions . 202
8.3 Matrix perturbation . 203
8.4 State ranking . 205
8.5 Meta search engines . 210
Exercises . 217

9 Hidden Markov Model . 219
9.1 Graphical Markov model . 219
9.2 Forward-backward formulas . 222
9.3 Hidden state estimation . 226
9.4 Forward-backward algorithm . 229
9.5 Baum-Welch algorithm . 233
Exercises . 238

10 Markov Decision Processes . 245
10.1 Construction . 245
10.2 Reinforcement learning . 248
10.3 Example - deterministic MDP . 252
10.4 Example - stochastic MDP . 256
Exercises . 262

viii "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

11 Poisson Point Processes . 265
11.1 Spatial Poisson processes . 265
11.2 Functionals of Poisson point processes . 268
11.3 Transformations of Poisson point processes 277
11.4 The Poisson Process . 283
Exercises . 290

12 The Boolean Model . 293
12.1 Boolean-Poisson model . 293
12.2 Void probabilities . 296
12.3 Coverage probabilities . 297
12.4 Boolean percolation . 300
Exercises . 303

13 Point Processes . 305
13.1 General point processes . 305
13.2 Poisson cluster processes . 310
13.3 Borel distribution . 312
13.4 Self-exciting point processes . 314
Exercises . 319

Appendix: Probability Generating Functions . 321

Appendix: Some Useful Identities . 325

Solutions to the Exercises . 327
Chapter 1 . 327
Chapter 2 . 341
Chapter 3 . 343
Chapter 4 . 349
Chapter 5 . 364
Chapter 6 . 365
Chapter 7 . 399
Chapter 8 . 400
Chapter 9 . 405
Chapter 10 . 413
Chapter 11 . 417
Chapter 12 . 419
Chapter 13 . 421

References . 425

Index . 431

Author index . 435

" ix

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

x "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

List of Figures

1.1 NGram Viewer output for the term "Markov chains" 2
1.2 Sample path of the random walk (Sn)n⩾0 . 37
1.3 Sample paths of the random walk (Sn)n⩾0 . 38

4.1 Graph of 120 = (10
7) paths linking (0, 0) to (10, 4)∗ 82

4.2 Two-dimensional random walk . 83
4.3 Three-dimensional random walk . 85
4.4 Random walk and reflected path (1) . 86
4.5 Random walk and reflected path (2) . 86
4.6 Sample path of the random walk (Sn)n⩾0 . 93
4.7 Last return to state 0 at time k = 10 . 96
4.8 Sample path of the random walk (Sn)n⩾0 . 102
4.9 Sample paths of the random walk (Sn)n⩾0 . 105

5.1 Random walk with cookies∗ . 118
5.2 Log function . 122
5.3 log function . 124
5.4 Upper and lower bounds on P(T r

0 < ∞ | S0 = 0) on (0, 1) 126
5.5 Upper and lower bounds on P(T r

0 < ∞ | S0 = 0) on (0, 0.2) 126

6.1 Convergence in distribution . 146
6.2 Stationarity in distribution . 147
6.3 Global balance condition . 148
6.4 Detailed balance condition (discrete time) . 149
6.5 RStan MCMC output . 156
6.6 Graphs of distance to stationarity d(n) and its upper bound (1 − θ)n 167
6.7 Top to random shuffling . 177

7.1 Simulation of the Ising model with N = 199∗ . 185
7.2 Simulation of the Ising model with N = 199∗ . 187
7.3 Simulation of the Ising model with N = 3∗ . 194

xi

7.4 Probability of a majority of “+” as a function of p in [0, 1] 196

8.1 Stationary distribution as a function of ε in [0, 1] 205
8.2 Graph of 1 − θ(ε) as a function of ε ∈ [0, 1] . 207
8.3 Mean return times as functions of ε in [0, 1] . 208
8.4 Markovchain package output . 209
8.5 Stationary distribution as a function of ε in [0, 1] 215
8.6 Graph of 1 − θ(ε) as a function of ε ∈ [0, 1] . 216
8.7 Mean return times as functions of ε in [0, 1] . 217

9.1 Markovian graphical model . 220
9.2 Hidden Markov graphical model . 220
9.3 Hidden Markov graph . 222
9.4 Hidden Markov graph . 227
9.5 Plots of emission probabilities . 235
9.6 Plot of η 7→ (M0,η/M0,”_”)((M1,”_” − M1,η)/M1,”_”)

2 236
9.7 Enhanced classification . 236
9.8 Frequency analysis of alphabet letters . 236
9.9 Plots of emission probabilities . 238

10.1 Action-value functional . 253
10.2 Nodes with optimal and non-optimal policies . 253
10.3 Optimal policies . 254
10.4 Stochastic MDP . 256
10.5 Nodes with optimal and non-optimal policies . 257
10.6 Optimal value function with p = 0 . 259
10.7 Optimal value function with 0 < p < 1/2 . 260
10.8 Optimal value function with p = 1/2 . 260
10.9 Optimal value function with 1/2 < p ⩽ 1 . 261

11.1 Poisson point process samples . 266
11.2 Two Poisson point process samples . 267
11.3 Poisson point process sample on the plane . 267
11.4 Gamma Lévy density . 274
11.5 Transformation of a Poisson point process . 278
11.6 Transport of measure with Gaussian density . 279
11.7 Transport of measure with constant density . 280
11.8 Sample path of the Poisson process (1) . 284
11.9 Sample path of the Poisson process (2) . 287
11.10Sample path of the Poisson process (3) . 289

12.1 Sample of the Boolean model in dimension three . 294
12.2 Sample of the Boolean model with uniform radii in dimension two 295
12.3 Sample of the Boolean model with exponential radii in dimension two . . . 295
12.4 Two-dimensional Boolean model built on a Poisson point process 296
12.5 Coverage of the point 0 in the two-dimensional Boolean model 297

xii "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

12.6 One-dimensional Boolean model built on a Poisson point process 298
12.7 Cone Cz in the one-dimensional Boolean model . 298
12.8 Three-dimensional Boolean model . 302
12.9 Three-dimensional Boolean model with clipped spheres 303

13.1 Poisson cluster process . 310
13.2 Sample spatial Hawkes process . 315
13.3 Hawkes process simulation . 317
13.4 Hawkes process simulation . 319

S.1 Graph of mean times to reach the set A with N = 10∗ 334
S.2 Graph of mean times to reach the set A with N = 10∗ 337
S.3 Comparison of rate functions. 350
S.4 Last return to state 0 at time k = 10 . 357
S.5 Graphs of distance to stationarity d(n) and its upper bound (1 − θ)n 391
S.6 Stationary distribution as a function of ε ∈ [0, 1] . 403
S.7 Markovchain package output . 404
S.8 Mean return times as functions of ε ∈ [0, 1] . 405

∗ Animated figures (work in Acrobat Reader).

" xiii

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

xiv "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Chapter 1
A Summary of Markov Chains

This chapter reviews the concepts of discrete-time Markov process and matrix-
based transition probabilities, which are central tools in this book. We also
cover related techniques for the computation of hitting probabilities and mean
hitting and absorption times, which will be applied in subsequent chapters. This
chapter is mostly self-contained, to the exception of some proofs for which the
reader is referred for conciseness to the relevant statements in the literature.

1.1 Markov property . 1
1.2 Hitting probabilities . 9
1.3 Mean hitting and absorption times 12
1.4 Classification of states . 19
1.5 Hitting times of random walks . 36
Exercises . 40

1.1 Markov property

In the sequel, we let N = {0, 1, 2, . . .} denote the set of non-
negative integers. Consider a discrete-time stochastic process
(Zn)n∈N taking values in a countable discrete state space S, typi-
cally S = Z. The S-valued process (Zn)n∈N is said to be Markov,
see Markov (1909), or to have the Markov property if, for all n ⩾ 1,
the probability distribution of Zn+1 is determined by the state Zn
of the process at time n, and does not depend on the past values
of Zk for k = 0, 1, . . . ,n− 1.

" 1

This version: March 5, 2024 https://personal.ntu.edu.sg/nprivault/indext.html

https://en.wikipedia.org/wiki/Andrey_Markov
https://en.wikipedia.org/wiki/Markov_property
https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

Fig. 1.1: NGram Viewer output for the term "Markov chains".

In other words, for all n ⩾ 1 and all i0, i1, . . . , in, j ∈ S we have

P(Zn+1 = j | Zn = in, Zn−1 = in−1, . . . , Z0 = i0) = P(Zn+1 = j | Zn = in).

In particular, we have

P(Zn+1 = j | Zn = in, Zn−1 = in−1) = P(Zn+1 = j | Zn = in),

and, for n = 1,

P(Z2 = j | Z1 = i1,Z0 = i0) = P(Z2 = j | Z1 = i1).

In addition, we have the following facts.

1. Chain rule. The first order transition probabilities can be used for the com-
plete computation of the probability distribution of the process (Zn)n∈N by
induction, as

P(Zn = in,Zn−1 = in−1, . . . ,Z0 = i0) (1.1)
= P(Zn = in | Zn−1 = in−1) · · ·P(Z1 = i1 | Z0 = i0)P(Z0 = i0),

or, after dividing both sides by P(Z0 = i0),

P(Zn = in,Zn−1 = in−1, . . . ,Z1 = i1 | Z0 = i0) (1.2)
= P(Zn = in | Zn−1 = in−1) · · ·P(Z1 = i1 | Z0 = i0),

i0, i1, . . . , in ∈ S.

2. By the law of total probability applied under P to the events

Ai0 := {Z1 = i1 and Z0 = i0}, i0 ∈ S,

we have

2 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://books.google.com/ngrams/graph?content=Markov+chains&year_start=1900&year_end=2019&corpus=26&smoothing=3
https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

P(Z1 = i1) = P

⋃
i0∈S

{Z1 = i1,Z0 = i0}


=
∑
i0∈S

P(Z1 = i1,Z0 = i0)

=
∑
i0∈S

P(Z1 = i1 | Z0 = i0)P(Z0 = i0), i1 ∈ S. (1.3)

Similarly, under the probability measure P(· | Z0 = i0), we have

P(Z2 = i2 | Z0 = i0) = P

⋃
i1∈S

{Z2 = i2 and Z1 = i1}
∣∣∣Z0 = i0


=
∑
i1∈S

P(Z2 = i2 and Z1 = i1 | Z0 = i0)

=
∑
i1∈S

P(Z2 = i2 | Z1 = i1)P(Z1 = i1 | Z0 = i0), i0, i2 ∈ S. (1.4)

Transition matrices

In what follows, we will make the following assumption.

Assumption (A). The Markov chain (Zn)n⩾0 is time homogeneous, i.e. the
transition probabilities

P(Zn+1 = j | Zn = i), i, j ∈ S,

do not depend on n ⩾ 0.

Under Assumption (A) the random evolution of a Markov chain (Zn)n∈N is
determined by the data of

Pi,j := P(Z1 = j | Z0 = i), i, j ∈ S, (1.5)

which coincides with the probability P(Zn+1 = j | Zn = i) for all n ∈ N.
These data can be encoded into a matrix indexed by S2 = S× S, called the
transition matrix of the Markov chain:

[Pi,j]i,j∈S
= [P(Z1 = j | Z0 = i)]i,j∈S ,

also written on S := Z as

" 3

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

P =
[
Pi,j

]
i,j∈S

=



. . .
...

...
...

...
... . .

.

· · · P−2,−2 P−2,−1 P−2,0 P−2,1 P−2,2 · · ·

· · · P−1,−2 P−1,−1 P−1,0 P−1,1 P−1,2 · · ·

· · · P0,−2 P0,−1 P0,0 P0,1 P0,2 · · ·

· · · P1,−2 P1,−1 P1,0 P1,1 P1,2 · · ·

· · · P2,−2 P2,−1 P2,0 P2,1 P2,2 · · ·

. .
. ...

...
...

...
...

. . .



.

By the law of total probability applied to the probability measure P(· | Z0 = i),
we also have the equality

∑
j∈S

P(Z1 = j | Z0 = i) = P

⋃
j∈S

{Z1 = j}
∣∣∣∣ Z0 = i

 = P(Ω) = 1, i ∈ S,

(1.6)
i.e. the rows of the transition matrix satisfy the condition∑

j∈S

Pi,j = 1,

for every row index i ∈ S.

Using the matrix notation P = (Pi,j)i,j∈S and Relation (1.1), we find

P(Zn = in,Zn−1 = in−1, . . . ,Z0 = i0) = Pin−1,in · · ·Pi0,i1P(Z0 = i0),

i0, i1, . . . , in ∈ S, and we rewrite (1.3) as

P(Z1 = i) =
∑
j∈S

P(Z1 = i | Z0 = j)P(Z0 = j) =
∑
j∈S

Pj,iP(Z0 = j), i ∈ S.

(1.7)
A state k ∈ S is said to be absorbing if Pk,k = 1.

In case the Markov chain (Zk)k∈N takes values in the finite state space
S = {0, 1, . . . ,N}, its (N + 1)× (N + 1) transition matrix will simply have the
form

4 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

[Pi,j]0⩽i,j⩽N =



P0,0 P0,1 P0,2 · · · P0,N

P1,0 P1,1 P1,2 · · · P1,N

P2,0 P2,1 P2,2 · · · P2,N

...
...

...
. . .

...

PN ,0 PN ,1 PN ,2 · · · PN ,N


.

Still on the finite state space S = {0, 1, . . . ,N}, Relations (1.3) and (1.7) can
be restated in the language of matrix and vector products using the shorthand
notation

η = πP , (1.8)

where

η := [P(Z1 = 0), . . . , P(Z1 = N)] = [η0, η1, . . . , ηN] ∈ RN+1

is the row vector “distribution of Z1”,

π := [P(Z0 = 0), . . . , P(Z0 = N)] = [π0, . . . ,πN] ∈ RN+1

is the row vector representing the probability distribution of Z0, and

[η0, η1, . . . , ηN] = [π0, . . . ,πN]×



P0,0 P0,1 P0,2 · · · P0,N

P1,0 P1,1 P1,2 · · · P1,N

P2,0 P2,1 P2,2 · · · P2,N

...
...

...
. . .

...

PN ,0 PN ,1 PN ,2 · · · PN ,N


. (1.9)

The following code illustrates the use of transition matrices for the modeling
of Markov chains

" 5

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

 install.packages("devtools"); library(devtools)
devtools::install_github('spedygiorgio/markovchain') # Choose option 2 - CRAN

packages only
 install.packages("igraph"); install.packages("markovchain")

library(igraph); library(markovchain)
 P<-matrix(c(1,0,0,0,1./3,0,1./3,1./3,1./3,1./3,0,1./3,0,0,0,1),nrow=4, byrow=TRUE)

MC <-new("markovchain",transitionMatrix=P,states=c("0","1","2","3"))
 graph <- as(MC, "igraph")

plot(graph,edge.label.cex=0.8,edge.label=sprintf("%1.2f", E(graph)$prob),
edge.color='black', vertex.color='dodgerblue', vertex.label.cex=0.8)

Higher-order transition probabilities

As noted above, the transition matrix P = (Pi,j)i,j∈S represents a convenient
way to record P(Zn+1 = j | Zn = i), i, j ∈ S, into an array of data.

However, it is much more than that, as already hinted at in Relation (1.8).
Suppose for example that we are interested in the two-step transition proba-
bility

P(Zn+2 = j | Zn = i).

This probability does not appear in the transition matrix P , but it can be
computed by first step analysis, applying the law of total probability to the
conditional probability measure P(· | Zn = i).

i) 2-step transitions. Denoting by S the state space of the process we have,
using (1.4),

P(Zn+2 = j | Zn = i) =
∑
l∈S

P(Zn+2 = j and Zn+1 = l | Zn = i)

=
∑
l∈S

P(Zn+2 = j | Zn+1 = l)P(Zn+1 = l | Zn = i)

=
∑
l∈S

Pi,lPl,j

= [P 2]i,j , i, j ∈ S,

where we used (1.5), which is in agreement with the matrix multiplication
mechanism described below.

6 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

P1,1 P1,2 . . . P1,N

P2,1 P2,2 . . . P2,N

...
...

. . .
...

PN,1 PN,2 . . . PN,N







P1,1 P1,2 . . . P1,N

P2,1 P2,2 . . . P2,N

...
...

. . .
...

PN,1 PN,2 . . . PN,N







[
P2

]
1,1

[
P2

]
1,2 . . .

[
P2

]
1,N

[
P2

]
2,1

[
P2

]
2,2 . . .

[
P2

]
2,N

...

[
P2

]
N,1

[
P2

]
N,2 . . .

[
P2

]
N,N







=

P 2,1
×P 1,2

P 2,2
×P 2,2

P 2,N
×P N,2

+

+ . . .+

Hence, using matrix product notation, we have

(P(Zn+2 = j | Zn = i))0⩽i,j⩽N

=



P0,0 P0,1 P0,2 · · · P0,N

P1,0 P1,1 P1,2 · · · P1,N

P2,0 P2,1 P2,2 · · · P2,N

...
...

...
. . .

...

PN ,0 PN ,1 PN ,2 · · · PN ,N


×



P0,0 P0,1 P0,2 · · · P0,N

P1,0 P1,1 P1,2 · · · P1,N

P2,0 P2,1 P2,2 · · · P2,N

...
...

...
. . .

...

PN ,0 PN ,1 PN ,2 · · · PN ,N


.

ii) k-step transitions. More generally, we have the following result.

Proposition 1.1. For all k ∈N we have the relation[
P(Zn+k = j | Zn = i)

]
i,j∈S

=
[
[P k]i,j

]
i,j∈S

= P k. (1.10)

Proof. We prove (1.10) by induction. Clearly, the statement holds for k = 0
and k = 1. Next, for all k ∈N, we have

P(Zn+k+1 = j | Zn = i) =
∑
l∈S

P(Zn+k+1 = j and Zn+k = l | Zn = i)

=
∑
l∈S

P(Zn+k+1 = j, Zn+k = l, Zn = i)

P(Zn = i)

" 7

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

=
∑
l∈S

P(Zn+k+1 = j, Zn+k = l, Zn = i)

P(Zn+k = l and Zn = i)

P(Zn+k = l and Zn = i)

P(Zn = i)

=
∑
l∈S

P(Zn+k+1 = j | Zn+k = l and Zn = i)P(Zn+k = l | Zn = i)

=
∑
l∈S

P(Zn+k+1 = j | Zn+k = l)P(Zn+k = l | Zn = i)

=
∑
l∈S

P(Zn+k = l | Zn = i)Pl,j .

We have just checked that the family of matrices

[P(Zn+k = j | Zn = i)]i,j∈S , k ⩾ 1,

satisfies the same induction relation as the matrix power P k, i.e.

[P k+1]i,j =
∑
l∈S

[P k]i,lPl,j ,

and the same initial condition, hence by induction on k ⩾ 0 the equality

[P(Zn+k = j | Zn = i)]i,j∈S =
[
[P k]i,j

]
i,j∈S

= P k

holds not only for k = 0 and k = 1, but also for all k ∈N. □

The matrix product relation

Pm+n = PmPn = PnPm,

reads

[Pm+n]i,j =
∑
l∈S

[Pm]i,l[P
n]l,j =

∑
l∈S

[Pn]i,l[P
m]l,j , i, j ∈ S,

and can now be interpreted as

P(Zn+m = j | Z0 = i) =
∑
l∈S

P(Zn+m = j | Zn = l)P(Zn = l | Z0 = i)

=
∑
l∈S

P(Zm = j | Z0 = l)P(Zn = l | Z0 = i)

=
∑
l∈S

P(Zn = j | Z0 = l)P(Zm = l | Z0 = i), i, j ∈ S,

which is called the Chapman-Kolmogorov equation.

8 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://en.wikipedia.org/wiki/Sydney_Chapman_(mathematician)
https://en.wikipedia.org/wiki/Andrey_Kolmogorov
https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

1.2 Hitting probabilities

Starting with this section, we introduce the systematic use of the first step
analysis technique. The main applications of first step analysis are the compu-
tation of hitting probabilities, mean hitting and absorption times, mean first
return times, and average number of returns to a given state.

Hitting probabilities

Let us consider a Markov chain (Zn)n⩾0 with state space S, and let A ⊂ S

denote a subset of S as in the following example with S = {0, 1, 2, 3, 4, 5} and
A := {0, 2, 4}, with

Pk,l = 1{k=l} for all k, l ∈ A, (1.11)

in which case the set A ⊂ S is said to be absorbing.

0

1

2

3
4

5

1

1

1

A

We are interested in the first time TA the chain hits the subset A, with

TA := inf{n ⩾ 0 : Zn ∈ A}, (1.12)

with TA = 0 if Z0 ∈ A and

TA =∞ if {n ⩾ 0 : Zn ∈ A} = ∅,

i.e. if Zn /∈ A for all n ∈N.

We now aim at computing the hitting probabilities

" 9

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

gl(k) = P(ZTA = l and TA <∞ | Z0 = k)

of hitting the set A ⊂ S through state l ∈ A starting from k ∈ S, where ZTA
represents the location of the chain (Zn)n⩾0 at the hitting time TA. This com-
putation can be achieved by first step analysis, using the law of total probability
for the probability measure P(· | Z0 = k) and the Markov property, as follows.

Proposition 1.2. Assume that (1.11) holds. The hitting probabilities

gl(k) := P(ZTA = l and TA <∞ | Z0 = k), k ∈ S, l ∈ A,

satisfy the equation

gl(k) =
∑
m∈S

Pk,mgl(m) = Pk,l +
∑

m∈S\A
Pk,mgl(m), (1.13)

k ∈ S \A, l ∈ A, under the boundary conditions

gl(k) = P(ZTA = l and TA <∞ | Z0 = k) = 1{k=l} =

1 if k = l,

0 if k ̸= l,
k, l ∈ A,

which hold since TA = 0 whenever one starts from Z0 ∈ A.

Proof. For all k ∈ S \A we have TA ⩾ 1 given that Z0 = k, hence we can write

gl(k) = P(ZTA = l and TA <∞ | Z0 = k)

=
∑
m∈S

P(ZTA = l and TA <∞ | Z1 = m and Z0 = k)P(Z1 = m | Z0 = k)

=
∑
m∈S

P(ZTA = l and TA <∞ | Z1 = m)P(Z1 = m | Z0 = k)

=
∑
m∈S

Pk,mP(ZTA = l and TA <∞ | Z1 = m)

=
∑
m∈S

Pk,mP(ZTA = l and TA <∞ | Z0 = m)

=
∑
m∈S

Pk,mgl(m), k ∈ S \A, l ∈ A,

where the relation

P(ZTA = l and TA <∞ | Z1 = m) = P(ZTA = l and TA <∞ | Z0 = m)

10 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

follows from the fact that this hitting probability does not depend on the initial
time the counter is started, as the chain is time homogeneous. □

Remarks:

• See e.g. Theorem 3.4 page 40 of Karlin and Taylor (1981) for a uniqueness
result for the solution of such equations, and Theorem 2.1 in Goldberg (1986)
for the uniqueness of solutions to difference equations in general.

• The commands absorbingStates(MC) and hittingProbabilities(MC)
can be used to determine the absorbing states and their hitting probabilities
in .

• Equation (1.13) can be rewritten in matrix form as

gl = Pgl, l ∈ A,

where gl is a column vector, i.e.

 gl(0)
...

gl(N)

 =



P0,0 P0,1 P0,2 · · · P0,N

P1,0 P1,1 P1,2 · · · P1,N

P2,0 P2,1 P2,2 · · · P2,N

...
...

...
. . .

...

PN ,0 PN ,1 PN ,2 · · · PN ,N


×

 gl(0)
...

gl(N)

 , l ∈ A,

under the boundary condition

gl(k) = P(ZTA = l and TA <∞ | Z0 = k) = 1{l}(k) =

1, k = l,

0, k ̸= l,

for all k, l ∈ A.

• The hitting probabilities gl(k) = P(ZTA = l and TA <∞ | Z0 = k) satisfy
the condition

1 = P(TA =∞ | Z0 = k) +
∑
l∈A

P
(
ZTA = l and TA <∞ | Z0 = k

)
= P(TA =∞ | Z0 = k) +

∑
l∈A

gl(k), (1.14)

for all k ∈ S.

• Note that we may have P(TA = ∞ | Z0 = k) > 0, for example in the
following chain with A = {0} and k = 1 we have

" 11

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

P(T0 =∞ | Z0 = 1) = 0.2.

0 1 21
0.8

0.2
1

• Consider f : A −→ R a function on the domain A, and assume that P(TA <
∞ | Z0 = k) = 1, k ∈ S. Letting

gA(k) := E
[
f(ZTA)

∣∣Z0 = k
]
=
∑
l∈A

f(l)P(ZTA = l | Z0 = k), k ∈ S,

the first step analysis argument of Proposition 1.2 can be used to show that
gA solves the Dirichlet problem

gA = PgA,

with boundary condition

gA(k) = f(k), k ∈ A.

1.3 Mean hitting and absorption times

We are now interested in the mean hitting time hA(k) it takes for the chain to
hit the set A ⊂ S starting from a state k ∈ S. This mean hitting time is defined
as the conditional expectation

hA(k) := E[TA | Z0 = k] =
1

P(Z0 = k)
E
[
TA1{Z0=k}], k ∈ S. (1.15)

In case the set A is absorbing, we refer to hA(k) as the mean absorption time
into A starting from the state k . Clearly, since TA = 0 whenever Z0 = k ∈ A,
we have

hA(k) = 0, for all k ∈ A.

Proposition 1.3. The mean hitting times (1.15) satisfy the equations

hA(k) = 1 +
∑
l∈S

Pk,lhA(l) = 1 +
∑
l∈S\A

Pk,lhA(l), k ∈ S \A, (1.16)

under the boundary conditions

hA(k) = E[TA | Z0 = k] = 0, k ∈ A.

12 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

Proof. For all k ∈ S \A, by first step analysis using the law of total expectation
applied to the probability measure P(· | Z0 = l), and the Markov property we
have

hA(k) = E[TA | Z0 = k]

=
∑
l∈S

E[1 + TA | Z0 = l]P(Z1 = l | Z0 = k)

=
∑
l∈S

(1 + E[TA | Z0 = l])P(Z1 = l | Z0 = k)

=
∑
l∈S

P(Z1 = l | Z0 = k) +
∑
l∈S

P(Z1 = l | Z0 = k)E[TA | Z0 = l]

= 1 +
∑
l∈S

P(Z1 = l | Z0 = k)E[TA | Z0 = l]

= 1 +
∑
l∈S

Pk,lhA(l), k ∈ S \A.

Hence, we have

hA(k) = 1 +
∑
l∈S

Pk,lhA(l), k ∈ S \A, (1.17)

under the boundary conditions

hA(k) = E[TA | Z0 = k] = 0, k ∈ A, (1.18)

the Condition (1.18) implies that (1.17) becomes

hA(k) = 1 +
∑
l∈S\A

Pk,lhA(l), k ∈ S \A.

□

The command meanAbsorptionTime(MC) can be used to determine mean ab-
sorption times in . The equations (1.16) can be rewritten in matrix form
as

hA =

1
...
1

+ PhA,

by considering only the rows with index k ∈ Ac = S \ A, under the boundary
conditions

" 13

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

hA(k) = 0, k ∈ A.

First return times

Consider now the first return time T rj to state j ∈ S, defined by

T rj := inf{n ⩾ 1 : Zn = j},

with
T rj =∞ if Zn ̸= j for all n ⩾ 1.

Note that in contrast with the definition (1.12) of the hitting time Tj , the
infimum is taken here for n ⩾ 1 as it takes at least one step out of the initial
state in order to return to state j . Nevertheless we have Tj = T rj when the
chain is started from a state i different from j .

We denote by
µj(i) := E

[
T rj
∣∣Z0 = i

]
⩾ 1

the mean return time to state j ∈ S after starting from state i ∈ S. Mean return
times can also be computed by first step analysis, as follows. We have

µj(i) = E
[
T rj | Z0 = i

]
= 1×P(Z1 = j | Z0 = i)

+
∑
l∈S
l ̸=j

P(Z1 = l | Z0 = i)
(
1 + E

[
T rj | Z0 = l

])
= Pi,j +

∑
l∈S
l ̸=j

Pi,l(1 + µj(l))

= Pi,j +
∑
l∈S
l ̸=j

Pi,l +
∑
l∈S
l ̸=j

Pi,lµj(l)

=
∑
l∈S

Pi,l +
∑
l∈S
l ̸=j

Pi,lµj(l)

= 1 +
∑
l∈S
l ̸=j

Pi,lµj(l),

hence
µj(i) = 1 +

∑
l∈S
l̸=j

Pi,lµj(l), i, j ∈ S. (1.19)

See e.g. Theorem 5.9 page 49 of Karlin and Taylor (1981) for a uniqueness
result for the solution of such equations.

14 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

Hitting times vs. return times

Note that the time T ri to return to state i is always at least one by construc-
tion, hence µi(i) ⩾ 1 and cannot vanish, while we always have hi(i) = 0 as
boundary condition, i ∈ S. On the other hand, for i ̸= j we have by definition

hi(j) = E
[
T ri | Z0 = j

]
= E[Ti | Z0 = j] = µi(j),

and for i = j the mean return time µj(j) can be computed from the hitting
times hj(l), l ̸= j, by first step analysis as

µj(j) =
∑
l∈S

Pj,l(1 + hj(l))

= Pj,j +
∑
l ̸=j

Pj,l(1 + hj(l))

=
∑
l∈S

Pj,l +
∑
l ̸=j

Pj,lhj(l)

= 1 +
∑
l ̸=j

Pj,lhj(l), j ∈ S, (1.20)

which is in agreement with (1.19) when i = j.

Markov chains with rewards

Let (Zn)n⩾0 be a Markov chain with state space S and transition matrix P =
(Pi,j)i,j∈S. Derive the first step analysis equation for the value function

V (k) := E

∑
n⩾0

qnR(Zn)
∣∣∣ Z0 = k

 , k ∈ S, (1.21)

defined as the total accumulated reward obtained after starting from state k ,
where R : S → R is a reward function and q ∈ (0, 1] is a discount factor. We
have

V (k) = E

∑
n⩾0

qnR(Zn)
∣∣∣ Z0 = k


= E[R(Z0) | Z0 = k] + E

∑
n⩾1

qnR(Zn)
∣∣∣ Z0 = k



" 15

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

= R(k) +
∑
m∈S

Pk,mE

∑
n⩾1

qnR(Zn)
∣∣∣ Z1 = m


= R(k) + q

∑
m∈S

Pk,mE

∑
n⩾0

qnR(Zn)
∣∣∣ Z0 = m


= R(k) + q

∑
m∈S

Pk,mV (m), k ∈ S. (1.22)

On a state space S = {1, . . . , d}, the above equation (1.22) rewrites in matrix
form as

V =

R(1)...
R(d)

+ qPV .

The command expectedRewards(MC,100,c(0,4,-3,0)) can be used to com-
pute expected rewards in , where the sequence c(0,4,-3,0) represents the
rewards assigned to states 1, 2, 3, 4 ∈ S.

 P<-matrix(c(1,0,0,0,1./3,0,1./3,1./3,1./3,1./3,0,1./3,0,0,0,1),nrow=4, byrow=TRUE)
 MC <-new("markovchain",transitionMatrix=P,states=c("0","1","2","3"))

graph <- as(MC, "igraph")
 plot(graph,edge.label.cex=0.8,edge.label=sprintf("%1.2f", E(graph)$prob),

edge.color='black', vertex.color='dodgerblue', vertex.label.cex=0.8)
expectedRewards(MC,100,c(0,4,-3,0))

See Chapter 10 for exercises on the computation of expected rewards.

Mean number of returns

Let
Rj :=

∑
n⩾1

1{Zn=j} (1.23)

denote the number of returns to state j by the chain (Zn)n⩾0.
Definition 1.4. For i, j ∈ S, let

pij = P
(
T rj <∞ | Z0 = i

)
= P(Zn = j for some n ⩾ 1 | Z0 = i),

denote the probability of return to state j in finite time∗ starting from state
i .

Proposition 1.5 can be derived by a straightforward argument using the geo-
metric distribution.
∗ When i ̸= j , pij is the probability of visiting state j in finite time after starting
from state i .

16 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

Proposition 1.5. The probability distribution of the number of returns Rj to
state j given that {Z0 = i} is given by

P(Rj = m | Z0 = i) =


1− pij , m = 0,

pij × (pjj)m−1 × (1− pjj), m ⩾ 1,

In case i = j, Ri is simply the number of returns to state i starting from
state i , and it has the geometric distribution

P(Ri = m | Z0 = i) = (1− pii)(pii)m, m ⩾ 0. (1.24)

Proposition 1.6. We have

P(Rj <∞ | Z0 = i) =

1− pij , if pjj = 1,

1, if pjj < 1.
Proof. By Proposition 1.5, we have

P(Rj <∞ | Z0 = i) =
∑
m⩾0

P(Rj = m | Z0 = i)

= 1− pij + (1− pjj)pij
∑
m⩾1

(pjj)
m−1

=

1− pij , if pjj = 1,

1, if pjj < 1.

□

Remarks:

• As a consequence of Proposition 1.6, we also have

P(Rj =∞ | Z0 = i) =

pij , if pjj = 1,

0, if pjj < 1.

• In particular, if pjj = 1, i.e. state j is recurrent, we have

P(Rj = m | Z0 = i) = 0, m ⩾ 1,

and in this case, by Proposition 1.6 we haveP(Rj <∞ | Z0 = i) = P(Rj = 0 | Z0 = i) = 1− pij ,

P(Rj =∞ | Z0 = i) = 1−P(Rj <∞ | Z0 = i) = pij .
(1.25)

" 17

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

• On the other hand, when i = j we find

P(Ri <∞ | Z0 = i) =
∑
m⩾0

P(Ri = m | Z0 = i)

= (1− pii)
∑
m⩾0

(pii)
m

=

0, if pii = 1,

1, if pii < 1,
(1.26)

hence

P(Ri =∞ | Z0 = i) =

1, if pii = 1,

0, if pii < 1,
(1.27)

i.e. the number of returns to a recurrent state is infinite with probability
one.

The notion of mean number of returns will be needed for the classification of
states of Markov chains in Section 1.4.

Proposition 1.7. Assume that pij > 0. The mean number of returns to state
j is given by

E[Rj | Z0 = i] =
pij

1− pjj
,

and it is finite, i.e. E[Rj | Z0 = i] <∞, if and only if pjj < 1, i, j ∈ S.

Proof. By (B.12), when pjj < 1 we have P(Rj <∞ | Z0 = i) = 1 and

E[Rj | Z0 = i] =
∑
m⩾1

mP(Rj = m | Z0 = i) (1.28)

= (1− pjj)pij
∑
m⩾1

m(pjj)
m−1

=
pij

1− pjj
, (1.29)

see Relation (B.12), hence

E[Rj | Z0 = i] <∞ if pjj < 1.

If pjj = 1, then P(Rj =∞ | Z0 = i) = pij by (1.25) and E[Rj | Z0 = i] =∞.
□

We check that if pij = 0 then P(Rj = 0 | Z0 = i) = 1, and E[Rj | Z0 = i] = 0.

18 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

1.4 Classification of states

This section presents the notions of communicating, transient and recurrent
states, as well as the concept of irreducibility of a Markov chain. We also review
the notions of positive and null recurrence, periodicity and aperiodicity of such
chains. Those topics will be important when analysing the long-run behavior
of Markov chains in the next chapter.

Communicating states

Definition 1.8. A state j ∈ S is to be accessible from another state i ∈ S,
and we write i 7−→ j , if there exists a finite integer n ⩾ 0 such that

[Pn]i,j = P(Zn = j | Z0 = i) > 0.

In other words, it is possible to travel from i to j with non-zero probability
in a certain (random) number of steps. We also say that state i leads to state
j , and when i ̸= j we have

P
(
T rj <∞ | Z0 = i

)
⩾ P

(
T rj ⩽ n | Z0 = i

)
⩾ P(Zn = j | Z0 = i) > 0.

In case i 7−→ j and j 7−→ i we say that i and j communicate and we
write i ←→ j .
The binary relation “←→” is a called an equivalence relation as it satisfies the
following properties:

a) Reflexivity:
As P 0 = I and P(Z0 = i | Z0 = i) = 1, i ∈ S, for all i ∈ S we have the
relation i ←→ i .

b) Symmetry:
For all i, j ∈ S we have that i ←→ j is equivalent to j ←→ i .

c) Transitivity:

For all i, j, k ∈ S such that i ←→ j and j ←→ k , we have i ←→ k .

Proof. While points (a) and (b) are clearly valid, point (c) can be proved from
the relation

P(Zn+m = k | Z0 = i) =
∑
l∈S

P(Zn+m = k | Zn = l)P(Zn = l | Z0 = i)

=
∑
l∈S

P(Zm = k | Z0 = l)P(Zn = l | Z0 = i)

" 19

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://en.wikipedia.org/wiki/Equivalence_relation#Definition
https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

⩾ P(Zm = k | Z0 = j)P(Zn = j | Z0 = i),

which shows that P(Zn+m = k | Z0 = i) > 0 as soon as P(Zm = k | Z0 =
j) > 0 and P(Zn = j | Z0 = i) > 0. □

The equivalence relation ‘←→” induces a partition of S into disjoint classes
A1,A2, . . . ,Am, m ∈N∪ {∞} such that S = A1 ∪ · · · ∪Am, and
a) we have i ←→ j for all i, j ∈ Aq, and

b) we have i ↚→ j whenever i ∈ Ap and j ∈ Aq with p ̸= q.

The sets A1,A2, . . . ,Am are called the communicating classes of the chain.

Definition 1.9. A Markov chain whose state space is made of a unique com-
municating class is said to be irreducible, otherwise the chain is said to be
reducible.
The commands communicatingClasses(MC) and is.irreducible(MC) can be
used to determine the communicating classes and the irreducibility of a Markov
chain in .

Examples - reducibility and irreducibility

i) Four communicating classes {0, 1}, {2}, {3}, and {4}:

0

1

2
3

4
1/3

2/3
1/2

1/2

1

6/7
1/7

1

ii) Two communicating classes {0, 1, 2} and {3}:

0

1

2

30.3
0.2

0.8

0.5

0.1 0.6

0.5

1

20 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://en.wikipedia.org/wiki/Equivalence_relation#Definition
https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

P =


0 0.2 0.8 0

0.3 0.1 0 0.6
0.5 0 0 0.5
0 0 0 1



iii) Three communicating classes {0}, {1, 2}, {3, 4, 5}:

0

1

2 3

4

5

0.3

0.7

0.5

0.6 0.4

0.1 0.2

0.8

0.9

0.5 1

iv) Two communicating classes {0} and {1, 2, 3}:

0 1 2 3
1/3

1/3

1/3

1

1 1

v) Two communicating classes {0, 1, 2, 3} and {4}:

" 21

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

0

1

2 4
3

1/4

1/4
1/4

1/4

1

1
1

1

vi) Five communicating classes {0}, {1}, {3}, {5}, and {2, 4}:

0 1 2

3 45

1/2

1/4

1/4

1/3
1/3

1/3

11/6
1/2

1/6

1/6

1

1

vii) Three communicating classes {0, 2}, {1}, and {3}:

0 3

2 1

0.8

0.2

1

1

0.3

0.4

0.3

viii) Two communicating classes {0, 1, 2} and {3}:

22 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

0

1

2

3

1

0.2

0.8

0.3

0.7

0.4

0.6

ix) Four communicating classes {A,B}, {C}, {D}, {E}:

A

B

C

DE

0.6

0.4

0.7

0.3

0.2

0.4

0.4

0.2

0.2

0.2

0.2
0.2

1

Recurrent states

Definition 1.10. A state i ∈ S is said to be recurrent if, starting from
state i , the chain will return to state i within a finite (random) time, with
probability 1, i.e.,

pii := P
(
T ri <∞ | Z0 = i

)
= P(Zn = i for some n ⩾ 1 | Z0 = i) = 1. (1.30)

The commands recurrentStates(MC) and transientStates(MC) can be used
to determine the recurrent and transient states of a Markov chain in .

As a consequence of Propositions 1.5 and 1.7, the next result uses the mean
number of returns Ri to state i defined in (1.23), and its proof relies on the
geometric distribution (1.24) of Ri given that Z0 = i. Note that the statements
(ii)-(iii) below are not equivalent in general.

" 23

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

Proposition 1.11. For any state i ∈ S, the following statements are equiv-
alent:

i) the state i ∈ S is recurrent, i.e. pii = 1,
ii) the number of returns to i ∈ S is a.s.∗ infinite, i.e.

P(Ri =∞ | Z0 = i) = 1, i.e. P(Ri <∞ | Z0 = i) = 0, (1.31)

iii) the mean number of returns to i ∈ S is infinite, i.e.

E[Ri | Z0 = i] =∞, (1.32)

iv) we have ∑
n⩾1

f
(n)
i,i = 1, (1.33)

where f (n)i,i := P
(
T ri = n | Z0 = i

)
, n ⩾ 1, is the distribution of T ri .

As a consequence of Proposition 1.11, we also have the following characteriza-
tion of recurrent states.

Corollary 1.12. A state i ∈ S is recurrent if and only if∑
n⩾1

[Pn]i,i =∞,

i.e. the above series diverges.

Proof. We have

E[Ri | Z0 = i] = E

∑
n⩾1

1{Zn=i}

∣∣∣∣ Z0 = i


=
∑
n⩾1

E
[
1{Zn=i}

∣∣ Z0 = i
]

=
∑
n⩾1

P(Zn = i | Z0 = i)

=
∑
n⩾1

[Pn]i,i,

and we conclude from Proposition 1.11. □

Corollary 1.12 admits the following consequence, which shows that any state
communicating with a recurrent state is itself recurrent. In other words, re-
currence is a class property, as all states in a given communicating class are
∗ “Almost surely”.

24 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

recurrent as soon as one of them is recurrent, see, e.g., Corollary 6.6 in Privault
(2018).
Corollary 1.13. (Class property). Let j ∈ S be a recurrent state. Then any
state i ∈ S that communicates with state j is also recurrent.
A communicating class A ⊂ S is therefore recurrent if any of its states is
recurrent.

Transient states

A state i ∈ S is said to be transient when it is not recurrent, i.e., by (1.30),

pii = P
(
T ri <∞ | Z0 = i

)
= P(Zn = i for some n ⩾ 1 | Z0 = i) < 1, (1.34)

or
P
(
T ri =∞ | Z0 = i

)
> 0.

Similarly to Proposition 1.11, we have the following result.
Proposition 1.14. For any state i ∈ S, the following statements are equiv-
alent:

i) the state i ∈ S is transient, i.e. pii < 1,
ii) the number of returns to i ∈ S is a.s.∗ finite, i.e.

P(Ri =∞ | Z0 = i) = 0, i.e. P(Ri <∞ | Z0 = i) = 1, (1.35)

iii) the mean number of returns to i ∈ S is finite, i.e.

E[Ri | Z0 = i] <∞, (1.36)

In other words, a state i ∈ S is transient if and only if

P(Ri <∞ | Z0 = i) > 0,

which by (1.26) is equivalent to

P(Ri <∞ | Z0 = i) = 1,

i.e. the number of returns to state i ∈ S is finite with a non-zero probability
which is necessarily equal to one. As a consequence of Corollary 1.12, we have
the following result.
Corollary 1.15. A state i ∈ S is transient if and only if∑

n⩾1
[Pn]i,i <∞,

∗ “Almost surely”.

" 25

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

i.e. the above series converges.

Similarly to Corollary 1.13, Corollary 1.15 admits the following consequence,
which shows that any state communicating with a transient state is itself tran-
sient. Therefore, transience is also a class property, as all states in a given
communicating class are transient as soon as one of them is transient.

Corollary 1.16. (Class property). Let j ∈ S be a transient state. Then any
state i ∈ S that communicates with state j is also transient.

Proof. If a state i ∈ S communicates with a transient state j then i is
also transient (otherwise the state j would be recurrent by Corollary 1.13).
□

A communicating class A ⊂ S is therefore transient if any of its states is
transient.

Clearly, any absorbing state is recurrent, and any state that leads to an ab-
sorbing state is transient.

By analogy with (B.11), the matrix inverse

G := (I − P)−1 =
∑
n⩾0

Pn = I +
∑
n⩾1

Pn (1.37)

of I − P is called the potential kernel, or the resolvent of P , where I denotes
the identity matrix.

Theorem 1.17. Let (Zn)n⩾0 be a Markov chain with finite state space S. Then
(Zn)n⩾0 has at least one recurrent state.

Proof. Corollary 1.15 and the relation∑
n⩾0

[Pn]i,j =
[
(I − P)−1]

i,j , i, j ∈ S, (1.38)

show that a chain with finite state space is transient if the matrix I−P is invert-
ible. However, 0 is clearly an eigenvalue of I − P with eigenvector [1, 1, . . . , 1],
therefore I −P is not invertible and as a consequence, a finite chain must admit
at least one recurrent state. □

The next proposition is applied to the Snakes and Ladders game in e.g. Althoen
et al. (1993).

Proposition 1.18. Assume that the chain (Zn)n⩾0 has a finite state space
S = {1, . . . ,m} made of {1, . . . ,m− 1} transient states and a unique absorbing
state m . Then, we have the expression

26 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

E[Tm | Z0 = i] =
∑
j∈S
j ̸=m

[
[I −Q]−1]

i,j , i ̸= m, (1.39)

where Q is the matrix Q := (Pi,j)1⩽i,j⩽m−1.

Proof. By (1.23), since the states {1, . . . ,m− 1} are transient, we have

E[Rj | Z0 = i] = E

∑
n⩾1

1{Zn=j}

∣∣∣Z0 = i


=
∑
n⩾1

E[1{Zn=j} | Z0 = i]

=
∑
n⩾1

P(Zn = j | Z0 = i)

=
∑
n⩾1

[
Qn
]
i,j

= −1{i=j} +
∑
n⩾0

[
Qn
]
i,j

< ∞, 1 ⩽ i, j ⩽ m− 1.

Hence Q is invertible, and we have

E[Rj | Z0 = i] = −1{i=j} +
[
[I −Q]−1]

i,j , 1 ⩽ i, j ⩽ m− 1.

On the other hand, after starting from i ∈ {1, . . . ,m− 1}, we have

Tm = 1 +
∑
j∈S
j ̸=m

Rj ,

hence

E[Tm | Z0 = i] = 1 +
∑
j∈S
j ̸=m

E[Rj | Z0 = i]

= 1 +
∑
j∈S
j ̸=m

(
− 1{i=j} +

[
[I −Q]−1]

i,j
)

=
∑
j∈S
j ̸=m

[[I −Q]−1]i,j .

□

" 27

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

Examples - recurrent and transient states

i) States 1 , 2 , 3 , 4 and 5 are transient, and state 0 is recurrent.

0

1

2 3

4

5

0.3

0.7

0.5

0.6
0.4

0.1 0.2

0.8

0.9

0.5 1

ii) State 0 is transient, and states 1 , 2 , 3 are recurrent.

0 1 2 31/3 1/3

1/3

1

1 1

iii) State 4 is absorbing (and therefore recurrent), state 0 is transient and
the remaining states 1 , 2 , 3 are also transient because they communi-
cate with the transient state 0 .

0

1

2 4
3

1/4

1/4
1/4 1/4

1

1
1

1

iv) States 0 , 1 , 3 are transient and states 2 , 4 , 5 are recurrent.

28 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

0 1 2

3 45

1/2

1/4

1/4

1/3
1/3

1/3

11/6
1/2

1/6

1/6

1

1

v) States 1 and 3 are transient, states 0 and 2 are recurrent by Propo-
sition 1.13 and Theorem 1.17, and they are also positive recurrent since
the state space is finite.

0 3

2 1

0.8

0.2

1

1

0.3

0.4

0.3

vi) State 3 is transient, and states 0 , 1 , 2 are recurrent.

0

1

2

3

1

0.2

0.8

0.3

0.7

0.4

0.6

vii) States A , B and E are recurrent, and states C , D are transient.

" 29

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

A

B

C

DE

0.6

0.4

0.7

0.3

0.2

0.4

0.4

0.2

0.2

0.2

0.2
0.2

1

viii) States 3 and 4 are transient, states 0 and 1 are recurrent, and state
2 is absorbing (hence it is recurrent).

0

1

2
3

4
1/3

2/3
1/2

1/2

1

6/7
1/7

1

Positive vs. null recurrence

The expected time of return (or mean recurrence time) to a state i ∈ S is
given by

µi(i) := E
[
T ri
∣∣Z0 = i

]
=
∑
n⩾1

nP
(
T ri = n

∣∣Z0 = i
)
.

Recall that a state i is recurrent when P
(
T ri <∞

∣∣Z0 = i
)
= 1, i.e. when the

random return time T ri is almost surely finite starting from state i . However,
the recurrence property yields no information on the finiteness of its expectation
µi(i) = E

[
T ri
∣∣Z0 = i

]
, i ∈ S.

Definition 1.19. A recurrent state i ∈ S is said to be:

a) positive recurrent if the mean return time to i is finite, i.e.

µi(i) = E
[
T ri
∣∣Z0 = i

]
<∞,

30 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

b) null recurrent if the mean return time to i is infinite, i.e.

µi(i) = E
[
T ri
∣∣Z0 = i

]
=∞.

The following Theorem 1.20 shows in particular that a Markov chain with finite
state space cannot have any null recurrent state, cf. e.g. Corollary 2.3 in Kijima
(1997), and also Corollary 3.7 in Asmussen (2003).

Theorem 1.20. Assume that the state space S of a Markov chain (Zn)n⩾0 is
finite. Then, any recurrent state in S is also positive recurrent.

As a consequence of Definition 1.9, Corollary 1.13, and Theorems 1.17 and 1.20
we have the following corollary.

Corollary 1.21. Let (Zn)n⩾0 be an irreducible Markov chain with finite state
space S. Then all states of (Zn)n⩾0 are positive recurrent.

Periodicity and aperiodicity

Given a state i ∈ S, consider the sequence

{n ⩾ 1 : [Pn]i,i > 0}

of integers which represent the possible travel times from state i to itself.

Definition 1.22. The period of the state i ∈ S is the greatest common divisor
of the sequence

{n ⩾ 1 : [Pn]i,i > 0}.

A state i ∈ S having period 1 is said to be aperiodic. This is the case in
particular when Pi,i > 0, i.e. when i admits a returning loop with nonzero
probability.

In particular, any absorbing state is both aperiodic and recurrent. A recurrent
state i ∈ S is said to be ergodic if it is both positive recurrent and aperiodic.

If [Pn]i,i = 0 for all n ⩾ 1 then the set {n ⩾ 1 : [Pn]i,i > 0} is empty and
by convention the period of state i is defined to be 0. In this case, state i is
also transient.

Note also that if
{n ⩾ 1 : [Pn]i,i > 0}

contains two distinct numbers that are relatively prime to each other (i.e. their
greatest common divisor is 1) then state i aperiodic.

Proposition 1.23 shows that periodicity is a class property, as all states in a
given communicating class have the same periodicity, see, e.g., Corollary 6.14
in Privault (2018).

" 31

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

Proposition 1.23. (Class property). All states that belong to the same com-
municating class have the same period.

A Markov chain is said to be aperiodic when all of its states are aperiodic.
Note that any state that communicates with an aperiodic state becomes itself
aperiodic. In particular, if a communicating class contains an aperiodic state
then the whole class becomes aperiodic.

The command period(MC) can be used to determine the periodicity of an
irreducible Markov chain in .

Examples - periodicity and aperiodicity

i) All states have period 4.

0 1

1

2

1

3

1

1

ii) All states have period 2.

0 1

1

2

1

3

0.5

0.5

1

iii) All states have period 1.

32 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

0 1

1

2

1

3

1

0.5
0.5

(1.40)

iv) All states have period 1.

0 1

1

2

1

3

0.3

0.5
0.2

1

v) All states have period 1.

0

1

2

30.3
0.2

0.8

0.5

0.1 0.6

0.5

1
P =


0 0.2 0.8 0

0.3 0.1 0 0.6
0.5 0 0 0.5
0 0 0 1



vi) State 0 has period 1, states 1 and 2 have period 2, and states 3 , 4
and 5 have period 3.

" 33

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

0

1

2 3

4

5

0.3

0.7

0.5

0.6
0.4

0.1 0.2

0.8

0.9

0.5 1

vii) State 0 has period 1 and states 1 , 2 , 3 have period 3.

0 1 2 3
1/3

1/3

1/3

1

1 1

viii) All states have period 1.

0

1

2 4
3

1/4

1/4
1/4

1/4

1

1
1

1

ix) State 3 has period 0, states 2 and 4 have period 2, and states 0 , 1 ,
5 are aperiodic.

34 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

0 1 2

3 45

1/2

1/4

1/4

1/3
1/3

1/3

11/6
1/2

1/6

1/6

1

1

x) States 0 , 2 , 3 have period 1, and state 1 has period 0.

0 3

2 1

0.8

0.2

1

1

0.3

0.4

0.3

xi) States 0 , 1 , 2 , have period one, and state 3 has period 0.

0

1

2

3

1

0.2

0.8

0.3

0.7

0.4

0.6

xii) States 0 , 1 , 2 , 3 have period one, and state 4 has period 0.

" 35

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

0

1

2
3

4
1/3

2/3
1/2

1/2

1

6/7
1/7

1

1.5 Hitting times of random walks

This section reviews some basic results on the hitting times of the one-
dimensional random walk (Sn)n⩾0, defined by S0 = 0 and

Sn =
n∑
k=1

Xk = X1 + · · ·+Xn, n ⩾ 0.

Here, the random walk increments

Xn ∈ {−1,+1}, n ⩾ 1,

form an independent and identically distributed (i.i.d.) family of Bernoulli ran-
dom variables, with distributionP(Xk = +1) = p,

P(Xk = −1) = q, k ⩾ 1,

with p+ q = 1. This one-dimensional random walk can only evolve by going
up of down by one unit within the finite state space S = {0, 1, . . . ,L}. We have

P(Sn+1 = k+ 1 | Sn = k) = p and P(Sn+1 = k− 1 | Sn = k) = q,

k ∈ Z. We also have

E[Sn | S0 = 0] = E

[
n∑
k=1

Xk

]
=

n∑
k=1

E [Xk] = n(2p− 1) = n(p− q),

and the variance can be computed as

Var[Sn | S0 = 0] = Var
[

n∑
k=1

Xk

]
=

n∑
k=1

Var[Xk] = 4npq.

36 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

Let
TL := inf{n ⩾ 0 : Sn = L}

denote the first hitting time of L by the one-dimensional random walk (Sn)n⩾0,
and let

T0 := inf{n ⩾ 0 : Sn = 0}

denote the first hitting time of 0 by the process (Sn)n⩾0.

n

Sn

L =

S0 =

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Fig. 1.2: Sample path of the random walk (Sn)n⩾0.

See e.g. Relation (2.2.27) in Privault (2018) for the following proposition.
Proposition 1.24. In the non-symmetric case p ̸= q, the event

{T0 < TL} =
⋃
n⩾0
{Sn = 0}, (1.41)

has the conditional probability

P(T0 < TL | S0 = k) =
(q/p)k − (q/p)L

1− (q/p)L
=

(p/q)L−k − 1
(p/q)L − 1 , (1.42)

or

P(TL < T0 | S0 = k) =
(p/q)L−k − (p/q)L

1− (p/q)L
=

1− (q/p)k

1− (q/p)L
, (1.43)

k = 0, 1, . . . ,L.
In the symmetric case p = q = 1/2, we find

P(T0 < TL | S0 = k) = 1− k

L
, or P(TL < T0 | S0 = k) =

k

L
, (1.44)

k = 0, 1, . . . ,L, see Relation (2.2.28) in Privault (2018). When the number L
of states becomes large we obtain the probability of hitting the origin starting
from state k , as

f∞(k) := P(T0 <∞ | S0 = k)

= P

⋃
L⩾1
{T0 < TL}

∣∣∣S0 = k

 (1.45)

" 37

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

= min
(

1,
(
q

p

)k)

=


1 if q ⩾ p,(
q

p

)k
if p > q, k ⩾ 0.

(1.46)

Similarly, for all k ⩾ 0 we have

P(T0 =∞ | S0 = k) = P

⋂
L⩾1
{TL < T0}

∣∣∣S0 = k


= lim

L→∞
P(TL < T0 | S0 = k)

=


0 if p ⩽ q,

1−
(
q

p

)k
if p > q,

which represents the probability that the one-dimensional random walk (Sn)n⩾0
“escapes to infinity”.

Mean hitting times

Let now
T0,L = inf{n ⩾ 0 : Sn = 0 or Sn = L} (1.47)

denote the time∗ until any of the states 0 or L is reached by (Sn)n⩾0, with
T0,L = +∞ in case neither states are ever reached, see Figure 1.3.

n

Sn

L =

S0 =

T0,6T0,6

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Fig. 1.3: Sample paths of the random walk (Sn)n⩾0.

∗ The notation “inf” stands for “infimum”, meaning the smallest n ⩾ 0 such that Sn = 0
or Sn = L, if such an n exists.

38 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

From Proposition 1.24, we note that

P(T0 < TL | S0 = k) + P(TL < T0 | S0 = k)

=
(p/q)L−k − 1
(p/q)L − 1 +

(q/p)k − 1
(q/p)L − 1

=
(q/p)L((p/q)L−k − 1)− ((p/q)L−k − 1) + (p/q)L((q/p)k − 1)− ((q/p)k − 1)

((p/q)L − 1)((q/p)L − 1)

=
(q/p)k − (q/p)L − (p/q)L−k + 1 + (p/q)L−k − (p/q)L − (q/p)k + 1

((p/q)L − 1)((q/p)L − 1)
= 1, k = 0, 1, . . . ,L, (1.48)

see Exercise 1.2.

We refer to Relation (2.3.11) in Privault (2018) for the following proposition.

Proposition 1.25. When p ̸= q, the mean hitting time

hL(k) := E[T0,L | S0 = k]

starting from S0 = k ∈ {0, 1, . . . ,L} can be computed as

hL(k) = E[T0,L | S0 = k] =
1

q− p

(
k−L 1− (q/p)k

1− (q/p)L

)
, k = 0, 1, 2, . . . ,L.

(1.49)

In the symmetric case p = q = 1/2, we get

hL(k) = E[T0,L | S0 = k] = k(L− k), k = 0, 1, 2, . . . ,L, (1.50)

see Relation (2.3.17) in Privault (2018). In particular, we note that

E[T0,L | S0 = k] < +∞, k = 0, 1, 2, . . . ,L.

Notes

See e.g. Chen and Hong (2012) for statistical testing of the Markov property
in time series, and Billingsley (1961), Azais and Bouguet (2018), Broemeling
(2018), for references on statistical inference for Markov chains. Additional
background on the Markov property can be found in Chapters 4-6 in Privault
(2018), and in references therein.

" 39

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

Exercises

Exercise 1.1 Consider the Markov chain (Xn)n⩾0 on S = {0, 1, 2} whose
transition probability matrix P is given by

P =


0 1 2

0 1 0 0
1 1/4 0 3/4
2 0 1 0

.

a) Draw a graph of the chain and find the probability g0(k) that the chain is
absorbed into state 0 given that it started from states k = 0, 1, 2.

b) Determine the mean time h0(k) it takes until the chain is absorbed into
state 0 , after starting from k = 0, 1, 2.

Exercise 1.2 Recover Relation (1.48) by showing independently that for all
k = 0, 1, . . . ,L we have P(T0,L <∞ | S0 = k) = 1, i.e. the stopping time T0,L
defined in (1.47) is finite almost surely.

Exercise 1.3 Consider the Markov chain (Xn)n⩾0 with state space S =
{0, 1, 2, 3} and transition probability matrix given by

[Pi,j]0⩽i,j⩽3 =


1 0 0 0

0.3 0 0.4 0.3
0.3 0.4 0 0.3
0 0 0 1

 .

a) What are the absorbing states of the chain (Xn)n⩾0?
b) Denoting by Tk := inf{n ⩾ 0 : Xn = k} the first hitting time of state k ,

find the probabilities g1(k) = P(T1 < ∞ | X0 = k) of hitting state 1 in
finite time after starting from state k , for k = 0, 1, 2, 3.

c) Denoting by T r1 := inf{n ⩾ 1 : Xn = 1} the first return time to state 1 ,
find the probabilities p1(k) = P(T r1 < ∞ | X0 = k) of returning to state
1 in finite time after starting from state k , for k = 0, 1, 2, 3.

d) Find the mean hitting times h1(k) = E[T1 | X0 = k] of state 1 and the
mean return times µ1(k) = E[T1 | X0 = k] to state 1 after starting from
state k , for k = 0, 1, 2, 3.

Exercise 1.4 A box contains red balls and green balls. At each time step we
pick a ball uniformly at random and without replacement. If the ball is red
we lose $1, and if the ball is green we gain +$1. The game ends when the box
becomes empty. We let f(x, y) denote the value of the game when the game
starts with x ⩾ 0 red balls and y ⩾ 0 green balls in the box.

40 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

a) Find the boundary conditions f(x, 0), x ⩾ 0, and f(0, y), y ⩾ 0.
b) Using first step analysis, derive the finite difference equation satisfied by

f(x, y) for x, y ⩾ 1.
c) Solve the equation of Question (b) for f(x, y), x, y = 1, 2, 3.
d) Find f(x, y) for all x, y ⩾ 0.

Exercise 1.5 Two buffalos are traveling in opposite directions on a one-
dimensional road {0, 1, . . . ,S}, one step at a time. Buffalo A starts from 0 ,
moving up by +1 at every time step, and Buffalo B starts at the same time
from S , moving down by −1 at every time step.

a) How many time steps does it take for Buffalo A to travel up from 0 to S ,
and for Buffalo B to travel down from S to 0 ?

b) Next, we assume that when the buffalos collide, they either both continue
the same ways with probability p, or they both turn back and continue in
opposite directions with probability q = 1− p. How many time steps does
it take for the buffalos to reach any of the boundaries 0 or S ?

Exercise 1.6 Consider the Markov chain (Xn)n⩾0 on the countably infinite
state space S = N = {0, 1, 2, 3, . . .}, with the infinite transition matrix

P = [Pi,j]i,j∈N
=



q p 0 0 0 · · ·

0 q p 0 0 · · ·

0 0 q p 0 · · ·

0 0 0 q p · · ·
...

...
...

...
...

. . .


,

where p, q ∈ (0, 1) are such that p+ q = 1.

0 1 2

q

p p

q q

a) By a recurrence using Pascal’s identity(
n

k

)
=

(
n− 1
k− 1

)
+

(
n− 1
k

)
,

compute [Pn]i,j , n ⩾ 1, in the cases (1) j − i ⩽ n, (2) n < j − i, (3) i > j.
b) Show that for all i, j ⩾ 0 we have

lim
n→∞

[Pn]i,j = 0.

" 41

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

c) Compute ∑
n⩾0

[Pn]i,j

in the cases (1) i ⩽ j, (2) i > j.
d) Letting Tj := inf{n ⩾ 0 : Xn = j}, determine the value of

pi,j := P(Tj <∞ | X0 = i)

in the cases (1) i < j, (2) i = j, (3) i > j.
e) Is the chain (Xn)n⩾0 recurrent or transient?
f) Compute the mean number of returns E[Rj | X0 = i] from state i to state

j in the cases (1) i < j, (2) i = j, (3) i > j.
g) Show that the matrix I −P is invertible, and compute its inverse (I −P)−1.

Exercise 1.7 Ring toss game. Let N := {0, 1, 2, . . .} and consider the two-
dimensional random walk (Zk)k∈N = (Xk,Yk)k∈N on N×N with the transi-
tion probabilities

P
(
(Xk+1,Yk+1) = (x+ 1, y) | (Xk,Yk) = (x, y)

)
= P

(
(Xk+1,Yk+1) = (x, y+ 1) | (Xk,Yk) = (x, y)

)
=

1
2 , (x, y) ∈N×N,

k ⩾ 0, and let

A := N2 \ {0, 1, 2}2 =
{
(x, y) ∈N×N : x ⩾ 3 or y ⩾ 3

}
.

4

3

2

1

0

0 1 2 3 4

Table 1.1: Domain A with N = 3 (in blue).

Let also
TA := inf

{
n ⩾ 0 : (Xn,Yn) ∈ A

}
denote the first hitting time of the set A by the random walk (Zk)k∈N =
(Xk,Yk)k∈N, and consider the mean hitting times

42 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

µA(x, y) := E
[
TA | (X0,Y0) = (x, y)

]
, (x, y) ∈N×N.

a) Give the values of µA(x, y) when (x, y) ∈ A.
b) By applying first step analysis, find an equation satisfied by µA(x, y) on the

domain
Ac =

{
(x, y) ∈N×N : 0 ⩽ x, y ⩽ 3

}
.

c) Find the values of µA(x, y) for all x, y ⩽ 3 by solving the equation of
Question (b).

d) In each round of a ring toss game, a ring is thrown at two sticks
in such a way that each stick has exactly 50% chance to receive
the ring. Compute the mean time it takes until at least one of
the two sticks receives three rings.

Exercise 1.8 Taking N := {0, 1, 2, . . .}, consider the two-dimensional random
walk (Zk)k∈N = (Xk,Yk)k∈N on N×N with the transition probabilities

P(Xk+1 = x+ 1, Yk+1 = y | Xk = x, Yk = y)

= P(Xk+1 = x, Yk+1 = y+ 1 | Xk = x, Yk = y)

=
1
2 , k ⩾ 0,

and let

A = [2,∞)× [2,∞) =
{
(x, y) ∈N×N : x ⩾ 2, y ⩾ 2

}
.

4

3

2

1

0

0 1 2 3 4

Table 1.2: Domain A with N = 2 (in blue).

Let also
TA := inf{n ⩾ 0 : Xn ⩾ 2 and Yn ⩾ 2}

denote the hitting time of the set A by the random walk (Zk)k∈N, and consider
the mean hitting times

µA(x, y) := E[TA | X0 = x, Y0 = y], x, y ∈N.

" 43

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

a) Give the value of µA(x, y) when x ⩾ 2 and y ⩾ 2.
b) Show that µA(x, y) solves the equation

µA(x, y) = 1 + 1
2µA(x+ 1, y) + 1

2µA(x, y+ 1), x, y ∈N. (1.51)

c) Show that µA(1, 2) = µA(2, 1) = 2 and µA(0, 2) = µA(2, 0) = 4.
d) In each round of a ring toss game, a ring is thrown at two

sticks in such a way that each stick has exactly 50% chance to
receive the ring. Compute the mean time it takes until both
sticks receive at least two rings.

Problem 1.9 (Chen (2004), Propositions 2.14-2.15). Given (Xn)n⩾0 a Markov
chain with transition probability matrix P = (Pi,j)i,j∈S on a state space S and
v = (vk)k∈S a nonnegative vector, we say that u∗ = (u∗

i)i∈S is the minimal
non-negative solution to the equation

ui = vi +
∑
k∈S

Pi,kuk, i ∈ S. (1.52)

if u∗ satisfies (1.52) and any other solution u of (1.52) satisfies ui ⩾ u∗
i , i ∈ S.

For i, j ∈ S, let

f
(n)
i,j = P(Xn = j,Xn−1 ̸= j, . . . ,X1 ̸= j | X0 = i) = P(Tj = n | X0 = i),

n ⩾ 0, where Tj denotes the first hitting time of state j by (Xn)n⩾0.

a) Give the value of f (1)i,j from the transition probability matrix P .
b) Using first step analysis, show that for all j ∈ S,

(
f
(n)
i,j
)
i∈S

satisfies the
equation

f
(n+1)
i,j =

∑
k∈S
k ̸=j

Pi,kf
(n)
k,j , i, j ∈ S, n ⩾ 0. (1.53)

c) Let
fi,j := P(Tj <∞ | X0 = i) =

∑
n⩾1

f
(n)
i,j , i, j ∈ S.

Show that
fi,j = Pi,j +

∑
k∈S
k ̸=j

Pi,kfk,j , i, j ∈ S. (1.54)

d) Show that for all j ∈ S, (fi,j)i∈S is the unique minimal solution to Equa-
tion (1.54).

Hint: Letting f̃ denote another solution of (1.54), show, using (1.53) and
induction on n ⩾ 1, that

44 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

f̃i,j ⩾
n∑
l=1

f
(l)
i,j , i, j ∈ S, n ⩾ 1.

e) Let g(1)i,j := f
(1)
i,j and

g
(n+1)
i,j := f

(n+1)
i,j + n

∑
k∈S
k ̸=j

Pi,kf
(n)
k,j , i, j ∈ S, n ⩾ 1.

Using (1.53), show by induction on n that g(n)i,j = nf
(n)
i,j , i, j ∈ S, n ⩾ 1.

f) Let

hi,j := E[Tj <∞ | X0 = i] =
∑
n⩾1

nP(Tj = n | X0 = i) =
∑
n⩾1

g
(n)
i,j , i, j ∈ S.

Show that
hi,j = fi,j +

∑
k∈S
k ̸=j

Pi,khk,j , i, j ∈ S, (1.55)

where
fi,j := P(Tj <∞ | X0 = i) =

∑
n⩾1

f
(n)
i,j , i, j ∈ S.

g) Show that for all j ∈ S, (hi,j)i∈S is the unique minimal solution to Equa-
tion (1.55).

Hint: Letting h̃ denote another solution of (1.55), show, using (1.53) and
induction on n ⩾ 1, that

h̃i,j ⩾
n∑
l=1

g
(l)
i,j , i, j ∈ S, n ⩾ 1.

" 45

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

46 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Chapter 2
Phase-Type Distributions

Phase-type distributions (Neuts (1981)) provide a class of probability distri-
butions depending on a flexible range of parameters, that can be used to fit
actual data. Phase-type distributions are used for modeling and simulation in
insurance, risk management and actuarial science, where they can be used to
model heavy-tailed random claim sizes appearing for example in reserve and
surplus processes.

2.1 Negative binomial distribution . 47
2.2 Markovian construction . 48
2.3 Hitting time distribution . 50
2.4 Mean hitting times . 55
Exercises . 56

2.1 Negative binomial distribution

Given p ∈ [0, 1], consider a two-state Markov chain (Xn)n⩾0 on the state space
{0, 1}, with transition matrix

P =

[
1 0
q p

]
,

with q := 1− p. We note that
i) State 0 is absorbing, i.e. P(Xn+1 = 0 | Xn = 0) = 1, and
ii) The first hitting time

T0 := inf{n ⩾ 0 : Xn = 0}

of state 0 starting from state 1 has the geometric distribution p given
by

P
(
T0 = k | X0 = 1

)
= (1− p)pk−1, k ⩾ 1.

" 47

This version: March 5, 2024 https://personal.ntu.edu.sg/nprivault/indext.html

https://en.wikipedia.org/wiki/Discrete_phase-type_distribution
https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

More generally, given d ⩾ 1, consider a d+ 1-state Markov chain (Xn)n⩾0 on
the state space {0, 1, . . . , d}, with transition matrix

P =



1 0 0 · · · 0 0
q p 0 · · · 0 0
0 q p · · · 0 0
...
...
. . .

. . .
...
...

0 0 · · · q p 0
0 0 · · · 0 q p


,

with q := 1− p. In this case,

i) State 0 is absorbing, i.e. P(Xk+1 = 0 | Xk = 0) = 1, and
ii) The first hitting time T0 of state 0 starting from state d has the (shifted)

negative binomial distribution

P
(
T0 = k | X0 = d

)
=

(
k− 1
k− d

)
(1− p)dpk−d, k ⩾ d.

2.2 Markovian construction

The idea of phase-type distributions is to generalize the above modeling by
considering a discrete-time Markov chain (Xn)n⩾0 on {0, 1, . . . , d} having d
transient∗ states {1, 2, . . . , d}, and 0 as absorbing state. The geometric and
negative binomial distributions have power tails, hence they are examples of
heavy-tailed probability distributions.

Clearly, the first row of P has to be [1, 0, . . . , 0] because state 0 is absorbing,
and the remaining of the matrix can take the form [α,Q]. Hence the transition
matrix P of the chain (Xn)n⩾0 takes the form

P =
[
Pi,j

]
0⩽i,j⩽d =


1 0 · · · 0
α1 Q1,1 · · · Q1,d
α2 Q2,1 · · · Q2,d
...

...
. . .

...
αd Qd,1 · · · Qd,d

 =

[
1 0
α Q

]
,

where α is the column vector α = [α1,α2, . . . ,αd]⊤ and Q is the d× d matrix
∗ Here, the transience condition implies that P(T0 < ∞ | X0 = i) = 1 for all i = 1, 2, . . . , d,
it will be ensured by assuming that I − Q is invertible, see § 1.4 for details.

48 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

Q =

Q1,1 · · · Q1,d
...

. . .
...

Qd,1 · · · Qd,d

 .

In addition, every row of the d× (d+ 1) matrix [α,Q] has to add up to one,
i.e. we have the relation

αk +
d∑
l=1

Qk,l = 1, k = 1, . . . , d, (2.1)

which is used to show the following lemma.

Lemma 2.1. We have the relation α = (I −Q)e, where

I :=



1 0 · · · 0 0

0 1 . . . 0 0
...

...
. . .

. . .
...

0 0 · · · 1 0
0 0 · · · 0 1


denotes the d× d identity matrix, and

e :=


1
1
...
1

 .

Proof. Relation (2.1) can be rewritten as

(I −Q)e =


1−Q1,1 −Q1,2 · · · −Q1,d
−Q1,1 1−Q1,2 · · · −Q1,d
...

...
. . .

...
−Qd,1 · · · Qd,d−1 1−Qd,d

×


1
1
...
1



=


1−Q1,1 − · · · −Q1,d
1−Q2,1 − · · · −Q2,d

...
1−Qd,1 − · · · −Qd,d



=


α1
α2
...
αd

 ,

" 49

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

which shows that α = (I −Q)e. □

The next proposition can be intuitively interpreted by noting that since state
0 is absorbing, the n-step behavior of the chain on the states {1, 2, . . . , d} is

entirely determined by the matrix Qn since when 1 ⩽ i, j ⩽ d, as one cannot
travel through state 0 when moving from i to j in any n ⩾ 1 number of
time steps.
Proposition 2.2. The transition matrix P of the chain (Xn)n⩾0 satisfies

Pn =

[
1 0

(I −Qn)e Qn
]

, n ⩾ 0. (2.2)

Proof. We proceed by induction on n ⩾ 0. Clearly, the conclusion holds for
n = 0, and also at the rank n = 1 since

P =

[
1 0
α Q

]
,

and α = (I −Q)e. Next, we assume that the relation (2.2) holds at the rank
n ⩾ 0. In this case, since

α+Q(I −Qn)e = (I −Q)e+ (Q−Qn+1)e = (I −Qn+1)e,

we have

Pn+1 = P × Pn

=

[
1 0
α Q

]
×
[

1 0
(I −Qn)e Qn

]
=

[
1 0

α+Q(I −Qn)e Qn+1

]
=

[
1 0

(I −Qn+1)e Qn+1

]
.

□

2.3 Hitting time distribution

In this section, we show that the probability distribution of the first hitting
time

T0 = inf{n ⩾ 1 : Xn = 0}

of state 0 after starting from state i ⩾ 1 can be computed using the vector α
and the matrix Q.

50 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

Proposition 2.3. For all i = 1, 2, . . . , d we have

P
(
T0 = n | X0 = i

)
= [Qn−1α]i, n ⩾ 1. (2.3)

Proof. Since the state 0 is absorbing, we can partition the event {T0 = n} as

{
T0 = n

}
=

d⋃
k=1

{
Xn = 0 and Xn−1 = k

}
,

and note that, since [Pn−1]i,k = [Qn−1]i,k from Proposition 2.2 and αk = Pk,0,
k = 1, 2, . . . , d, we have

P
(
T0 = n | X0 = i

)
= P

(
d⋃

k=1

{
T0 = n, Xn−1 = k

} ∣∣∣ X0 = i

)

=
d∑

k=1
P(T0 = n, Xn−1 = k | X0 = i)

=
d∑

k=1
P(Xn = 0, Xn−1 = k | X0 = i)

=
d∑

k=1
P(Xn = 0 | Xn−1 = k)P(Xn−1 = k | X0 = i)

=
d∑

k=1
[Pn−1]i,kPk,0

=
d∑

k=1
αk[Q

n−1]i,k

= [Qn−1α]i, n ⩾ 1.

□

From now on, we assume that the initial distribution of X0 on {1, 2, . . . , d} is
given by the d-dimensional vector

β =


β1
β2
...
βd

 ,

i.e.
βi = P(X0 = i), i = 1, 2, . . . , d,

" 51

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

with P(X0 = 0) = 0.

Proposition 2.4. The probability distribution of T0 is given by

P(T0 = n) = β⊤Qn−1α, n ⩾ 1.

Proof. By (2.3), we have

P(T0 = n) =
d∑
i=1

P(T0 = n | X0 = i)P(X0 = i)

=
d∑
i=1

βi
[
Qn−1α

]
i

=
d∑
i=1

βi

d∑
k=1

αkQ
n−1
i,k

= β⊤Qn−1α, n ⩾ 1.

□

Since the states {1, 2, . . . , d} are transient, Corollary 1.15 shows that the matrix
inverse (I − sQ)−1 exists and is given by the series

(I − sQ)−1 =
∑
k⩾0

skQk, s ∈ (−1, 1]. (2.4)

We note that T0 is finite with probability one, since

P(T0 <∞) =
∞∑
n=0

P(T0 = n)

=
∞∑
n=1

β⊤Qn−1α

= β⊤
∞∑
n=0

Qnα

= β⊤(I −Q)−1α

= β⊤(I −Q)−1(I −Q)e

=
d∑
i=1

βi

52 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

=
d∑
i=1

P(X0 = i)

= 1.

Corollary 2.5. The cumulative distribution function P (T0 ⩽ n) of T0 is given
in terms of the vectors β, e, and the matrix Qn as

P(T0 ⩽ n) = 1− β⊤Qne, n ⩾ 0. (2.5)

Proof. Using the relation α = (I −Q)e, we have

P(T0 ⩽ n) =
n∑
k=1

P(T0 = k)

=
n∑
k=1

β⊤Qk−1α

= β⊤(I −Qn)(I −Q)−1α

= β⊤(I −Qn)e
= 1− β⊤Qne, n ⩾ 1.

□

Alternatively, also using the relation α = (I −Q)e and a telescopic sum, Rela-
tion (2.5) can be recovered as

P(T0 ⩽ n) =
n∑
k=1

P(T0 = k)

=
n∑
k=1

β⊤Qk−1α

=
n∑
k=1

β⊤Qk−1(I −Q)e

=
n−1∑
k=0

β⊤Qke−
n∑
k=1

β⊤Qke

= β⊤e− β⊤Qne

= 1− β⊤Qne, n ⩾ 1.

We can also rewrite P(T0 ⩽ n) as the probability of not being in any state
i = 1, 2, . . . , d at time n, as

" 53

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

P(T0 ⩽ n) = 1−
d∑

k=1
P(Xn = k)

= 1−
d∑

k=1

d∑
i=1

βiP(Xn = k | X0 = i)

= 1−
d∑

k=1

d∑
i=1

βiQ
n
i,k

= 1− β⊤Qne, n ⩾ 0.

Alternatively, we could also write

P(T0 ⩽ n) = P(Xn = 0)

=
d∑
i=1

βiP(Xn = 0 | X0 = i)

=
d∑
i=1

βi[P
n]i,0

=
d∑
i=1

βi[(I −Qn)e]i

=
d∑
i=1

βi −
d∑
i=1

βi[Q
ne]i

= 1− β⊤Qne, n ⩾ 0.

We refer to the Appendix for the definition of the Probability Generating Func-
tion (PGF) of a discrete random variable.

Proposition 2.6. The probability generating function

GT0(s) := E
[
sT01{T0<∞}

]
=
∑
k⩾0

skP(T0 = k)

of T0 is given by
GT0(s) = sβ⊤(I − sQ)−1(I −Q)e. (2.6)

Proof. By (2.7) we have P(T0 <∞) = 1, hence

GT0(s) =
∑
k⩾0

skP(T0 = k)

= P(X0 = 0) +
∑
k⩾1

skβ⊤Qk−1α

54 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

= s
∑
k⩾0

skβ⊤Qkα

= sβ⊤
∑
k⩾0

skQkα

= sβ⊤(I − sQ)−1α

= sβ⊤(I − sQ)−1(I −Q)e,

where we applied Lemma 2.1 and (2.4). □

We note that

P(T0 <∞) = GT0(1) = β⊤(I −Q)−1(I −Q)e = β⊤e = 1, (2.7)

which shows that state 0 is reached in finite time with probability one.

2.4 Mean hitting times

Using the probability generating function s 7→ GT0(s), we compute the first and
second moments E[T0] and E[T 2

0] of T0. By differentiating (2.6) with respect
to s we have

G′
T0(s) = β⊤(I − sQ)−1α+ sβ⊤Q(I − sQ)−2α,

hence∗

E[T0] = G′
T0(1

−)

= β⊤(I −Q)−1α+ β⊤Q(I −Q)−2α

= β⊤(I −Q)(I −Q)−2α+ β⊤Q(I −Q)−2α

= β⊤(I −Q)−2α

= β⊤(I −Q)−1e.

By differentiating (2.6) further, we also have

G′′
T0(s) = β⊤Q(I − sQ)−2α+ β⊤Q(I − sQ)−2α+ 2sβ⊤Q2(I − sQ)−3α,

hence

E[T0(T0 − 1)] = G′′
T0(1

−)

= 2β⊤Q(I −Q)−2α+ 2β⊤Q2(I −Q)−3α

∗ Here, G′
X (1−) denotes the derivative on the left at the point s = 1.

" 55

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

= 2β⊤Q(I −Q)−3α,
= 2β⊤Q(I −Q)−2e,

and

E[T 2
0] = E[T0(T0 − 1)] + E[T0]

= 2β⊤Q(I −Q)−2e+ β⊤(I −Q)−1e

= 2β⊤Q(I −Q)−2e+ β⊤(I −Q)(I −Q)−2e

= β⊤(I +Q)(I −Q)−2e.

More generally, by (A.6) we could also compute the factorial moment

E[T0(T0 − 1) · · · (T0 − k+ 1)] = G
(k)
T0

(1−) = k!β⊤Qk−1(I −Q)−ke,

for all k ⩾ 1.

Notes

See e.g. Latouche and Ramaswami (1999) for further reading.

Exercises

Exercise 2.1 (Vinay and Kok (2019)). The double-heralding protocol for en-
tanglement generation in quantum cryptography involves two rounds of photon
transfer, the failure of either of which will cause the process to be restarted.

1 2 31 − p
p

1 − q

q
1

The protocol is modeled using a Markov chain (Xn)n⩾0 described by the above
graph, in which p ∈ (0, 1) is the probability of passing the first round, and
q ∈ (0, 1) is the probability of passing the second round, conditional on passing
the first. Let

T3 = inf
{
n ⩾ 0 : Xn = 3

}
denote the first hitting time of state 3 by the chain (Xn)n⩾0.
a) Using first step analysis, find the mean time to completion of double-

heralding after starting from state i , i = 1, 2.
b) Find the Probability Generating Function (PGF)

Gi(s) = E
[
sT3
∣∣X0 = i], −1 ⩽ s ⩽ 1,

56 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

of T3 after starting from state i , i = 1, 2.

Hint. Start by deriving a system of equations satisfied by Gi(s) using first
step analysis.

c) Find the probability distribution P(T3 = k | X0 = 1) of the completion
time after starting from state 1 .

Hint. Use the power series expansion√
(1− p)2 + 4(1− q)p

1− (1− p)s− p(1− q)s2 =
∞∑
n=0

sn

zn+1
+

−
∞∑
n=0

sn

zn+1
−

,

where
z± :=

p− 1±
√
(1− p)2 + 4(1− q)p
2(1− q)p .

d) Using G1(s), recover the mean time to completion of double-heralding after
starting from state 1 , as found in Question (a).

" 57

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

58 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Chapter 3
Synchronizing Automata

Synchronizing automata are connected to algebra and combinatorics, and they
have applications in many areas including robotics, coding theory, network se-
curity management, chip design, industrial automation, biocomputing, etc. In
this chapter, we consider synchronizing automata in the framework of Marko-
vian text generation, with examples of application to pattern recognition in
randomly generated sequences.

3.1 Pattern recognition . 59
3.2 Winning streaks . 67
3.3 Synchronizing automata . 70
3.4 Synchronization times . 72
Exercises . 76

3.1 Pattern recognition

Given an alphabet made of a finite set Σ of letters, we denote by Σ∗ the set of
all (finite) words over Σ, i.e. Σ∗ is made of all finite sequences of symbols in Σ.

Definition 3.1. A language L over a set Σ of letters is a collection of (finite)
words in Σ∗. The notation Σ∗xxxxxΣ∗ denotes the concatenations of a word
in Σ∗ followed by a certain word xxxxx, followed by another word in Σ∗.

Markovian text generation

We would like to determine the mean time until a certain character string
appears in a random sequence generated by a Markov chain.

" 59

This version: March 5, 2024 https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

Examples

• Text generation. See for example here for the use of Markov chain in random
text generation.

• Music generation. See this melody and this arrangement which are
based on this famous tune ∗ see also here for other recent examples.

First-order word analysis

The following codes is estimating a transition matrix P for the first order
analysis of a text of 10000 characters.

 text = readChar("text_file.txt",nchars=10000)
x <- unlist (strsplit (gsub ("[^a-z]", "-", tolower (text)), ""))

 P <- matrix(nrow = 27, ncol = 27, 0,dimnames = list(c("-", letters),c("-", letters)))
for (t in 1:(length(x) - 1)) P[x[t], x[t + 1]] <- P[x[t], x[t + 1]] + 1

 for (i in 1:27) P[i,] <- P[i,] / sum(P[i,])
P[1:5,1:5]

The transition matrix P is estimated by counting the proportion of transitions
from any given state i to another state j , i, j ∈ S, using

P̂i,j(m) :=
1

Ri(m)

m−1∑
t=1

1{Xt=i, Xt+1=j},

where

Ri(m) :=
m−1∑
n=1

1{Xn=j}, m ⩾ 2,

denotes the number of returns to state j by the chain (Xn)n⩾0 up to time
m− 1. Next is a sample transition matrix obtained from this analysis.

−
a
b
c
d [

−
0.43959353
0.11014493
0.08461538
0.04803493
0.74644550

...

a
0.08882198
0.00000000
0.00000000
0.04803493
0.02606635

...

b
0.004140008
0.031884058
0.000000000
0.000000000
0.000000000

...

c
0.01204366
0.00000000
0.00000000
0.00000000
0.00000000

...

d
0.01656003
0.14057971
0.00000000
0.00000000
0.02369668

...

· · ·
· · ·
· · ·
· · ·
· · ·
. . .

] .

∗ Try here if it does not work.

60 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}

MCM1

Carlos Pasquali

Carlos Pasquali's Album

2010

43.075665

eng - iTunNORM
 000005FF 00000575 00006C88 00004659 00008CD0 00008CB6 00007E8F 00007198 00008C9C 00008C9C�

eng - iTunSMPB
 00000000 00000210 00000B04 00000000001CEF6C 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000�

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}

MCM2

Carlos Pasquali

Carlos Pasquali's Album

2010

50.57242

eng - iTunNORM
 000005A6 0000021B 00002C04 000010C4 00005F34 0000118D 00007E17 000076F0 00008C9C 00004358�

eng - iTunSMPB
 00000000 00000210 00000A86 000000000021FB6A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000�

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton2'){ocgs[i].state=false;}}

Twinkle Twinkle Little Star

null

24.032734

XXX - c0
Creative Commons Attribution 3.0 Unported, http://creativecommons.org/licenses/by-sa/3.0/

Transcribed by Alan Sim

https://projects.haykranen.nl/markov/demo/
https://www.flow-machines.com/outputs/publications/
https://www.youtube.com/watch?v=LSHZ_b05W7o
https://upload.wikimedia.org/wikipedia/commons/b/bd/Twinkle_Twinkle_Little_Star_plain.ogg
https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

 install.packages("devtools"); library(devtools)
 devtools::install_github('spedygiorgio/markovchain') # Choose option 2 - CRAN

packages only
install.packages("igraph"); install.packages("markovchain")

 library(igraph); library(markovchain)
MC <-new("markovchain",transitionMatrix=P,states=c("-", letters))

 graph <- as(MC, "igraph")
plot(graph,edge.label.cex=1,edge.label=sprintf("%1.2f",

E(graph)$prob),edge.color='black', vertex.color='dodgerblue',vertex.label.cex=1)
 cat(markovchainSequence(n = 100, markovchain = MC, t0 = "a", include.t0 = TRUE),"\n")

Second-order word analysis

For simplicity, we consider a two-state Markov chain (Xn)n⩾0 taking values in
the two-letter alphabet S = {a, b} and transition matrix

P =

[a b

a 1− q q
b p 1− p

]
,

where p, q ∈ (0, 1), see e.g. here.

Next, we define a new stochastic process (Zn)n⩾1 by Zn = (Xn−1,Xn),
n ⩾ 1, which models words of length (or order) 2. The state space of (Zn)n⩾1
is made of the set of words{

(a, a), (a, b), (b, a), (b, b)
}

which corresponds to two-step text generation. Based on Zn = (Xn−1,Xn),
the distribution of Zn+1 = (Xn,Xn+1) at time n + 1 is fully determined
from the data of Xn and the transition matrix of (Xn)n⩾0 hence (Zn)n⩾1
is a {aa, ab, ba, bb}-valued Markov chain, whose transition matrix is given by

aa

ab

ba

bb

[
aa

1− q
0

1− q
0

ab

q

0
q

0

ba

0
p

0
p

bb

0
1− p

0
1− p

] . (3.1)

• Starting from Zn = (a, a), if the next letter is Xn+1 = a (with probability
p) then we obtain

(Xn−1,Xn,Xn+1) = (a, a, a).

" 61

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://setosa.io/ev/markov-chains/
https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

The next 2-letter state Zn+1 is now based on the last two letters of (a, a, a),
i.e. Zn+1 = (a, a). In this case, the 2-letter state switches from Zn = (a, a)
to Zn+1 = (a, a) with probability p.

• Starting from Zn = (a, a), if the next letter is Xn+1 = b (with probability
q) then we obtain

(Xn−1,Xn,Xn+1) = (a, a, b).

The current 2-letter state is now based on the last two letters of (a, a, b),
i.e. Zn+1 = (a, b). In this case, the 2-letter state switches from Zn = (a, a)
to Zn+1 = (a, b) with probability q.

• Starting from Zn = (b, a), if the next letter is Xn+1 = a (with probability
p) then we obtain

(Xn−1,Xn,Xn+1) = (b, a, a).

The current 2-letter state is now based on the last two letters of (b, a, a),
i.e. Zn+1 = (a, a). In this case, the 2-letter state switches from Zn = (b, a)
to Zn+1 = (a, a) with probability p.

• Starting from Zn = (b, a), if the next letter is Xn+1 = b (with probability
q) then we obtain

(Xn−1,Xn,Xn+1) = (b, a, b).

The current 2-letter state is now based on the last two letters of (b, a, b), i.e.
Zn+1 = (a, b). In this case, the 2-letter state switches from Zn = (b, a) to
Zn+1 = (a, b) with probability q.

• On the other hand, starting from Zn = (x, a), resp. Zn = (x, b), we can-
not switch to any state of the form Zn+1 = (b, y), resp. Zn = (a, y), by
construction of Zn := (Xn−1,Xn), x, y ∈ {a, b}.

A similar reasoning can be applied to other entries in the transition matrix
(3.1).

This ∗ implements the estimation of transition matrix for any
order, and generates the corresponding chain samples.

Independent samples

In what follows, we assume that p+ q = 1 with 0 < p < 1, in which case the
transition matrix P becomes

P =

[a b

a p q
b p q

]
,

∗ Right-click to save as attachment.

62 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

{
 "cells": [
 {
 "cell_type": "code",
 "execution_count": 19,
 "metadata": {},
 "outputs": [
 {
 "name": "stdout",
 "output_type": "stream",
 "text": [
 "initialize trans: 0.0068019230384379625\n",
 "make trans matrix: 0.06976865301840007\n",
 "empty: 312481911\n",
 "nonempty: 18089\n",
 "normalize trans: 0.17397999000968412\n"
]
 }
],
 "source": [
 "\"\"\"\n",
 "Markov Chain Text Generation Project\n",
 "Michael Shan Wang\n",
 "\"\"\"\n",
 "\n",
 "####################\n",
 "#SET CONSTANTS BELOW\n",
 "####################\n",
 "\n",
 "ORDER = 5 #The order: length of character strings that comprise state space\n",
 "OUTLEN = 1000 #Number of characters in the output string\n",
 "\n",
 "####################\n",
 "####################\n",
 "\n",
 "import numpy as np\n",
 "import re\n",
 "from time import perf_counter\n",
 "import matplotlib.pyplot as plt\n",
 "\n",
 "#Read input text file\n",
 "with open('my_own_text_file.txt') as f: #Change to your own text file if you have\n",
 " train = f.read()\n",
 " \n",
 "#Process the text string\n",
 "train=train.lower() #converts letters to lowercase\n",
 "train=re.sub('\\s', ' ', train) #converts all whitespaces to normal spaces\n",
 "train=re.sub('[^a-z0-9&?\\'-:,()\\\"!;.]', '', train) #deletes all characters that are not alphanumeric or certain punctuation or whitespaces\n",
 "\n",
 "#Check characters in file\n",
 "unique=set(train) #contains set of all unique characters in input text\n",
 "#print(unique)\n",
 "unique=sorted(unique)\n",
 "n=len(unique) #n is number of characters we are considering in our alphabet\n",
 "mapping={unique[i]:i for i in range(n)} #maps each character to an integer index\n",
 "#print(mapping)\n",
 "\n",
 "#Get base rates of character occurences\n",
 "base=np.zeros(n)\n",
 "for i in range(len(train)):\n",
 " base[mapping[train[i]]]+=1\n",
 "for i in range(n):\n",
 " base[i]/=len(train)\n",
 "#print(base)\n",
 "\n",
 "#Create transition matrix\n",
 "#For text generation, traditional square transition matrix will be mostly 0\n",
 "#To save space we use non-square\n",
 "start=perf_counter()\n",
 "numstates=n**ORDER #numstates is number of possible substrings in state space\n",
 "trans=dict() #empty dictionary but in theory it is equivalent to numstates by n matrix\n",
 "stop=perf_counter()\n",
 "print(\"initialize trans: \", stop-start)\n",
 "\n",
 "#Compute transition matrix from input text\n",
 "#Increments the appropriate transition element for each character transition in input text\n",
 "start=perf_counter()\n",
 "for i in range(ORDER, len(train)):\n",
 " prev=train[i-ORDER:i]\n",
 " if prev not in trans.keys(): trans[prev]=[0]*n #for unseen character string, initialize new row in trans\n",
 " nextchar=train[i]\n",
 " trans[prev][mapping[nextchar]]+=1\n",
 "stop=perf_counter()\n",
 "print(\"make trans matrix: \", stop-start)\n",
 "start=perf_counter()\n",
 "\n",
 "#make rows of trans sum to one\n",
 "for i in trans.keys():\n",
 " total=0\n",
 " for j in range(n): total+=trans[i][j]\n",
 " for j in range(n): trans[i][j]/=total\n",
 "print(\"empty: \", numstates-len(trans.keys())) #number of strings in state space not seen in input\n",
 "print(\"nonempty: \", len(trans.keys())) #number of strings in state space seen in input\n",
 "stop=perf_counter()\n",
 "print(\"normalize trans: \", stop-start)\n",
 "\n"
]
 },
 {
 "cell_type": "code",
 "execution_count": 20,
 "metadata": {},
 "outputs": [
 {
 "name": "stdout",
 "output_type": "stream",
 "text": [
 "e with the wouldnt know she laugh. john laugh. but i shall night, for a whim. i wasnt alone swamp our child and that john, and directly from all the does. you are it is in my path. im getting or copies of this provide volunteers and discovered arbors, creeping the vicious from outside the fainted on it out, and good. but its originator of equal distributing that women do let the place! it does not say another on the yellow wallpaperwork (or by e-mail) with these numerous located with a laughs at me as if she wallow wallpaper. the general terms will and creeping to not be linked to sulk about behind the front design, and rush off most received throughout paying odor i even if i could get more care took all license. and disturb me as well say, at the project gutenberg-tm electronic work, or an hours included. of course, what chair than there and keeping up and slowly, and then the bargain. i got it, but the grotesque, reminding road this ebook. author: charge a fee for a thing no\n",
 "generate output: 0.030359552998561412\n"
]
 }
],
 "source": [
 "#Generate output text starting from random individual characters\n",
 "#returns burnin time and the string output\n",
 "def makeoutput():\n",
 " burnin=0 #We need burn in time because we start by generating output from random string of length ORDER\n",
 " start=perf_counter()\n",
 " output=[]\n",
 " prev=\"\"\n",
 " for i in range(ORDER): #generate ORDER characters according to base rates and update index\n",
 " nextchar=np.random.choice(unique, p=base)\n",
 " prev=prev+nextchar\n",
 " output.append(nextchar)\n",
 " first=True\n",
 " i1=0 #total number of characters generated\n",
 " i2=0 #number of characters generated towards output text\n",
 " while i2 < OUTLEN: #generate rest of output text based on transition probabilities\n",
 " if prev in trans.keys():\n",
 " if first:\n",
 " burnin=i1\n",
 " first=False\n",
 " nextchar=np.random.choice(unique, p=trans[prev])\n",
 " output.append(nextchar)\n",
 " i2+=1\n",
 " else: nextchar=np.random.choice(unique, p=base)\n",
 " prev=prev+nextchar\n",
 " prev=prev[1:]\n",
 " i1+=1\n",
 " stroutput=''.join(output)\n",
 " stroutput=stroutput[-OUTLEN:] #remove burnin part of string\n",
 " stop=perf_counter()\n",
 " print(\"generate output: \", stop-start)\n",
 " return burnin, stroutput\n",
 "\n",
 "\n",
 "\n",
 "#The new more efficient variation of makeoutput, without random characters at first\n",
 "start=perf_counter()\n",
 "output=[]\n",
 "prev=np.random.choice(list(trans.keys()))\n",
 "i1=0\n",
 "i2=0\n",
 "while i2 < OUTLEN:\n",
 " if prev in trans.keys():\n",
 " nextchar=np.random.choice(unique, p=trans[prev])\n",
 " output.append(nextchar)\n",
 " i2+=1\n",
 " else: nextchar=np.random.choice(unique, p=base)\n",
 " prev=prev+nextchar\n",
 " prev=prev[1:]\n",
 " i1+=1\n",
 "stroutput=''.join(output)\n",
 "stroutput=stroutput[-OUTLEN:]\n",
 "stop=perf_counter()\n",
 "print(stroutput)\n",
 "print(\"generate output: \", stop-start)"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": []
 }
],
 "metadata": {
 "kernelspec": {
 "display_name": "Python 3 (ipykernel)",
 "language": "python",
 "name": "python3"
 },
 "language_info": {
 "codemirror_mode": {
 "name": "ipython",
 "version": 3
 },
 "file_extension": ".py",
 "mimetype": "text/x-python",
 "name": "python",
 "nbconvert_exporter": "python",
 "pygments_lexer": "ipython3",
 "version": "3.7.13"
 }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

and the sequence (Xn)n⩾0 is made of identically distributed Bernoulli random
variables taking values in {a, b}, such that

P(Xn = a) = p and P(Xn = b) = q = 1− p, n ⩾ 0. (3.2)

In addition, the sequence Xn is independent of Xn+1, n ⩾ 0, as

P(Xn+1 = x) =
∑

z∈{a,b}
P(Xn+1 = x | Xn = z)P(Xn = z)

=
∑

z∈{a,b}
P(Xn+1 = x | Xn = y)P(Xn = z)

= P(Xn+1 = x | Xn = y)
∑

z∈{a,b}
P(Xn = z)

= P(Xn+1 = x | Xn = y), y ∈ {a, b},

which shows that

P(Xn+1 = x and Xn = y) = P(Xn+1 = x | Xn = y)P(Xn = y)

= P(Xn+1 = x)P(Xn = y), x, y ∈ {a, b}.

We note that (Zn)n⩾1 = ((Xn−1,Xn))n⩾1 is a Markov chain with four possi-
ble states denoted {aa, ab, ba, bb}, and write down its 4× 4 transition matrix.
Precisely, the transition matrix of (Zn)n⩾1 is given by

aa

ab

ba

bb

[
aa

p

0
p

0

ab

q

0
q

0

ba

0
p

0
p

bb

0
q

0
q
] .

Average recognition times

Let now
τab := inf{n ⩾ 1 : Zn = (a, b)}

denote the first time of appearance of the pattern “ab” in the sequence
(X0,X1,X2, . . .). The mean time it takes until we encounter the pattern “ab”
after starting from X0 = a can be computed as a consequence of Proposi-
tion 1.3, as

E[τab | X0 = a] =
1
q
= 1 + p

q
. (3.3)

" 63

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

This mean time can be recovered by pathwise analysis using the mean 1/q of
the geometric distribution on {1, 2, 3, . . .} with parameter q ∈ (0, 1], as

E[τab | X0 = a] =
∞∑
n=1

npn−1q

=
∞∑
n=0

(n+ 1)pnq

= q

∞∑
n=0

pn + p

∞∑
n=0

npn−1q

= 1 + pq

(1− p)2

= 1 + p

q

=
1
q

. (3.4)

Given the initial value of Z1 we can also compute the probability distribution

P(τab = n | Z1 = (a, a)) = P(τab = n | Z1 = (b, a)) = qpn−2, n ⩾ 2,
(3.5)

of the hitting time τab after starting from either (a, a) or (b, a), according to
the following examples:

(a
↑
0

, a
↑
1

, a
↑
2

, a
↑
3

, a
↑
4

, . . . , a
↑

n−1

, b
↑
n

), (b
↑
0

, a
↑
1

, a
↑
2

, a
↑
3

, a
↑
4

, . . . , a
↑

n−1

, b
↑
n

).

Probability generating functions

In the remainder of this section we we consider an alternative approach using
the probability generating functions

Gaa(s) := E
[
sτab1{τab<∞} | Z1 = (a, a)

]
, −1 ⩽ s ⩽ 1,

and
Gba(s) := E

[
sτab1{τab<∞} | Z1 = (b, a)

]
, −1 ⩽ s ⩽ 1,

which satisfy
Gaa(s) = Gba(s), −1 < s < 1.

We also note that the probability generating function

Gab(s) := E
[
sτab1{τab<∞} | Z1 = (a, b)

]
, −1 ⩽ s ⩽ 1.

satisfies

64 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

Gab(s) = E[s | Z1 = (a, b)] = s, −1 ⩽ s ⩽ 1,

since given that Z1 = (a, b) we have τab = 1 with probability one.

Proposition 3.2. The Probability Generating Function (PGF) of the hitting
time τab satisfies

Gaa(s) = Gba(s) =
qs2

1− ps , −1 ⩽ s ⩽ 1. (3.6)

Proof. Using first step analysis, we have

Gaa(s) = E
[
sτab1{τab<∞} | Z1 = (a, a)

]
= pE

[
sτab1{τab<∞} | Z2 = (a, a)

]
+ qE

[
sτab1{τab<∞} | Z2 = (a, b)

]
= pE

[
s1+τab1{τab<∞} | Z1 = (a, a)

]
+ qE

[
s1+τab1{τab<∞} | Z1 = (a, b)

]
and

Gba(s) = E
[
sτab1{τab<∞} | Z1 = (b, a)

]
= pE

[
sτab1{τab<∞} | Z2 = (a, a)

]
+ qE

[
sτab1{τab<∞} | Z2 = (a, b)

]
= pE

[
s1+τab1{τab<∞} | Z1 = (a, a)

]
+ qE

[
s1+τab1{τab<∞} | Z1 = (a, b)

]
,

which yields the system of equationsGaa(s) = psGaa(s) + qsGab(s)

Gba(s) = psGaa(s) + qsGab(s),
(3.7)

where Gab(s) = E[s | Z1 = (a, b)] = s, −1 ⩽ s ⩽ 1. Therefore, we haveGaa(s) = psGaa(s) + qs2,

Gba(s) = psGaa(s) + qs2,

from which we compute Gaa(s) and Gba(s) as

Gaa(s) = Gba(s) =
pqs3

1− ps + qs2 =
qs2

1− ps , −1 ⩽ s ⩽ 1.

□

From Proposition 3.2, we note that

P(τab <∞ | Z1 = (a, a)) = P(τab <∞ | Z1 = (b, a))
= Gaa(1) = Gba(1)

" 65

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

=
q

1− p
= 1.

In addition, by expanding the PGF in (3.6) into the series

Gaa(s) =
qs2

1− ps
= qs2

∑
k⩾0

pksk

= q
∑
k⩾2

pk−2sk

=
∑
k⩾0

skP(τab = k | Z1 = (a, a))

recovers the probability distribution (3.5). The probability generating functions
can now be used to compute the mean times

E[τab | Z1 = (a, a)] and E[τab | Z1 = (b, a)],

as

E[τab | Z1 = (a, a)] = E[τab | Z1 = (b, a)]
= G′

ba(1−) = G′
aa(1−)

=
2q

1− p +
pq

(1− p)2

= 2 + p

q
= 1 + 1

q
,

which is consistent with (3.3)-(3.4) as one time step is needed to switch from
X0 = a to X1 = a when Z1 = (a, a). The next proposition recovers (3.3) using
probability generating functions.

Proposition 3.3. The average time E[τab | X0 = a] it takes until we encounter
the pattern “ab” in the sequence (X0,X1,X2, . . .) started with X0 = a is 1 +
p/q.

Proof. The average time it takes until we encounter the pattern “ab” in the
sequence (X0,X1,X2, . . .) started with X0 = a is given by

E[τab | X0 = a] = pE[τab | Z1 = (a, a)] + qE[τab | Z1 = (a, b)]

= p

(
2 + p

q

)
+ q

= 1 + p

q
.

66 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

□

The next section illustrates the use of probability generating functions in more
complex situations.

3.2 Winning streaks

Consider a sequence (Xn)n⩾1 of independent Bernoulli random variables with
the distribution

P(Xn = a) = p, P(Xn = b) = q, n ⩾ 1,

with q := 1− p. For some m ⩾ 1, let T (m) denote the time of the first ap-
pearance of m consecutive a’s in the sequence (Xn)n⩾1. For example, taking
m := 4, the sequence

(b
↑
1

, a
↑
2

, a
↑
3

, b
↑
4

,
4 times︷ ︸︸ ︷
a
↑
5

, a
↑
6

, a
↑
7

, a
↑
8

,b, a, a, b, . . .)

yields T (4) = 8.

Probability distribution of T (m)

We note that

a) We have P
(
T (m) < m

)
= 0 since it takes at least m letters to form an

m-winning streak.

b) We have P
(
T (m) = m

)
= pm since observing an m-winning streak at time

m requires to generate exactly exactly m times “a”.

c) We have P
(
T (m) = m+ 1

)
= qpm because observing the first m-winning

streak at time m+ 1 exactly requires to generate the sequence

(b
↑
4

,
m times︷ ︸︸ ︷

a
↑
5

, a
↑
6

, a
↑
7

, . . . , a
↑

m+1

).

d) We have
P
(
T (m) = m+ 2

)
= q2pm + pqpm = qpm

because observing the first m-winning streak at time m+ 2 can be achieved
via exactly two sequences

" 67

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

(b
↑
3

, b
↑
4

,
m times︷ ︸︸ ︷

a
↑
5

, a
↑
6

, a
↑
7

, . . . , a
↑
8

) and (a
↑
3

, b
↑
4

,
m times︷ ︸︸ ︷

a
↑
5

, a
↑
6

, a
↑
7

, . . . , a
↑
8

).

e) More generally, for n = 1, 2, . . . ,m we find

P
(
T (m) = n+m

)
= qpm = qpm

n−1∑
k=0

(
n− 1
k

)
qkpn−1−k,

because when n ⩽ m any sequence of the form

(
n−1 times︷ ︸︸ ︷

x1,x2, . . . ,xn−1, b
↑
n

,
m times︷ ︸︸ ︷

a
↑

n+1

, a
↑

n+2

, a
↑

n+3

, . . . , a
↑

n+m

, . . .)

x1,x2, . . . ,xn−1 ∈ {a, b}, will generate an m-winning streak at time n+m.

In the general case, computing P
(
T (m) = k

)
for k ⩾ 2m+ 1 is more difficult,

see Exercise 3.6. In the Proposition 3.4 we compute the probability generating
function

GT (m)(s) := E
[
sT

(m)
1{T (m)<∞}

]
, −1 ⩽ s ⩽ 1.

Proposition 3.4. The probability generating function GT (m)(s) satisfies

GT (m)(s) =
pmsm(1− ps)

1− s+ qpmsm+1 , −1 ⩽ s ⩽ 1, m ⩾ 1. (3.8)

Proof. We apply a “k-step analysis” argument to all possible starting patterns
of the form

(
k times︷ ︸︸ ︷

a
↑
1

, a
↑
2

, . . . , a
↑
k

, b
↑

k+1

, . . .)

where k = 0, 1, . . . ,m, i.e.

b k = 0
ab k = 1
aab k = 2
...

a · · · ab k = m− 1
a · · · aa︸ ︷︷ ︸
m times

k = m,

and we compute their respective probabilities. The idea is to start by flipping
a coin and to observe the number k of consecutive “a” until we get the first “b”.

68 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

1) If k = m then the game ends, and this happens with probability P
(
T (m) =

m
)
= pm.

2) If k < m, the sequence of “a” is broken and we need to start again at time
k+ 1. This happens with probability pkq and we need to factor in the power
sk+1 where k + 1 is the number of time steps until we reach the first “b”,
and restart the counter T (m).

In other words, we have

GT (m)(s) = smP
(
T (m) = m

)
+
m−1∑
k=0

qpkE
[
sk+1+T (m)]

= pmsm +
m−1∑
k=0

pkqsk+1E
[
sT

(m)]
= pmsm + qsGT (m)(s)

m−1∑
k=0

(ps)k (3.9)

= pmsm + qsGT (m)(s)
1− (ps)m

1− ps , −1 ⩽ s ⩽ 1,

which yields (3.8), where we used the relation

m−1∑
k=0

xk =
1− xm
1− x , x ∈ (−1, 1).

□

We note that

P
(
T (m) <∞

)
= GT (m)(1) = (1− p) p

m

qpm
= 1, (3.10)

hence the time T (m) until the first m-winning streak is finite with probability
one.

Next, from the probability generating function GT (m)(s), we compute the
mean time E[T (m)] until we encounter an m-winning streak, for all m ⩾ 1. See
also Exercises 3.1 and 3.2 for alternative methods.

Proposition 3.5. We have

E
[
T (m)

]
= G′

T (m)(1) =
1− pm

(1− p)pm =
(1/p)m − 1

1− p =
m∑
k=1

1
pk

, m ⩾ 1. (3.11)

Proof. Instead of differentiating (3.8) it can be simpler to differentiate (3.9)
with respect to s, which yields

" 69

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

G′
T (m)(s) = mpmsm−1 + qG′

T (m)(s)
m−1∑
k=0

pksk+1 + qGT (m)(s)
m−1∑
k=1

(k+ 1)(ps)k

= mpmsm−1 + qsG′
T (m)(s)

1− (ps)m

1− ps + (1− p)GT (m)(s)
m−1∑
k=1

(k+ 1)(ps)k.

Using the relations

mpm + (1− p)
m−1∑
k=1

(k+ 1)pk = 1− pm
1− p , 0 ⩽ p < 1,

and GT (m)(1) = P
(
T (m) <∞

)
= 1 from (3.10), we have

G′
T (m)(1) = mpm + (1− p)

m−1∑
k=0

pk(k+ 1) + qG′
T (m)(1)

m−1∑
k=0

pk

=
1− pm
1− p + qG′

T (m)(1)
m−1∑
k=0

pk

=
1− pm
1− p + qG′

T (m)(1)
1− pm
1− p

=
1− pm
1− p +G′

T (m)(1)(1− pm),

which yields (3.11) when p ∈ [0, 1). In case p = 1 and q = 0, we find
G′
T (m)(1) = m. □

For example, for an unbiased coin with p = 1/2 the mean time until the first
winning streak of length m ⩾ 1 is

E
[
T (m)

]
=

m∑
k=1

1
(1/2)k =

m∑
k=1

2k = 21− 2m
1− 2 = 2(2m − 1).

3.3 Synchronizing automata

An automaton is given by a function

f : {a, b} × {0, 1, . . . ,n} −→ {0, 1, . . . ,n}

70 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

and reads words of the form a1a2 · · · am ∈ L by producing a sequence
y1, y2, . . . , ym of integers starting from an initial y0, via the following recur-
sion:

y1 := f(a1, y0), y2 := f(a2, y1), y3 := f(a3, y2), . . . , ym := f(am, ym−1).

Definition 3.6. A word a1a2 · · · am ∈ L, m ⩾ 1, is said to synchronize the
automaton f to state n if we have ym = n , where n is regarded as a sink
state, also called an accepting state.

Example

Let n = 5, and consider the automaton given by the function

f 0 1 2 3 4 5
a 1 2 3 3 1 5
b 0 0 0 4 5 5

The automaton can be represented by the following graph.

0 1 2 3 4 5

b

a a a

b

b a

b b

a

a, b

Definition 3.7. One says that the automaton f recognizes the language L if
every word a1a2 · · · am in L, m ⩾ 1, synchronizes the automaton f to state n ,
i.e. satisfies ym = n , starting from any initial state y0 .

We note that the shortest word of the form “albm” which is synchronized to
state 5 by the above automaton starting from any state is “a3b2”, with l = 3
and m = 2.

According to Definition 3.1, the set of words, or language, recognized by this
automaton can be denoted by Σ∗a3b2Σ∗. An example of a five-letter word that
does not synchronize the automaton when started from state 4 is by “aabbb”.

Markovian text generator

In what follows, we “feed” the automaton with the i.i.d. sequence (Xk)k⩾1 of
{a, b}-valued samples generated as in (3.2), i.e. such that

" 71

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

P(Xk = a) = p ∈ (0, 1) and P(Xk = b) = q = 1− p, k ⩾ 1.

This results into a random process (Yk)k∈N started at Y0, with

Y1 = f(X1,Y0), Y2 = f(X2,Y1), . . . ,Yk = f(Xk,Yk−1), . . .

is a Markov chain on the state space {0, 1, 2, 3, 4, 5}. Indeed, given Yk, the
distribution of Yk+1 := f(Xk+1,Yk) is independent of Y0, . . . ,Yk−1. The graph
of the chain (Yk)k∈N can be described as follows.

0 1 2 3 4 5

q

p p p

q

q
p

q q

p

1

The chain (Yk)k∈N is reducible, its communicating classes are {0, 1, 2, 3, 4} and
{5}, and its transition matrix is given by

[Pi,j]0⩽i,j⩽5 =


q p 0 0 0 0
q 0 p 0 0 0
q 0 0 p 0 0
0 0 0 p q 0
0 p 0 0 0 q
0 0 0 0 0 1

 . (3.12)

3.4 Synchronization times

Mean synchronization times

We compute the average time it takes until the automaton f of Section 3.3
becomes synchronized by the random words generated from (Xk)k⩾1, i.e. the
mean time until the word “a3b2” is generated after starting from the initial
state Y0 = 0 . Denoting by h5(k) the average time it takes to reach state 5
starting from state k = 0, 1, 2, 3, 4, 5, we first check that h5(4) = ph5(0).

By first step analysis, we find the equations

72 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

h5(0) = 1 + qh5(0) + ph5(1)
h5(1) = 1 + qh5(0) + ph5(2)
h5(2) = 1 + qh5(0) + ph5(3)
h5(3) = 1 + ph5(3) + qh5(4)
h5(4) = 1 + ph5(1) + qh5(5)
h5(5) = 0,

i.e. 

ph5(0) = 1 + ph5(1)
h5(1) = 1 + qh5(0) + ph5(2)
h5(2) = 1 + qh5(0) + ph5(3)
qh5(3) = 1 + qh5(4) = 1 + qph5(0)
h5(4) = 1 + ph5(1) = ph5(0)
h5(5) = 0,

i.e. 

h5(0) =
1
p
+

1
p2 +

1
p3 + h5(3)

h5(1) =
1
p2 +

1
p3 + h5(3)

h5(2) =
1
p3 + h5(3)

h5(3) =
1
q
+ ph5(0)

h5(4) = ph5(0)
h5(5) = 0,

i.e. 

h5(0) =
q(p2 + p+ 1) + p3

p3q2 =
1

p3q2

h5(1) =
1

p3q2 −
1
p

h5(2) =
1

p3q2 −
1
p
− 1
p2

h5(3) =
1
q
+

1
p2q2

h5(4) =
1

p2q2

h5(5) = 0.

Synchronization probabilities

For another example, let n = 4 and consider the automaton f defined by

" 73

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

f 0 1 2 3 4
a 0 2 2 1 4
b 0 0 3 4 4

This automaton has two sink states 0 and 4 , and its graph is given as follows:

0 1 2 3 4

a, b

ab

a

b b

a

a, b

We note that the unique shortest word that synchronizes this automaton
to state 0 after starting from all states 1, 2, 3 is “abab”. Similarly, the unique
shortest word that synchronizes to state 4 starting from all states 1, 2, 3 is
“aabb”.

The random process (Yk)k∈N started at Y0, with

Y1 = f(X1,Y0), Y2 = f(X2,Y1), . . . ,Yk = f(Xk,Yk−1), . . .

is a Markov chain with transition matrix

[Pi,j]0⩽i,j⩽4 =


1 0 0 0 0
q 0 p 0 0
0 0 p q 0
0 p 0 0 q
0 0 0 0 1


on the state space {0, 1, 2, 3, 4}, with the following graph.

0 1 2 3 4

1

pq

p

q q

p

1

The following result is an application of Proposition 1.2 with the boundary set
A = {0, 4}.
Proposition 3.8. The probability that the first synchronized word is “abab”
when the automaton is started from state 1 is p2/(1 + p).

Proof. We note that synchronization may here occur through state 0 or
through state 4 . Denoting by g0(k) the probability that state 0 is reached
first starting from state k = 0, 1, 2, 3, 4, we have the equations

74 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes


g0(0) = 1
g0(1) = qg0(0) + pg0(2) = q+ pg0(2)
g0(2) = pg0(2) + qg0(3)
g0(3) = pg0(1) + qg0(4) = pg0(1)
g0(4) = 0,

i.e. 
g0(0) = 1
g0(1) = q+ pg0(2)
g0(2) = pg0(2) + qg0(3) = pg0(2) + qpg0(1)
g0(3) = pg0(1)
g0(4) = 0,

i.e. 
g0(0) = 1
g0(1) = q+ p2g0(1)
g0(2) = pg0(1)
g0(3) = pg0(1)
g0(4) = 0,

or 

g0(0) = 1

g0(1) =
q

1− p2 =
1

1 + p

g0(2) =
pq

1− p2 =
p

1 + p

g0(3) =
pq

1− p2 =
p

1 + p

g0(4) = 0.

Now, starting from state 1 one may move directly to state 0 with probability
q, in which case the first synchronized word is “b”, not “abab”. For this reason
we need to subtract q from g0(1), and the probability that the first synchronized
word is “abab” starting from state 1 is

1
1 + p

− (1− p) = p2

1 + p
.

□

Note that the above computations apply only when p ∈ [0, 1). In case p = 1
the problem admits a trivial solution since the word “abab” will never occur.

The probability g0(1) can also be computed by pathwise analysis and a geo-
metric series, as g0(1) = 1− g4(1), with g4(1) = g3(2)g4(3), where

g3(2) = q
∑
k⩾0

pk =
q

1− p = 1

" 75

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

and
g4(3) = q

∑
k⩾0

p2k =
q

1− p2 ,

hence
g0(1) = 1− pq

∑
k⩾0

p2k = 1− pq

1− p2 = 1− p

1 + p
=

1
1 + p

.

The averages times until the automaton is synchronized by the word “abab” or
by the word “aabb” can be similarly computed by first step analysis.

Notes

See e.g. Volkov (2008) and Gusev (2014) for further reading.

Exercises

Exercise 3.1 Consider a sequence (Xn)n⩾1 of independent Bernoulli random
variables with the distribution

P(Xn = a) = p, P(Xn = b) = q, n ⩾ 1,

where p ∈ (0, 1] and q := 1−p. Let T (m) denote the time of the first appearance
of m consecutive a’s in (Xn)n⩾1, with e.g. T (4) = 8 in the following sequence:

(b
↑
1

, a
↑
2

, a
↑
3

, b
↑
4

,
4 times︷ ︸︸ ︷
a
↑
5

, a
↑
6

, a
↑
7

, a
↑
8

,b, a, a, b, . . .).

a) By first step analysis, find an equation satisfied by E[T (m)].
b) Compute the mean time E[T (m)] until we encounter an m-winning streak,

for all m ⩾ 1.
Hint. We have

m∑
k=1

kpk−1 =
∂

∂p

m∑
k=0

pk =
∂

∂p

(
1− pm+1

1− p

)
=

1− (m+ 1)pm +mpm+1

(1− p)2 .

Exercise 3.2 Consider a sequence (Xn)n∈Z of independent Bernoulli random
variables with the distribution

P(Xn = a) = p, P(Xn = b) = q, n ∈ Z,

where p ∈ (0, 1] and q := 1− p, and let m ⩾ 1 be a fixed integer.

76 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

For n ⩾ 0, we let Zn denote the smallest of m and the number of “a” having
appeared up to time n since the last occurrence of “b” in the sequence (Xk)k⩽n.
For example, in the sequence

(a
↑

−5

, b
↑

−4

, a
↑

−3

, a
↑

−2

, a
↑

−1

, a
↑
0

, a
↑
1

, a
↑
2

, b
↑
3

, a
↑
4

, a
↑
5

, a
↑
6

, a
↑
7

, b
↑
8

, a
↑
9

, a
↑

10

, b
↑

11

, . . .),

we have

Z0 = 4, Z1 = 5, Z2 = 6, Z3 = 0, Z4 = 1, Z5 = 2, Z6 = 3, Z7 = 4, Z8 = 0, Z9 = 1.

a) Show that (Zn)n⩾0 is a Markov chain, give its state space and transition
matrix P .

b) Compute the mean hitting time E[Tm | Z0 = l] of state m by the chain
(Zn)n⩾0 after starting from Z0 = l, for l ∈ {0, 1, . . . ,m}.

c) Give the expected value of the time T (m) of the first appearance of m
consecutive “a” in the sequence (Xn)n⩾1, and recover the expected value of
T (m) obtained in Question (b) of Exercise 3.1.

For example, taking m := 4 we have T (4) = 8 in the following sequence:

(b
↑

−3

, a
↑

−2

, a
↑

−1

, b
↑
0

,
4 times︷ ︸︸ ︷
a
↑
1

, a
↑
2

, a
↑
3

, a
↑
4

,b, a, a, b, . . .).

Problem 3.3 Pattern recognition. Consider a sequence (Xn)n⩾0 of i.i.d.
Bernoulli random variables taking values in a two-letter alphabet {a, b}, with

P(Xn = a) = p and P(Xn = b) = q = 1− p, n ⩾ 0,

with 0 < p < 1, and the discrete-time process (Zn)n⩾1 defined by

Zn := (Xn−1,Xn), n ⩾ 1.

a) Argue that (Zn)n⩾1 is a Markov chain with four possible states (or words)
{aa, ab, ba, bb}, and write down its 4× 4 transition matrix.

b) Let
τab = inf{n ⩾ 1 : Zn = (a, b)}

denote the first time of appearance of the pattern “ab” in the sequence
(X0,X1,X2, . . .). Give the value of

Gab(s) := E
[
sτab

∣∣Z1 = (a, b)
]
, −1 < s < 1.

c) Consider the probability generating functions

Gaa(s) := E
[
sτab

∣∣Z1 = (a, a)
]
, and Gba(s) := E

[
sτab

∣∣Z1 = (b, a)
]
,

" 77

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

−1 < s < 1. Using first step analysis, complete the system of equationsGaa(s) = psGaa(s) + qsGab(s),

Gba(s) = ? + ?
(3.13)

d) Compute Gaa(s) and Gba(s) by solving the system (3.13).
e) Using probability generating functions, compute the averages

E[τab | Z1 = (a, a)] and E[τab | Z1 = (b, a)].

f) Find the average time it takes until we encounter the pattern “ab” in the
sequence (X0,X1,X2, . . .) started with X0 = a.

Exercise 3.4 Consider the probabilistic automaton g defined by

g 0 1 2 3 4
a 0 2 2 1 4
b 0 0 3 4 4

This automaton has two sink states 0 and 4 , and its graph is given as follows:

0 1 2 3 4

a, b

ab

a

b b

a

a, b

a) Find the shortest word that synchronizes this automaton to state 4 after
starting from any of the states 1, 2, 3.

b) Consider the {a, b}-valued two-state Markov chain (Xn)n⩾0 with transition
probability matrix

P =

1/2 1/2

1/2 1/2


and the Markov chain on (Zk)k∈N the state space {0, 1, 2, 3, 4} started at
Z0, with

Z1 = g(X1,Z0), Z2 = g(X2,Z1), . . . , Zk = g(Xk,Zk−1), . . .

Draw the graph of the chain (Zk)k∈N and write down its transition proba-
bility matrix.

78 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

c) Find the probability that the first synchronized word is “aabb” when the
automaton is started from state 1 .

Exercise 3.5 Consider the probabilistic automaton g defined by

g 0 1 2 3 4
a 0 2 2 4 4
b 0 0 3 1 4

This automaton has two sink states 0 and 4 , and its graph is given as follows:

0 1 2 3 4

a, b

ab

a

b a

b

a,b

a) Find the unique shortest word that synchronizes this automaton to state
4 after starting from any of the states 1, 2, 3.

b) We assume that letters are generated from an {a, b}-valued two-state
Markov chain (Xn)n⩾0 with the transition probability matrix

P =

1/2 1/2

1/2 1/2

 .

Find the probability that the first synchronized word is “aba” when the
automaton is started from state 1 .

Exercise 3.6 Using Proposition 3.4 and Relation (A.9), compute the probability
distribution of T (m) on {m,m+ 1, . . .}.

" 79

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

80 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Chapter 4
Random Walks and Recurrence

This chapter reviews the recurrence and transience properties of multidimen-
sional random walks, and considers the calculation of hitting probabilities and
mean hitting times in more sophisticated examples such as reflected and con-
ditioned random walks. Those results will be applied to the study of random
walks in cookie environment, or excited random walks, in Chapter 5.

4.1 Distribution and hitting times . 81
4.2 Recurrence of symmetric random walks 92
4.3 Reflected random walk . 99
4.4 Conditioned random walk . 102
Exercises . 109

4.1 Distribution and hitting times

Let {e1, e2, . . . , ed} denote the canonical basis of Rd, i.e.

ek = (0, . . . , 0, 1,
↑
k

0, . . . , 0), k = 1, 2, . . . , d.

The unrestricted Zd-valued random walk (Sn)n⩾0, also called the Bernoulli
random walk, is defined by S0 = 0 and

Sn =
n∑
k=1

Xk = X1 + · · ·+Xn, n ⩾ 0,

started at
S0 = 0⃗ = (0, . . . , 0︸ ︷︷ ︸

d times

),

where the random walk increments

" 81

This version: March 5, 2024 https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

Xn ∈ {e1, e2, . . . , ed,−e1,−e2, . . . ,−ed}, n ⩾ 1,

form an independent and identically distributed (i.i.d.) family (Xn)n⩾1 of ran-
dom variables with distribution

P(Xn = ek) = pk, P(Xn = −ek) = qk, k = 1, 2, . . . , d,

such that
d∑

k=1
pk +

d∑
k=1

qk = 1.

One-dimensional random walk

When d = 1, the distribution of S2n is given by

P(S2n = 2k | S0 = 0) =
(

2n
n+ k

)
pn+kqn−k, −n ⩽ k ⩽ n, (4.1)

and we note that in an even number of time steps, (Sn)n⩾0 can only reach an
even state in Z starting from 0 . Similarly, in an odd number of time steps,
(Sn)n⩾0 can only reach an odd state in Z starting from 0 . In Figure 4.1 we

enumerate the 120 =

(
10
7

)
=

(
10
3

)
possible paths corresponding to n = 5

and k = 2.

Fig. 4.1: Graph of 120 =

(
10
7

)
=

(
10
3

)
paths linking (0, 0) to (10, 4).∗

82 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

Two-dimensional random walk

When d = 2 the random walk can return to state 0⃗ in 2n time steps by

• k forward steps in the direction e1,
• k backward steps in the direction −e1,
• n− k forward steps in the direction e2,
• n− k backward steps in the direction −e2,

where k ranges from 0 to 2n.

 N=1000;dx=10/sqrt(N)
 X <- 2*rbinom(100*N, 1, 0.5)-1

Y <- 2*rbinom(100*N, 1, 0.5)-1
 Z <- rbinom(100*N, 1, 0.5)

X[1]=0;Y[1]=0; X=dx*X*Z; Y=dx*Y*(1-Z);
 plot(cumsum(X),cumsum(Y),xlab="",ylab="",type ="l",ylim=c(-10,10),xlim=c(-10,10),col =

4,lwd=2)
abline(h=0);abline(v=0)

−10 −5 0 5 10

−
10

−
5

0
5

10

Fig. 4.2: Two-dimensional random walk.

For each k = 0, 1, . . . ,n the number of ways to arrange those four types of
moves among 2n time steps is the multinomial coefficient(

2n
k, k,n− k,n− k

)
=

(2n!)
k!k!(n− k)!(n− k)!

,

hence, since every sequence of 2n moves occur with the same probability
(1/4)2n, by summation over k = 0, 1, . . . ,n we find

P
(
S2n = 0⃗

∣∣ S0 = 0⃗
)
=

n∑
k=0

(2n!)
(k!)2((n− k)!)2 (p1q1)

k(p2q2)
n−k

=
(2n)!
(n!)2

n∑
k=0

(
n

k

)2
(p1q1)

k(p2q2)
n−k. (4.2)

∗ Animated figure (works in Acrobat Reader).

" 83

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

Multidimensional random walk

Given i1, i2, . . . , id ∈ N, we count all paths starting from 0⃗ and returning to
0⃗ via ik “forward” steps in the direction ek and ik “backward” steps in the
direction −ek, k = 1, 2, . . . , d.

In order to come back to 0⃗ we need to take i1 forward steps in the direction
e1 and i1 backward steps in the direction e1, and similarly for i2, . . . , id. The
number of ways to arrange such paths is given by the multinomial coefficients(

2n
i1, i1, i2, i2, . . . , id, id

)
=

(2n)!
(i1!)2 · · · (id!)2 ,

and by summation over all possible indices i1, i2, . . . , id ⩾ 0 satisfying i1 +
· · ·+ id = n and multiplying by the probability (1/(2d))2n of each path, we
find

P
(
S2n = 0⃗

)
=

∑
i1+···+id=n
i1,i2,...,id⩾0

(
2n

i1, i1, i2, i2, . . . , id, id

) d∏
k=1

(pkqk)
ik

=
∑

i1+···+id=n
i1,i2,...,id⩾0

(2n)!
(i1!)2 · · · (id!)2

d∏
k=1

(pkqk)
ik . (4.3)

 install.packages("plot3D"); library(plot3D)
N=1000;dx=10/sqrt(N); X <- matrix(0, 3, 10*N)

 X[1,]=2*rbinom(10*N, 1, 0.5)-1; X[2,]=2*rbinom(10*N, 1, 0.5)-1; X[3,]=2*rbinom(10*N, 1,
0.5)-1

U=round(runif(10*N, min=1, max=3))
 X[1,]=dx*X[1,]*(U==1); X[2,]=dx*X[2,]*(U==2);X[3,]=dx*X[3,]*(U==3)

X[1,0]=0;X[2,0]=0;X[3,0]=0;
 lines3D(cumsum(X[1,]),cumsum(X[2,]),cumsum(X[3,]), col = 4, add = FALSE, lwd=1)

84 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://en.wikipedia.org/wiki/Multinomial_theorem#Multinomial_coefficients
https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

x

y

z

Fig. 4.3: Three-dimensional random walk.

Return times

We let
T r0 := inf{n ⩾ 1 : Sn = 0)

denote the first return time to 0 of the one-dimensional random walk (Sn)n⩾0,
as illustrated in the following code.

 nsim <- 10000;N=1000000; T<-2.0; t <- 0:(N-1); dt <- 1;
for (i in 1:nsim){Z <- 2*(rbinom(N,1,0.5)-0.5);X <- c(0,1,N+1);X[1]=0;

 for (j in 2:N){X[j]=X[j-1]+Z[j]};k=2;
plot(t[1:k], X[1:k], xlab = "t", ylab = "", type = "o", xlim=c(0,10), ylim = c(-10,10),

col = "blue",main=paste(""), xaxs="i", xaxt="n",lwd=3,yaxp=c(-10,10,10));
axis(side=1, at=c(0:j), c(0:j));axis(side=1, pos=0, at=c(0:j), c(0:j))

 readline(prompt = "Pause. Press <Enter>...");
k=3;while (X[k-1]!=0 && k<12) {plot(t[1:k], X[1:k], xlab = "t", ylab = "", type = "o",

xlim=c(0,10),ylim = c(-10,10), col = "blue",main=paste(""), xaxs="i",
xaxt="n",lwd=3,yaxp=c(-10,10,10))

 if (X[k]==0) {text(7,7,paste(k-1),cex=5)} else axis(side=1, at=c(0:j), c(0:j));
axis(side=1, pos=0, at=c(0:j), c(0:j));

 readline(prompt = "Pause. Press <Enter>...");k=k+1;};}

The proof of the following proposition relies on the reflection principle.
Proposition 4.1. The probability distribution P(T r0 = n | S0 = 0) of the first
return time T r0 to 0 is given by

P
(
T r0 = 2n | S0 = 0

)
=

1
2n− 1

(
2n
n

)
(pq)n, n ⩾ 1,

with P(T r0 = 2n+ 1 | S0 = 0) = 0, n ⩾ 0.

Proof. (a) We first note that the number of paths joining S0 = 0 to S2n = 0
without hitting 0 can be split into the sets of paths joining S1 = 1 to S2n−1 =

" 85

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

1 without hitting 0 on the one hand, and the sets of paths joining S1 = −1
to S2n−1 = −1 without hitting 0 on the other hand. According to the graph
of Figure 4.4, to each blue path joining S1 = 1 to S2n−2 = 1 without hitting
0 between time 1 and time 2n− 1, we can associate a unique red path joining
S1 = −1 to S2n−2 = −1 without hitting 0 .

Original path

Reflected path

1 2n− 1

Fig. 4.4: Random walk and reflected path.

(b) On the graph of Figure 4.5, every blue path joining S1 = 1 to S2n−1 = 1
by hitting 0 is associated to a unique red path joining S1 = 1 to S2n−1 = −1,
which is the reflection of the blue path starting at the first time τ it hits 0 .
As in (4.1), the count of such paths is(

2n− 2
n− 2

)
=

(
2n− 2
n

)
.

Original path

Reflected path

1 τ 2n− 1

Fig. 4.5: Random walk and reflected path.

86 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

Knowing that, by (4.1), the total count of paths joining S0 = 1 to S2n = 1

is
(

2n− 2
n− 1

)
, we find that the number of paths joining S1 = 1 to S2n−2 = 1

without crossing 0 between time 1 and time 2n− 1 is(
2n− 2
n− 1

)
−
(

2n− 2
n− 2

)
=

(2n− 2)!
(n− 1)!(n− 1)! −

(2n− 2)!
(n− 2)!n!

=
(n2 − n(n− 1))(2n− 2)!

n!n!

=
(2n− 2)!
(n− 1)!n!

.

Adding the number of paths joining S1 = 1 to S2n−2 = 1 without crossing 0
between time 1 and time 2n− 1 to the number of paths joining S1 = −1 to
S2n−2 = −1 without crossing 0 between time 1 and time 2n− 1, we get the
total to the number of paths joining S0 = 0 to S2n = 0 without crossing 0 ,
between time 0 and time 2n, as follows:

2× (2n− 2)!
(n− 1)!n!

=
2n(2n− 2)!

n!n!
=

1
2n− 1

(
2n
n

)
.

□

Let

GT r
0

: [−1, 1] −→ R

s 7−→ GT r
0
(s)

denote the Probability Generating Function (PGF) of the random variable T r0 ,
defined by

GT r
0
(s) := E

[
sT

r
0 1{T r

0<∞}
∣∣S0 = 0

]
=
∑
n⩾0

snP
(
T r0 = n

∣∣S0 = 0
)
,

−1 ⩽ s ⩽ 1, cf. (A.3). Recall that the knowledge of GT r
0
(s) provides allows us

to recover the finite return time probability

P
(
T r0 <∞ | S0 = 0

)
= E

[
1{T r

0<∞}
∣∣S0 = 0

]
= GT r

0
(1),

and the return time expectation

E
[
T r01{T r

0<∞}
∣∣S0 = 0

]
=
∑
n⩾1

nP
(
T r0 = n

∣∣S0 = 0
)
= G′

T r
0
(1−).

" 87

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://en.wikipedia.org/wiki/Probability-generating_function
https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

The following result is a consequence of Proposition 4.1, and can be ob-
tained in Mathematica via the command Sum[Bin[2*n,n]*(p*q*s2)n/(2*n-
1),{n,1,Infinity}].
Proposition 4.2. The probability generating function GT r

0
of the first return

time T r0 to 0 is given by

GT r
0
(s) = 1−

√
1− 4pqs2, 4pqs2 < 1. (4.4)

Proof. By Proposition 4.1, the probability distribution P
(
T r0 = n | S0 = 0

)
of

the first return time T r0 to 0 is given by

P(T r0 = 2k | S0 = 0) = 1
2k− 1

(
2k
k

)
(pq)k, k ⩾ 1,

with P
(
T r0 = 2k+ 1 | S0 = 0

)
= 0, k ∈N. By applying a Taylor expansion to

s 7−→ 1− (1− 4pqs2)1/2 in (4.4), we get

GT r
0
(s) =

∑
n⩾0

snP(T r0 = n | S0 = 0)

=
∑
k⩾1

s2kP(T r0 = 2k | S0 = 0)

=
∑
k⩾1

s2k

2k− 1

(
2k
k

)
(pq)k

=
∑
k⩾1

s2k

k!
1

2k− 1
1× 2× · · · × (2k− 1)× (2k)

1× 2× · · · × (k− 1)× k (pq)k

=
∑
k⩾1

s2k

k!
1

2k− 11× 3× 5× · · · × (2k− 3)× (2k− 1)(2pq)k

=
1
2
∑
k⩾1

s2k (4pq)k
k!

(
1− 1

2

)
× · · · ×

(
k− 1− 1

2

)

= 1−
∑
k⩾0

1
k!
(−4pqs2)k

(
1
2 − 0

)(
1
2 − 1

)
× · · · ×

(
1
2 − (k− 1)

)
= 1− (1− 4pqs2)1/2,

where we used the Taylor expansion

(1 + x)α =
∑
k⩾0

xk

k!
α(α− 1)× · · · × (α− (k− 1))

88 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://www.wolframalpha.com/input/?i=Sum[Bin[2*n,n]*(p*q*s^2)^n/(2*n-1),{n,1,Infinity}]
https://www.wolframalpha.com/input/?i=Sum[Bin[2*n,n]*(p*q*s^2)^n/(2*n-1),{n,1,Infinity}]
https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

for α = 1/2. □

The distribution

P(T r0 = 2k | S0 = 0) = (4pq)k
k!

1
2

(
1− 1

2

)
× · · · ×

(
k− 1− 1

2

)
=

(4pq)k
2k!

k−1∏
m=1

(
m− 1

2

)
=

1
2k− 1

(
2k
k

)
(pq)k, k ⩾ 1,

can be recovered from the relation

P(T r0 = n | S0 = 0) = 1
n!

∂n

∂sn
GT r

0
(s)|s=0, n ⩾ 0.

Proposition 4.3. The probability that the first return to 0 occurs within a
finite time is

P
(
T r0 <∞ | S0 = 0

)
= 2 min(p, q), (4.5)

and we have
P
(
T r0 =∞ | S0 = 0

)
= |2p− 1| = |p− q|. (4.6)

Proof. We have

P
(
T r0 <∞ | S0 = 0

)
= E

[
1{T r

0<∞}
∣∣S0 = 0

]
= E

[
1T r

0 1{T r
0<∞}

∣∣S0 = 0
]

= GT r
0
(1) = 1−

√
1− 4pq

= 1− |2p− 1| = 1− |p− q| =

2q, p ⩾ 1/2,

2p, p ⩽ 1/2,
= 2 min(p, q),

hence

P
(
T r0 =∞ | S0 = 0

)
= 1−P

(
T r0 <∞ | S0 = 0

)
= |2p− 1| = |p− q|.

which can be obtained in Mathematica via the command

Sum[Bin[2*n,n]*(p*q)n/(2*n-1),{n,1,Infinity}].

or using the following Python code:

" 89

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://www.wolframalpha.com/input/?i=Sum[Bin[2*n,n]*(p*q)^n/(2*n-1),{n,1,Infinity}]
https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

 from sympy import *
import sympy as sp

 k = sp.Symbol("k");p = sp.Symbol("p"); q = sp.Symbol("q")
prob=summation(p**k*q**k*factorial(2*k)/factorial(k)**2/(2*k-1), (k, 1, oo))

 simplify(prob.args[0][0])

□

We make the following comments.
i) In the non-symmetric case p ̸= q, Relation (4.5) shows that

P
(
T r0 <∞ | S0 = 0

)
< 1 and P

(
T r0 =∞ | S0 = 0

)
> 0.

In addition, by (4.6), the time T r0 needed to return to state 0 is infinite
with probability

P
(
T r0 =∞ | S0 = 0

)
= |p− q| > 0,

hence
E[T r0 | S0 = 0] =∞. (4.7)

i.e. the symmetric random walk is null recurrent according to Defini-
tion 1.19.
Starting from S0 = k ⩾ 1, the mean hitting time of state 0 equals

E[T r0 | S0 = k] =


∞ if q ⩽ p,

k

q− p
if q > p,

(4.8)

see Exercise 3.2 in Privault (2018).
ii) In the symmetric case p = q = 1/2 (or fair game) p = q = 1/2 we find

that

P
(
T r0 <∞ | S0 = 0

)
= 1 and P

(
T r0 =∞ | S0 = 0

)
= 0,

i.e. the symmetric random walk is recurrent, as it returns to 0 with
probability one and has a single communicating class, see Corollary 1.13.
In addition, we have P

(
T r0 <∞ | S0 = 0

)
= 1 and

E[T r0 | S0 = 0] = E
[
T r01{T r

0<∞}
∣∣S0 = 0

]
= G′

T r
0
(1−) =∞, (4.9)

i.e. the symmetric random walk is null recurrent according to Defini-
tion 1.19.

This yields an example of a random variable T r0 which is almost surely finite,
while its expectation is infinite as in the St. Petersburg paradox which is illus-
trated in the following code.

90 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://en.wikipedia.org/wiki/St._Petersburg_paradox
https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

 nsim <- 10000; N=1000000; T<-2.0; t <- 0:(N-1); dt <- 1; mean=0.0;
for (i in 1:nsim){signal=0;colour="blue";

 Z <- 2*(rbinom(N,1,0.5)-0.5);X <- c(1,N+1);X[1]=0;j=1;
while (j<N && signal==0){j=j+1;X[j]=X[j-1]+Z[j];if (X[j]==0) {signal=1;mean=mean+j-1}}

 plot(t[1:j], X[1:j], xlab = "t", ylab = "", type = "p", ylim =
c(min(X[1:j])-max(X[1:j]),-min(X[1:j])+max(X[1:j])), col =
colour,main=paste("Time=",j-1,", Mean=",mean,"/",i,"=",round(mean/i, digits=1)),
xaxs="i", xaxt="n",lwd=3)

lines(t[1:j], X[1:j], type = "l",col="blue",lwd=2)
 axis(side=1, at=c(0:j), c(0:j));axis(side=1, pos=0, at=c(0:j), c(0:j))

text((j-1)/2,0.5,paste(j-1),cex=5);
 readline(prompt = "Pause. Press <Enter>...")}

This shows how even a fair game can be risky when the player’s initial wealth
is negative, as it will take on average an infinite time to recover the losses.
From Proposition 4.1, we can also compute a conditional mean return time to
0 as

E
[
T r01{T r

0<∞}
∣∣S0 = 0

]
=
∑
n⩾1

nP
(
T r0 = n

∣∣S0 = 0
)

= 2
∑
k⩾1

kP
(
T r0 = 2k

∣∣S0 = 0
)

= 2
∑
k⩾1

k

2k− 1

(
2k
k

)
(pq)k

=
4pq
|p− q|

,

which can be computed by the following Python code:

 from sympy import *
import sympy as sp

 n = sp.Symbol("n");p = sp.Symbol("p"); q = sp.Symbol("q")
expectation=summation(2*n*p**n*q**n*factorial(2*n)/factorial(n)**2/(2*n-1), (n, 1,

oo))
 expectation.args[1].args[0][0]

When p = q = 1/2, we find

E
[
T r01{T r

0<∞}
∣∣S0 = 0

]
=
∑
k⩾1

2k
2k− 1

(
2k
k

)
1

22k . (4.10)

Remark 4.4. By Stirling’s approximation k! ≃ (k/e)k
√

2πk as k tends to
infinity, we have

2k
2k− 1

1
22k

(
2k
k

)
=

2k
2k− 1

(2k)!
22k(k!)2 ≃k→∞

1√
πk

,

from which (4.10) recovers (4.9) by the limit comparison test.

The probability of hitting state 0 in finite time starting from any state k
with k ⩾ 1 is given by

" 91

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://en.wikipedia.org/wiki/Stirling%27s_approximation
https://en.wikipedia.org/wiki/Limit_comparison_test
https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

P
(
T r0 <∞ | S0 = k

)
= min

(
1,
(
q

p

)k)
, k ⩾ 1, (4.11)

i.e.

P
(
T r0 =∞ | S0 = k

)
= Max

(
0, 1−

(
q

p

)k)
, k ⩾ 1.

Using the independence of increments of the random walk (Sn)n⩾0, one can
also show that the probability generating function of the first passage time

Tk = inf{n ⩾ 0 : Sn = k}

to any level k ⩾ 1 is given by

GTk
(s) =

(
1−

√
1− 4pqs2

2qs

)k
, 4pqs2 < 1, q ⩽ p, (4.12)

from which the distribution of Tk can be computed given the series expansion
of GTk

(s).

4.2 Recurrence of symmetric random walks

The question of recurrence of the d-dimensional symmetric random walk has
been first solved in Pólya (1921). The treatment proposed in this section is
based on Champion et al. (2007). We consider the symmetric Zd-valued ran-
dom walk

Sn = X1 + · · ·+Xn, n ⩾ 0,

started at S0 = 0⃗ = (0, 0, . . . , 0), where (Xn)n⩾1 is a sequence of independent
uniformly distributed random variables

Xn ∈ {e1, e2, . . . , ed,−e1,−e2, . . . ,−ed}, n ⩾ 1,

with distribution

P(Xn = ek) = P(Xn = −ek) =
1
2d , k = 1, 2, . . . , d.

Let
T r0⃗ := inf{n ⩾ 1 : Sn = 0⃗}

denote the time of first return∗ to 0⃗ = (0, 0, . . . , 0) of the random walk (Sn)n⩾0
started at 0⃗, with the convention inf ∅ = +∞, see Figure 4.6.
∗ Recall that the notation “inf” stands for “infimum”, meaning here the smallest n ⩾ 0
such that Sn = 0, with T r

0 = +∞ if no such n ⩾ 0 exists.

92 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

Definition 4.5. The random walk (Sn)n⩾0 is said to be recurrent if P
(
T r0⃗ <

∞
)
= 1.

n

Sn

S0 =

T r
0

0

1

2

3

4

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Fig. 4.6: Sample path of the random walk (Sn)n⩾0.

Recurrence of the one-dimensional random walk

When d = 1 we can now compute P(S2n = 0), n ⩾ 1, and deduce that the one-
dimensional random walk is recurrent, i.e. we have P

(
T r0 < ∞

)
= 1. For this,

we will use Stirling’s approximation n! ≃ (n/e)n
√

2πn as n tends to infinity.
When d = 1, we have

[P 2n]0,0 = P(S2n = 0) = 1
22n

(
2n
n

)
=

(2n)!
22n(n!)2 ≃n→∞

1√
πn

,

by Stirling’s approximation, hence∑
n⩾0

[P 2n]0,0 =∞.

and by Corollary 1.12 or Corollary 4.12 below, we conclude that P
(
T r0 <∞

)
=

1, i.e. we recover the fact that the one-dimensional symmetric random walk is
recurrent.

Recurrence of the two-dimensional random walk

Proposition 4.6. When d = 2 and p1 = q1 = p2 = q2 = 1/4, the two-
dimensional symmetric random walk is recurrent, i.e. we have P

(
T r0⃗ <∞

)
= 1.

Proof. Recall that when d = 2, by (4.2) we have

[P 2n]⃗0,⃗0 = P
(
S2n = 0⃗

)
=

(
1
4

)2n n∑
k=0

(2n!)
(k!)2((n− k)!)2

" 93

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://en.wikipedia.org/wiki/Stirling%27s_approximation
https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

=
(2n)!

42n(n!)2

n∑
k=0

(
n

k

)2

=
(2n)!

42n(n!)2

(
2n
n

)
=

((2n)!)2

42n(n!)4 ≃n→∞
1
πn

,

where we applied Stirling’s approximation n! ≃ (n/e)n
√

2πn as n tends to
infinity, and the combinatorial identity∗

(
2n
n

)
=

n∑
k=0

(
n

k

)2
, n ⩾ 0.

This yields ∑
n⩾0

[P 2n]⃗0,⃗0 =∞,

and we conclude by Corollary 1.12 which shows that P
(
T r0⃗ <∞

)
= 1, see also

Corollary 4.12 below. □

Recurrence of d-dimensional random walks, d ⩾ 3

We will use the following result, see Lemma 4 in Champion et al. (2007).
Lemma 4.7. Let n = and+ bn where an is a nonnegative integer and bn ∈
{0, 1, . . . , d− 1}. We have

i1!i2! · · · id! ⩾ (an!)d(an + 1)bn

for all i1, i2, . . . , id nonnegative integers such that i1 + · · ·+ id = n, d ⩾ 1.
Proposition 4.8. When d ⩾ 3, the symmetric random walk (Sn)n⩾0 is
not recurrent, i.e. we have P

(
T r0⃗ <∞

)
< 1.

Proof. By (4.3), we have

[P 2n]⃗0,⃗0 = P
(
S2n = 0⃗

)
=

1
(2d)2n

∑
i1+···+id=n
i1,i2,...,id⩾0

(2n)!
(i1!)2 · · · (id!)2 .

Using the bound
∗ This identity can be proved by noting that the number (2n

n) of ways to draw n balls
among 2n balls can be obtained by summing the number of ways to draw exactly k white
balls among n and n − k black balls among n for k = 0, 1, . . . , n.

94 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://en.wikipedia.org/wiki/Stirling%27s_approximation
https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

i1!i2! · · · id! ⩾ (an!)d(an + 1)bn

for n = i1 + · · ·+ id from Lemma 4.7 and the Euclidean division n = and+ bn
where bn ∈ {0, 1, . . . , d− 1}, we have

∑
n⩾1

[P 2n]⃗0,⃗0 =
∑
n⩾1

1
(2d)2n

(
2n
n

) ∑
i1+···+id=n
i1,i2,...,id⩾0

(n!)2

(i1!)2 · · · (id!)2

⩽
∑
n⩾1

1
(2d)2n

(
2n
n

)
n!

(an!)d(an + 1)bn

∑
i1+···+id=n
i1,i2,...,id⩾0

n!
i1! · · · id!

⩽
∑
n⩾1

1
(2d)2n

(
2n
n

)
n!dn

(an!)dabn
n

=
∑
n⩾1

(2n)!
22ndnn!(an!)dabn

n

,

from the formula
dn =

∑
i1+···+id=n
i1,i2,...,id⩾0

n!
i1! · · · id!

which follows from the multinomial identity(
n∑
l=1

xl

)k
= k!

∑
d1+···+dn=k
d1⩾0,...,dn⩾0

xd1
1
d1!
· · · x

dn
n

dn!
. (4.13)

Next, applying Stirling’s approximation to n!, (2n)! and an!, and using the
limit limm→∞(1 + x/m)m = ex, x ∈ R, we have

(2n)!
22ndnn!(an!)dabn

n

≃ (2n/e)2n√4πn
22ndn(n/e)n

√
2πn((an/e)an

√
2πan)dabn

n

=

√
2

(2π)d/2
nnd−n

ebnanna
d/2
n

=

√
2

(2π)d/2
(1− bn/n)−n

ebnad/2
n

⩽

√
2dd/2

(2π)d/2
(1− (d− 1)/n)−n

(and)d/2

≃
√

2dd/2ed−1

(2π)d/2
1

nd/2 ,

since and ≃ n as n goes to infinity from the relation and/n = 1− bn/n. We
conclude that there exists a constant C > 0 such that for all n sufficiently large,

" 95

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://en.wikipedia.org/wiki/Euclidean_division
https://en.wikipedia.org/wiki/Stirling%27s_approximation
https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

we have
(2n)!

22ndnn!(an!)d
⩽

C

nd/2 , (4.14)

hence the random walk is not recurrent when d ⩾ 3. Indeed, (4.14) shows that∑
n⩾0

P
(
Sn = 0⃗

)
<∞,

hence P
(
T r0⃗ =∞

)
> 0 by Corollary 1.12 or see also Corollary 4.12 below. □

Recurrence revisited

In Corollary 4.12 below we provide an alternative proof of Corollary 1.12.
Proposition 4.9. The probability distribution P

(
T r0⃗ = n

)
, n ⩾ 1, satisfies the

convolution equation

P
(
Sn = 0⃗

)
=

n∑
k=2

P
(
T r0⃗ = k

)
P
(
Sn−k = 0⃗

)
, n ⩾ 1.

Proof. We partition the event {Sn = 0⃗} into

{Sn = 0⃗} =
n⋃
k=2

{
Sn−k = 0⃗, Sn−k+1 ̸= 0⃗, . . . ,Sn−1 ̸= 0⃗, Sn = 0⃗

}
, n ⩾ 1,

according to the time of last return to state 0⃗ before time n, with P
(
{S1 =

0⃗}
)
= 0 since we are starting from S0 = 0⃗, see Figure 4.7.

n

Sn

S0 =
n =k =

0

1

2

3

4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 4.7: Last return to state 0 at time k = 10.

Then we have

P
(
Sn = 0⃗

)
:= P

(
Sn = 0⃗ | S0 = 0⃗

)
=

n∑
k=2

P
(
Sn−k = 0⃗, Sn−k+1 ̸= 0⃗, . . . ,Sn−1 ̸= 0⃗, Sn = 0⃗ | S0 = 0⃗

)
96 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

=
n∑
k=2

P
(
Sn−k+1 ̸= 0⃗, . . . ,Sn−1 ̸= 0⃗, Sn = 0⃗ | Sn−k = 0⃗, S0 = 0⃗

)
×P
(
Sn−k = 0⃗ | S0 = 0⃗

)
=

n∑
k=2

P
(
S1 ̸= 0⃗, . . . ,Sk−1 ̸= 0⃗, Sk = 0⃗ | S0 = 0⃗

)
P
(
Sn−k = 0⃗ | S0 = 0⃗

)
=

n∑
k=2

P
(
T r0⃗ = k | S0 = 0⃗

)
P
(
Sn−k = 0⃗ | S0 = 0⃗

)
=

n∑
k=2

P
(
Sn−k = 0⃗

)
P
(
T r0⃗ = k

)
, n ⩾ 1.

□

Lemma 4.10. For all m ⩾ 1 we have

1− 1
m∑
n=0

P
(
Sn = 0⃗

) ⩽
m∑
n=2

P
(
T r0⃗ = n

)
⩽

2m∑
n=2

P
(
Sn = 0⃗

)
m∑
n=0

P
(
Sn = 0⃗

) . (4.15)

Proof. We start by showing that

m∑
n=1

P
(
Sn = 0⃗

)
=

m∑
k=2

P
(
T r0⃗ = k

)m−k∑
l=0

P
(
Sl = 0⃗

)
.

We have
m∑
n=1

P
(
Sn = 0⃗

)
=

m∑
n=1

n∑
k=2

P
(
T r0⃗ = k

)
P
(
Sn−k = 0⃗

)
=

m∑
k=2

m∑
n=k

P
(
T r0⃗ = k

)
P
(
Sn−k = 0⃗

)
=

m∑
k=2

P
(
T r0⃗ = k

)m−k∑
l=0

P
(
Sl = 0⃗

)
⩽

m∑
k=2

P
(
T r0⃗ = k

) m∑
l=0

P
(
Sl = 0⃗

)
=

(
m∑
n=0

P
(
Sn = 0⃗

))(m∑
n=2

P
(
T r0⃗ = n

))
.

" 97

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

On the other hand, we have

2m∑
n=1

P
(
Sn = 0⃗

)
=

2m∑
n=2

P
(
T r0⃗ = n

) 2m−n∑
l=0

P
(
Sl = 0⃗

)
⩾

m∑
n=2

P
(
T r0⃗ = n

) 2m−n∑
l=0

P
(
Sl = 0⃗

)
⩾

m∑
n=2

P
(
T r0⃗ = n

) m∑
l=0

P
(
Sl = 0⃗

)
.

□

By letting m tend to ∞ in (4.15) we get the following corollary.

Corollary 4.11. We have

P
(
T r0⃗ <∞

)
= 1− 1∑

n⩾0
P
(
Sn = 0⃗

) = 1− 1
1 + E[R0⃗ | S0 = 0⃗]

.

Proof. By Lemma 4.10, letting m tend to infinity in (4.15), we have

1− 1∑
n⩾0

P
(
Sn = 0⃗

) ⩽∑
n⩾2

P
(
T r0⃗ = n

)
= P

(
T r0⃗ <∞

)
⩽

∑
n⩾2

P
(
Sn = 0⃗

)
∑
n⩾0

P
(
Sn = 0⃗

)
= 1− 1∑

n⩾0
P
(
Sn = 0⃗

) .

□

The following result is a consequence of Corollary 4.11. Note that the sum of
the series

∑
n⩾0

P
(
Sn = 0⃗

)
=
∑
n⩾0

E
[
1{Sn=0⃗}

]
= E

∑
n⩾0

1{Sn=0⃗}



98 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

represents the average number of visits to state 0 , see also Corollary 1.12. We
also have ∑

n⩾0
P
(
Sn = 0⃗

)
=
∑
n⩾0

[Pn]0,0 = (I − P)−1
0,0.

Corollary 4.12. The d-dimensional symmetric random walk is recurrent, i.e.
P
(
T r0⃗ <∞

)
= 1, if and only if∑

n⩾0
P
(
Sn = 0⃗

)
=∞.

4.3 Reflected random walk

We now consider a reflected random walk (Sn)n⩾0 with transition probabilitiesP(Sn+1 = k+ 1 | Sn = k) = p, k = 0, 1, . . . ,L− 1,

P(Sn+1 = k− 1 | Sn = k) = q, k = 1, 2, . . . ,L− 1,

with

P(Sn+1 = 0 | Sn = 0) = q and P(Sn+1 = L | Sn = L) = 1,

for all n ∈N = {0, 1, 2, . . .}, where q = 1− p and p ∈ (0, 1].

Proposition 4.13. If p ∈ (0, 1], state L is eventually reached in finite time
with probability one after starting from any state k ∈ {0, 1, . . . ,L}.

Proof. Let

g(k) := P(TL <∞ | S0 = k)

denote the probability that state L is reached in finite time after starting
from state k ∈ {0, 1, . . . ,L}. Using first step analysis we can write down the
difference equations satisfied by g(k), k = 0, 1, . . . ,L− 1, as

g(k) = pg(k+ 1) + qg(k− 1), k = 1, 2, . . . ,L− 1,

g(0) = pg(1) + qg(0),

(4.16a)

(4.16b)

with the boundary condition g(L) = 1. In order to solve for the solution g(k) :=
P(TL < ∞ | S0 = k) of (4.16a)-(4.16b), k = 0, 1, . . . ,L, we observe that the
constant function g(k) = C is solution of both (4.16a) and (4.16b) and the

" 99

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

boundary condition g(L) = 1 yields C = 1, hence

g(k) = P(TL <∞ | S0 = k) = 1

for all k = 0, 1, . . . ,L. □

Let
h(k) := E[TL | S0 = k]

denote the expected time until state L is reached after starting from state
k ∈ {0, 1, . . . ,L}.

Proposition 4.14. We have

h(k) = E[TL | S0 = k] =
L− k
p− q

+
q

(p− q)2

((
q

p

)L
−
(
q

p

)k)
,

k = 0, 1, . . . ,L, when p ̸= q, and

h(k) = E[TL | S0 = k] = (L+ k+ 1)(L− k), k = 0, 1, . . . ,L,

when p = q = 1/2.

Proof. Using first step analysis we can write down the difference equations
satisfied by h(k) for k = 0, 1, . . . ,L− 1, as

h(k) = 1 + ph(k+ 1) + qh(k− 1), k = 1, 2, . . . ,L− 1,

h(0) = 1 + ph(1) + qh(0),

(4.17a)

(4.17b)

with the boundary condition h(L) = 0. We compute h(k) = E[TL | S0 = k] for
all k = 0, 1, . . . ,L by solving the equations (4.17a)-(4.17b) for k = 1, 2, . . . ,L−
1.

(i) Case p ̸= q. The solution of the associated homogeneous equation

h(k) = ph(k+ 1) + qh(k− 1), k = 1, 2, . . . ,L− 1, (4.18)

has the form

h(k) = C1 +C2(q/p)k, k = 1, 2, . . . ,L− 1.

In addition, we can check that k 7→ k/(p− q) is a particular solution of (4.17a).
Hence the general solution of (4.17a) is written as the sum

h(k) =
k

q− p
+C1 +C2(q/p)k, k = 0, 1, . . . ,L,

100 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

which can be obtained in Mathematica via the command
RSolve[f[k]=1+pf[k+1]+(1-p)f[k-1],f[k],k],

with 
0 = h(L) =

L

q− p
+C1 +C2(q/p)L,

ph(0) = p(C1 +C2) = 1 + ph(1) = 1 + p

(
1

q− p
+C1 +C2

q

p

)
,

which yields 
C1 = q

(q/p)L

(p− q)2 −
L

q− p
,

C2 = − q

(p− q)2 ,

and

h(k) = E[TL | S0 = k] =
L− k
p− q

+
q

(p− q)2 ((q/p)L − (q/p)k),

k = 0, 1, . . . ,L.
(ii) Case p = q = 1/2. The solution of the associated homogeneous equation
(4.18) is given by

h(k) = C1 +C2k, k = 1, 2, . . . ,L− 1,

and the general solution to (4.17a) has the form

h(k) = −k2 +C1 +C2k, k = 1, 2, . . . ,L,

which can be obtained in Mathematica via the command
RSolve[g[k]=1+(1/2)g[k+1]+(1/2)g[k-1],g[k],k],

with 
0 = h(L) = −L2 +C1 +C2L,

h(0)
2 =

C1
2 = 1 + h(1)

2 = 1 + −1 +C1 +C2
2 ,

hence C1 = L(L+ 1),

C2 = −1,
which yields

h(k) = E[TL | S0 = k] = (L+ k+ 1)(L− k), k = 0, 1, . . . ,L.

" 101

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://www.wolframalpha.com/input/?i=RSolve%5B%7Bf%5Bk%5D+%3D%3D1%2Bp*f%5Bk%2B1%5D%2B(1-p)*f%5Bk-1%5D%7D,+f%5Bk%5D,+k%5D
https://www.wolframalpha.com/input/?i=RSolve%5B%7Bg%5Bk%5D%3D1%2B%281%2F2%29g%5Bk%2B1%5D%2B%281%2F2%29g%5Bk-1%5D%7D%2Cg%5Bk%5D%2Ck%5D
https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

□

As a consequence of Proposition 5.2 below, the reflected random walk is recur-
rent when p ⩽ 1/2, and transient when p > 1/2.

Letting ε = 1− q/p, i.e. q/p = 1 + ε, we check that, as ε tends to zero,

L− k
p− q

+
q

(p− q)2 ((q/p)L − (q/p)k)

= −L− k
εp
− (1 + ε)k+1 1

pε2 (1− (1 + ε)L−k)

= −L− k
εp
− (1 + (k+ 1)ε) 1

pε2 (−(L− k)ε− (L− k)(L− k− 1)ε2/2)

=
1
p
((L− k)(L− k− 1)/2) + (k+ 1)1

p
(L− k)

≃ (L− k)(L− k− 1) + 2(k+ 1)(L− k)
= (L− k)(L+ k+ 1).

4.4 Conditioned random walk

Conditional hitting probabilities

Consider the one-dimensional random walk (Sn)n⩾0, let

TL := inf{n ⩾ 0 : Sn = L}

denote the first hitting time of L by the process (Sn)n⩾0, and let

T0 := inf{n ⩾ 0 : Sn = 0}

denote the first hitting time of 0 by the process (Sn)n⩾0.

n

Sn

L =

S0 =

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Fig. 4.8: Sample path of the random walk (Sn)n⩾0.

102 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

Lemma 4.15. The probability of an upward step from state k given that state
L is reached first, is given by

P(S1 = k+ 1 | S0 = k and TL < T0) = p+
p− q

(p/q)k − 1 ,

when p ̸= q, and by

P(S1 = k+ 1 | S0 = k and TL < T0) =
1
2 +

1
2k ,

when p = q = 1/2, k = 1, 2, . . . ,L− 1.

Proof. We note the equality

P(TL < T0 | S1 = k+ 1 and S0 = k) = P(TL < T0 | S1 = k+ 1)
= P(TL < T0 | S0 = k+ 1). (4.19)

for k ∈ {0, 1, . . . ,L− 1}. Indeed, given that we start from state
�� ��k+ 1 at time

1, whether TL < T0 or TL > T0 does not depend on the past of the process
before time 1. In addition, it does not matter whether we start from state�� ��k+ 1 at time 1 or at time 0. Hence, we have

P(S1 = k+ 1 | S0 = k and TL < T0) =
P(S1 = k+ 1, S0 = k, TL < T0)

P(S0 = k and TL < T0)

=
P(TL < T0 | S1 = k+ 1 and S0 = k)P(S1 = k+ 1 and S0 = k)

P(TL < T0 and S0 = k)

= p
P(TL < T0 | S1 = k+ 1 and S0 = k)

P(TL < T0 | S0 = k)

= p
P(TL < T0 | S0 = k+ 1)

P(TL < T0 | S0 = k)

= p
pk+1
pk

, k = 0, 1, 2, . . . ,L− 1, (4.20)

where
pk := P(TL < T0 | S0 = k), k = 0, 1, . . . ,L.

We conclude by the relations

pk := P(TL < T0 | S0 = k) =
1− (q/p)k

1− (q/p)L
, k = 0, 1, . . . ,L, (4.21)

when p ̸= q, see Proposition 1.24, and by

pk =
k

L
, k = 0, 1, . . . ,L, (4.22)

" 103

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

when p = q = 1/2, see Relation (1.44). □

By exchanging states 0 and L we also obtain the following result.

Lemma 4.16. The probability of a downward step from state k given that
state 0 is reached first is given by

P(S1 = k− 1 | S0 = k and T0 < TL) = q+
q− p

(q/p)L−k − 1 ,

when p ̸= q, and by

P(S1 = k− 1 | S0 = k and T0 < TL) =
1
2 +

1
2(L− k) ,

when p = q = 1/2, k = 1, 2, . . . ,L− 1.
Proof. We compute the probability

P(S1 = k− 1 | S0 = k and T0 < TL), k = 1, 2, . . . ,L,

of a downward step given that state 0 is reached first. We have

P(S1 = k− 1 | S0 = k and T0 < TL)

=
P(S1 = k− 1, S0 = k and T0 < TL)

P(S0 = k and T0 < TL)

=
P(T0 < TL | S1 = k− 1 and S0 = k)P(S1 = k− 1 and S0 = k)

P(T0 < TL and S0 = k)

= q
P(T0 < TL | S0 = k− 1)

P(T0 < TL | S0 = k)

= q
1− pk−1
1− pk

, k = 1, 2, . . . ,L− 1,

and we conclude using (4.21) and (4.22), see Proposition 1.24 and (1.44). □

Similarly, we can compute the probability of a downward step from state k

given that state L is reached first as

P(S1 = k− 1 | S0 = k and TL < T0) = 1−P(S1 = k+ 1 | S0 = k and TL < T0)

= q+
q− p

(p/q)k − 1 ,

when p ̸= q, and as

P(S1 = k− 1 | S0 = k and TL < T0) = 1−P(S1 = k+ 1 | S0 = k and TL < T0)

=
1
2 −

1
2k ,

104 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

when p = q = 1/2, k = 1, 2, . . . ,L− 1.

Conditional mean hitting times

Let now
TL := inf{n ⩾ 0 : Sn = L}

denote the first hitting time of state L , with TL = +∞ in case state L is
never reached, see Figure 4.9.

n

Sn

L =

S0 =

T0,6T0,6

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Fig. 4.9: Sample paths of the random walk (Sn)n⩾0.

Let
h(k) = E[TL | S0 = k, TL < T0], k = 1, 2, . . . ,L,

denote the expected value of TL given that state 0 is never reached. The next
result will be used for the proof of Proposition 5.10 on cookie-excited random
walks.
Proposition 4.17. When p ̸= q, we have

h(k) = E[TL | S0 = k, TL < T0]

=
(1− (q/p)k)L(1 + (q/p)L)− k(1 + (q/p)k)(1− (q/p)L)

(p− q)(1− (q/p)L)(1− (q/p)k)

=
L(1 + (q/p)L)

(p− q)(1− (q/p)L)
− k(1 + (q/p)k)

(p− q)(1− (q/p)k)
,

whereas when p = q = 1/2 we find

h(k) = E[TL | S0 = k, TL < T0] =
L2 − k2

3 , k = 1, 2, . . . ,L.

Proof. Using the transition probabilities (4.20) we state the finite difference
equations satisfied by h(k), k = 1, 2, . . . ,L− 1, as

h(k) = 1 + h(k+ 1)P(S1 = k+ 1 | S0 = k and TL < T0)

" 105

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

+h(k− 1)P(S1 = k− 1 | S0 = k and TL < T0)

= 1 + p
pk+1
pk

h(k+ 1) +
(

1− ppk+1
pk

)
h(k− 1), (4.23)

k = 1, 2, . . . ,L− 1, or, due to the first step equation pk = ppk+1 + qpk−1,

pkh(k) = pk + ppk+1h(k+ 1) + qpk−1h(k− 1), k = 1, 2, . . . ,L− 1,

with the boundary condition h(L) = 0. Letting g(k) := pkh(k), we check that
g(k) satisfies

g(k) = pk + pg(k+ 1) + qg(k− 1), k = 1, 2, . . . ,L− 1, (4.24)

with the boundary conditions g(0) = 0 and g(L) = 0.

(i) When p = q = 1/2 we have pk = k/L by (4.22), hence (4.23) becomes

h(k) = 1 + k+ 1
2k h(k+ 1) + k− 1

2k h(k− 1),

k = 1, 2, . . . ,L− 1, and (4.24) can be written as

g(k) =
k

L
+

1
2g(k+ 1) + 1

2g(k− 1), k = 1, 2, . . . ,L− 1, (4.25)

with the boundary conditions g(0) = 0 and g(L) = 0. We check that g(k) =
Ck3 is a particular solution of (4.25) when C = −1/(3L), hence the general
solution of (4.25) takes the form

g(k) = − k
3

3L +C1 +C2k,

where C1 and C2 are determined by the boundary conditions

0 = g(0) = C1

and
0 = g(L) = −1

3L
2 +C1 +C2L,

i.e. C1 = 0 and C2 = L/3. Consequently, we have

g(k) =
k

3L (L
2 − k2), k = 0, 1, . . . ,L,

hence we have

h(k) = E[TL | S0 = k, TL < T0] =
L2 − k2

3 , k = 1, 2, . . . ,L,

106 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

which can be obtained in Mathematica via the command

RSolve[g[k]=k/L+(1/2)g[k+1]+(1/2)g[k-1],g[k],k].

(ii) When p ̸= q, by (4.21) we have

pk =
1− (q/p)k

1− (q/p)L
, k = 0, 1, . . . ,L,

hence (4.23) can be rewritten as

h(k) = 1 + p
1− (q/p)k+1

1− (q/p)k
h(k+ 1) + q

1− (q/p)k−1

1− (q/p)k
h(k− 1),

and (4.24) can be rewritten as

g(k) =
1− (q/p)k

1− (q/p)L
+ pg(k+ 1) + qg(k− 1), (4.26)

k = 1, 2, . . . ,L− 1, with

g(k) = (1− (q/p)k)h(k).

We check that

g(k) := − (p− q)k(1 + (q/p)k) + p− q(q/p)k

(p− q)2(1− (q/p)L)
,

k = 0, 1, . . . ,L, is a particular solution of (4.26), hence the general solution of
(4.26) takes the form

g(k) = − (p− q)k(1 + (q/p)k) + p− q(q/p)k

(p− q)2(1− (q/p)L)
+C1 +C2(q/p)k,

k = 0, 1, . . . ,L, under the boundary conditions

g(0) = 0 = − 1
p− q

+C1 +C2

and

g(L) = 0

= − (p− q)L(1 + (q/p)L) + p− q(q/p)L

(p− q)2(1− (q/p)L)
+C1 +C2(q/p)L

= − (p− q)L(1 + (q/p)L) + p− q(q/p)L

(p− q)2(1− (q/p)L)
+

1
p− q

−C2(1− (q/p)L)

" 107

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://www.wolframalpha.com/input/?i=RSolve%5B%7Bg%5Bk%5D+%3D%3Dk%2FL%2B%281%2F2%29*g%5Bk%2B1%5D%2B%281%2F2%29*g%5Bk-1%5D%7D%2C+g%5Bk%5D%2C+k%5D
https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

= − (p− q)L(1 + (q/p)L) + q− q(q/p)L

(p− q)2(1− (q/p)L)
−C2(1− (q/p)L),

or
C1 =

(p− q)L(1 + (q/p)L) + (1− (q/p)L)p
(p− q)2(1− (q/p)L)2 ,

and
C2 = − (p− q)L(1 + (q/p)L) + q(1− (q/p)L)

(p− q)2(1− (q/p)L)2 ,

hence

g(k) = − (p− q)k(1 + (q/p)k) + p− q(q/p)k

(p− q)2(1− (q/p)L)

+
(p− q)L(1 + (q/p)L) + (1− (q/p)L)p

(p− q)2(1− (q/p)L)2

−(q/p)k
(p− q)L(1 + (q/p)L) + (1− (q/p)L)q

(p− q)2(1− (q/p)L)2

= − (p− q)k(1 + (q/p)k) + p− q(q/p)k

(p− q)2(1− (q/p)L)

+(1− (q/p)k)
(p− q)L(1 + (q/p)L)
(p− q)2(1− (q/p)L)2

+(1− (q/p)L)
p− q(q/p)k

(p− q)2(1− (q/p)L)2

=
(1− (q/p)k)L(1 + (q/p)L)− k(1 + (q/p)k)(1− (q/p)L)

(p− q)(1− (q/p)L)2 ,

k = 0, 1, . . . ,L, and

h(k) =
(1− (q/p)k)L(1 + (q/p)L)− k(1 + (q/p)k)(1− (q/p)L)

(p− q)(1− (q/p)L)(1− (q/p)k)
,

k = 1, 2, . . . ,L, which can be obtained in Mathematica via the command

RSolve[g[k]=1-(q/p)ˆk+(1/2)g[k+1]+(1/2)g[k-1],g[k],k].

□

Letting ε = 1− q/p, i.e. q/p = 1 + ε, we have, as ε tends to zero,

h(k) ≃ (1− (1 + ε)k)L(1 + (1 + ε)L)− k(1 + (1 + ε)k)(1− (1 + ε)L)

(p− q)(1− (1 + ε)L)(1− (1 + ε)k)

=
(kε+ k(k− 1)ε2/2 + k(k− 1)(k− 2)ε3/6)L(2 + Lε+ L(L− 1)ε2/2)

pε3

108 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://www.wolframalpha.com/input/?i=RSolve%5B%7Bg%5Bk%5D+%3D%3D1-%28q%2Fp%29%5Ek%2Bp*g%5Bk%2B1%5D%2B%281-p%29*g%5Bk-1%5D%7D%2C+g%5Bk%5D%2C+k%5D
https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

− k(2 + kε+ k(k− 1)ε2/2)(Lε+ L(L− 1)ε2/2 + L(L− 1)(L− 2)ε3/6)
pε3

=
L2 − k2

6p

≃ L2 − k2

3 , k = 0, 1, . . . ,L.

The conditional expectation h(0) is actually undefined because the event
{
S0 =

0, TL < T0
}

has probability 0.

Notes

See § 1.2 and Proposition 1.3 in Hairer (2016) for the general theory of recur-
rence of Markov chains and their application to random walks.

Exercises

Exercise 4.1 Consider a sequence (Xn)n⩾0 of independent {0, 1}-valued
Bernoulli random variables with distribution P(Xn = 1) = p, P(Xn = 0) = q,
n ⩾ 1.

a) Show that

E

[
exp

(
t
n∑
k=1

Xk

)]
= (q+ pet)n, n ⩾ 0, t ∈ R.

b) Using the Markov inequality, show that

P

(
1
n

n∑
k=1

(Xk − p) ⩾ z

)
⩽ e−n((p+z)t−log(q+pet)), z > 0, t > 0.

c) Find the value t(x) of t > 0 that maximizes t 7→ xt− log(q+ pet) for x fixed
in (0, 1).

d) Show the bound

P

(
1
n

n∑
k=1

(Xk − p) ⩾ z

)
⩽ exp

(
−n
(
(p+ z) log (p+ z)q

(q− z)p
− log q

q− z

))
,

0 ⩽ z < q.
e) Using Taylor’s formula with remainder

" 109

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

f(t) = f(0) + tf ′(0) + t2

2 f
′′(θt), t ∈ R,

for some θ ∈ [0, 1], show that log(q+ pet) ⩽ pt+ t2/8, t ∈ R.
Hint. Show that for all α ∈ R we have 4pqα ⩽ (q+ pα)2.

f) Find the value t(z) of t ∈ R that maximizes t 7→ zt− t2/8 for z ∈ R.
g) Show the bound

P

(
1
n

n∑
k=1

(Xk − p) ⩾ z

)
⩽ e−2nz2 , z ⩾ 0. (4.27)

Problem 4.2
Multi-Armed Bandits (MABs) have applications from recom-
mender systems and information retrieval to healthcare and fi-
nance, due to its stellar performance combined with attractive
properties, such as learning from less feedback, see Bouneffouf and
Rish (2019). For example, the Uber Data Science team leverages
MAB testing to rank restaurants on the main feed of the Uber
Eats app. The GrabFood “Recommended for You” widget also
uses MABs for recommendation solutions.

We consider an N -arm bandit in which the reward of arm n◦i at time n ⩾ 1
is X(i)

n , where for i = 1, . . . ,N , (X(i)
n)n⩾0 is a i.i.d. Bernoulli sequence with

P(X
(i)
n = 1) = pi ∈ [0, 1], n ⩾ 1, ordered as p1 ⩽ · · · ⩽ pN . We let

m̂
(i,α)
n :=

1
T
(i,α)
n

n∑
k=1

X
(i)
k 1{αk=i}

denote the sample average reward obtained from arm n◦i until time n ⩾ 1
under a given policy (αk)k⩾1. We define the policy (α∗

n)n⩾1 by α∗
n := n for

n = 1, . . . ,N , and for n > N we let α∗
n be the index i ∈ {1, . . . ,N} that

maximizes the quantity m̂(i,α∗)
n−1 +

√
2(logn)/T (i,α∗)

n−1 .

a) Let 1 ⩽ i < N and n ⩾ N . Show by contradiction that if α∗
n = i, then at

least one of the three following conditions must hold:

m̂
(N ,α∗)
n−1 +

√
2 logn
T
(N ,α∗)
n−1

⩽ pN , m̂
(i,α∗)
n−1 > pi+

√
2 logn
T
(i,α∗)
n−1

, T
(i,α∗)
n−1 <

8 logn
(pN − pi)2 .

b) Show that letting n̂i := ⌈8(logn)/(pN − pi)2⌉, we have

E
[
T
(i,α∗)
n

]
⩽ n̂i +

∑
n̂i<k⩽n

P

(
m̂

(N ,α∗)
k−1 +

√√√√ 2 log k
T
(N ,α∗)
k−1

⩽ pN

)

110 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://www.uber.com/en-MY/blog/xp/
https://engineering.grab.com/multi-armed-bandit-system-recommendation
https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

+P

(
m̂

(i,α∗)
k−1 > pi +

√√√√ 2 log k
T
(i,α∗)
k−1

) , 1 ⩽ 1 < N , n ⩾ N .

c) Show that P

m̂(N ,α∗)
k−1 +

√√√√ 2 log k
T
(N ,α∗)
k−1

⩽ pN

 ⩽ 1
k3 and

P

m̂(i,α∗)
k−1 > pi +

√√√√ 2 log k
T
(i,α∗)
k−1

 ⩽ 1
k3 , i = 1, . . . ,N , k ⩾ N .

Hint. Use the bound (4.27) in Exercise 4.1.
d) Show that the modified regret, defined as

Rαn :=
n∑
k=1

E[pN − pαk
],

can be bounded by

Rα∗
n ⩽

N−1∑
i=1

(pN − pi) + 8
N−1∑
i=1

logn
pN − pi

, n ⩾ 1.

Hint. Use a comparison argument between series and integrals.

Problem 4.3

a) Consider a gambling process (Sn)n⩾0 taking values in the discrete interval
{0, 1, . . . ,L} with respective probabilities p, q of increment and decrement.
We let T0,L denote the hitting time of the boundary {0,L} by (Sn)n⩾0.

i) Compute the probability generating function

Gi(s) := E
[
sT0,L

∣∣S0 = i
]
, i = 0, 1, . . . ,L, s ∈ [−1, 1],

of T0,L. Consider the cases p = q and p ̸= q separately.

Hint. See Exercise 3.4 in Privault (2018).
ii) Compute the Laplace transform

Li(λ) := E
[
e−λT0,L

∣∣S0 = i
]
, i = 0, 1, . . . ,L, λ ⩾ 0.

of T0,L. Consider the cases p = q and p ̸= q separately.

b) We rescale the process (Sn)n⩾1 into a continuous-time random walk (Xt)t∈R+ .
For this,

" 111

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

• we split the time interval [0, t] into n ≃ t/ε time steps of length ε > 0,
• we split the space interval [0, y] into L ≃ y/

√
ε steps of height

√
ε,

• we rescale the probabilities p and q as

pε :=
1
2 (1− µ

√
ε) and qε :=

1
2 (1 + µ

√
ε),

for some µ ∈ R, see Equation (7.7) in Privault (2022), and we let ε tend to
zero. We let T0,y denote the hitting time of the boundary {0, y} by (Xt)t∈R+ .

i) Taking µ = 0, compute the Laplace transform

Lx(λ) := E
[
e−λT0,y

∣∣X0 = x
]
, x ∈ [0, y], λ ⩾ 0,

of T0,y.
Hint. Your answer should recover Equation (3) in Antal and Redner
(2005), see also Equation (2.2.10) in Redner (2001) and Exercise 14.3-
a) in Privault (2022).

ii) Compute the Laplace transform

Lx(λ) := E
[
e−λT0,y

∣∣X0 = x
]
, x ∈ [0, y], λ ⩾ 0,

of T0,y in case µ ̸= 0.
Hint. See also Exercise 14.5 in Privault (2022).

c) Repeat Questions (a) and (b) above for the hitting time TL of the level L
when (Sn)n⩾0 is the random walk on {0, 1, . . . ,L} reflected at state 0.
Hint. The answer should recover Equation (5) in Antal and Redner (2005)
when µ = 0, see also Equation (2.2.21) in Redner (2001).

Problem 4.4 Consider a random walk (Sn)n⩾0 on Z with independent incre-
ments, such that

P(Sn+1 − Sn = +1) = p and P(Sn+1 − Sn = −1) = q, n ⩾ 0,

with p + q = 1. The sequence (T k0)k⩾1 of return times to 0 of (Sn)ngeq0 is
defined recursively with

T 1
0 := inf{n ⩾ 1 : Sn = 0}.

and
T k+1

0 := inf{n > T k0 : Sn = 0}, k ⩾ 1.

a) Consider the generating function Hi(s) defined as

Hi(s) := E

[∑
k⩾1

sT
k
0
∣∣∣S0 = i

]
, i ∈ Z, −1 ⩽ s ⩽ 1.

112 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

Using first step analysis, find the recurrence relations satisfied by Hi(s) for
i ⩾ 2 and i ⩽ −2, and for i = −1, i = 0, i = 1.

b) Find Hi(s) for i ⩾ 1, i = 0, and i ⩽ −1.

Hint. Look for a solution of the form

Hi(s) = C(s)αi(s) for i ⩾ 1 and i ⩽ −1.

c) Consider the probability generating function Gi(s) of the first return time
to 0 , defined as

Gi(s) := E
[
sT

1
0
∣∣S0 = i

]
, i ∈ Z, −1 ⩽ s ⩽ 1.

Using conditioning based on T 1
0 , find a relation between Gi(s), Hi(s) and

H0(s) for i ⩾ 2 and i ⩽ −2, and for i = −1, i = 0, i = 1.
d) Find Gi(s) for i ⩾ 1, i = 0, and i ⩽ −1.
e) Find the probability P(T 1

0 < ∞ | S0 = i) of hitting state 0 in finite time
after starting from state i .

f) Find the mean number of visits E[R0 | S0 = i] to state 0 after starting
from state i , i ∈ Z.

Problem 4.5 Time spent above zero by a random walk. Consider the symmetric
random walk (Sn)n⩾0 started at S0 = 0 on S = Z. We let

T+
2n := 2

n∑
r=1

1{S2r−1⩾1}

denote an even estimate of the time spent strictly above the level 0 by the
random walk between time 0 and time 2n. We also let

T0 := inf{n ⩾ 1 : Sn = 0}

denote an even estimate of the time of first return of (Sn)n⩾0 to 0 .

a) Compute P(S2n = 2k) for k = 0, 1, . . . ,n.
b) Show the convolution equation

P(S2n = 0) =
n∑
r=1

P(T0 = 2r)P(S2n−2r = 0), n ⩾ 1.

c) By partitioning the event {T+
2n = 2k} according to all possible times 2r =

2, 4, . . . , 2n of first return to state 0 until time 2n, show the convolution
equation

P(T+
2n = 2k) =

n∑
r=1

P
(
T0 = 2r,T+

2n = 2k
)

" 113

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

=
1
2

k∑
r=1

P
(
T0 = 2r

)
P
(
T+

2n−2r = 2k− 2r
)

+
1
2

n−k∑
r=1

P
(
T0 = 2r

)
P
(
T+

2n−2r = 2k
)
, n ⩾ 1.

d) Show that

P(T+
2n = 2k) = P(S2k = 0)P(S2n−2k = 0), 0 ⩽ k ⩽ n,

solves the convolution equation of Question (c).
e) Using the Stirling approximation n! ≃ (n/e)n

√
2πn as n tends to infinity,

compute the limit

lim
n→∞

P
(
T+

2n/(2n) ⩽ x
)
= lim

n→∞

∑
0⩽k⩽nx

P
(
T+

2n/(2n) = k/n
)
,

and find the limiting distribution of T+
2n/(2n) as n tends to infinity.

Problem 4.6 Consider a sequence (Xn)n⩾1 of independent random variables
on {1, . . . , d} with same distribution π = (π1, . . . ,πd). In what follows,

f : {1, . . . , d} → R

denotes any function such that ∥f∥∞ ⩽ 1 and E[f(Xn)] = 0, n ⩾ 1, and we
let

λ0(α) :=
d∑
l=1

πle
αf (l), α ⩾ 0.

a) Show that for any α ∈ R we have

E

[
exp

(
α

n∑
l=1

f(Xl)

)]
= (λ0(α))

n, n ⩾ 0.

b) Show that for any α ∈ R and γ > 0 we have

P

(
1
n

n∑
l=1

f(Xl) ⩾ γ

)
⩽ e−n(αγ−log λ0(α)), n ⩾ 1.

Hint. Use the Chernoff argument.
c) Show that

λ0(α) = 1 +
d∑
l=1

πl(e
αf (l) − αf(l)− 1), α ⩾ 0.

114 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://en.wikipedia.org/wiki/Stirling%27s_approximation
https://en.wikipedia.org/wiki/Chernoff_bound
https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

d) Show that

λ0(α) ⩽ 1 + α2

1− α , α ∈ [0, 1).

e) Show that for any α ∈ [0, 1) and γ > 0 we have

P

(
1
n

n∑
l=1

f(Xl) ⩾ γ

)
⩽ e−n(αγ− α2

1−α), n ⩾ 1.

f) Find the value of α ∈ [0, 1) which maximizes αγ − α2/(1− α).
g) Show that for all γ > 0 and n ⩾ 1 we have

P

(
1
n

n∑
l=1

f(Xl) ⩾ γ

)
⩽ e−nγ2/6.

Problem 4.7 Consider a sequence (Xn)n⩾0 of independent identically dis-
tributed random variables with distribution π = (π1, . . . ,πd) on {1, . . . , d}.
Our goal is to estimate the distribution π using the estimator π̂j(n) :=
1
n

n∑
k=1

1{Xk=j}, j = 1, . . . , d.

a) Show that E

 d∑
j=1

∣∣∣∣∣ 1n
n∑
k=1

1{Xk=j} − πj

∣∣∣∣∣
 ⩽√ d

n
, i = 1, . . . , d.

b) Show that for any n ⩾ 1, the function fn : Rn → R defined by

(x1, . . . ,xn) 7→
d∑
j=1

∣∣∣∣∣ 1n
n∑
k=1

1{xk=j} − πj

∣∣∣∣∣
satisfies the bounded differences property with ci = 2/n, i = 1, . . . ,n, i.e.

Sup
y∈R

|f(x1, . . . ,xn)−f(x1, . . . ,xi−1, y,xi+1, . . . ,xn)| ⩽ ci, x1, . . . ,xn ∈ R.

c) Based on the results of Questions (a)-(b) and McDiarmid’s inequality

P(f(X1, . . . ,Xn)−E[f(X1, . . . ,Xn)] ⩾ ε) ⩽ exp
(
− 2ε2∑n

i=1 c
2
i

)
,

show that for all i = 1, . . . , d we have

P

 d∑
j=1

∣∣∣∣∣ 1n
n∑
k=1

1{Xk=j} − πj

∣∣∣∣∣ > ε

 ⩽ exp

−n2 Max
(

0, ε−
√
d

n

)2
 .

" 115

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://en.wikipedia.org/wiki/McDiarmid%27s_inequality
https://en.wikipedia.org/wiki/McDiarmid%27s_inequality
https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

d) Show that if n ⩾ 4d/ε2, then we have P

 d∑
j=1

∣∣π̂j(n)− πj∣∣ > ε

 ⩽ e−nε2/8.

e) Show that there is a constant c > 0 such that for any ε, δ ∈ (0, 1) we have

P

(
Max
j=1,...,d

∣∣π̂j(n)− πj∣∣ ⩽ ε

)
⩾ 1− δ,

for any n > c log(1/δ)/ε2.

116 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Chapter 5
Cookie-Excited Random Walks

In this chapter we consider random walks in a cookie environment, also called
excited random walks (ERWs), which are not Markovian and are used in physics
and biology, to model the behavior of e.g. primitive organisms. Random walks
in a random environment can be used for the understanding of macroscopic
phenomena by rescaling, based on the modeling of random trajectories at a
microscopic level.

5.1 Hitting times and probabilities . 117
5.2 Recurrence . 121
5.3 Mean hitting times . 127
5.4 Count of cookies eaten . 129
5.5 Conditional results . 135
Exercises . 140

5.1 Hitting times and probabilities

We assume that the state space S := {0, 1, 2, . . .} is equipped with “cookies”
at the locations n , n ⩾ 1, and consider a random walk (Sn)n⩾0 which moves
with probabilities (p, q) of going up and down in the absence of cookies. The
random walk starts from state 0 , which has no cookie. After hitting state
0 it can rebound to state 1 with probability p, or return to state 0 with

probability q.

When the random walk encounters a cookie, its behavior becomes modified
and the next state is chosen with the probabilities p̃ ∈ [0, 1] and q̃ := 1− p̃ of
moving up, resp. down, independently of the past. Every encountered cookie is
eaten by the organism, and when the random walk reaches an empty spot it
continues with the probabilities (p, q) of moving up or down. The random walk
is attracted by the cookies when p̃ > 1/2, and repulsed when p̃ < 1/2.

" 117

This version: March 5, 2024 https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

Fig. 5.1: Random walk with cookies.∗

The cookie random walk does not have the Markov property when p̃ ̸= p
because in this case the transition probabilities at a given state may depend
on the past behavior of the chain starting from time 1. On the other hand, the
cookie random walk has the Markov property when p̃ = p because in this case it
coincides with the usual symmetric random walk with independent increments.

Hitting probabilities

For any x ∈N, let T rx denote the first return time

T rx := inf{n ⩾ 1 : Sn = x}.

Proposition 5.1. The hitting probability P
(
T rx < T r0 | S0 = 0

)
takes the form

P
(
T rx < T r0 | S0 = 0

)
= p

x−1∏
l=1

(1− f(l)) , x ⩾ 1,

with
f(l) =

(q− p)q̃
(1− (p/q)l+1)q2 ⩽ q̃ ⩽ 1, l ⩾ 1,

when p ̸= q, and
f(l) =

2q̃
l+ 1 ⩽ q̃ ⩽ 1, l ⩾ 1,

when p = q = 1/2. Note that when q̃ = 1 we have P
(
T rx < T r0 | S0 = 0

)
= 0,

x ⩾ 2, as f(2) = 0.

Proof. In this proof, P(· | S0 = x̂) denotes the conditional probability given
that a cookie has just been eaten at state x . Assume that the random walk has
just eaten a cookie at state x ⩾ 1, after eating all cookies at states 1, 2, . . . ,x−
1. If p ̸= q, by first step analysis, the probability of reaching

�� ��x+ 1 before

118 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

reaching 0 is given from (1.43) as

P
(
T rx+1 < T r0 | S0 = x̂

)
= p̃P

(
T rx+1 < T r0 | S1 = x̂+ 1

)
+q̃P

(
T rx+1 < T r0 | S1 = x− 1

)
= p̃+ q̃

1− (q/p)x−1

1− (q/p)x+1

= 1− (p− q)(q/p)xq̃
(1− (q/p)x+1)pq

= 1 + (p− q)q̃
(1− (p/q)x+1)q2 (5.1)

If p = q = 1/2, from (1.44) we have

P
(
T rx+1 < T r0 | S0 = x̂

)
= p̃+ q̃

x− 1
x+ 1 = 1− 2q̃

x+ 1 , x ⩾ 1, (5.2)

since the probability for a symmetric random walk to reach state
�� ��x+ 1 before

hitting state 0 starting from k is k/(x+ 1), see formula (1.44) page 37. We
have P

(
T r1 < T r0 | S0 = 0

)
= p and by the (strong) Markov property, by

reasoning inductively on the transitions from state 0 to state 1 , then from
state 2 to state 2 , etc, up to state x , we find

P
(
T rx < T r0 | S0 = 0

)
= P

(
T r1 < T r0 | S0 = 0

) x−1∏
l=1

P
(
T rl+1 < T r0 | S0 = l̂

)
= p

x−1∏
l=1

(
1− (p− q)(q/p)lq̃

(1− (q/p)l+1)pq

)

= p
x∏
l=2

(
1− (p− q)(q/p)lq̃

(1− (q/p)l)q2

)
if p ̸= q, and

P
(
T rx < T r0 | S0 = 0

)
= P

(
T r1 < T r0 | S0 = 0

) x−1∏
l=1

P
(
T rl+1 < T r0 | S0 = l̂

)
=

1
2

x−1∏
l=1

(
1− 2q̃

l+ 1

)

=
1
2

x∏
l=2

(
1− 2q̃

l

)
, x ⩾ 1,

" 119

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

if p = q = 1/2. □

The result of Proposition 5.1 can also be written as

P
(
T rx < T r0 | S0 = 0

)
= p

x∏
l=2

(
1− (q− p)q̃

(1− (p/q)l)q2

)
(5.3)

if p ̸= q, and

P
(
T rx < T r0 | S0 = 0

)
=

1
2

x∏
l=2

(
1− 2q̃

l

)
, x ⩾ 1, (5.4)

if p = q = 1/2.

For x = 2, (5.3) and (5.4) show that

P
(
T r2 < T r0 | S0 = 0

)
= p

(
1− (q− p)q̃

(1− (p/q)2)q2

)
= p

(1− (p/q)2)q2 − (q− p)q̃
(1− (p/q)2)q2

= p
q2 − p2 − (q− p)q̃

p2 − q2

= pp̃

when p ̸= q, and
P
(
T r2 < T r0 | S0 = 0

)
=
p̃

2
when p = q = 1/2. In particular, when q̃ = 1 we have P

(
T rx < T r0 | S0 = 0

)
= 0

for all x ⩾ 2.

For all x ⩾ 1, we also have∗

P
(
T rx < T r0 | S0 = 0

)
= p exp

(
x∑
l=2

log
(

1 + (p− q)q̃
(1− (p/q)l)q2

))
(5.5)

if p ̸= q, and

P
(
T rx < T r0 | S0 = 0

)
=

1
2 exp

(
x∑
l=2

log
(

1− 2q̃
l

))
, x ⩾ 1, (5.6)

if p = q = 1/2, where “log” denotes the natural logarithm “ln”.

∗ We use the convention
1∑

k=2

ak = 0 for any sequence (ak).

120 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

5.2 Recurrence

The symmetric case p = q = 1/2 is treated in § 3.3 of Antal and Redner
(2005), see also § 2 of Benjamini and Wilson (2003). Excited random walks on
Zd are treated in Benjamini and Wilson (2003), where it is shown that excited
symmetric random walks are transient if and only if d ⩾ 2. The next result
shows in particular that the reflected random walk of Section 4.3 is recurrent
when p = p̃ ⩽ 1/2, and transient when p = p̃ > 1/2.

Proposition 5.2. a) When p ⩽ 1/2, the cookie-excited random walk is recur-
rent for all p̃ ∈ [0, 1).

b) When p > 1/2, the cookie-excited random walk is transient for all p̃ ∈ (0, 1].

Proof. We note that the sequence (Tx)x⩾1 is strictly increasing and limx→∞ Tx =
+∞ almost surely since x ⩽ T rx < T rx+1, x ⩾ 1. Hence, we have{

T r0 <∞} =
⋃
x⩾1

{
T r0 < T rx

}
,

and therefore

P(T r0 <∞ | S0 = 0) = P

⋃
x⩾1

{
T r0 < T rx

} ∣∣∣ S0 = 0


= lim

x→∞
P(T r0 < T rx | S0 = 0)

= lim
x→∞

(
1−P(T rx ⩽ T r0 | S0 = 0)

)
= 1− lim

x→∞
P(T rx < T r0 | S0 = 0) (5.7)

since P(T rx = T r0 | S0 = 0) = 0.

a) Case p ∈ [0, 1/2].

i) Case p = q = 1/2. Using again the inequality log(1 + z) ⩽ z for
z > −1, by (5.6) we have

w x
2

log
(

1− 2q̃
y

)
dy ⩽

x∑
l=2

log
(

1− 2q̃
l

)
⩽

w x+1

2
log
(

1− 2q̃
y

)
dy

⩽ −2q̃
w x+1

2
1
y
dy

= −2q̃ log x+ 1
2 ,

hence

" 121

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

P
(
T rx < T r0 | S0 = 0

)
=

1
2 exp

(
x∑
l=2

log
(

1− 2q̃
l

))
⩽ exp

(
−2q̃ log x2

)
=
(x

2

)−2q̃
, x ⩾ 2,

hence
lim
x→∞

P(T rx < T r0 | S0 = 0) = lim
x→∞

(x
2

)−2q̃
= 0,

when q̃ ∈ (0, 1], and we conclude from (5.7).

-2

-1.5

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

z

log(1+z)
z

Fig. 5.2: Log function.

ii) Case p ∈ [0, 1/2). By Proposition 4.13 and the fact that P(B ∩A) =
P(B) when P(A) = 1, we note that P

(
T rx < ∞ | S0 = 0

)
= 1 for all

x ⩾ 1. Next, for any p < 1/2 < q and q̃ ∈ (0, 1] and any ε > 0, there
exists l0 ⩾ 1 large enough such that

(q− p)q̃
q2 − ε < (p− q)(q/p)lq̃

(1− (q/p)l)q2 <
(q− p)q̃
q2 + ε, l ⩾ l0,

and by a comparison argument between integrals and series, we find

(x− l0) log
(

1− (q− p)q̃
q2 − ε

)
⩽

w x
l0

log
(

1− (p− q)(q/p)y q̃
(1− (q/p)y)q2

)
dy

⩽
x∑

l=l0

log
(

1− (p− q)(q/p)lq̃
(1− (q/p)l)q2

)

⩽
w x+1

l0
log
(

1− (p− q)(q/p)y q̃
(1− (q/p)y)q2

)
dy

122 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://en.wikipedia.org/wiki/Integral_test_for_convergence
https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

⩽ (x+ 1− l0) log
(

1− (q− p)q̃
q2 + ε

)
,

hence by (5.5) we obtain

Cl0

(
1− (q− p)q̃

q2 + ε

)x−l0
⩽ P

(
T rx < T r0 | S0 = 0

)
⩽ Cl0

(
1− (q− p)q̃

q2 + ε

)x+1−l0
, x ⩾ l0,

for some Cl0 > 0, showing that limx→∞ P
(
T rx < T r0 | S0 = 0

)
= 0

provided that q̃ > 0.∗

b) Case p ∈ (1/2, 1]. By Proposition 5.1, we have

lim
x→∞

P(T rx < T r0 | S0 = 0) = p lim
x→∞

x∏
l=2

(
1− (p− q)(q/p)lq̃

(1− (q/p)l)q2

)

= p

∞∏
l=2

(
1− (p− q)(q/p)lq̃

(1− (q/p)l)q2

)

= p exp
(∞∑
l=2

log
(

1− (p− q)(q/p)lq̃
(1− (q/p)l)q2

))
.

When q̃ = 1, since (p− q)(q/p)2/((1− (q/p)2)q2) = 1 we have P(T rx <
T r0 | S0 = 0) = 0, x ⩾ 2, hence limx→∞ P(T rx < T r0 | S0 = 0) = 0, and the
random walk is recurrent in this case. On the other hand, when q̃ ∈ [0, 1)
we have

q̃
(p− q)(q/p)l

(1− (q/p)l)q2 ⩽ q̃ < 1, l ⩾ 2,

and

log
(

1− (p− q)(q/p)lq̃
(1− (q/p)l)q2

)
≃ − (p− q)(q/p)lq̃

(1− (q/p)l)q2 ≃ −
(p− q)q̃
q2

(
q

p

)l
.

Hence, as l tends to infinity, we obtain

−∞ <
∞∑
l=2

log
(

1− (p− q)(q/p)lq̃
(1− (q/p)l)q2

)
⩽ 0

by the limit comparison test, which yields limx→∞ P(T rx < T r0 | S0 = 0) > 0,
hence by (5.7) we find

∗ Note that (q − p)/q2 < 1 when q ∈ [1/2, 1).

" 123

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://en.wikipedia.org/wiki/Limit_comparison_test
https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

P(T r0 <∞ | S0 = 0) = 1− lim
x→∞

P(T rx < T r0 | S0 = 0) < 1.

□

The next proposition provides more precise estimates of P(T0 = ∞ | S0 = 0)
in the transient case p > 1/2.

Proposition 5.3. When p > 1/2 we have

pp̃

(
1− q̃ q

p

)p/(p−q)
⩽ P(T r0 =∞ | S0 = 0) ⩽ pp̃.

In particular, P(T r0 = ∞ | S0 = 0) is strictly positive if and only if p̃ ∈ (0, 1],
i.e. q̃ ∈ [0, 1).

Proof. Let α > 1, and consider the inequality

αz ⩽ log(1 + z) ⩽ 0, xα ⩽ z ⩽ 0,

with αxα = log(1 + xα).

-7

-6

-5

-4

-3

-2

-1

 0

-1 -0.8 -0.6 -0.4 -0.2 0
xα

α xα

z

log(1+z)
αz

Fig. 5.3: log function.

We have
−αq̃ q

l

pl
⩽ log

(
1− q̃ q

l

pl

)
,

provided that

xα ⩽ −q̃
ql

pl
⩽ 0,

i.e.

124 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

l ⩾
log(−xα/q̃)

log(q/p)
= 1.

Hence, choosing xα := −qq̃/p, we have

α = − p

qq̃
log
(

1− q̃ q
p

)
⩾ 1.

Hence, using the relation

P(T rx < T r0 | S0 = 0) = p exp
(

x∑
l=2

log
(

1− (p− q)(q/p)lq̃
(1− (q/p)l)q2

))
, x ⩾ 1,

from Proposition 5.1 and the relation (p− q)(q/p)l/((1− (q/p)l)q2) = 1 for
l = 2, we have

log P(T rx < T r0 | S0 = 0) = log p+
x∑
l=2

log
(

1− (p− q)(q/p)lq̃
(1− (q/p)l)q2

)

⩾ log(1− q̃) + log p+
x∑
l=3

log
(

1− (p− q)(q/p)lq̃
(1− (q/p)2)q2

)

= log(1− q̃) + log p+
x∑
l=3

log
(

1− q̃
(
q

p

)l−2
)

⩾ log((1− q̃)p)− αq̃
x∑
l=1

(
q

p

)l
= log((1− q̃)p)− αq̃ q

p

∞∑
k=0

(
q

p

)k
= log((1− q̃)p)− α q̃q

p− q
, x ⩾ 2,

hence
lim
x→∞

P(T rx < T r0 | S0 = 0) ⩾ p(1− q̃) exp
(
− αq̃q

p− q

)
,

and

1− pp̃ = q+ pq̃ ⩽ P(T r0 <∞ | S0 = 0) ⩽ 1− pp̃
(

1− q̃ q
p

)p/(p−q)
< 1.

We note that the bound becomes an equality at p̃ = 0 and p̃ = 1. □

The code below has been used for the next Figures 5.4-5.5 with 10000 samples
and tmax= 100000.

" 125

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1
 p~

Simulation
Upper bound
Lower bound

Fig. 5.4: Upper and lower bounds on P(T r
0 < ∞ | S0 = 0) with p = 0.52 on [0, 1].

 0.996

 0.997

 0.998

 0.999

 1

 0 0.05 0.1 0.15 0.2
 p~

Simulation
Upper bound

Fig. 5.5: Upper and lower bounds on P(T r
0 < ∞ | S0 = 0) with p = 0.52 on [0, 0.2].

The following C code is used to plot Figure 5.4.

 #include <random>
int main(){double p=0.52,pt;

 std::default_random_engine generator;std::bernoulli_distribution bernp(p);
int count,nsamples=10000,tmax=1000000,smax=100000;

 int S[tmax], cookie[smax];double maxpos;
for (int nn=0;nn<=40;nn++){count=0;pt=0.025*nn;

 std::bernoulli_distribution bernpt(pt);
for (int n=1;n<=smax;n++){cookie[n]=1;}

 maxpos=0;for (int n=1;n<=nsamples;n++){
cookie[0]=0;for (int n=1;n<=maxpos;n++){cookie[n]=1;}

 maxpos=0;S[0]=0;for (int k=0;k<=tmax;k++){
if (cookie[S[k]]==1) {S[k+1]=S[k]+2*bernpt(generator)-1;}

 else {S[k+1]=S[k]+2*bernp(generator)-1;}
if (S[k+1] == 0) {count+=1;break;}

 cookie[S[k]]=0;if (S[k]>maxpos) {maxpos=S[k];}}}
printf("ptilde=%.3f\tP(T0<infty)=%.4f\n",pt,1.0*count/nsamples);}}

126 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

See also this that can be run here or here, which provides
a Monte Carlo estimate of the probability of return to zero within a given time.

5.3 Mean hitting times

Recall that the mean time needed by the random walk to reach state 1 after
starting from state 0 can be computed in at least three different ways.

i) By first step analysis. We have

E
[
T r1
∣∣S0 = 0

]
= p× 1 + q

(
1 + E

[
T r1
∣∣S0 = 0

])
,

hence
E
[
T r1
∣∣S0 = 0

]
=

1
p

. (5.8)

ii) By pathwise analysis. We have

E
[
T r1
∣∣S0 = 0

]
= p

∑
k⩾1

kqk−1 =
p

(1− q)2 =
1
p

.

iii) By applying Proposition 4.14 with L = 1 and k = 0, which recovers

E
[
T r1
∣∣S0 = 0

]
=

1
p− q

+
q

(p− q)2

(
q

p
− 1
)
=

1
p

.

When p = q = 1/2 we find E
[
T r1
∣∣S0 = 0

]
= 2. We can check that the result of

the next proposition is consistent with that of by Proposition 4.14 when q̃ = q.

Proposition 5.4. Let x ⩾ 1. The mean time to reach state x starting from
0 is given by

E
[
T rx
∣∣ S0 = 0

]
=
q− q̃
p

+

(
1 + 2q̃

p− q

)
x+

q̃

(p− q)2

((
q

p

)x
− 1
)

,

when p ̸= q, and by

E
[
T rx
∣∣ S0 = 0

]
= 1− 2q̃+ x+ 2q̃x2, x ⩾ 1,

when p = q = 1/2.

Proof. Assume that a cookie has just been eaten at state x ⩾ 1, after eating
all cookies at states 1, 2, . . . ,x− 1.

" 127

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

{
 "cells": [
 {
 "cell_type": "code",
 "execution_count": 5,
 "id": "individual-canberra",
 "metadata": {},
 "outputs": [
 {
 "name": "stdout",
 "output_type": "stream",
 "text": [
 "Sample: 1\n",
 "Return to zero within tmax.\n",
 "Sample: 2\n",
 "Return to zero within tmax.\n",
 "Sample: 3\n",
 "Return to zero within tmax.\n",
 "Sample: 4\n",
 "Return to zero within tmax.\n",
 "Sample: 5\n",
 "Return to zero within tmax.\n",
 "Sample: 6\n",
 "Return to zero within tmax.\n",
 "Sample: 7\n",
 "Return to zero within tmax.\n",
 "Sample: 8\n",
 "Return to zero within tmax.\n",
 "Sample: 9\n",
 "Return to zero within tmax.\n",
 "Sample: 10\n",
 "Return to zero within tmax.\n",
 "Sample: 11\n",
 "Return to zero within tmax.\n",
 "Sample: 12\n",
 "Return to zero within tmax.\n",
 "Sample: 13\n",
 "Return to zero within tmax.\n",
 "Sample: 14\n",
 "Return to zero within tmax.\n",
 "Sample: 15\n",
 "Return to zero within tmax.\n",
 "Sample: 16\n",
 "Return to zero within tmax.\n",
 "Sample: 17\n",
 "Return to zero within tmax.\n",
 "Sample: 18\n",
 "Return to zero within tmax.\n",
 "Sample: 19\n",
 "Return to zero within tmax.\n",
 "Sample: 20\n",
 "Return to zero within tmax.\n",
 "Sample: 21\n",
 "Return to zero within tmax.\n",
 "Sample: 22\n",
 "Return to zero within tmax.\n",
 "Sample: 23\n",
 "Return to zero within tmax.\n",
 "Sample: 24\n",
 "Return to zero within tmax.\n",
 "Sample: 25\n",
 "Return to zero within tmax.\n",
 "Sample: 26\n",
 "Return to zero within tmax.\n",
 "Sample: 27\n",
 "Return to zero within tmax.\n",
 "Sample: 28\n",
 "Return to zero within tmax.\n",
 "Sample: 29\n",
 "Return to zero within tmax.\n",
 "Sample: 30\n",
 "Return to zero within tmax.\n",
 "Sample: 31\n",
 "Return to zero within tmax.\n",
 "Sample: 32\n",
 "Return to zero within tmax.\n",
 "Sample: 33\n",
 "Return to zero within tmax.\n",
 "Sample: 34\n",
 "Return to zero within tmax.\n",
 "Sample: 35\n",
 "Return to zero within tmax.\n",
 "Sample: 36\n",
 "Return to zero within tmax.\n",
 "Sample: 37\n",
 "Return to zero within tmax.\n",
 "Sample: 38\n",
 "Return to zero within tmax.\n",
 "Sample: 39\n",
 "Return to zero within tmax.\n",
 "Sample: 40\n",
 "Return to zero within tmax.\n",
 "Sample: 41\n",
 "Return to zero within tmax.\n",
 "Sample: 42\n",
 "Return to zero within tmax.\n",
 "Sample: 43\n",
 "Return to zero within tmax.\n",
 "Sample: 44\n",
 "Return to zero within tmax.\n",
 "Sample: 45\n",
 "Return to zero within tmax.\n",
 "Sample: 46\n",
 "Return to zero within tmax.\n",
 "Sample: 47\n",
 "Return to zero within tmax.\n",
 "Sample: 48\n",
 "Return to zero within tmax.\n",
 "Sample: 49\n",
 "Return to zero within tmax.\n",
 "Sample: 50\n",
 "Return to zero within tmax.\n",
 "Sample: 51\n",
 "Return to zero within tmax.\n",
 "Sample: 52\n",
 "Return to zero within tmax.\n",
 "Sample: 53\n",
 "Return to zero within tmax.\n",
 "Sample: 54\n",
 "Return to zero within tmax.\n",
 "Sample: 55\n",
 "Return to zero within tmax.\n",
 "Sample: 56\n",
 "Return to zero within tmax.\n",
 "Sample: 57\n",
 "Return to zero within tmax.\n",
 "Sample: 58\n",
 "Return to zero within tmax.\n",
 "Sample: 59\n",
 "Return to zero within tmax.\n",
 "Sample: 60\n",
 "Return to zero within tmax.\n",
 "Sample: 61\n",
 "Return to zero within tmax.\n",
 "Sample: 62\n",
 "Return to zero within tmax.\n",
 "Sample: 63\n",
 "Return to zero within tmax.\n",
 "Sample: 64\n",
 "Return to zero within tmax.\n",
 "Sample: 65\n",
 "Return to zero within tmax.\n",
 "Sample: 66\n",
 "Return to zero within tmax.\n",
 "Sample: 67\n",
 "Return to zero within tmax.\n",
 "Sample: 68\n",
 "Return to zero within tmax.\n",
 "Sample: 69\n",
 "Return to zero within tmax.\n",
 "Sample: 70\n",
 "Return to zero within tmax.\n",
 "Sample: 71\n",
 "Return to zero within tmax.\n",
 "Sample: 72\n",
 "Return to zero within tmax.\n",
 "Sample: 73\n",
 "Return to zero within tmax.\n",
 "Sample: 74\n",
 "Return to zero within tmax.\n",
 "Sample: 75\n",
 "Return to zero within tmax.\n",
 "Sample: 76\n",
 "Return to zero within tmax.\n",
 "Sample: 77\n",
 "Return to zero within tmax.\n",
 "Sample: 78\n",
 "Return to zero within tmax.\n",
 "Sample: 79\n",
 "Return to zero within tmax.\n",
 "Sample: 80\n",
 "Return to zero within tmax.\n",
 "Sample: 81\n",
 "Return to zero within tmax.\n",
 "Sample: 82\n",
 "Return to zero within tmax.\n",
 "Sample: 83\n",
 "Return to zero within tmax.\n",
 "Sample: 84\n",
 "Return to zero within tmax.\n",
 "Sample: 85\n",
 "Return to zero within tmax.\n",
 "Sample: 86\n",
 "Return to zero within tmax.\n",
 "Sample: 87\n",
 "Return to zero within tmax.\n",
 "Sample: 88\n",
 "Return to zero within tmax.\n",
 "Sample: 89\n",
 "Return to zero within tmax.\n",
 "Sample: 90\n",
 "Return to zero within tmax.\n",
 "Sample: 91\n",
 "Return to zero within tmax.\n",
 "Sample: 92\n",
 "Return to zero within tmax.\n",
 "Sample: 93\n",
 "Return to zero within tmax.\n",
 "Sample: 94\n",
 "Return to zero within tmax.\n",
 "Sample: 95\n",
 "Return to zero within tmax.\n",
 "Sample: 96\n",
 "Return to zero within tmax.\n",
 "Sample: 97\n",
 "Return to zero within tmax.\n",
 "Sample: 98\n",
 "Return to zero within tmax.\n",
 "Sample: 99\n",
 "Return to zero within tmax.\n",
 "Sample: 100\n",
 "Return to zero within tmax.\n",
 "Sample: 101\n",
 "Return to zero within tmax.\n",
 "Sample: 102\n",
 "Return to zero within tmax.\n",
 "Sample: 103\n",
 "Return to zero within tmax.\n",
 "Sample: 104\n",
 "Return to zero within tmax.\n",
 "Sample: 105\n",
 "Return to zero within tmax.\n",
 "Sample: 106\n",
 "Return to zero within tmax.\n",
 "Sample: 107\n",
 "Return to zero within tmax.\n",
 "Sample: 108\n",
 "Return to zero within tmax.\n",
 "Sample: 109\n",
 "Return to zero within tmax.\n",
 "Sample: 110\n",
 "Return to zero within tmax.\n",
 "Sample: 111\n",
 "Sample: 112\n",
 "Return to zero within tmax.\n",
 "Sample: 113\n",
 "Return to zero within tmax.\n",
 "Sample: 114\n",
 "Return to zero within tmax.\n",
 "Sample: 115\n",
 "Return to zero within tmax.\n",
 "Sample: 116\n",
 "Return to zero within tmax.\n",
 "Sample: 117\n",
 "Return to zero within tmax.\n",
 "Sample: 118\n",
 "Return to zero within tmax.\n",
 "Sample: 119\n",
 "Return to zero within tmax.\n",
 "Sample: 120\n",
 "Return to zero within tmax.\n",
 "Sample: 121\n",
 "Return to zero within tmax.\n",
 "Sample: 122\n",
 "Return to zero within tmax.\n",
 "Sample: 123\n",
 "Return to zero within tmax.\n",
 "Sample: 124\n",
 "Return to zero within tmax.\n",
 "Sample: 125\n",
 "Return to zero within tmax.\n",
 "Sample: 126\n",
 "Return to zero within tmax.\n",
 "Sample: 127\n",
 "Return to zero within tmax.\n",
 "Sample: 128\n",
 "Return to zero within tmax.\n",
 "Sample: 129\n",
 "Return to zero within tmax.\n",
 "Sample: 130\n",
 "Return to zero within tmax.\n",
 "Sample: 131\n",
 "Return to zero within tmax.\n",
 "Sample: 132\n",
 "Return to zero within tmax.\n",
 "Sample: 133\n",
 "Return to zero within tmax.\n",
 "Sample: 134\n",
 "Return to zero within tmax.\n",
 "Sample: 135\n",
 "Return to zero within tmax.\n",
 "Sample: 136\n",
 "Return to zero within tmax.\n",
 "Sample: 137\n",
 "Return to zero within tmax.\n",
 "Sample: 138\n",
 "Return to zero within tmax.\n",
 "Sample: 139\n",
 "Return to zero within tmax.\n",
 "Sample: 140\n",
 "Return to zero within tmax.\n",
 "Sample: 141\n",
 "Return to zero within tmax.\n",
 "Sample: 142\n",
 "Return to zero within tmax.\n",
 "Sample: 143\n",
 "Return to zero within tmax.\n",
 "Sample: 144\n",
 "Return to zero within tmax.\n",
 "Sample: 145\n",
 "Return to zero within tmax.\n",
 "Sample: 146\n",
 "Return to zero within tmax.\n",
 "Sample: 147\n",
 "Return to zero within tmax.\n",
 "Sample: 148\n",
 "Return to zero within tmax.\n",
 "Sample: 149\n",
 "Return to zero within tmax.\n",
 "Sample: 150\n",
 "Return to zero within tmax.\n",
 "Sample: 151\n",
 "Return to zero within tmax.\n",
 "Sample: 152\n",
 "Return to zero within tmax.\n",
 "Sample: 153\n",
 "Return to zero within tmax.\n",
 "Sample: 154\n",
 "Return to zero within tmax.\n",
 "Sample: 155\n",
 "Return to zero within tmax.\n",
 "Sample: 156\n",
 "Return to zero within tmax.\n",
 "Sample: 157\n",
 "Return to zero within tmax.\n",
 "Sample: 158\n",
 "Return to zero within tmax.\n",
 "Sample: 159\n",
 "Return to zero within tmax.\n",
 "Sample: 160\n",
 "Return to zero within tmax.\n",
 "Sample: 161\n",
 "Return to zero within tmax.\n",
 "Sample: 162\n",
 "Return to zero within tmax.\n",
 "Sample: 163\n",
 "Return to zero within tmax.\n",
 "Sample: 164\n",
 "Return to zero within tmax.\n",
 "Sample: 165\n",
 "Return to zero within tmax.\n",
 "Sample: 166\n",
 "Return to zero within tmax.\n",
 "Sample: 167\n",
 "Return to zero within tmax.\n",
 "Sample: 168\n",
 "Return to zero within tmax.\n",
 "Sample: 169\n",
 "Return to zero within tmax.\n",
 "Sample: 170\n",
 "Return to zero within tmax.\n",
 "Sample: 171\n",
 "Return to zero within tmax.\n",
 "Sample: 172\n",
 "Return to zero within tmax.\n",
 "Sample: 173\n",
 "Return to zero within tmax.\n",
 "Sample: 174\n",
 "Return to zero within tmax.\n",
 "Sample: 175\n",
 "Return to zero within tmax.\n",
 "Sample: 176\n",
 "Return to zero within tmax.\n",
 "Sample: 177\n",
 "Return to zero within tmax.\n",
 "Sample: 178\n",
 "Return to zero within tmax.\n",
 "Sample: 179\n",
 "Return to zero within tmax.\n",
 "Sample: 180\n",
 "Return to zero within tmax.\n",
 "Sample: 181\n",
 "Return to zero within tmax.\n",
 "Sample: 182\n",
 "Return to zero within tmax.\n",
 "Sample: 183\n",
 "Return to zero within tmax.\n",
 "Sample: 184\n",
 "Return to zero within tmax.\n",
 "Sample: 185\n",
 "Return to zero within tmax.\n",
 "Sample: 186\n",
 "Return to zero within tmax.\n",
 "Sample: 187\n",
 "Return to zero within tmax.\n",
 "Sample: 188\n",
 "Return to zero within tmax.\n",
 "Sample: 189\n",
 "Return to zero within tmax.\n",
 "Sample: 190\n",
 "Return to zero within tmax.\n",
 "Sample: 191\n",
 "Return to zero within tmax.\n",
 "Sample: 192\n",
 "Return to zero within tmax.\n",
 "Sample: 193\n",
 "Return to zero within tmax.\n",
 "Sample: 194\n",
 "Return to zero within tmax.\n",
 "Sample: 195\n",
 "Return to zero within tmax.\n",
 "Sample: 196\n",
 "Return to zero within tmax.\n",
 "Sample: 197\n",
 "Return to zero within tmax.\n",
 "Sample: 198\n",
 "Return to zero within tmax.\n",
 "Sample: 199\n",
 "Return to zero within tmax.\n",
 "Sample: 200\n",
 "Return to zero within tmax.\n",
 "Sample: 201\n",
 "Return to zero within tmax.\n",
 "Sample: 202\n",
 "Return to zero within tmax.\n",
 "Sample: 203\n",
 "Return to zero within tmax.\n",
 "Sample: 204\n",
 "Return to zero within tmax.\n",
 "Sample: 205\n",
 "Return to zero within tmax.\n",
 "Sample: 206\n",
 "Return to zero within tmax.\n",
 "Sample: 207\n",
 "Return to zero within tmax.\n",
 "Sample: 208\n",
 "Return to zero within tmax.\n",
 "Sample: 209\n",
 "Return to zero within tmax.\n",
 "Sample: 210\n",
 "Return to zero within tmax.\n",
 "Sample: 211\n",
 "Return to zero within tmax.\n",
 "Sample: 212\n",
 "Return to zero within tmax.\n",
 "Sample: 213\n",
 "Return to zero within tmax.\n",
 "Sample: 214\n",
 "Return to zero within tmax.\n",
 "Sample: 215\n",
 "Return to zero within tmax.\n",
 "Sample: 216\n",
 "Return to zero within tmax.\n",
 "Sample: 217\n",
 "Return to zero within tmax.\n",
 "Sample: 218\n",
 "Return to zero within tmax.\n",
 "Sample: 219\n",
 "Return to zero within tmax.\n",
 "Sample: 220\n",
 "Return to zero within tmax.\n",
 "Sample: 221\n",
 "Return to zero within tmax.\n",
 "Sample: 222\n",
 "Return to zero within tmax.\n",
 "Sample: 223\n",
 "Return to zero within tmax.\n",
 "Sample: 224\n",
 "Return to zero within tmax.\n",
 "Sample: 225\n",
 "Return to zero within tmax.\n",
 "Sample: 226\n",
 "Return to zero within tmax.\n",
 "Sample: 227\n",
 "Return to zero within tmax.\n",
 "Sample: 228\n",
 "Return to zero within tmax.\n",
 "Sample: 229\n",
 "Return to zero within tmax.\n",
 "Sample: 230\n",
 "Return to zero within tmax.\n",
 "Sample: 231\n",
 "Return to zero within tmax.\n",
 "Sample: 232\n",
 "Return to zero within tmax.\n",
 "Sample: 233\n",
 "Return to zero within tmax.\n",
 "Sample: 234\n",
 "Return to zero within tmax.\n",
 "Sample: 235\n",
 "Return to zero within tmax.\n",
 "Sample: 236\n",
 "Return to zero within tmax.\n",
 "Sample: 237\n",
 "Return to zero within tmax.\n",
 "Sample: 238\n",
 "Return to zero within tmax.\n",
 "Sample: 239\n",
 "Return to zero within tmax.\n",
 "Sample: 240\n",
 "Return to zero within tmax.\n",
 "Sample: 241\n",
 "Return to zero within tmax.\n",
 "Sample: 242\n",
 "Return to zero within tmax.\n",
 "Sample: 243\n",
 "Return to zero within tmax.\n",
 "Sample: 244\n",
 "Return to zero within tmax.\n",
 "Sample: 245\n",
 "Return to zero within tmax.\n",
 "Sample: 246\n",
 "Return to zero within tmax.\n",
 "Sample: 247\n",
 "Return to zero within tmax.\n",
 "Sample: 248\n",
 "Return to zero within tmax.\n",
 "Sample: 249\n",
 "Return to zero within tmax.\n",
 "Sample: 250\n",
 "Return to zero within tmax.\n",
 "Sample: 251\n",
 "Return to zero within tmax.\n",
 "Sample: 252\n",
 "Return to zero within tmax.\n",
 "Sample: 253\n",
 "Return to zero within tmax.\n",
 "Sample: 254\n",
 "Return to zero within tmax.\n",
 "Sample: 255\n",
 "Return to zero within tmax.\n",
 "Sample: 256\n",
 "Return to zero within tmax.\n",
 "Sample: 257\n",
 "Return to zero within tmax.\n",
 "Sample: 258\n",
 "Return to zero within tmax.\n",
 "Sample: 259\n",
 "Return to zero within tmax.\n",
 "Sample: 260\n",
 "Return to zero within tmax.\n",
 "Sample: 261\n",
 "Return to zero within tmax.\n",
 "Sample: 262\n",
 "Return to zero within tmax.\n",
 "Sample: 263\n",
 "Return to zero within tmax.\n",
 "Sample: 264\n",
 "Return to zero within tmax.\n",
 "Sample: 265\n",
 "Return to zero within tmax.\n",
 "Sample: 266\n",
 "Return to zero within tmax.\n",
 "Sample: 267\n",
 "Return to zero within tmax.\n",
 "Sample: 268\n",
 "Return to zero within tmax.\n",
 "Sample: 269\n",
 "Return to zero within tmax.\n",
 "Sample: 270\n",
 "Return to zero within tmax.\n",
 "Sample: 271\n",
 "Return to zero within tmax.\n",
 "Sample: 272\n",
 "Return to zero within tmax.\n",
 "Sample: 273\n",
 "Return to zero within tmax.\n",
 "Sample: 274\n",
 "Return to zero within tmax.\n",
 "Sample: 275\n",
 "Return to zero within tmax.\n",
 "Sample: 276\n",
 "Return to zero within tmax.\n",
 "Sample: 277\n",
 "Return to zero within tmax.\n",
 "Sample: 278\n",
 "Return to zero within tmax.\n",
 "Sample: 279\n"
]
 },
 {
 "name": "stdout",
 "output_type": "stream",
 "text": [
 "Return to zero within tmax.\n",
 "Sample: 280\n",
 "Return to zero within tmax.\n",
 "Sample: 281\n",
 "Return to zero within tmax.\n",
 "Sample: 282\n",
 "Return to zero within tmax.\n",
 "Sample: 283\n",
 "Return to zero within tmax.\n",
 "Sample: 284\n",
 "Return to zero within tmax.\n",
 "Sample: 285\n",
 "Return to zero within tmax.\n",
 "Sample: 286\n",
 "Return to zero within tmax.\n",
 "Sample: 287\n",
 "Return to zero within tmax.\n",
 "Sample: 288\n",
 "Return to zero within tmax.\n",
 "Sample: 289\n",
 "Return to zero within tmax.\n",
 "Sample: 290\n",
 "Return to zero within tmax.\n",
 "Sample: 291\n",
 "Return to zero within tmax.\n",
 "Sample: 292\n",
 "Return to zero within tmax.\n",
 "Sample: 293\n",
 "Return to zero within tmax.\n",
 "Sample: 294\n",
 "Return to zero within tmax.\n",
 "Sample: 295\n",
 "Return to zero within tmax.\n",
 "Sample: 296\n",
 "Return to zero within tmax.\n",
 "Sample: 297\n",
 "Return to zero within tmax.\n",
 "Sample: 298\n",
 "Return to zero within tmax.\n",
 "Sample: 299\n",
 "Return to zero within tmax.\n",
 "Sample: 300\n",
 "Return to zero within tmax.\n",
 "Sample: 301\n",
 "Return to zero within tmax.\n",
 "Sample: 302\n",
 "Return to zero within tmax.\n",
 "Sample: 303\n",
 "Return to zero within tmax.\n",
 "Sample: 304\n",
 "Return to zero within tmax.\n",
 "Sample: 305\n",
 "Return to zero within tmax.\n",
 "Sample: 306\n",
 "Return to zero within tmax.\n",
 "Sample: 307\n",
 "Return to zero within tmax.\n",
 "Sample: 308\n",
 "Return to zero within tmax.\n",
 "Sample: 309\n",
 "Return to zero within tmax.\n",
 "Sample: 310\n",
 "Return to zero within tmax.\n",
 "Sample: 311\n",
 "Return to zero within tmax.\n",
 "Sample: 312\n",
 "Return to zero within tmax.\n",
 "Sample: 313\n",
 "Return to zero within tmax.\n",
 "Sample: 314\n",
 "Return to zero within tmax.\n",
 "Sample: 315\n",
 "Return to zero within tmax.\n",
 "Sample: 316\n",
 "Return to zero within tmax.\n",
 "Sample: 317\n",
 "Return to zero within tmax.\n",
 "Sample: 318\n",
 "Return to zero within tmax.\n",
 "Sample: 319\n",
 "Return to zero within tmax.\n",
 "Sample: 320\n",
 "Return to zero within tmax.\n",
 "Sample: 321\n",
 "Return to zero within tmax.\n",
 "Sample: 322\n",
 "Return to zero within tmax.\n",
 "Sample: 323\n",
 "Return to zero within tmax.\n",
 "Sample: 324\n",
 "Return to zero within tmax.\n",
 "Sample: 325\n",
 "Return to zero within tmax.\n",
 "Sample: 326\n",
 "Return to zero within tmax.\n",
 "Sample: 327\n",
 "Return to zero within tmax.\n",
 "Sample: 328\n",
 "Return to zero within tmax.\n",
 "Sample: 329\n",
 "Return to zero within tmax.\n",
 "Sample: 330\n",
 "Return to zero within tmax.\n",
 "Sample: 331\n",
 "Return to zero within tmax.\n",
 "Sample: 332\n",
 "Return to zero within tmax.\n",
 "Sample: 333\n",
 "Return to zero within tmax.\n",
 "Sample: 334\n",
 "Return to zero within tmax.\n",
 "Sample: 335\n",
 "Return to zero within tmax.\n",
 "Sample: 336\n",
 "Return to zero within tmax.\n",
 "Sample: 337\n",
 "Return to zero within tmax.\n",
 "Sample: 338\n",
 "Return to zero within tmax.\n",
 "Sample: 339\n",
 "Return to zero within tmax.\n",
 "Sample: 340\n",
 "Return to zero within tmax.\n",
 "Sample: 341\n",
 "Return to zero within tmax.\n",
 "Sample: 342\n",
 "Return to zero within tmax.\n",
 "Sample: 343\n",
 "Return to zero within tmax.\n",
 "Sample: 344\n",
 "Return to zero within tmax.\n",
 "Sample: 345\n",
 "Return to zero within tmax.\n",
 "Sample: 346\n",
 "Return to zero within tmax.\n",
 "Sample: 347\n",
 "Return to zero within tmax.\n",
 "Sample: 348\n",
 "Return to zero within tmax.\n",
 "Sample: 349\n",
 "Return to zero within tmax.\n",
 "Sample: 350\n",
 "Return to zero within tmax.\n",
 "Sample: 351\n",
 "Return to zero within tmax.\n",
 "Sample: 352\n",
 "Return to zero within tmax.\n",
 "Sample: 353\n",
 "Return to zero within tmax.\n",
 "Sample: 354\n",
 "Return to zero within tmax.\n",
 "Sample: 355\n",
 "Return to zero within tmax.\n",
 "Sample: 356\n",
 "Return to zero within tmax.\n",
 "Sample: 357\n",
 "Return to zero within tmax.\n",
 "Sample: 358\n",
 "Return to zero within tmax.\n",
 "Sample: 359\n",
 "Return to zero within tmax.\n",
 "Sample: 360\n",
 "Return to zero within tmax.\n",
 "Sample: 361\n",
 "Return to zero within tmax.\n",
 "Sample: 362\n",
 "Return to zero within tmax.\n",
 "Sample: 363\n",
 "Return to zero within tmax.\n",
 "Sample: 364\n",
 "Return to zero within tmax.\n",
 "Sample: 365\n",
 "Return to zero within tmax.\n",
 "Sample: 366\n",
 "Return to zero within tmax.\n",
 "Sample: 367\n",
 "Return to zero within tmax.\n",
 "Sample: 368\n",
 "Return to zero within tmax.\n",
 "Sample: 369\n",
 "Return to zero within tmax.\n",
 "Sample: 370\n",
 "Return to zero within tmax.\n",
 "Sample: 371\n",
 "Return to zero within tmax.\n",
 "Sample: 372\n",
 "Return to zero within tmax.\n",
 "Sample: 373\n",
 "Return to zero within tmax.\n",
 "Sample: 374\n",
 "Return to zero within tmax.\n",
 "Sample: 375\n",
 "Return to zero within tmax.\n",
 "Sample: 376\n",
 "Return to zero within tmax.\n",
 "Sample: 377\n",
 "Return to zero within tmax.\n",
 "Sample: 378\n",
 "Return to zero within tmax.\n",
 "Sample: 379\n",
 "Return to zero within tmax.\n",
 "Sample: 380\n",
 "Return to zero within tmax.\n",
 "Sample: 381\n",
 "Return to zero within tmax.\n",
 "Sample: 382\n",
 "Return to zero within tmax.\n",
 "Sample: 383\n",
 "Return to zero within tmax.\n",
 "Sample: 384\n",
 "Return to zero within tmax.\n",
 "Sample: 385\n",
 "Return to zero within tmax.\n",
 "Sample: 386\n",
 "Return to zero within tmax.\n",
 "Sample: 387\n",
 "Return to zero within tmax.\n",
 "Sample: 388\n",
 "Return to zero within tmax.\n",
 "Sample: 389\n",
 "Return to zero within tmax.\n",
 "Sample: 390\n",
 "Return to zero within tmax.\n",
 "Sample: 391\n",
 "Return to zero within tmax.\n",
 "Sample: 392\n",
 "Return to zero within tmax.\n",
 "Sample: 393\n",
 "Return to zero within tmax.\n",
 "Sample: 394\n",
 "Return to zero within tmax.\n",
 "Sample: 395\n",
 "Return to zero within tmax.\n",
 "Sample: 396\n",
 "Return to zero within tmax.\n",
 "Sample: 397\n",
 "Return to zero within tmax.\n",
 "Sample: 398\n",
 "Return to zero within tmax.\n",
 "Sample: 399\n",
 "Return to zero within tmax.\n",
 "Sample: 400\n",
 "Return to zero within tmax.\n",
 "Sample: 401\n",
 "Return to zero within tmax.\n",
 "Sample: 402\n",
 "Return to zero within tmax.\n",
 "Sample: 403\n",
 "Return to zero within tmax.\n",
 "Sample: 404\n",
 "Return to zero within tmax.\n",
 "Sample: 405\n",
 "Return to zero within tmax.\n",
 "Sample: 406\n",
 "Return to zero within tmax.\n",
 "Sample: 407\n",
 "Return to zero within tmax.\n",
 "Sample: 408\n",
 "Return to zero within tmax.\n",
 "Sample: 409\n",
 "Return to zero within tmax.\n",
 "Sample: 410\n",
 "Return to zero within tmax.\n",
 "Sample: 411\n",
 "Return to zero within tmax.\n",
 "Sample: 412\n",
 "Return to zero within tmax.\n",
 "Sample: 413\n",
 "Return to zero within tmax.\n",
 "Sample: 414\n",
 "Return to zero within tmax.\n",
 "Sample: 415\n",
 "Return to zero within tmax.\n",
 "Sample: 416\n",
 "Return to zero within tmax.\n",
 "Sample: 417\n",
 "Return to zero within tmax.\n",
 "Sample: 418\n",
 "Return to zero within tmax.\n",
 "Sample: 419\n",
 "Return to zero within tmax.\n",
 "Sample: 420\n",
 "Return to zero within tmax.\n",
 "Sample: 421\n",
 "Return to zero within tmax.\n",
 "Sample: 422\n",
 "Return to zero within tmax.\n",
 "Sample: 423\n",
 "Return to zero within tmax.\n",
 "Sample: 424\n",
 "Return to zero within tmax.\n",
 "Sample: 425\n",
 "Return to zero within tmax.\n",
 "Sample: 426\n",
 "Return to zero within tmax.\n",
 "Sample: 427\n",
 "Return to zero within tmax.\n",
 "Sample: 428\n",
 "Return to zero within tmax.\n",
 "Sample: 429\n",
 "Return to zero within tmax.\n",
 "Sample: 430\n",
 "Return to zero within tmax.\n",
 "Sample: 431\n",
 "Return to zero within tmax.\n",
 "Sample: 432\n",
 "Return to zero within tmax.\n",
 "Sample: 433\n",
 "Return to zero within tmax.\n",
 "Sample: 434\n",
 "Return to zero within tmax.\n",
 "Sample: 435\n",
 "Return to zero within tmax.\n",
 "Sample: 436\n",
 "Return to zero within tmax.\n",
 "Sample: 437\n",
 "Return to zero within tmax.\n",
 "Sample: 438\n",
 "Return to zero within tmax.\n",
 "Sample: 439\n",
 "Return to zero within tmax.\n",
 "Sample: 440\n",
 "Return to zero within tmax.\n",
 "Sample: 441\n",
 "Return to zero within tmax.\n",
 "Sample: 442\n",
 "Return to zero within tmax.\n",
 "Sample: 443\n",
 "Return to zero within tmax.\n",
 "Sample: 444\n",
 "Return to zero within tmax.\n",
 "Sample: 445\n",
 "Return to zero within tmax.\n",
 "Sample: 446\n",
 "Return to zero within tmax.\n",
 "Sample: 447\n",
 "Return to zero within tmax.\n",
 "Sample: 448\n",
 "Return to zero within tmax.\n",
 "Sample: 449\n",
 "Return to zero within tmax.\n",
 "Sample: 450\n",
 "Return to zero within tmax.\n",
 "Sample: 451\n",
 "Return to zero within tmax.\n",
 "Sample: 452\n",
 "Return to zero within tmax.\n",
 "Sample: 453\n",
 "Return to zero within tmax.\n",
 "Sample: 454\n",
 "Return to zero within tmax.\n",
 "Sample: 455\n",
 "Return to zero within tmax.\n",
 "Sample: 456\n",
 "Return to zero within tmax.\n",
 "Sample: 457\n",
 "Return to zero within tmax.\n",
 "Sample: 458\n",
 "Return to zero within tmax.\n",
 "Sample: 459\n",
 "Return to zero within tmax.\n",
 "Sample: 460\n",
 "Return to zero within tmax.\n",
 "Sample: 461\n",
 "Return to zero within tmax.\n",
 "Sample: 462\n",
 "Return to zero within tmax.\n",
 "Sample: 463\n",
 "Return to zero within tmax.\n",
 "Sample: 464\n",
 "Return to zero within tmax.\n",
 "Sample: 465\n",
 "Return to zero within tmax.\n",
 "Sample: 466\n",
 "Return to zero within tmax.\n",
 "Sample: 467\n",
 "Return to zero within tmax.\n",
 "Sample: 468\n",
 "Return to zero within tmax.\n",
 "Sample: 469\n",
 "Return to zero within tmax.\n",
 "Sample: 470\n",
 "Return to zero within tmax.\n",
 "Sample: 471\n",
 "Return to zero within tmax.\n",
 "Sample: 472\n",
 "Return to zero within tmax.\n",
 "Sample: 473\n",
 "Sample: 474\n",
 "Return to zero within tmax.\n",
 "Sample: 475\n",
 "Return to zero within tmax.\n",
 "Sample: 476\n",
 "Return to zero within tmax.\n",
 "Sample: 477\n",
 "Return to zero within tmax.\n",
 "Sample: 478\n",
 "Return to zero within tmax.\n",
 "Sample: 479\n",
 "Return to zero within tmax.\n",
 "Sample: 480\n",
 "Return to zero within tmax.\n",
 "Sample: 481\n",
 "Return to zero within tmax.\n",
 "Sample: 482\n",
 "Return to zero within tmax.\n",
 "Sample: 483\n",
 "Return to zero within tmax.\n",
 "Sample: 484\n",
 "Return to zero within tmax.\n",
 "Sample: 485\n",
 "Return to zero within tmax.\n",
 "Sample: 486\n",
 "Return to zero within tmax.\n",
 "Sample: 487\n",
 "Return to zero within tmax.\n",
 "Sample: 488\n",
 "Return to zero within tmax.\n",
 "Sample: 489\n",
 "Return to zero within tmax.\n",
 "Sample: 490\n",
 "Return to zero within tmax.\n",
 "Sample: 491\n",
 "Return to zero within tmax.\n",
 "Sample: 492\n",
 "Return to zero within tmax.\n",
 "Sample: 493\n",
 "Return to zero within tmax.\n",
 "Sample: 494\n",
 "Return to zero within tmax.\n",
 "Sample: 495\n",
 "Return to zero within tmax.\n",
 "Sample: 496\n",
 "Return to zero within tmax.\n",
 "Sample: 497\n",
 "Return to zero within tmax.\n",
 "Sample: 498\n",
 "Return to zero within tmax.\n",
 "Sample: 499\n",
 "Return to zero within tmax.\n",
 "Sample: 500\n",
 "Return to zero within tmax.\n",
 "Sample: 501\n",
 "Return to zero within tmax.\n",
 "Sample: 502\n",
 "Return to zero within tmax.\n",
 "Sample: 503\n",
 "Return to zero within tmax.\n",
 "Sample: 504\n",
 "Return to zero within tmax.\n",
 "Sample: 505\n",
 "Return to zero within tmax.\n",
 "Sample: 506\n",
 "Return to zero within tmax.\n",
 "Sample: 507\n",
 "Return to zero within tmax.\n",
 "Sample: 508\n",
 "Return to zero within tmax.\n",
 "Sample: 509\n",
 "Return to zero within tmax.\n",
 "Sample: 510\n",
 "Return to zero within tmax.\n",
 "Sample: 511\n",
 "Return to zero within tmax.\n",
 "Sample: 512\n",
 "Return to zero within tmax.\n",
 "Sample: 513\n",
 "Return to zero within tmax.\n",
 "Sample: 514\n",
 "Return to zero within tmax.\n",
 "Sample: 515\n",
 "Return to zero within tmax.\n",
 "Sample: 516\n",
 "Return to zero within tmax.\n",
 "Sample: 517\n",
 "Return to zero within tmax.\n",
 "Sample: 518\n",
 "Return to zero within tmax.\n",
 "Sample: 519\n",
 "Return to zero within tmax.\n",
 "Sample: 520\n",
 "Return to zero within tmax.\n",
 "Sample: 521\n",
 "Return to zero within tmax.\n",
 "Sample: 522\n",
 "Return to zero within tmax.\n",
 "Sample: 523\n",
 "Return to zero within tmax.\n",
 "Sample: 524\n",
 "Return to zero within tmax.\n",
 "Sample: 525\n",
 "Return to zero within tmax.\n",
 "Sample: 526\n",
 "Return to zero within tmax.\n",
 "Sample: 527\n",
 "Return to zero within tmax.\n",
 "Sample: 528\n",
 "Return to zero within tmax.\n",
 "Sample: 529\n",
 "Return to zero within tmax.\n",
 "Sample: 530\n",
 "Return to zero within tmax.\n",
 "Sample: 531\n",
 "Return to zero within tmax.\n",
 "Sample: 532\n",
 "Return to zero within tmax.\n",
 "Sample: 533\n",
 "Return to zero within tmax.\n",
 "Sample: 534\n",
 "Return to zero within tmax.\n",
 "Sample: 535\n",
 "Return to zero within tmax.\n",
 "Sample: 536\n",
 "Return to zero within tmax.\n",
 "Sample: 537\n",
 "Return to zero within tmax.\n",
 "Sample: 538\n",
 "Return to zero within tmax.\n",
 "Sample: 539\n",
 "Return to zero within tmax.\n",
 "Sample: 540\n",
 "Return to zero within tmax.\n",
 "Sample: 541\n",
 "Return to zero within tmax.\n",
 "Sample: 542\n",
 "Return to zero within tmax.\n",
 "Sample: 543\n",
 "Return to zero within tmax.\n",
 "Sample: 544\n",
 "Return to zero within tmax.\n",
 "Sample: 545\n",
 "Return to zero within tmax.\n",
 "Sample: 546\n",
 "Return to zero within tmax.\n",
 "Sample: 547\n",
 "Return to zero within tmax.\n",
 "Sample: 548\n",
 "Return to zero within tmax.\n",
 "Sample: 549\n",
 "Return to zero within tmax.\n",
 "Sample: 550\n",
 "Return to zero within tmax.\n",
 "Sample: 551\n",
 "Return to zero within tmax.\n",
 "Sample: 552\n",
 "Return to zero within tmax.\n",
 "Sample: 553\n",
 "Return to zero within tmax.\n",
 "Sample: 554\n",
 "Return to zero within tmax.\n",
 "Sample: 555\n",
 "Return to zero within tmax.\n",
 "Sample: 556\n",
 "Return to zero within tmax.\n",
 "Sample: 557\n",
 "Return to zero within tmax.\n",
 "Sample: 558\n",
 "Return to zero within tmax.\n",
 "Sample: 559\n",
 "Return to zero within tmax.\n",
 "Sample: 560\n",
 "Return to zero within tmax.\n",
 "Sample: 561\n",
 "Return to zero within tmax.\n",
 "Sample: 562\n",
 "Return to zero within tmax.\n",
 "Sample: 563\n",
 "Return to zero within tmax.\n",
 "Sample: 564\n",
 "Return to zero within tmax.\n",
 "Sample: 565\n",
 "Return to zero within tmax.\n",
 "Sample: 566\n",
 "Return to zero within tmax.\n",
 "Sample: 567\n",
 "Return to zero within tmax.\n",
 "Sample: 568\n",
 "Return to zero within tmax.\n",
 "Sample: 569\n",
 "Return to zero within tmax.\n",
 "Sample: 570\n",
 "Return to zero within tmax.\n",
 "Sample: 571\n",
 "Return to zero within tmax.\n",
 "Sample: 572\n",
 "Return to zero within tmax.\n",
 "Sample: 573\n",
 "Return to zero within tmax.\n",
 "Sample: 574\n",
 "Return to zero within tmax.\n",
 "Sample: 575\n",
 "Return to zero within tmax.\n",
 "Sample: 576\n",
 "Return to zero within tmax.\n",
 "Sample: 577\n",
 "Return to zero within tmax.\n",
 "Sample: 578\n",
 "Return to zero within tmax.\n",
 "Sample: 579\n",
 "Return to zero within tmax.\n",
 "Sample: 580\n",
 "Return to zero within tmax.\n",
 "Sample: 581\n",
 "Return to zero within tmax.\n",
 "Sample: 582\n",
 "Return to zero within tmax.\n",
 "Sample: 583\n",
 "Return to zero within tmax.\n",
 "Sample: 584\n",
 "Return to zero within tmax.\n",
 "Sample: 585\n",
 "Return to zero within tmax.\n",
 "Sample: 586\n",
 "Return to zero within tmax.\n",
 "Sample: 587\n",
 "Return to zero within tmax.\n",
 "Sample: 588\n",
 "Return to zero within tmax.\n",
 "Sample: 589\n"
]
 },
 {
 "name": "stdout",
 "output_type": "stream",
 "text": [
 "Return to zero within tmax.\n",
 "Sample: 590\n",
 "Return to zero within tmax.\n",
 "Sample: 591\n",
 "Return to zero within tmax.\n",
 "Sample: 592\n",
 "Return to zero within tmax.\n",
 "Sample: 593\n",
 "Return to zero within tmax.\n",
 "Sample: 594\n",
 "Return to zero within tmax.\n",
 "Sample: 595\n",
 "Return to zero within tmax.\n",
 "Sample: 596\n",
 "Return to zero within tmax.\n",
 "Sample: 597\n",
 "Return to zero within tmax.\n",
 "Sample: 598\n",
 "Return to zero within tmax.\n",
 "Sample: 599\n",
 "Return to zero within tmax.\n",
 "Sample: 600\n",
 "Return to zero within tmax.\n",
 "Sample: 601\n",
 "Return to zero within tmax.\n",
 "Sample: 602\n",
 "Return to zero within tmax.\n",
 "Sample: 603\n",
 "Return to zero within tmax.\n",
 "Sample: 604\n",
 "Return to zero within tmax.\n",
 "Sample: 605\n",
 "Return to zero within tmax.\n",
 "Sample: 606\n",
 "Return to zero within tmax.\n",
 "Sample: 607\n",
 "Return to zero within tmax.\n",
 "Sample: 608\n",
 "Return to zero within tmax.\n",
 "Sample: 609\n",
 "Return to zero within tmax.\n",
 "Sample: 610\n",
 "Return to zero within tmax.\n",
 "Sample: 611\n",
 "Return to zero within tmax.\n",
 "Sample: 612\n",
 "Return to zero within tmax.\n",
 "Sample: 613\n",
 "Return to zero within tmax.\n",
 "Sample: 614\n",
 "Return to zero within tmax.\n",
 "Sample: 615\n",
 "Return to zero within tmax.\n",
 "Sample: 616\n",
 "Return to zero within tmax.\n",
 "Sample: 617\n",
 "Return to zero within tmax.\n",
 "Sample: 618\n",
 "Return to zero within tmax.\n",
 "Sample: 619\n",
 "Return to zero within tmax.\n",
 "Sample: 620\n",
 "Return to zero within tmax.\n",
 "Sample: 621\n",
 "Return to zero within tmax.\n",
 "Sample: 622\n",
 "Return to zero within tmax.\n",
 "Sample: 623\n",
 "Return to zero within tmax.\n",
 "Sample: 624\n",
 "Return to zero within tmax.\n",
 "Sample: 625\n",
 "Return to zero within tmax.\n",
 "Sample: 626\n",
 "Return to zero within tmax.\n",
 "Sample: 627\n",
 "Return to zero within tmax.\n",
 "Sample: 628\n",
 "Return to zero within tmax.\n",
 "Sample: 629\n",
 "Return to zero within tmax.\n",
 "Sample: 630\n",
 "Return to zero within tmax.\n",
 "Sample: 631\n",
 "Return to zero within tmax.\n",
 "Sample: 632\n",
 "Return to zero within tmax.\n",
 "Sample: 633\n",
 "Return to zero within tmax.\n",
 "Sample: 634\n",
 "Return to zero within tmax.\n",
 "Sample: 635\n",
 "Return to zero within tmax.\n",
 "Sample: 636\n",
 "Return to zero within tmax.\n",
 "Sample: 637\n",
 "Return to zero within tmax.\n",
 "Sample: 638\n",
 "Return to zero within tmax.\n",
 "Sample: 639\n",
 "Return to zero within tmax.\n",
 "Sample: 640\n",
 "Return to zero within tmax.\n",
 "Sample: 641\n",
 "Return to zero within tmax.\n",
 "Sample: 642\n",
 "Return to zero within tmax.\n",
 "Sample: 643\n",
 "Sample: 644\n",
 "Return to zero within tmax.\n",
 "Sample: 645\n",
 "Return to zero within tmax.\n",
 "Sample: 646\n",
 "Return to zero within tmax.\n",
 "Sample: 647\n",
 "Return to zero within tmax.\n",
 "Sample: 648\n",
 "Return to zero within tmax.\n",
 "Sample: 649\n",
 "Return to zero within tmax.\n",
 "Sample: 650\n",
 "Return to zero within tmax.\n",
 "Sample: 651\n",
 "Return to zero within tmax.\n",
 "Sample: 652\n",
 "Return to zero within tmax.\n",
 "Sample: 653\n",
 "Return to zero within tmax.\n",
 "Sample: 654\n",
 "Return to zero within tmax.\n",
 "Sample: 655\n",
 "Return to zero within tmax.\n",
 "Sample: 656\n",
 "Return to zero within tmax.\n",
 "Sample: 657\n",
 "Return to zero within tmax.\n",
 "Sample: 658\n",
 "Return to zero within tmax.\n",
 "Sample: 659\n",
 "Return to zero within tmax.\n",
 "Sample: 660\n",
 "Return to zero within tmax.\n",
 "Sample: 661\n",
 "Return to zero within tmax.\n",
 "Sample: 662\n",
 "Return to zero within tmax.\n",
 "Sample: 663\n",
 "Return to zero within tmax.\n",
 "Sample: 664\n",
 "Return to zero within tmax.\n",
 "Sample: 665\n",
 "Return to zero within tmax.\n",
 "Sample: 666\n",
 "Return to zero within tmax.\n",
 "Sample: 667\n",
 "Return to zero within tmax.\n",
 "Sample: 668\n",
 "Return to zero within tmax.\n",
 "Sample: 669\n",
 "Return to zero within tmax.\n",
 "Sample: 670\n",
 "Return to zero within tmax.\n",
 "Sample: 671\n",
 "Return to zero within tmax.\n",
 "Sample: 672\n",
 "Return to zero within tmax.\n",
 "Sample: 673\n",
 "Return to zero within tmax.\n",
 "Sample: 674\n",
 "Return to zero within tmax.\n",
 "Sample: 675\n",
 "Return to zero within tmax.\n",
 "Sample: 676\n",
 "Return to zero within tmax.\n",
 "Sample: 677\n",
 "Return to zero within tmax.\n",
 "Sample: 678\n",
 "Return to zero within tmax.\n",
 "Sample: 679\n",
 "Return to zero within tmax.\n",
 "Sample: 680\n",
 "Return to zero within tmax.\n",
 "Sample: 681\n",
 "Return to zero within tmax.\n",
 "Sample: 682\n",
 "Return to zero within tmax.\n",
 "Sample: 683\n",
 "Return to zero within tmax.\n",
 "Sample: 684\n",
 "Return to zero within tmax.\n",
 "Sample: 685\n",
 "Return to zero within tmax.\n",
 "Sample: 686\n",
 "Return to zero within tmax.\n",
 "Sample: 687\n",
 "Return to zero within tmax.\n",
 "Sample: 688\n",
 "Return to zero within tmax.\n",
 "Sample: 689\n",
 "Return to zero within tmax.\n",
 "Sample: 690\n",
 "Return to zero within tmax.\n",
 "Sample: 691\n",
 "Return to zero within tmax.\n",
 "Sample: 692\n",
 "Return to zero within tmax.\n",
 "Sample: 693\n",
 "Return to zero within tmax.\n",
 "Sample: 694\n",
 "Return to zero within tmax.\n",
 "Sample: 695\n",
 "Return to zero within tmax.\n",
 "Sample: 696\n",
 "Return to zero within tmax.\n",
 "Sample: 697\n",
 "Return to zero within tmax.\n",
 "Sample: 698\n",
 "Return to zero within tmax.\n",
 "Sample: 699\n",
 "Return to zero within tmax.\n",
 "Sample: 700\n",
 "Return to zero within tmax.\n",
 "Sample: 701\n",
 "Return to zero within tmax.\n",
 "Sample: 702\n",
 "Return to zero within tmax.\n",
 "Sample: 703\n",
 "Return to zero within tmax.\n",
 "Sample: 704\n",
 "Return to zero within tmax.\n",
 "Sample: 705\n",
 "Return to zero within tmax.\n",
 "Sample: 706\n",
 "Return to zero within tmax.\n",
 "Sample: 707\n",
 "Return to zero within tmax.\n",
 "Sample: 708\n",
 "Return to zero within tmax.\n",
 "Sample: 709\n",
 "Return to zero within tmax.\n",
 "Sample: 710\n",
 "Return to zero within tmax.\n",
 "Sample: 711\n",
 "Return to zero within tmax.\n",
 "Sample: 712\n",
 "Return to zero within tmax.\n",
 "Sample: 713\n",
 "Return to zero within tmax.\n",
 "Sample: 714\n",
 "Return to zero within tmax.\n",
 "Sample: 715\n",
 "Return to zero within tmax.\n",
 "Sample: 716\n",
 "Return to zero within tmax.\n",
 "Sample: 717\n",
 "Return to zero within tmax.\n",
 "Sample: 718\n",
 "Return to zero within tmax.\n",
 "Sample: 719\n",
 "Return to zero within tmax.\n",
 "Sample: 720\n",
 "Return to zero within tmax.\n",
 "Sample: 721\n",
 "Return to zero within tmax.\n",
 "Sample: 722\n",
 "Return to zero within tmax.\n",
 "Sample: 723\n",
 "Return to zero within tmax.\n",
 "Sample: 724\n",
 "Return to zero within tmax.\n",
 "Sample: 725\n",
 "Return to zero within tmax.\n",
 "Sample: 726\n",
 "Return to zero within tmax.\n",
 "Sample: 727\n",
 "Return to zero within tmax.\n",
 "Sample: 728\n",
 "Return to zero within tmax.\n",
 "Sample: 729\n",
 "Return to zero within tmax.\n",
 "Sample: 730\n",
 "Return to zero within tmax.\n",
 "Sample: 731\n",
 "Return to zero within tmax.\n",
 "Sample: 732\n",
 "Return to zero within tmax.\n",
 "Sample: 733\n",
 "Return to zero within tmax.\n",
 "Sample: 734\n",
 "Return to zero within tmax.\n",
 "Sample: 735\n",
 "Return to zero within tmax.\n",
 "Sample: 736\n",
 "Return to zero within tmax.\n",
 "Sample: 737\n",
 "Return to zero within tmax.\n",
 "Sample: 738\n",
 "Return to zero within tmax.\n",
 "Sample: 739\n",
 "Return to zero within tmax.\n",
 "Sample: 740\n",
 "Return to zero within tmax.\n",
 "Sample: 741\n",
 "Return to zero within tmax.\n",
 "Sample: 742\n",
 "Return to zero within tmax.\n",
 "Sample: 743\n",
 "Return to zero within tmax.\n",
 "Sample: 744\n",
 "Return to zero within tmax.\n",
 "Sample: 745\n",
 "Return to zero within tmax.\n",
 "Sample: 746\n",
 "Return to zero within tmax.\n",
 "Sample: 747\n",
 "Return to zero within tmax.\n",
 "Sample: 748\n",
 "Return to zero within tmax.\n",
 "Sample: 749\n",
 "Return to zero within tmax.\n",
 "Sample: 750\n",
 "Return to zero within tmax.\n",
 "Sample: 751\n",
 "Return to zero within tmax.\n",
 "Sample: 752\n",
 "Return to zero within tmax.\n",
 "Sample: 753\n",
 "Return to zero within tmax.\n",
 "Sample: 754\n",
 "Return to zero within tmax.\n",
 "Sample: 755\n",
 "Return to zero within tmax.\n",
 "Sample: 756\n",
 "Return to zero within tmax.\n",
 "Sample: 757\n",
 "Return to zero within tmax.\n",
 "Sample: 758\n",
 "Return to zero within tmax.\n",
 "Sample: 759\n",
 "Return to zero within tmax.\n",
 "Sample: 760\n",
 "Return to zero within tmax.\n",
 "Sample: 761\n",
 "Return to zero within tmax.\n",
 "Sample: 762\n",
 "Return to zero within tmax.\n",
 "Sample: 763\n",
 "Return to zero within tmax.\n",
 "Sample: 764\n",
 "Return to zero within tmax.\n",
 "Sample: 765\n",
 "Return to zero within tmax.\n",
 "Sample: 766\n",
 "Return to zero within tmax.\n",
 "Sample: 767\n",
 "Return to zero within tmax.\n",
 "Sample: 768\n",
 "Return to zero within tmax.\n",
 "Sample: 769\n",
 "Return to zero within tmax.\n",
 "Sample: 770\n",
 "Return to zero within tmax.\n",
 "Sample: 771\n",
 "Return to zero within tmax.\n",
 "Sample: 772\n",
 "Return to zero within tmax.\n",
 "Sample: 773\n",
 "Return to zero within tmax.\n",
 "Sample: 774\n",
 "Return to zero within tmax.\n",
 "Sample: 775\n",
 "Return to zero within tmax.\n",
 "Sample: 776\n",
 "Return to zero within tmax.\n",
 "Sample: 777\n",
 "Return to zero within tmax.\n",
 "Sample: 778\n",
 "Return to zero within tmax.\n",
 "Sample: 779\n",
 "Return to zero within tmax.\n",
 "Sample: 780\n",
 "Return to zero within tmax.\n",
 "Sample: 781\n",
 "Return to zero within tmax.\n",
 "Sample: 782\n",
 "Return to zero within tmax.\n",
 "Sample: 783\n",
 "Return to zero within tmax.\n",
 "Sample: 784\n",
 "Return to zero within tmax.\n",
 "Sample: 785\n",
 "Return to zero within tmax.\n",
 "Sample: 786\n",
 "Return to zero within tmax.\n",
 "Sample: 787\n",
 "Return to zero within tmax.\n",
 "Sample: 788\n",
 "Return to zero within tmax.\n",
 "Sample: 789\n",
 "Return to zero within tmax.\n",
 "Sample: 790\n",
 "Return to zero within tmax.\n",
 "Sample: 791\n",
 "Return to zero within tmax.\n",
 "Sample: 792\n",
 "Return to zero within tmax.\n",
 "Sample: 793\n",
 "Return to zero within tmax.\n",
 "Sample: 794\n",
 "Return to zero within tmax.\n",
 "Sample: 795\n",
 "Return to zero within tmax.\n",
 "Sample: 796\n",
 "Return to zero within tmax.\n",
 "Sample: 797\n",
 "Return to zero within tmax.\n",
 "Sample: 798\n",
 "Return to zero within tmax.\n",
 "Sample: 799\n",
 "Return to zero within tmax.\n",
 "Sample: 800\n",
 "Return to zero within tmax.\n",
 "Sample: 801\n",
 "Return to zero within tmax.\n",
 "Sample: 802\n",
 "Return to zero within tmax.\n",
 "Sample: 803\n",
 "Return to zero within tmax.\n",
 "Sample: 804\n",
 "Return to zero within tmax.\n",
 "Sample: 805\n",
 "Return to zero within tmax.\n",
 "Sample: 806\n",
 "Return to zero within tmax.\n",
 "Sample: 807\n",
 "Return to zero within tmax.\n",
 "Sample: 808\n",
 "Return to zero within tmax.\n",
 "Sample: 809\n",
 "Return to zero within tmax.\n",
 "Sample: 810\n",
 "Return to zero within tmax.\n",
 "Sample: 811\n",
 "Return to zero within tmax.\n",
 "Sample: 812\n",
 "Return to zero within tmax.\n",
 "Sample: 813\n",
 "Return to zero within tmax.\n",
 "Sample: 814\n",
 "Return to zero within tmax.\n",
 "Sample: 815\n",
 "Return to zero within tmax.\n",
 "Sample: 816\n",
 "Return to zero within tmax.\n",
 "Sample: 817\n",
 "Return to zero within tmax.\n",
 "Sample: 818\n",
 "Return to zero within tmax.\n",
 "Sample: 819\n",
 "Return to zero within tmax.\n",
 "Sample: 820\n",
 "Return to zero within tmax.\n",
 "Sample: 821\n",
 "Return to zero within tmax.\n",
 "Sample: 822\n",
 "Return to zero within tmax.\n",
 "Sample: 823\n",
 "Return to zero within tmax.\n",
 "Sample: 824\n",
 "Return to zero within tmax.\n",
 "Sample: 825\n",
 "Return to zero within tmax.\n",
 "Sample: 826\n",
 "Return to zero within tmax.\n",
 "Sample: 827\n",
 "Return to zero within tmax.\n",
 "Sample: 828\n",
 "Return to zero within tmax.\n",
 "Sample: 829\n",
 "Return to zero within tmax.\n",
 "Sample: 830\n",
 "Return to zero within tmax.\n",
 "Sample: 831\n",
 "Return to zero within tmax.\n",
 "Sample: 832\n",
 "Return to zero within tmax.\n",
 "Sample: 833\n",
 "Return to zero within tmax.\n",
 "Sample: 834\n",
 "Return to zero within tmax.\n",
 "Sample: 835\n",
 "Return to zero within tmax.\n",
 "Sample: 836\n",
 "Return to zero within tmax.\n",
 "Sample: 837\n",
 "Return to zero within tmax.\n",
 "Sample: 838\n",
 "Return to zero within tmax.\n",
 "Sample: 839\n",
 "Return to zero within tmax.\n",
 "Sample: 840\n",
 "Return to zero within tmax.\n",
 "Sample: 841\n",
 "Return to zero within tmax.\n",
 "Sample: 842\n",
 "Return to zero within tmax.\n",
 "Sample: 843\n",
 "Return to zero within tmax.\n",
 "Sample: 844\n",
 "Return to zero within tmax.\n",
 "Sample: 845\n",
 "Return to zero within tmax.\n",
 "Sample: 846\n",
 "Return to zero within tmax.\n",
 "Sample: 847\n",
 "Return to zero within tmax.\n",
 "Sample: 848\n",
 "Return to zero within tmax.\n",
 "Sample: 849\n",
 "Return to zero within tmax.\n",
 "Sample: 850\n",
 "Return to zero within tmax.\n",
 "Sample: 851\n",
 "Return to zero within tmax.\n",
 "Sample: 852\n",
 "Return to zero within tmax.\n",
 "Sample: 853\n",
 "Return to zero within tmax.\n",
 "Sample: 854\n",
 "Return to zero within tmax.\n",
 "Sample: 855\n",
 "Return to zero within tmax.\n",
 "Sample: 856\n",
 "Return to zero within tmax.\n",
 "Sample: 857\n",
 "Return to zero within tmax.\n",
 "Sample: 858\n",
 "Return to zero within tmax.\n",
 "Sample: 859\n",
 "Return to zero within tmax.\n",
 "Sample: 860\n",
 "Return to zero within tmax.\n",
 "Sample: 861\n",
 "Return to zero within tmax.\n",
 "Sample: 862\n",
 "Return to zero within tmax.\n",
 "Sample: 863\n",
 "Return to zero within tmax.\n",
 "Sample: 864\n",
 "Return to zero within tmax.\n",
 "Sample: 865\n",
 "Return to zero within tmax.\n",
 "Sample: 866\n",
 "Return to zero within tmax.\n",
 "Sample: 867\n",
 "Return to zero within tmax.\n",
 "Sample: 868\n",
 "Return to zero within tmax.\n",
 "Sample: 869\n",
 "Return to zero within tmax.\n",
 "Sample: 870\n",
 "Return to zero within tmax.\n",
 "Sample: 871\n",
 "Return to zero within tmax.\n",
 "Sample: 872\n",
 "Return to zero within tmax.\n",
 "Sample: 873\n",
 "Return to zero within tmax.\n",
 "Sample: 874\n",
 "Return to zero within tmax.\n",
 "Sample: 875\n",
 "Return to zero within tmax.\n",
 "Sample: 876\n",
 "Return to zero within tmax.\n",
 "Sample: 877\n",
 "Return to zero within tmax.\n",
 "Sample: 878\n",
 "Return to zero within tmax.\n",
 "Sample: 879\n",
 "Return to zero within tmax.\n",
 "Sample: 880\n",
 "Return to zero within tmax.\n",
 "Sample: 881\n",
 "Return to zero within tmax.\n",
 "Sample: 882\n",
 "Return to zero within tmax.\n",
 "Sample: 883\n",
 "Return to zero within tmax.\n",
 "Sample: 884\n",
 "Return to zero within tmax.\n",
 "Sample: 885\n",
 "Return to zero within tmax.\n",
 "Sample: 886\n",
 "Return to zero within tmax.\n",
 "Sample: 887\n",
 "Return to zero within tmax.\n",
 "Sample: 888\n",
 "Return to zero within tmax.\n",
 "Sample: 889\n",
 "Return to zero within tmax.\n",
 "Sample: 890\n",
 "Return to zero within tmax.\n",
 "Sample: 891\n",
 "Return to zero within tmax.\n",
 "Sample: 892\n",
 "Return to zero within tmax.\n",
 "Sample: 893\n",
 "Return to zero within tmax.\n",
 "Sample: 894\n",
 "Return to zero within tmax.\n",
 "Sample: 895\n",
 "Return to zero within tmax.\n",
 "Sample: 896\n",
 "Return to zero within tmax.\n",
 "Sample: 897\n",
 "Return to zero within tmax.\n",
 "Sample: 898\n",
 "Return to zero within tmax.\n",
 "Sample: 899\n",
 "Return to zero within tmax.\n",
 "Sample: 900\n",
 "Return to zero within tmax.\n",
 "Sample: 901\n",
 "Return to zero within tmax.\n",
 "Sample: 902\n",
 "Return to zero within tmax.\n",
 "Sample: 903\n",
 "Return to zero within tmax.\n",
 "Sample: 904\n",
 "Return to zero within tmax.\n",
 "Sample: 905\n",
 "Return to zero within tmax.\n",
 "Sample: 906\n",
 "Return to zero within tmax.\n",
 "Sample: 907\n",
 "Return to zero within tmax.\n",
 "Sample: 908\n",
 "Return to zero within tmax.\n",
 "Sample: 909\n",
 "Return to zero within tmax.\n",
 "Sample: 910\n",
 "Return to zero within tmax.\n",
 "Sample: 911\n",
 "Return to zero within tmax.\n",
 "Sample: 912\n",
 "Return to zero within tmax.\n",
 "Sample: 913\n",
 "Return to zero within tmax.\n",
 "Sample: 914\n",
 "Return to zero within tmax.\n",
 "Sample: 915\n",
 "Return to zero within tmax.\n",
 "Sample: 916\n",
 "Return to zero within tmax.\n",
 "Sample: 917\n",
 "Return to zero within tmax.\n",
 "Sample: 918\n",
 "Return to zero within tmax.\n",
 "Sample: 919\n",
 "Return to zero within tmax.\n",
 "Sample: 920\n",
 "Return to zero within tmax.\n",
 "Sample: 921\n"
]
 },
 {
 "name": "stdout",
 "output_type": "stream",
 "text": [
 "Return to zero within tmax.\n",
 "Sample: 922\n",
 "Return to zero within tmax.\n",
 "Sample: 923\n",
 "Return to zero within tmax.\n",
 "Sample: 924\n",
 "Return to zero within tmax.\n",
 "Sample: 925\n",
 "Return to zero within tmax.\n",
 "Sample: 926\n",
 "Return to zero within tmax.\n",
 "Sample: 927\n",
 "Return to zero within tmax.\n",
 "Sample: 928\n",
 "Return to zero within tmax.\n",
 "Sample: 929\n",
 "Return to zero within tmax.\n",
 "Sample: 930\n",
 "Return to zero within tmax.\n",
 "Sample: 931\n",
 "Return to zero within tmax.\n",
 "Sample: 932\n",
 "Return to zero within tmax.\n",
 "Sample: 933\n",
 "Return to zero within tmax.\n",
 "Sample: 934\n",
 "Return to zero within tmax.\n",
 "Sample: 935\n",
 "Return to zero within tmax.\n",
 "Sample: 936\n",
 "Return to zero within tmax.\n",
 "Sample: 937\n",
 "Return to zero within tmax.\n",
 "Sample: 938\n",
 "Return to zero within tmax.\n",
 "Sample: 939\n",
 "Return to zero within tmax.\n",
 "Sample: 940\n",
 "Return to zero within tmax.\n",
 "Sample: 941\n",
 "Return to zero within tmax.\n",
 "Sample: 942\n",
 "Return to zero within tmax.\n",
 "Sample: 943\n",
 "Return to zero within tmax.\n",
 "Sample: 944\n",
 "Return to zero within tmax.\n",
 "Sample: 945\n",
 "Return to zero within tmax.\n",
 "Sample: 946\n",
 "Return to zero within tmax.\n",
 "Sample: 947\n",
 "Return to zero within tmax.\n",
 "Sample: 948\n",
 "Return to zero within tmax.\n",
 "Sample: 949\n",
 "Return to zero within tmax.\n",
 "Sample: 950\n",
 "Return to zero within tmax.\n",
 "Sample: 951\n",
 "Return to zero within tmax.\n",
 "Sample: 952\n",
 "Return to zero within tmax.\n",
 "Sample: 953\n",
 "Return to zero within tmax.\n",
 "Sample: 954\n",
 "Return to zero within tmax.\n",
 "Sample: 955\n",
 "Return to zero within tmax.\n",
 "Sample: 956\n",
 "Return to zero within tmax.\n",
 "Sample: 957\n",
 "Return to zero within tmax.\n",
 "Sample: 958\n",
 "Return to zero within tmax.\n",
 "Sample: 959\n",
 "Return to zero within tmax.\n",
 "Sample: 960\n",
 "Return to zero within tmax.\n",
 "Sample: 961\n",
 "Return to zero within tmax.\n",
 "Sample: 962\n",
 "Return to zero within tmax.\n",
 "Sample: 963\n",
 "Return to zero within tmax.\n",
 "Sample: 964\n",
 "Return to zero within tmax.\n",
 "Sample: 965\n",
 "Return to zero within tmax.\n",
 "Sample: 966\n",
 "Return to zero within tmax.\n",
 "Sample: 967\n",
 "Return to zero within tmax.\n",
 "Sample: 968\n",
 "Return to zero within tmax.\n",
 "Sample: 969\n",
 "Return to zero within tmax.\n",
 "Sample: 970\n",
 "Return to zero within tmax.\n",
 "Sample: 971\n",
 "Return to zero within tmax.\n",
 "Sample: 972\n",
 "Return to zero within tmax.\n",
 "Sample: 973\n",
 "Return to zero within tmax.\n",
 "Sample: 974\n",
 "Return to zero within tmax.\n",
 "Sample: 975\n",
 "Return to zero within tmax.\n",
 "Sample: 976\n",
 "Return to zero within tmax.\n",
 "Sample: 977\n",
 "Return to zero within tmax.\n",
 "Sample: 978\n",
 "Return to zero within tmax.\n",
 "Sample: 979\n",
 "Return to zero within tmax.\n",
 "Sample: 980\n",
 "Return to zero within tmax.\n",
 "Sample: 981\n",
 "Return to zero within tmax.\n",
 "Sample: 982\n",
 "Return to zero within tmax.\n",
 "Sample: 983\n",
 "Return to zero within tmax.\n",
 "Sample: 984\n",
 "Return to zero within tmax.\n",
 "Sample: 985\n",
 "Return to zero within tmax.\n",
 "Sample: 986\n",
 "Return to zero within tmax.\n",
 "Sample: 987\n",
 "Return to zero within tmax.\n",
 "Sample: 988\n",
 "Return to zero within tmax.\n",
 "Sample: 989\n",
 "Return to zero within tmax.\n",
 "Sample: 990\n",
 "Return to zero within tmax.\n",
 "Sample: 991\n",
 "Return to zero within tmax.\n",
 "Sample: 992\n",
 "Return to zero within tmax.\n",
 "Sample: 993\n",
 "Return to zero within tmax.\n",
 "Sample: 994\n",
 "Return to zero within tmax.\n",
 "Sample: 995\n",
 "Return to zero within tmax.\n",
 "Sample: 996\n",
 "Return to zero within tmax.\n",
 "Sample: 997\n",
 "Return to zero within tmax.\n",
 "Sample: 998\n",
 "Return to zero within tmax.\n",
 "Sample: 999\n",
 "Return to zero within tmax.\n",
 "Sample: 1000\n",
 "Return to zero within tmax.\n",
 "Probability of return to zero within tmax: 0.997\n"
]
 }
],
 "source": [
 "import random\n",
 "import numpy as np\n",
 "import matplotlib.pyplot as plt\n",
 "p = 0.5;p_tilde = 0.5\n",
 "count = 0; nsamples = 1000; tmax = 10000\n",
 "for n in range(1, nsamples+1):\n",
 " print(\"Sample: \", n)\n",
 " positions = [0]\n",
 " r1 = np.random.random(tmax)\n",
 " r2 = np.random.random(tmax)\n",
 " upp = r1 < p\n",
 " upp_tilde = r2 < p_tilde\n",
 " for k in range(1, tmax):\n",
 " repeatedNum = np.sum(positions == positions[-1])\n",
 " if ((max(positions) == positions[-1]) & (repeatedNum == 1)):\n",
 " up = (upp_tilde[k-1] == 1)\n",
 " down = ((upp_tilde[k-1] == 0) & (positions[-1] != 0))\n",
 " else:\n",
 " up = (upp[k-1] == 1)\n",
 " down = ((upp[k-1] == 0) & (positions[-1] != 0))\n",
 " Sk = positions[-1] - down + up\n",
 " if Sk == 0:\n",
 " count += 1\n",
 " print(\"Return to zero within tmax.\")\n",
 " break\n",
 " positions.append(Sk)\n",
 "print(\"Probability of return to zero within tmax:\",count / nsamples)"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "b52a1304",
 "metadata": {},
 "outputs": [],
 "source": []
 }
],
 "metadata": {
 "kernelspec": {
 "display_name": "Python 3 (ipykernel)",
 "language": "python",
 "name": "python3"
 },
 "language_info": {
 "codemirror_mode": {
 "name": "ipython",
 "version": 3
 },
 "file_extension": ".py",
 "mimetype": "text/x-python",
 "name": "python",
 "nbconvert_exporter": "python",
 "pygments_lexer": "ipython3",
 "version": "3.10.12"
 }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}

https://jupyter.org/try
https://research.google.com/colaboratory/
https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

(i) When p ̸= q, by Proposition 4.14 applied to k = x− 1 and L = x+ 1 and
first step analysis, we find that the mean time to reach the next cookie at state�� ��x+ 1 is given by

E
[
T rx+1

∣∣S0 = x̂
]

= p̃+ q̃

(
1 + x+ 1− (x− 1)

p− q
+

q

(p− q)2

((
q

p

)x+1
−
(
q

p

)x−1
))

= 1 + q̃

(
2

p− q
+

q

(p− q)2

((
q

p

)x+1
−
(
q

p

)x−1
))

= 1 + 2q̃
p− q

− q̃

(p− q)p

(
q

p

)x
= 1 + q̃

p− q

(
2− 1

p

(
q

p

)x)
.

Next, we proceed by summing (5.8) and the above expression, as follows:

E
[
T rx
∣∣S0 = 0

]
=

x−1∑
k=0

E
[
T rk+1

∣∣S0 = k̂
]

= E
[
T r1
∣∣S0 = 0

]
+
x−1∑
k=1

(
1 + 2q̃

p− q
− q̃

(p− q)p

(
q

p

)k)

=
1
p
+

(
1 + 2q̃

p− q

)
(x− 1)− q̃q

p2(p− q)

x−2∑
k=0

(
q

p

)k
=

1
p
+

(
1 + 2q̃

p− q

)
(x− 1)− q̃q

p2(p− q)
1− (q/p)x−1

1− q/p

=
1
p
+

(
1 + 2q̃

p− q

)
(x− 1)− q̃q

(p− q)2p
(1− (q/p)x−1), x ⩾ 1.

(ii) Similarly, when p = q = 1/2, by Proposition 4.14 applied to k = x− 1 and
L = x+ 1 and first step analysis, we find

E
[
T rx+1

∣∣S0 = x̂
]
= p̃+ (1 + (x+ 1 + (x− 1) + 1)(x+ 1− (x− 1)))q̃
= p̃+ (1 + 4x+ 2)q̃
= 1 + 2(2x+ 1)q̃.

Next, we proceed by summing (5.8) and the above result, as follows:

E
[
T rx
∣∣S0 = 0

]
=

x−1∑
k=0

E
[
T rk+1

∣∣S0 = k̂
]

128 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

= 2 +
x−1∑
k=1

(1 + (4k+ 2)q̃)

= 2 + (1 + 2q̃)(x− 1) + 4q̃
x−1∑
k=1

k

= 2 + (1 + 2q̃)(x− 1) + 2q̃x(x− 1)
= 2 + (1 + 2q̃)x− (1 + 2q̃) + 2q̃x2 − 2q̃x
= 1− 2q̃+ x+ 2q̃x2, x ⩾ 1.

□

Letting p := (1 + ε)/2 and q := (1− ε)/2 we check that the following equiva-
lences hold as ε tends to zero:

q− q̃
p

+

(
1 + 2q̃

p− q

)
x+

q̃

(p− q)2

((
q

p

)x
− 1
)

≃ 1− 2q̃+ x+
2q̃
ε
x+

q̃

ε

(
(1− ε)x(1 + ε)−x − 1

)
≃ 1− 2q̃+ x+

2q̃
ε
x+

q̃

ε

(
−2εx+ ε2x(x− 1) + ε2x(x+ 1)

)
≃ 1− 2q̃+ x+

2q̃
ε
x+

q̃

ε2 (−2εx+ 2ε2x2)

≃ 1− 2q̃+ x+ 2q̃x2, x ⩾ 1.

Remark 5.5. One can also show that when p = q = 1/2, for all q̃ < 1 the
mean return time E

[
T r0
∣∣S0 = 0

]
to state 0 is infinite, showing that the cookie

random walk is null recurrent, see page 2563 of Antal and Redner (2005).

5.4 Count of cookies eaten

Recall that the random walk (Sn)n⩾0 with cookies on {1, 2, 3, . . .} is symmetric
in the absence of cookies, and restarts with probabilities p and q = 1− p of
moving up, resp. down, when it encounters a cookie, where p ∈ [0, 1). The
random walk starts at state 0 , which is empty of cookie.
For any x ⩾ 1, let T rx denote the first return time

T rx := inf{n ⩾ 1 : Sn = x}, x ⩾ 1.

Recall that the probability of eating at least x cookies before returning to the
origin 0 is given by

" 129

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

P
(
T rx < T r0 | S0 = 0

)
=

1
2

x∏
l=2

(
1− 2q

l

)
, x ⩾ 1, (5.9)

and that the random walk is recurrent, i.e. it returns to the origin 0 in finite
time whenever p < 1, that means we have P

(
T r0 <∞ | S0 = 0

)
= 1.

Proposition 5.6. Let X denote the number of cookies eaten by the random
walk before returning to the origin 0 . We have

P(X = 0) = q, P(X = 1) = pq̃, P(X = 2) = pp̃qq̃

1− pq ,

and the distribution of X satisfies

P(X = x) = pf(x)
x−1∏
l=1

(1− f(l)) , x ⩾ 1, (5.10)

where
f(l) :=

(q− p)q̃
(1− (p/q)l+1)q2 ∈ [0, 1], l ⩾ 1, (5.11)

when p ̸= q, and
f(l) :=

2q̃
l+ 1 ∈ (0, 1], l ⩾ 1,

when p = q = 1/2.

Proof. The probability P(X = 0) that the random walk eats no cookie before
hitting the origin is the probability of going directly from 0 to 0 in one time
step, which is q.

The probability P(X = 1) that the random walk eats exactly one cookie
before hitting the origin is the probability of first moving from 0 to 1 in one
time step and then back to 0 in one time step, that is q̃× p. When p ̸= q, by
Proposition 5.1 we have

P(X = x) = P
(
T rx < T r0 | S0 = 0

)
−P

(
T rx+1 < T r0 | S0 = 0

)
= p

x−1∏
l=1

(1− f(l))− p
x∏
l=1

(1− f(l))

= p (1− (1− f(x)))
x−1∏
l=1

(1− f(l))

= pf(x)
x−1∏
l=1

(1− f(l)) .

130 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

□

When x = 2, Proposition 5.6 yields

P(X = 2) = pf(2)(1− f(1))

=
(q− p)pq̃

(1− (p/q)3)q2

(
1− (q− p)q̃

(1− (p/q)2)q2

)
=
pqq̃p̃(q− p)
q3 − p3

=
pqq̃p̃

q2 + pq+ p2

=
pqq̃p̃

1− pq

= pqq̃p̃
∞∑
n=0

(pq)n,

which states that in order to eat two cookies, one has to take two steps up, two
steps down, and to switch between states 1 and 2 for an arbitrary number
of times n.

On the other hand, when q̃ = 0, the distribution of the number of cookies
eaten by the random walk before returning to the origin 0 is given by

P(X = 0) = q, and P(X =∞) = 1− q.

The result of Proposition 5.6 can also be written as

P(X = x) =
(q− p)pq̃

(1− (p/q)x+1)q2

x∏
l=2

(
1− (q− p)q̃

(1− (p/q)l)q2

)
, x ⩾ 1, (5.12)

when p < 1/2, and

P(X = x) =
q̃

x+ 1

x∏
l=2

(
1− 2q̃

l

)
, x ⩾ 1, (5.13)

if p = q = 1/2, with

∑
x⩾0

P(X = x) =
1
2 +

∑
x⩾1

q̃

x+ 1

x∏
l=2

(
1− 2q̃

l

)
= 1.

Proposition 5.7. Let p̃ ∈ [0, 1). The number X of cookies eaten before re-
turning to the origin 0 is finite with probability one, i.e. P(X < ∞) = 1, if
and only if and only if p ⩽ 1/2.

" 131

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

Proof. We may assume that q̃ ∈ (0, 1], otherwise the number of cookies eaten
over time is clearly infinite. Using f(l) defined in (5.11), we have

P(X <∞) =
∑
x⩾0

P(X = x)

= q+ p
∑
x⩾1

f(x)
x−1∏
l=1

(1− f(l))

= q+ p
∑
x⩾1

(
x−1∏
l=1

(1− f(l))−
x∏
l=1

(1− f(l))
)

= q+ p lim
n→∞

n∑
x=1

(
x−1∏
l=1

(1− f(l))−
x∏
l=1

(1− f(l))
)

= 1− p lim
n→∞

n∏
l=1

(1− f(l))

= 1− p lim
n→∞

exp
(

n∑
l=1

log(1− f(l))
)

(5.14)

⩾ 1− p exp
(
− lim
n→∞

n∑
l=1

f(l)

)
. (5.15)

i) If p < 1/2, we have∑
l⩾1

f(l) =
(q− p)q̃
q2

∑
l⩾1

1
1− (p/q)l+1 = +∞,

hence P(X <∞) = 1 by (5.15).
ii) If p = q = 1/2, we have∑

l⩾1
f(l) =

∑
l⩾1

2q̃
l+ 1 =∞,

hence by (5.15) we have P(X <∞) = 1 as well.
iii) If p ∈ (1/2, 1], we have

∑
l⩾1

f(l) =
(q− p)q̃
q2

∑
l⩾1

1
1− (p/q)l+1 < +∞,

hence
−∞ <

∑
l⩾1

log(1− f(l)) ⩽ 0,

132 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

and the equality (5.14) shows that

P(X <∞) = 1− p exp
(

lim
n→∞

n∑
l=1

log(1− f(l))
)
< 1.

□

When q̃ = 0 we have P(X < ∞) = P(X = 0) = q. From Remark 5.5 and
the next proposition we note that in case p = q = 1/2 and q̃ ∈ (1/2, 1)
the mean number of eaten cookies E[X] is finite, while the mean return time
E[T r0 | S0 = 0] is infinite.
Proposition 5.8. Let p̃ ∈ [0, 1).

i) When p < 1/2, the average number E[X] of cookies eaten before returning
to the origin 0 is finite, i.e. E[X] <∞.

ii) In the critical case p = q = 1/2, E[X] is finite if and only if q̃ > 1/2.
Proof. (i) Assume that p < 1/2 < q. We have

P(X = x) =
(q− p)pq̃

(1− (p/q)x+1)q2

x∏
l=2

(
1 + (p− q)q̃

(1− (p/q)l)q2

)

⩽ (q− p)pq̃ (1 + (p− q)q̃/q2)x−1

(1− (p/q)x+1)q2 , x ⩾ 1,

hence

E[X] =
∑
x⩾0

xP(X = x)

⩽ (q− p) pq̃2q2

∑
x⩾1

x

(
1 + (p− q)q̃/q2)x−1

1− (p/q)x+1

< ∞.

We note that we always have 1 + (p− q)q̃/q2 > 0 since the equation

q2 − 2qq̃+ q̃ = 0

has no real solution q, for any q̃ ∈ (0, 1].
(ii) Assume that p = q = 1/2, and let ε > 0. Given aε ⩾ 2 such that

(1 + ε)z ⩽ log(1 + z) ⩽ (1− ε)z

for z ∈ (−2q̃/aε, 0) in a neighborhood of zero, we have

−2(1 + ε)q̃ log x

aε
= −2(1 + ε)q̃

w x
aε

1
y
dy

" 133

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

⩽
w x
aε

log
(

1− 2q̃
y

)
dy

⩽
x∑

l=aε+1
log
(

1− 2q̃
l

)

⩽
w x+1

aε+1
log
(

1− 2q̃
y

)
dy

⩽ −2(1− ε)q̃
w x+1

aε+1
1
y
dy

= −2(1− ε)q̃ log x+ 1
aε + 1 ,

hence (aε
x

)2(1+ε)q̃
⩽

x∏
l=aε+1

(
1− 2q̃

l

)
⩽
(
aε + 1
x+ 1

)2(1−ε)q̃
, x ⩾ aε,

and
aε∑
x=1

xP(X = x) +
∑
x>aε

x
(aε
x

)2(1+ε)q̃
⩽ E[X]

⩽
aε∑
x=1

xP(X = x) +
∑
x>aε

x

(
aε + 1
x+ 1

)2(1−ε)q̃
,

hence E[X] is finite if 2(1− ε)q̃ > 1, and infinite if 2(1 + ε)q̃ < 1. Since this
statement is true for every ε > 0, we conclude that E[X] is finite if and only if
q̃ > 1/2, and infinite if q̃ < 1/2.

In case q̃ = 1/2, by (5.13) we have

P(X = x) =
1/2
x+ 1

x∏
l=2

(
1− 1

l

)
=

1
2(x+ 1)x , x ⩾ 1,

hence
E[X] =

1
2
∑
x⩾1

x

x+ 1
1
x
= +∞.

□

In case p > 1/2 or q̃ = 0, we have E[X] = +∞ because P(X =∞) > 0.

Table 5.1 summarizes some properties of the cookie random walk with p = q =
1/2 and p̃, q̃ different from 0 or 1.

134 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

p = q
p̃ < q̃ q̃ ⩽ p̃

Recurrence Yes Yes
Mean return time Infinite Infinite
Mean cookie count Finite Infinite

Table 5.1: Behavior of the cookie random walk with p = q = 1/2 and p̃, q̃ /∈ {0, 1}.

5.5 Conditional results

Lemma 5.9. Assume that a cookie has just been eaten at state x ⩾ 1, after
eating all cookies at states 1, 2, . . . ,x− 1. Then, given that one hits

�� ��x+ 1 be-
fore hitting 0 , the probabilities of moving up to

�� ��x+ 1 , resp. down to
�� ��x− 1 ,

are given by

P
(
S1 = x+ 1

∣∣ S0 = x̂ and T rx+1 < T r0
)
=

(1− (p/q)x+1)p̃q2

q2(1− (p/q)x+1) + (p− q)q̃
,

and

P
(
S1 = x− 1

∣∣ S0 = x̂ and T rx+1 < T r0
)
=

(1− (p/q)x−1)q̃p2

(1− (p/q)x+1)q2 + (p− q)q̃

when p ̸= q, and by

P
(
S1 = x+ 1

∣∣ S0 = x̂ and T rx+1 < T r0
)
=

p̃

1− 2q̃/(x+ 1)

and

P
(
S1 = x− 1

∣∣ S0 = x̂ and T rx+1 < T r0
)
=

(x− 1)q̃/(x+ 1)
1− 2q̃/(x+ 1) , x ⩾ 1,

when p = q = 1/2.

Proof. We proceed similarly to the proof of Lemma 4.15.
(i) When p ̸= q we have

P
(
S1 = x+ 1

∣∣S0 = x̂ and T rx+1 < T r0
)
= p̃

P
(
T rx+1 < T r0 | S0 = x+ 1

)
P
(
T rx+1 < T r0 | S0 = x̂

)
=

p̃

P
(
T rx+1 < T r0 | S0 = x̂

) ,

" 135

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

as we have P
(
T rx+1 < T r0 | S0 = x+ 1

)
= 1. Next, we note that by (5.1) we

have
P
(
T rx+1 < T r0 | S0 = x̂

)
= 1 + (p− q)q̃

(1− (p/q)x+1)q2 ,

hence

P(S1 = x+ 1 | S0 = x̂ and T rx+1 < T r0) =
p̃

1 + (p− q)q̃/((1− (p/q)x+1)q2)
.

On the other hand, we have

P(S1 = x− 1 | S0 = x̂,T rx+1 < T r0) = q̃
P
(
T rx+1 < T r0 | S0 = x̂− 1

)
P
(
T rx+1 < T r0 | S0 = x̂

)
=

(1− (q/p)x−1)q̃/(1− (q/p)x+1)

P
(
T rx+1 < T r0 | S0 = x̂

) ,

and
P
(
T rx+1 < T r0 | S0 = x̂− 1

)
=

1− (q/p)x−1

1− (q/p)x+1 ,

because the random walk evolves with probabilities (p, q) when started from
state

�� ��x− 1 , hence we find

P(S1 = x− 1 | S0 = x̂ and T rx+1 < T r0) = q̃
(1− (q/p)x−1)/(1− (q/p)x+1)

1 + (p− q)q̃/((1− (p/q)x+1)q2)

=
(1− (p/q)x−1)q̃p2

(1− (p/q)x+1)q2 + (p− q)q̃
.

(ii) When p = q = 1/2 we note that, according to (5.2), P
(
T rx+1 < T r0 | S0 =

x
)

can be computed as

P
(
T rx+1 < T r0 | S0 = x̂

)
= p̃P

(
T rx+1 < T r0 | S1 = x+ 1

)
+q̃P

(
T rx+1 < T r0 | S1 = x− 1

)
= p̃+ q̃

x− 1
x+ 1 ,

hence

P(S1 = x+ 1 | S0 = x and T rx+1 < T r0)

=
p̃

p̃+ (x− 1)q̃/(x+ 1)

=
p̃

1− 2q̃/(x+ 1) .

136 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

On the other hand, we have

P(S1 = x− 1 | S0 = x̂,T rx+1 < T r0) = q̃
P
(
T rx+1 < T r0 | S0 = x̂− 1

)
P
(
T rx+1 < T r0 | S0 = x̂

)
=

(x− 1)q̃/(x+ 1)
P
(
T rx+1 < T r0 | S0 = x̂

) ,

and
P
(
T rx+1 < T r0 | S0 = x̂− 1

)
=
x− 1
x+ 1 ,

because the random walk becomes symmetric when started from state
�� ��x− 1 .

Hence, we find

P(S1 = x− 1 | S0 = x̂ and T rx+1 < T r0) =
(x− 1)q̃/(x+ 1)

p̃+ (x− 1)q̃/(x+ 1)

=
(x− 1)q̃/(x+ 1)
1− 2q̃/(x+ 1) .

□

Proposition 5.10. Assume that p = q = 1/2. The mean time to reach state
x from a cookie at state 1 given one does not hit 0 is given for x ⩾ 2 by

E[T rx | S0 = 1̂ and T rx < T r0]

= x− 1 + 4q̃
3

(
x(x− 1)

2 − 2(x− 1)p̃+ 2(p̃− q̃)p̃
x−1∑
k=1

1
k+ 1− 2q̃

)
.

Proof. Since p = q = 1/2, Proposition 4.17 shows that

E[T rx+1 | S0 = x− 1, T rx+1 < T r0] =
(x+ 1)2 − (x− 1)2

3 =
4x
3 , x ⩾ 2,

while for x = 1 we have E[T r2 | S0 = 0, T r2 < T r0] = 2, and P(S1 = 0 |
S0 = 1̂ and T r2 < T r0) = 0. Hence, given that a cookie has just been eaten at
state x ⩾ 1 after eating all cookies at states 1, 2, . . . ,x− 1, the mean time to
reach the next cookie at state

�� ��x+ 1 given one does not hit 0 is given from
Lemma 5.9 as

E[T rx+1 | S0 = x̂, T rx+1 < T r0] = P(S1 = x+ 1 | S0 = x̂ and T rx+1 < T r0)

+P(S1 = x− 1 | S0 = x̂ and T rx+1 < T r0)(1 + E[T rx+1 | S0 = x− 1, T rx+1 < T r0])

= P(S1 = x+ 1 | S0 = x̂ and T rx+1 < T r0)

+P(S1 = x− 1 | S0 = x̂ and T rx+1 < T r0)

(
1 + (x+ 1)2 − (x− 1)2

3

)
" 137

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

= P(S1 = x+ 1 | S0 = x̂ and T rx+1 < T r0)

+P(S1 = x− 1 | S0 = x̂ and T rx+1 < T r0)

(
1 + (x+ 1)2 − (x− 1)2

3

)
= 1 + (x− 1)q̃/(x+ 1)

1− 2q̃/(x+ 1) ×
(x+ 1)2 − (x− 1)2

3

= 1 + 4q̃x(x− 1)/(x+ 1)
3(1− 2q̃/(x+ 1))

= 1 + ((x+ 1)2 − (x− 1)2)

3
(x− 1)q̃/(x+ 1)
1− 2q̃/(x+ 1)

= 1 + 4q̃x(x− 1)/(x+ 1)
3(1− 2q̃/(x+ 1))

= 1 + 4q̃x(x− 1)
3(x+ 1− 2q̃)

= 1 + 4x
3 ×

q̃− 2q̃/(x+ 1)
1− 2q̃/(x+ 1)

= 1 + 4q̃
3 ×

x(x− 1)
x+ 1− 2q̃ , x ⩾ 1,

which yields 1 + (2x− 2)/3 when p̃ = q̃ = 1/2. Hence for x ⩾ 2 we have

E[T rx | S0 = 1̂, T rx < T r0] =
x−1∑
k=1

E[T rk+1 | S0 = k̂,T rk+1 < T r0]

= x− 1 + 4q̃
3

x−1∑
k=1

k(k− 1)
k+ 1− 2q̃

= x− 1 + 4q̃
3

x−1∑
k=1

k− 8p̃q̃
3

x−1∑
k=1

k

k+ 1− 2q̃

= x− 1 + 2q̃x(x− 1)
3 − 8p̃q̃

3

x−1∑
k=1

k

k+ 1− 2q̃

= x− 1 + 2q̃x(x− 1)
3 − 8p̃q̃

3 (x− 1) + 8p̃q̃
3 (p̃− q̃)

x−1∑
k=1

1
k+ 1− 2q̃

= x− 1 + 4q̃
3

(
x(x− 1)

2 − 2(x− 1)p̃+ 2(p̃− q̃)p̃
x−1∑
k=1

1
k+ 1− 2q̃

)
.

□

We note that for x ⩾ 1 we have

138 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

P(S1 = 1 | S0 = 0 and T rx < T r0) = 1 and P(S1 = 0 | S0 = 0 and T rx < T r0) = 0,

hence by Proposition 5.10 we have

E[T rx | S0 = 0 and T rx < T r0]

= P(S1 = 1 | S0 = 0 and T rx < T r0)
(
1 + E[T rx | S0 = 1̂ and T rx < T r0]

)
+P(S1 = 0 | S0 = 0 and T rx < T r0)

= 1 + E[T rx | S0 = 1̂ and T rx < T r0]

= x+
4q̃
3

(
x(x− 1)

2 − 2(x− 1)p̃+ 2(p̃− q̃)p̃
x−1∑
k=1

1
k+ 1− 2q̃

)
.

When p = q = p̃ = q̃ = 1/2 we recover the classical expression

E[T rx | S0 = 1, T rx < T r0] = x− 1 + 2
3

x−2∑
k=1

k

= x− 1 + (x− 1)(x− 2)
3

=
x2 − 1

3 , x ⩾ 2,

cf. Proposition 4.17. The mean time E[T rx | S0 = 1̂ and T rx < T r0] to reach
state x from state 1 given one does not hit 0 can similarly be computed
from Proposition 4.17 and Lemma 5.9 when p ̸= q. Indeed, when p ̸= q,
Proposition 4.17 shows that

E[T rx+1 | S0 = x− 1, T rx+1 < T r0]

=
(x+ 1)(1 + (q/p)x+1)

(p− q)(1− (q/p)x+1)
− (x− 1)(1 + (q/p)x−1)

(p− q)(1− (q/p)x−1)

=
(x+ 1)(1 + (q/p)x+1)(1− (q/p)x−1)− (x− 1)(1 + (q/p)x−1)(1− (q/p)x+1)

(p− q)(1− (q/p)x+1)(1− (q/p)x−1)

= 2 (p− q)/p2 + x(q/p)x+1 − x(q/p)x−1

(p− q)((p− q)/q2 − (q/p)x−1 − (q/p)x+1)
, x ⩾ 2.

Hence from Lemma 5.9 we can similarly compute the mean time to reach the
next cookie at state

�� ��x+ 1 given that a cookie has just been eaten at state
x ⩾ 1 and one does not hit 0 , after eating all cookies at states 1, 2, . . . ,x− 1,
as

E[T rx+1 | S0 = x̂, T rx+1 < T r0] = P(S1 = x+ 1 | S0 = x̂ and T rx+1 < T r0)

+P(S1 = x− 1 | S0 = x̂ and T rx+1 < T r0)(1 + E[T rx+1 | S0 = x− 1, T rx+1 < T r0]),

x ⩾ 1, and

" 139

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

E[T rx | S0 = 1, T rx < T r0] =
x−1∑
k=1

E[T rk+1 | S0 = k,T rk+1 < T r0], x ⩾ 2.

Notes

See e.g. Benjamini and Wilson (2003) and Antal and Redner (2005) for further
reading on excited random walks.

Exercises

Exercise 5.1 (Antal and Redner (2005), § 5). Consider a cookie-excited random
walk (Sn)n⩾0 on the half line Z+, with probabilities (p, q) = (1/2, 1/2) of
moving up and down without cookies, and probabilities (p̃, q̃) of moving up
and down on cookie locations, with p̃ > q̃. We assume that
• (Sn)n⩾0 starts at S0 = 0 with no cookie at state 0 ,
• every cookie location at states i , i ⩾ 1, contains initially a same number
k ⩾ 1 of cookies, and

• only a single cookie can be eaten at each step.

a) Give the number of cookies initially contained in the region {1, 2, . . . ,L},
L ⩾ 1.

b) Give the minimum number of time steps needed to consume all cookies by
traveling within {1, 2, . . . ,L}.

c) Assuming a positive average drift p̃− q̃ > 0 on cookie locations at every
time step, give the average number of time steps needed to travel from state
1 to state L , assuming that all states contain cookies.

d) Find a condition on p̃ and k ensuring the consumption of all cookies while
traveling from from 1 to L .

e) Find a sufficient condition based on p̃ and k for the transience of this cookie
random walk.

Problem 5.2 (Antal and Redner (2005)). A random walk (Sn)n⩾0 with cookies
on {1, 2, 3, . . .} is symmetric in the absence of cookies, and restarts with proba-
bilities p and q = 1− p of moving up, resp. down, when it encounters a cookie,
where p ∈ [0, 1). The random walk starts at state 0 , which is empty of cookie.
For any x ⩾ 1, let τx denote the first hitting time

τx := inf{n ⩾ 1 : Sn = x}, x ⩾ 1.

Recall that the probability of eating at least x cookies before returning to the
origin 0 is given by

140 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

P(τx < τ0 | S0 = 0) = 1
2

x∏
l=2

(
1− 2q

l

)
, x ⩾ 1, (5.16)

and that the random walk is recurrent, i.e. it returns to the origin 0 in finite
time whenever p < 1, that means we have P(τ0 <∞ | S0 = 0) = 1.

a) Let X denote the number of cookies eaten by the random walk before re-
turning to the origin 0 . Show that

P(X = 0) = 1/2, P(X = 1) = q/2,

and, using (5.16), that the distribution of satisfies

P(X = x) =
q

x+ 1

x∏
l=2

(
1− 2q

l

)
, x ⩾ 2. (5.17)

b) Show from (5.17) that the average number E[X] of cookies eaten before
returning to the origin 0 is finite, i.e. E[X] <∞, if and only if q > 1/2.

Hint: There exists constants cq,Cq > 0 such that

cq
x2q ⩽

x∏
l=2

(
1− 2q

l

)
⩽

Cq
x2q , x ⩾ 2.

" 141

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

142 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Chapter 6
Convergence to Equilibrium

This chapter is concerned with the large time behavior of Markov chains, in-
cluding the computation of their limiting and stationary distributions. Here
the notions of recurrence, transience, and classification of states introduced in
the previous chapter play a major role. We also derive quantitative bounds for
the convergence of a Markov chain to its stationary distribution. The Markov
Chain Monte Carlo (MCMC) method presented in Section 6.2 is widely used
for statistical estimation based on the Markov property.

6.1 Limiting and stationary distributions 143
6.2 Markov Chain Monte Carlo - MCMC 151
6.3 Transition bounds and contractivity 156
6.4 Distance to stationarity . 160
6.5 Mixing times . 165
Exercises . 168

6.1 Limiting and stationary distributions

This section gathers some basic facts on the long run behavior of Markov chains,
characterized by their limiting and stationary distributions. It is generally as-
sumed that the state space S is countable and possibly infinite, while finite
state spaces are treated as particular cases.

Limiting distributions

Definition 6.1. A Markov chain (Xn)n⩾0 is said to admit a limiting proba-
bility distribution if the following conditions are satisfied:

i) the limits
lim
n→∞

P(Xn = j | X0 = i) (6.1)

" 143

This version: March 5, 2024 https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

exist for all i, j ∈ S, and
ii) they form a probability distribution on S, i.e.∑

j∈S

lim
n→∞

P(Xn = j | X0 = i) = 1, (6.2)

for all i ∈ S.

Note that Condition (6.2) is always satisfied if the limits (6.1) exist and the
state space S is finite. As an example, consider the two-state Markov chain,
whose transition matrix has the form

P =

1− a a

b 1− b

 , (6.3)

with a ∈ [0, 1] and b ∈ [0, 1].

0 1

a

b

1− a 1− b

The matrix power

Pn =

1− a a

b 1− b

n =

1− a a

b 1− b

× · · · ×
1− a a

b 1− b


︸ ︷︷ ︸

n times

of the transition matrix P can be computed for all n ⩾ 0 as

Pn =
1

a+ b

 b+ a(1− a− b)n a(1− (1− a− b)n)

b(1− (1− a− b)n) a+ b(1− a− b)n

 , n ⩾ 0,

which can be obtained in Mathematica via the command

MatrixPower[1-a,a,b,1-b,n].

The two-state Markov chain has a limiting distribution [π0,π1] independent of
the initial state, and given by

lim
n→∞

Pn =


b

a+ b

a

a+ b

b

a+ b

a

a+ b

 ,

144 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://www.wolframalpha.com/input/?i=MatrixPower[{{1-a,a},{b,1-b}},n]
https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

i.e.
[π0,π1] =

[
b

a+ b
, a

a+ b

]
, (6.4)

provided that (a, b) ̸= (0, 0) and (a, b) ̸= (1, 1), while the corresponding mean
return times are given by

(µ0(0),µ1(1)) =
(

1 + a

b
, 1 + b

a

)
,

see e.g. Relation (5.3.3) in Privault (2018), i.e. the limiting probabilities are
given by the mean return time inverses, as

[π0,π1] =

[
b

a+ b
, a

a+ b

]
=

[
1

µ0(0)
, 1
µ1(1)

]
=

[
µ1(0)

µ0(1) + µ1(0)
, µ0(1)
µ0(1) + µ1(0)

]
.

Theorem 6.2. (Karlin and Taylor (1998), Theorem IV.4.1). Consider a
Markov chain (Xn)n⩾0 satisfying the following 3 conditions:

i) irreducibility,
ii) recurrence, and

iii) aperiodicity.

Then, the chain (Xn)n⩾0 admits the limiting distribution

lim
n→∞

P(Xn = j | X0 = i) =
1

µj(j)
, i, j ∈ S, (6.5)

independently of the initial state i ∈ S, where

µj(j) = E[T rj | X0 = j] ∈ [1,∞]

is the mean return time to state j ∈ S.

In Theorem 6.2, Condition (i), resp. Condition (ii), is satisfied from Propo-
sition 1.23, resp. from Proposition 1.13, provided that at least one state is
aperiodic, resp. recurrent, since the chain is irreducible.

Example

The next simulation illustrates the convergence in distribution of the Markov
chain (Yn)n⩾0 when it is not started from its stationary distribution.

" 145

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

 a=-10;b=-10;sigma=1; N=200; t <- 0:N; dt <- 1.0/N; nsim=20;
 X <- matrix(rnorm(nsim * N, 0, sqrt(dt)), nsim, N); Y <- matrix(0, nsim, N+1)

for (i in 1:nsim){Y[i,1]=2; for (j in 2:N){Y[i,j] = Y[i,j-1]+b*dt +a*Y[i,j-1]*dt
+sigma*X[i,j];}}; H<-hist(Y[,N],plot=FALSE); dev.new(width=16,height=7);

 layout(matrix(c(1,2), nrow =1, byrow = TRUE));par(mar=c(2,2,2,0), oma = c(2, 2, 2, 2))
plot(t*dt, Y[1,], xlab = "", ylab = "", type = "l", ylim = c(-2, 2), col = 0,

xaxs='i',yaxs='i',las=1, cex.axis=1.6)
 for (i in 1:nsim){lines(t*dt, Y[i,], type = "l", ylim = c(-2, 2), col = i,lwd=2)}

for (i in 1:nsim){points(0.999, Y[i,N], pch=1, lwd = 5, col = i)}
 x <- seq(-2,2, length=100); px <- dnorm(x,-b/a,sqrt(sigma**2/2/(-a)));par(mar =

c(2,2,2,2))
plot(NULL , xlab="", ylab="", xlim = c(0, max(px,H$density)), ylim = c(-2,2),axes=F)

 rect(0, H$breaks[1:(length(H$breaks) - 1)], col=rainbow(20,start=0.08,end=0.6),
H$density, H$breaks[2:length(H$breaks)]); lines(px,x, lty=1, col="black",lwd=2)

0.0 0.2 0.4 0.6 0.8 1.0
−2

−1

0

1

2

Fig. 6.1: Convergence in distribution.

Stationary distributions

In what follows, we let PN denote the set of probability distributions on
{1, . . . ,N}, which are represented by vectors µ = (µi)i=1,...,N in [0, 1] such
that

N∑
i=1

µi = 1.

Definition 6.3. A probability distribution π = (πi)i∈S on S is is said to be
stationary if, starting X0 at time 0 with the distribution (πi)i∈S, it turns out
that the distribution of X1 is still (πi)i∈S at time 1.
In other words, (πi)i∈S is stationary for the Markov chain with transition matrix
P if, letting

P(X0 = i) := πi, i ∈ S,

at time 0, implies

P(X1 = i) = P(X0 = i) = πi, i ∈ S,

at time 1. This also means that

146 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

πj = P(X1 = j) =
∑
i∈S

P(X1 = j | X0 = i)P(X0 = i) =
∑
i∈S

πiPi,j , j ∈ S,

i.e. the distribution π is stationary if and only if the vector π is invariant (or
stationary) by the matrix P , that means

π = πP . (6.6)

Example

The next simulation considers the Markov chain (Yn)n⩾0 recursively defined
as

Yn+1 = Yn + b+ aYn + σZn,

which admits the N
(
− b/a,

√
σ2/2/(−a)

)
Gaussian distribution as station-

ary distribution, where (Zn)n⩾1 is a sequence of N (0, 1) centered Gaus-
sian random variables. We note that the process (Yn)n⩾0 remains in the
N
(
− b/a,

√
σ2/2/(−a)

)
Gaussian distribution if Y0 is started from this dis-

tribution.

 a=-10;b=-10;sigma=1; N=200; t <- 0:N; dt <- 1.0/N; nsim=20;
 X <- matrix(rnorm(nsim * N, 0, sqrt(dt)), nsim, N); Y <- matrix(0, nsim, N+1)

for (i in 1:nsim){Y[i,1]=rnorm(1,-b/a,sqrt(sigma**2/2/(-a)));
 for (j in 2:N){Y[i,j] = Y[i,j-1] +b*dt+a*Y[i,j-1]*dt +sigma*X[i,j];}}

H<-hist(Y[,N],plot=FALSE); dev.new(width=16,height=7);
 layout(matrix(c(1,2), nrow =1, byrow = TRUE));par(mar=c(2,2,2,0), oma = c(2, 2, 2, 2))

plot(t*dt, Y[1,], xlab = "", ylab = "", type = "l", ylim = c(-2, 2), col = 0,
xaxs='i',yaxs='i',las=1, cex.axis=1.6)

 for (i in 1:nsim){lines(t*dt, Y[i,], type = "l", ylim = c(-2, 2), col = i,lwd=2)}
for (i in 1:nsim){points(0.999, Y[i,N], pch=1, lwd = 5, col = i)}

 x <- seq(-2,2, length=100); px <- dnorm(x,-b/a,sqrt(sigma**2/2/(-a)));par(mar =
c(2,2,2,2))

plot(NULL , xlab="", ylab="", xlim = c(0, max(px,H$density)), ylim = c(-2,2),axes=F)
 rect(0, H$breaks[1:(length(H$breaks) - 1)], col=rainbow(20,start=0.08,end=0.6),

H$density, H$breaks[2:length(H$breaks)]); lines(px,x, lty=1, col="black",lwd=2)

0.0 0.2 0.4 0.6 0.8 1.0
−2

−1

0

1

2

Fig. 6.2: Stationarity in distribution.

" 147

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

More generally, assuming that Xn has the invariant (or stationary) distribution
π at time n, i.e. P(Xn = i) = πi, i ∈ S, we have

P(Xn+1 = j) =
∑
i∈S

P(Xn+1 = j | Xn = i)P(Xn = i)

=
∑
i∈S

Pi,jP(Xn = i) =
∑
i∈S

Pi,jπi

= [πP]j = πj , j ∈ S,

since the Markov chain (Xn)n⩾0 is time homogeneous, i.e. its transition matrix
P remains constant over time, hence

P(Xn = j) = πj , j ∈ S, =⇒ P(Xn+1 = j) = πj , j ∈ S.

By induction on n ⩾ 0, this yields

P(Xn = j) = πj , j ∈ S, n ⩾ 1,

i.e. the chain (Xn)n⩾0 remains in the same distribution π at all times n ⩾ 1,
provided that it has been started with the stationary distribution π at time
n = 0.

Relation (6.6) can be rewritten as the global balance condition∑
i∈S

πiPi,k = πk = πk
∑
j∈S

Pk,j =
∑
j∈S

πkPk,j , (6.7)

which is illustrated in Figure 6.3.

iπi

iπi

iπi

k
πk

j

j

j

Pi,k

Pi,k

Pi,k

Pk,j

Pk,j

Pk,j

Fig. 6.3: Global balance condition.

On the other hand, the (Xn)n⩾0 is said to satisfy the detailed balance (or
reversibility) condition with respect to the probability distribution π = (πi)i∈S
if

148 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

πiPi,j = πjPj,i, i, j ∈ S, (6.8)

see Figure 6.4.

iπi j πj

Pi,j

Pj,i

Fig. 6.4: Detailed balance condition (discrete time).

Lemma 6.4. The detailed balance condition (6.8) implies the global balance
condition (6.7).

Proof. By summation over i ∈ S in (6.8) we have∑
i∈S

πiPi,j =
∑
i∈S

πjPj,i = πj
∑
i∈S

Pj,i = πj , j ∈ S,

which shows that πP = π, i.e. π is a stationary distribution for P . □

The next result shows that existence of a limiting distribution implies the
existence of a stationary distribution when the chain (Xn)n⩾0 has a finite state
space.

Proposition 6.5. Assume that S = {0, 1, . . . ,N} is finite and that the limits

πj := lim
n→∞

P(Xn = j | X0 = i) = lim
n→∞

[Pn]i,j

exist for all j ∈ S and are independent of the initial state i ∈ S, i.e. we have

lim
n→∞

Pn =


π0 π1 · · · πN
π0 π1 · · · πN
...

...
. . .

...
π0 π1 · · · πN

 .

Then for every i = 0, 1, . . . ,N , the vector π := (πj)j∈{0,1,...,N} is a stationary
distribution and we have

π = πP , (6.9)

i.e. π is invariant (or stationary) by P .

Proposition 6.5 can be applied in particular when the limiting distribution
πj := limn→∞ P(Xn = j | X0 = i) does not depend on the initial state i , i.e.

" 149

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

lim
n→∞

Pn =


π0 π1 · · · πN
π0 π1 · · · πN
...

...
. . .

...
π0 π1 · · · πN

 .

For example, the limiting distribution (6.4) of the two-state Markov chain is
also an invariant distribution, i.e. it satisfies (6.6). In particular we have the
following result.
Theorem 6.6. (Karlin and Taylor (1998), Theorem IV.4.2). Assume that the
Markov chain (Xn)n⩾0 satisfies the following 3 conditions:

i) irreducibility,
ii) positive recurrence, and

iii) aperiodicity.
Then the chain (Xn)n⩾0 admits the limiting distribution

πj := lim
n→∞

P(Xn = j | X0 = i) = lim
n→∞

[Pn]i,j =
1

µj(j)
, i, j ∈ S,

independently of the initial state i ∈ S, which also forms a stationary distribu-
tion (πj)j∈S = (1/µj(j))j∈S, uniquely determined by the equation

π = πP .

In Theorem 6.6 above, Condition (ii), is satisfied from Proposition 1.23, pro-
vided that at least one state is aperiodic, since the chain is irreducible. See also
pages 170-171 in Privault (2018) for counterexamples.
In view of Theorem 1.20, we have the following corollary of Theorem 6.6:
Corollary 6.7. Consider an irreducible aperiodic Markov chain with finite
state space. Then, the limiting probabilities

πi := lim
n→∞

P(Xn = i | X0 = j) =
1

µi(i)
, i, j ∈ S,

exist and form a stationary distribution which is uniquely determined by the
equation

π = πP .

Corollary 6.7 can also be applied separately to derive a stationary distribution
on each closed component of a reducible chain.
The following theorem gives sufficient conditions for the existence of a station-
ary distribution, without requiring aperiodicity or finiteness of the state space.
Note that the limiting distribution may not exist in this case, as can be checked
for the two-state chain (6.3) with a = b = 1. See also Problem 6.9 and Exer-
cise 7.21 in Privault (2018) for an example of a null recurrent chain which does
not admit a stationary distribution.

150 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

Theorem 6.8. (Bosq and Nguyen (1996), Theorem 4.1). Consider a Markov
chain (Xn)n⩾0 satisfying the following two conditions:

i) irreducibility, and
ii) positive recurrence.

Then, the probabilities
πi =

1
µi(i)

, i ∈ S,

form a stationary distribution which is uniquely determined by the equation
π = πP .
Note that the conditions stated in Theorem 6.8 are sufficient, but they are not
all necessary. For example, Condition (ii) is not necessary as the trivial constant
chain, whose transition matrix P = I is reducible, does admit a stationary
distribution.
Note that the positive recurrence assumption in Theorem 6.2 is required in
general on infinite state spaces.
As a consequence of Corollary 1.21 we have the following corollary of Theo-
rem 6.8, which does not require aperiodicity for the stationary distribution to
exist.
Corollary 6.9. Let (Xn)n⩾0 be an irreducible Markov chain with finite state
space S. Then, the probabilities

πk =
1

µk(k)
, k ∈ S,

form a stationary distribution which is uniquely determined by the equation

π = πP .

6.2 Markov Chain Monte Carlo - MCMC

Generating random samples from a target distribution

The Markov Chain Monte Carlo (MCMC) method, or Metropolis algorithm,
can be used to generate random samples according to a target distribution
π = (πi)i∈S via a Markov chain that admits π as a limiting and stationary
distribution. It can be applied in particular in the setting of large state spaces
S, cf. e.g. Chapter 7. See Diaconis (2009) for a review of applications including
a cryptography example, the analysis of algorithms and their complexity in
computer science, and particle filters for tracking and filtering.

If the transition matrix P satisfies the detailed balance condition (6.8) with
respect to π, then the probability distribution of Xn will naturally converge

" 151

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

to the stationary distribution π in the long run, e.g. under the hypotheses of
Theorem 6.6, i.e. when the chain (Xk)k∈N is positive recurrent, aperiodic, and
irreducible.

In general, however, π and P may not satisfy by the global or detailed balance
conditions (6.7) or (6.8). In this case, starting from a proposal matrix P , one can
construct a modified transition matrix P̃ that will satisfy the detailed balance
condition with respect to π. This modified transition matrix P̃ is defined by

P̃i,j := min
(
Pi,j ,

πj
πi
Pj,i

)
= Pi,j ×min

(
1, πjPj,i
πiPi,j

)

=


πj
πi
Pj,i if πjPj,i ⩽ πiPi,j ,

Pi,j if πjPj,i ⩾ πiPi,j ,
(6.10)

for i ̸= j. We note that ∑
j∈S
j ̸=i

P̃i,j ⩽
∑
j∈S
j ̸=i

Pi,j ⩽ 1,

and for i ∈ S we let

P̃i,i := 1−
∑
j∈S
j ̸=i

P̃i,j

= Pi,i +
∑
j∈S
j ̸=i

Pi,j

(
1−min

(
1, πjPj,i
πiPi,j

))

= Pi,i +
∑
j∈S
j ̸=i

Pi,j

(
1− πjPj,i

πiPi,j

)+

= Pi,i +
∑
j∈S
j ̸=i

(
Pi,j −

πjPj,i
πi

)+

.

Clearly, we have P̃ = P when the detailed balance (or reversibility) condition
(6.8) is satisfied by P . In the general case, we can check that for i ̸= j, we have

πiP̃i,j =

Pj,iπj = πjP̃j,i if πjPj,i ⩽ πiPi,j ,

πiPi,j = πjP̃j,i if πjPj,i ⩾ πiPi,j ,

 = πjP̃j,i,

152 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

hence P̃ satisfies the detailed balance condition with respect to π (the condition
is obviously satisfied when i = j). Therefore, the random simulation of (X̃n)n⩾0
according to the transition matrix P̃ will provide samples of the distribution
π in the long run as n tends to infinity, provided that the chain (X̃n)n⩾0 is
positive recurrent, aperiodic, and irreducible.

In standard MCMC sampling we make the following assumption, which is typi-
cally satisfied by taking Pi,j := φ(i− j) with φ a Gaussian type density kernel.

Assumption (B). The transition matrix P is symmetric i.e. Pi,j = Pj,i > 0,
i, j ∈ S.

Under Assumption (B), the modified transition matrix P̃ simplifies to

P̃i,j := Pi,j ×min
(

1, πj
πi

)
= min

(
Pi,j ,

πj
πi
Pi,j

)
=


Pi,j

πj
πi

if πj ⩽ πi,

Pi,j if πj ⩾ πi,

for i ̸= j, with

P̃i,i := 1−
∑
j∈S
j ̸=i

P̃i,j = Pi,i +
∑

j∈S,j ̸=i
πj <πi

Pi,j

(
1− πj

πi

)
, i ∈ S.

Interpretation

Starting from a state i , a proposal j is generated with probability Pi,j . This
proposal is then accepted if πj ⩾ πi, otherwise if πj < πi, the proposal is
accepted with probability πj/πi, and one remains at state i with probability
1− πj/πi, which can be summarized as follows:
πj ⩾ πi ⇒ accept the proposal j ,

πj < πi ⇒ accept the proposal j with probability πj/πi. Otherwise, keep i .

Generating posterior samples using MCMC

We consider the prior distribution µ = (µi)i∈S of a model parameter in the
state space S. Given O a set of observations sampled according to a distribu-
tion (νk)k∈O, we are given a likelihood function l(k|i) which represents the
probability of observing k ∈ O when the system parameter is i ∈ S, with

νk =
∑
i∈S

l(k|i)µi, k ∈ O. (6.11)

" 153

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

The posterior probability distribution π(i|k) of being in the state i given that
we observed k ∈ O is obtained by the Bayes formula as

π(i|k) = l(k|i)µi
νk

, i ∈ S, k ∈ O. (6.12)

Computing the posterior distribution π(i|k) and generating the corresponding
random samples may require estimating the distribution νk, k ∈ O.

The Markov Chain Monte Carlo method provides an efficient way to generate
random samples according to the posterior distribution π(i|k). For this, we
replace the ratio πj/πi in (6.10) with the ratio

π(j|k)
π(i|k)

=
π(j|k)νk
π(i|k)νk

=
l(k|j)µj
l(k|i)µi

, i, j ∈ S, k ∈ O, (6.13)

which uses the information given by the observation k . We note that this
approach does not rely on the values of π(j|k) and π(i|k), whose computation
through (6.12) would require estimating νk via (6.11).

Relation (6.13) shows that the proposal j generated with probability Pi,j is
accepted if π(j|k) ⩾ π(i|k), i.e. if its posterior probability π(j|k) given the
observation k is higher than the posterior probability π(i|k) of the initial state
i . Otherwise, if π(j|k) < π(i|k) the proposal j is accepted only with the

probability given by (6.13).

Improved versions of the MCMC algorithms include the Hamiltonian Monte
Carlo method and the No U-Turn Sampler (NUTS).

Implementation example

We consider an example on the continuous parameter state space S := [0, 1].
Let N ⩾ 1, and consider

• a set O = {0, 1}N of observation values,
• a prior distribution with uniform density (µζ)ζ∈S on the parameter space S,
• a Bernoulli product likelihood distribution with parameter ζ ∈ S on O, i.e.

l(e1, . . . , eN |ζ) = ζe1+···+eN (1− ζ)N−(e1+···+eN),

(e1, . . . , eN) ∈ O.

In this special case, the density π(ζ|k) of the posterior distribution on S = [0, 1]
can be explicitly computed for k = (e1, . . . , eN) ∈ O as

π(ζ|e1, . . . , eN) = l(e1, . . . , eN |ζ)
µζ

νe1,...,eN

154 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

=
1

νe1,...,eN

ζe1+···+eN (1− ζ)N−(e1+···+eN), ζ ∈ [0, 1],

with the normalization

νe1,...,eN =
w 1

0
l(e1, . . . , eN |ζ)dζ

=
w 1

0
ζe1+···+eN (1− ζ)N−(e1+···+eN)dζ

= B(e1 + · · ·+ eN + 1,N − (e1 + · · ·+ eN) + 1),

(e1, . . . , eN) ∈ {0, 1}N , where

B(e1 + · · ·+ eN + 1,N − (e1 + · · ·+ eN) + 1)

=
(e1 + · · ·+ eN)!(N − (e1 + · · ·+ eN))!

(N + 1)!

is the beta function. The following codes implement the Markov Chain
Monte Carlo algorithm using the package Stan.

 install.packages("devtools")
 library(lattice);library(rstan)

stanmodelcode <- "data {int<lower=0> N;int y[N];}
 parameters {real<lower=0,upper=1> theta;}

model {theta ~ uniform(0,1);y ~ bernoulli(theta);}"
 N <- 3;y <- rbinom(N, 1, .3)

y <- c(0,0,0,0,0,1,0,0);N=length(y)
 dat <- list(N = N, y = y); sapply(dat, class)

fit <- stan(model_code=stanmodelcode, model_name="Bernoulli-uniform", data=dat,
iter=2000, chains=1, sample_file='norm.csv', verbose=TRUE) # try iter = 100

 traceplot(fit,inc_warmup = TRUE,col="purple");
e <- extract(fit)

 mean(e$theta)
densityplot(e$theta, xlim = c(0,1),lwd=2)

Although the MCMC algorithms is designed to handle large data sets, for
illustration purposes we consider a toy model with N = 3 and y = (0, 1, 0). In
this case we find ν1,0,0 = 2/4! = 1/12 and the posterior distribution

π(ζ|0, 1, 0) = 1
ν0,1,0

l(0, 1, 0|ζ) = 12 ζ(1− ζ)2,

as illustrated in Figure 6.5 using the following code.

 x=seq(0,1,0.01)
f<-function(x){return (x^(sum(y))*(1-x)^(N-sum(y))/beta(sum(y)+1,N-sum(y)+1))}

 par(mar = c(4.3, 2, 2, 3))
plot(x,f(x), lwd=2,col="red")

 densityplot(e$theta, xlim=c(0,1),lwd=2)
lines(x,f(x),lwd=2, xlim=c(0,1),col="red")

" 155

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

0.00

0.25

0.50

0.75

1.00

1000 1250 1500 1750 2000

th
et

a

(a) Markov chain path.
e$theta

De
ns

ity

0.0

0.5

1.0

1.5

0.2 0.4 0.6 0.8

●
●●

●
●

● ●●●●● ● ●●● ●● ●●
● ●

● ●
● ●
●

●●● ●●●●●
● ●

●
●

● ●● ● ●● ●
● ●●● ●●● ● ●●

● ● ●
● ● ●

●
●

●●
●

● ●●● ●
●● ●

●●
● ●●● ●

●
●● ●● ●

●●●
●

● ●
● ● ●● ●

●
●

●
●

●● ● ●●●
●

●●●
● ●●

●● ●
●●● ●●●●●●● ●

●
● ● ●●● ●● ●● ●● ●●● ●

●
● ●

●
● ● ●

●●● ●
●

● ●●
●● ●●●

●
●●

●
●●

●●
●

●●
●

●
●

● ● ●
●

● ● ●● ● ●
●

●● ● ●● ●
●

●
● ●●●

● ● ●●
●●● ●●●

●● ●● ●●
●

● ●● ● ●●●
●

●
● ●● ●● ● ●●

● ●
●● ●

●● ●●
●●● ●● ●

● ●
●

●
● ●●●

●
●●

●
●●

●● ●●
● ●● ●

●
● ●●

● ●
●
●

●●
●

●
● ●● ●● ●● ●● ● ●●

●
● ●

●
● ● ●● ●● ●●●

● ●
●●

●
●

●●
● ●

●
●● ●

●●● ●● ●
●

●
●●

●
●

●
●

● ● ●●● ●
●

●
● ●● ● ●

● ● ●
● ●●●

● ● ●●
●●

●
●

● ● ● ●● ● ● ●
● ●

●
● ●●● ●

●
● ●

●
●●
●

●
● ●● ●

● ●
●

●
●

●
●

●
● ● ●●

●● ●●●
●

●
● ● ●● ●● ●

●● ●● ●
●● ●●

●
● ●● ●●●

● ●● ●● ●
●●● ●● ●

● ●
●●● ●

●● ● ●● ● ●
●●

● ● ●
●

●
●

●● ● ●
●

●● ●● ●● ● ●
●●

● ●
●

● ●● ●● ●
●

●●
●

●●
●

●
● ●

● ● ●
● ●●

●
●

●
● ●● ●●●● ●●

●
●● ● ●● ●

● ●● ●● ●●●
● ● ●

●
● ●●● ● ●●

●
● ● ● ●● ●

● ●● ●● ●●
●● ●●

●
●● ●

● ●●
●

● ● ●
● ● ●●●

●
● ●

●
●

●
●● ●

●●
●

●●
●●
●

● ●
●●

●●
●●

●
●●

●
●●●

● ● ●●●
●

●
●

●●
●●●

●
●●● ●

●
●● ●● ● ●●

●●
●

●●
●

●
●● ● ●

●
●

●
● ●●●

● ●●● ● ●● ●●●
● ● ●●● ● ●

●●
●

●
●
●

●● ●●● ●
● ●●● ●

●
●

●
● ●

● ● ●●
●

● ●● ●● ●
● ●

● ● ●●
● ● ●

●
●

●● ●
●
● ●● ● ●

● ●
●

● ●
●

● ●● ●
● ●

● ●● ●●
●●● ●

●
●●

● ●
●● ●● ●

●●
●● ●● ●

●
●

●
●●

●●●● ● ● ●●
●● ● ●

●●
●

● ●●●
●

●●
●

● ●● ●
●● ●●●

●
●● ●

●
● ●

●
●

●
●● ●● ●●● ●●

●
●● ●●

● ●●
●

●
●

●● ●●● ●●●●● ● ●● ●● ●
● ●

●
●

●● ●
●

●
●●● ●● ●●●

●●
●

● ● ●● ●
●

● ●
●● ● ●

●
● ● ●● ●●

●●
●

●●● ● ●●● ●●
●● ● ●

●
●● ●

●●
●

● ●
● ●

● ●
● ● ●

● ●
●● ●● ●●●

●
●●● ●

●
●● ●● ●● ●● ●● ●●●

● ●● ● ●
●● ● ●●● ● ●●

● ● ●●●
●● ●

● ●● ● ●●
● ●

●●
●

●
●●

● ●● ●●
●●● ●● ● ●●

●● ●
●

p(θ|1,0,0)

(b) Density plot.

Fig. 6.5: RStan MCMC output.

6.3 Transition bounds and contractivity

Let P be the transition matrix of a discrete-time Markov chain (Xn)n⩾0 on
S = {1, 2, . . . ,N}.
Definition 6.10. Given two probability distributions µ = [µ1,µ2, . . . ,µN] and
ν = [ν1,µ2, . . . , νN] on {1, 2, . . . ,N}, the ℓ1 distance between µ and ν is defined
as

∥µ− ν∥1 :=
N∑
k=1
|µk − νk|.

In what follows, for any A ⊂ S we let

µ(A) =
∑
k∈A

µk.

Definition 6.11. The total variation distance between two probability distri-
butions µ and ν on {1, 2, . . . ,N} is defined as

∥µ− ν∥TV := Max
A⊂{1,2,...,N}

|µ(A)− ν(A)|. (6.14)

In Lemma 6.12 we determine the set A∗ on which the maximum of (6.14) is
attained.
Lemma 6.12. Given µ, ν two probability distributions on {1, 2, . . . ,N}, we
have

∥µ− ν∥TV = µ(A∗)− ν(A∗) =
∑
k∈A∗

(µk − νk),

156 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

where the set A∗ ⊂ {1, 2, . . . ,N} is given by

A∗ := {k ∈ {1, 2, . . . ,N} : νk ⩽ µk}.

Proof. As the maximum in (6.14) is over a finite number of values, it is attained
by A∗ provided that

∥µ− ν∥TV := Max
A⊂{1,2,...,N}

|µ(A)− ν(A)| ⩽ |µ(A∗)− ν(A∗)|.

By construction of the set A∗, we check that for all A ⊂ {1, 2, . . . ,N} we have

µ(A)− ν(A) =
∑
k∈A

(µk − νk)

⩽
∑
k∈A∗

(µk − νk)

= µ(A∗)− ν(A∗),

and similarly

µ(A)− ν(A) = (1− µ(Ac))− (1− ν(Ac))
= −µ(Ac) + ν(Ac)

= −
∑
k∈Ac

(µk − νk)

⩾ −
∑
k∈A∗

(µk − νk)

= −(µ(A∗)− ν(A∗)),

which allows us to conclude. □

The total variation distance is connected to the ℓ1 distance by the following
proposition.

Proposition 6.13. For any two probability distributions µ and ν on {1, 2, . . . ,N},
we have

∥µ− ν∥TV =
1
2∥µ− ν∥1 =

1
2

N∑
k=1
|µk − νk|.

Proof. Letting
A∗ := {k ∈ {1, 2, . . . ,N} : νk ⩽ µk},

we have

" 157

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

∥µ− ν∥1 =
N∑
k=1
|µk − νk|

=
∑
k∈A∗

|µk − νk|+
∑

k∈(A∗)c

|µk − νk|

=
∑
k∈A∗

(µk − νk) +
∑

k∈(A∗)c

(νk − µk)

=
∑
k∈A∗

(µk − νk) +
∑

k∈(A∗)c

νk −
∑

k∈(A∗)c

µk

=
∑
k∈A∗

(µk − νk) + 1−
∑
k∈A∗

νk −

(
1−

∑
k∈A∗

µk

)
=
∑
k∈A∗

(µk − νk) +
∑
k∈A∗

(µk − νk)

= 2
∑
k∈A∗

(µk − νk)

= 2(µ(A∗)− ν(A∗))

= 2∥µ− ν∥TV,

where the last equality comes from Lemma 6.12. □

The next result is a direct consequence of Proposition 6.13.
Proposition 6.14. For any two probability distributions µ and ν on {1, 2, . . . ,N},
we always have ∥µ− ν∥TV ⩽ 1.
Proof. We have

∥µ− ν∥TV =
1
2

N∑
k=1
|µk − νk|

⩽
1
2

N∑
k=1

(µk + νk)

=
1
2

N∑
k=1

µk +
1
2

N∑
k=1

νk

= 1.

□

Recall that the vector µPn = ([µPn]i)i=1,2,...,N denotes the probability dis-
tribution of the chain at time n ∈ N, given it was started with the initial
distribution µ = [µ1,µ2, . . . ,µN], i.e. we have, using matrix product notation,

158 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

P(Xn = i) =
N∑
j=1

P(Xn = i | X0 = j)P(X0 = j) =
N∑
j=1

µj [P
n]j,i = [µPn]i,

i = 1, 2, . . . ,N . The next lemma presents a contractivity property for the tran-
sition matrix P .
Lemma 6.15. For any two probability distributions µ = [µ1,µ2, . . . ,µN] and
ν = [ν1, ν2, . . . , νN] on {1, 2, . . . ,N} and any Markov transition matrix P we
have

∥µP − νP∥TV ⩽ ∥µ− ν∥TV.
Proof. Using the triangle inequality∣∣∣∣∣

N∑
k=1

xk

∣∣∣∣∣ ⩽
N∑
k=1
|xk|, x1,x2, . . . ,xN ∈ R,

we have

∥µP − νP∥TV =
1
2

N∑
j=1

∣∣[µP]j − [νP]j
∣∣

=
1
2

N∑
j=1

∣∣∣∣∣
n∑
i=1

µiPi,j −
n∑
i=1

νiPi,j

∣∣∣∣∣
=

1
2

N∑
j=1

∣∣∣∣∣
n∑
i=1

(µi − νi)Pi,j

∣∣∣∣∣
⩽

1
2

N∑
j=1

n∑
i=1
|(µi − νi)Pi,j |

=
1
2

N∑
j=1

n∑
i=1

Pi,j |µi − νi|

=
1
2

n∑
i=1
|µi − νi|

N∑
j=1

Pi,j

=
1
2

n∑
i=1
|µi − νi|

= ∥µ− ν∥TV.

□

By induction on n ⩾ 1, Lemma 6.15 also shows that

∥µPn+1 − νPn+1∥TV ⩽ ∥µPn − νPn∥TV ⩽ ∥µ− ν∥TV, n ⩾ 1.

" 159

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

When the chain with transition matrix P admits a stationary distribution we
obtain the following corollary.

Corollary 6.16. Assume that the chain (Xn)n⩾0 admits a stationary dis-
tribution π = [π1,π2, . . . ,πN]. Then, for any probability distribution µ =
[µ1,µ2, . . . ,µN] we have

∥µPn+1 − π∥TV ⩽ ∥µPn − π∥TV, n ⩾ 0.

Proof. Replacing µ and ν with µPn and π in Lemma 6.15, we have

∥µPn+1 − π∥TV = ∥(µPn)P − πP∥TV ⩽ ∥µPn − π∥TV, n ⩾ 0.

□

6.4 Distance to stationarity

Next, we let
d(n) := Max

µ∈PN

∥µPn − π∥TV, n ⩾ 0,

denote the distance to stationarity of Xn to π = [π1,π2, . . . ,πN].

Lemma 6.17. The distance to stationarity d(n) is a nonincreasing function,
i.e. we have d(n+ 1) ⩽ d(n), n ⩾ 0.

Proof. Letting µ ∈ PN by Corollary 6.16 we find

∥µPn+1 − πP∥TV ⩽ ∥µPn − π∥TV.

Taking the maximum over µ ∈ PN in the above inequality yields

d(n+ 1) = Max
µ∈PN

∥µPn+1 − π∥TV

⩽ Max
µ∈PN

∥µPn − π∥TV

= d(n), n ⩾ 0.

□

Remark 6.18. i) If all entries in P are strictly positive then the chain is
aperiodic and irreducible, and it admits a limiting and stationary distri-
bution. Indeed, the chain is irreducible because all states can communicate
in one time step since Pi,j > 0, 1 ⩽ i, j ⩽ N . In addition, the chain is
aperiodic as all states have period one, given that Pi,i > 0, i = 1, 2, . . . ,N .

160 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

ii) Since the state space is finite, Corollary 6.2 shows that all states are pos-
itive recurrent, hence by Corollary 6.7 the chain admits a limiting and a
stationary distribution that are equal.

In what follows, we make the following assumption.

Assumption (C). Assume that the transition matrix P admits an invariant
(or stationary) distribution π = [π1,π2, . . . ,πN] such that πP = π, and that
for some 0 < θ < 1 we have

Pi,j ⩾ θπj , for all i, j = 1, 2, . . . ,N . (6.15)

We also let

Π :=



π

π

π

...

π


=



π1 π2 π3 π4 · · · πN

π1 π2 π3 π4 · · · πN

π1 π2 π3 π4 · · · πN

...
...

...
...

. . .
...

π1 π2 π3 π4 · · · πN


,

hence (6.15) reads P ⩾ θΠ using componentwise ordering, and the optimal
value of θ may be found as

θ∗ = min
1⩽i,j⩽N

Pi,j
πj

.

In addition, since π is a stationary distribution for P we have the relation

Π = ΠP . (6.16)

Lemma 6.19. Under Assumption (C), for all 0 < θ < 1 the matrix

Qθ :=
1

1− θ (P − θΠ)

is the transition matrix of a Markov chain on S = {1, 2, . . . ,N} which admits π
as stationary distribution. We also note the relation QΠ = Π for any Markov
transition matrix Q.

Proof. We note that the matrix Qθ has nonnegative entries due to Assump-
tion (C), and it can be written as

Qθ =
[
[Qθ]i,j

]
1⩽i,j⩽N

" 161

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

=



[Qθ]1,1 [Qθ]1,2 · · · [Qθ]1,N

[Qθ]2,1 [Qθ]2,2 · · · [Qθ]2,N

...
...

. . .
...

[Qθ]N ,1 [Qθ]N ,2 · · · [Qθ]N ,N



=



1
1−θ (P1,1 − θπ1)

1
1−θ (P1,2 − θπ2) · · · 1

1−θ (P1,N − θπN)

1
1−θ (P2,1 − θπ1)

1
1−θ (P2,2 − θπ2) · · · 1

1−θ (P2,N − θπN)

...
...

. . .
...

1
1−θ (PN ,1 − θπ1)

1
1−θ (PN ,2 − θπ2) · · · 1

1−θ (PN ,N − θπN)


.

Clearly, all entries of Qθ are nonnegative due to the condition

Pi,j ⩾ θπj , i, j = 1, 2, . . . ,N .

In addition, for all i = 1, 2, . . . ,N we have

N∑
j=1

[Qθ]i,j =
1

1− θ

N∑
j=1

(Pi,j − θΠi,j)

=
1

1− θ

N∑
j=1

(Pi,j − θπj)

=
1

1− θ

N∑
j=1

Pi,j −
θ

1− θ

N∑
j=1

πj

=
1

1− θ −
θ

1− θ
= 1, 0 < θ < 1,

and we conclude that Qθ is a Markov transition matrix. The stationarity of π
with respect to Qθ follows from

πQθ =
1

1− θ (πP − θπΠ) =
π− θπ
1− θ = π.

□

Lemma 6.20. We have the relation

162 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

Pn −Π = (1− θ)n(Qnθ −Π), n ⩾ 0. (6.17)

Proof. This statement is proved by induction on n ∈N. Clearly, the property
holds for n = 0, and for n = 1 by the definition of Qθ. Next, assume that

Pn = Π + (1− θ)n (Qnθ −Π)

for some n ⩾ 1. Noting that the condition πP = π implies ΠP = Π and using
the relation P = Π + (1− θ) (Qθ −Π), we have

Pn+1 = PnP

=
(
Π + (1− θ)n(Qnθ −Π)

)
P

= ΠP + (1− θ)nQnθP − (1− θ)nΠP
= Π + (1− θ)nQnθP − (1− θ)nΠ
= Π + (1− θ)nQnθ

(
Π + (1− θ)(Qθ −Π)

)
− (1− θ)nΠ

= Π + θ(1− θ)nQnθΠ + (1− θ)n+1Qn+1
θ − (1− θ)nΠ.

Next, we note that we have RΠ = Π for any Markov transition matrix R,
hence PΠ = Π2 = Π, and

QθΠ =
1

1− θ (P − θΠ)Π =
1

1− θ
(
PΠ− θΠ2) = Π− θΠ

1− θ = Π,

hence QθΠ = Π, and more generally QnθΠ = Π, n ⩾ 1. Therefore, we have

Pn+1 = Π + θ(1− θ)nQnθΠ + (1− θ)n+1Qn+1
θ − (1− θ)nΠ

= Π + θ(1− θ)nΠ + (1− θ)n+1Qn+1
θ − (1− θ)nΠ

= Π + (1− θ)n+1Qn+1
θ − (1− θ)n+1Π

= Π + (1− θ)n+1(Qn+1
θ −Π

)
,

which allows us to conclude by induction. □

We refer to Theorem 4.9 in Levin et al. (2009) for the next result.
Proposition 6.21. Under Assumption (C), given any initial distribution µ
the total variation distance between the distribution µPn of the chain at time
n and its stationary distribution π = [π1,π2, . . . ,πN] satisfies∥∥µPn − π∥∥TV ⩽ (1− θ)n, n ⩾ 1, µ ∈ PN .

As a consequence, we have

d(n) ⩽ (1− θ)n, n ⩾ 1.

" 163

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

Proof. Let µ ∈ PN . Relation (6.17) shows that∥∥µPn − π∥∥TV =
∥∥µPn − µΠ

∥∥
TV

=
1
2

N∑
j=1

∣∣[µ(Pn −Π)]j
∣∣

=
1
2

N∑
j=1

(1− θ)n
∣∣[µQnθ − π]j∣∣

=
(1− θ)n

2

N∑
j=1

∣∣[µQnθ]j − πj∣∣
= (1− θ)n

∥∥µQnθ − π∥∥TV
⩽ (1− θ)n, n ⩾ 0,

where we applied Proposition 6.14, since Πk,· = π is a probability distribution
and the same holds for [Qnθ]k,· for all k = 1, 2, . . . ,N by Lemma 6.19. Finally,
we find

d(n) = Max
µ∈PN

∥∥µPn − π∥∥TV ⩽ (1− θ)n, n ⩾ 0.

□

The relation ∥∥µPn − π∥∥TV = (1− θ)n
∥∥µQnθ − π∥∥TV, n ⩾ 0,

also shows that, in total variation distance, at each time step the chain associ-
ated to P converges faster (by a factor 1− θ) to π than the chain associated
to Qθ.

Remark 6.22. Proposition 6.21 shows that any stationary distribution satisfy-
ing the condition Pi,j ⩾ θπj , i, j = 1, 2, . . . ,N , admits the limiting distribution

πj := lim
n→∞

P(Xn = j | X0 = i) = lim
n→∞

[Pn]i,j , i, j ∈ S,

independently of the initial state i ∈ S.

Remark 6.22 applies in particular when Pi,j > 0, i, j = 1, 2, . . . ,N , in which
case the chain is irreducible and aperiodic, and admits a unique limiting and
stationary distribution. More generally, the result holds when P is regular, i.e.
when there exists n ⩾ 1 such that [Pn]i,j > 0 for all i, j = 1, 2, . . . ,N , cf.
§ 4.3-4.5 of Levin et al. (2009).

Note that if the transition matrix P = (Pi,j)1⩽i,j⩽N has strictly positive
entries, it can be shown as in Propositions 4-5 of Bryan and Leise (2006) that

164 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

for any initial distribution µ we have∥∥µPn − π∥∥1 ⩽ cn∥µ− π∥1, n ⩾ 0,

with
c := Max

i=1,2,...,N

∣∣∣∣1− 2 min
j=1,2,...,N

Pi,j

∣∣∣∣ ,
see Exercise 6.7.

6.5 Mixing times

The mixing time of the chain with transition matrix P is defined as

tαmix := min{n ⩾ 0 : d(n) ⩽ α},

for some threshold α ∈ (0, 1). In what follows, we let

⌈x⌉ = min{n ∈ Z : x ⩽ n}

denote the integer ceiling of x ∈ R.

Proposition 6.23. The mixing time tαmix of the chain associated to P satisfies
the exponential convergence rate

tαmix ⩽
⌈

logα
log(1− θ)

⌉
.

Proof. If tαmix = 0 the inequality is clearly satisfied, so that we can suppose that
tαmix ⩾ 1. By Lemma 6.17 the distance to stationarity d(n) is a nonincreasing
function, hence by the definition of tαmix and Proposition 6.21 we have

α < d(tαmix − 1) ⩽ (1− θ)tαmix−1,

hence

logα < log d(tαmix − 1) ⩽ log
(
(1− θ)tαmix−1) = (tαmix − 1) log(1− θ).

Dividing the above inequality by log(1− θ) < 0 yields

tαmix − 1 ⩽ log d(tαmix − 1)
log(1− θ) <

logα
log(1− θ) .

Hence, we have
tαmix < 1 + logα

log(1− θ) ,

" 165

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

which yields
tαmix < 1 +

⌈
logα

log(1− θ)

⌉
,

and finally
tαmix ⩽

⌈
logα

log(1− θ)

⌉
.

□

The condition Pi,j ⩾ θπj , i, j = 1, 2, 3, reads

P =



2
3

1
6

1
6

1
3

1
2

1
6

1
6

2
3

1
6


⩾ θ



11
24

9
24

4
24

11
24

9
24

4
24

11
24

9
24

4
24


or

[
Pi,j
πj

]
1⩽i,j⩽3

=



48
33

12
27 1

24
33

12
9 1

4
11

48
27 1


⩾


θ θ θ

θ θ θ

θ θ θ

 , (6.18)

where the inequality is understood componentwise, hence the optimal (largest
possible) value of θ such that θ ⩽ Pi,j/πj , i, j = 1, 2, 3, is

θ∗ = min
1⩽i,j⩽3

Pi,j
πj

=
4
11 .

Taking α = 1/4 and θ = 4/11, we have

tαmix ⩽
⌈

log 1/4
log(1− θ)

⌉
=

⌈
log 1/4
log 7/11

⌉
= ⌈3.067⌉ = 4.

166 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

Dis
tan

ce

Time	steps	n

d(n)
(1-θ)n

Fig. 6.6: Graphs of distance to stationarity d(n) and upper bound (1 − θ)n with α = 1/4.

We check from Figure 6.6 that the actual value of the mixing time is tαmix = 2,
where we estimate d(n) as

d(n) := Max
k=1,2,...,N

∥∥[Pn]k,· − π
∥∥

TV, n ⩾ 0.

The value of d(0) is the maximum distance between π and all deterministic
initial distributions starting from states k = 1, 2, . . . ,N .

Below is the Matlab/Octave code used to generate Figure 6.6, that can be run
at https://octave-online.net/.

 P = [2/3,1/6,1/6; 1/3,1/2,1/6; 1/6,2/3,1/6;]
 pi = [11/24,9/24,4/25];theta = 4/11;

for n = 1:11
 y(n)=n-1;u(n)=0.25;z(n)=(1-theta)^(n-1);distance(n) = 0;

for k = 1:3;d = mpower(P,n-1)(k,1:3) - pi;dist=0;
 for i = 1:3;dist = dist + 0.5*abs(d(i));end

distance(n) = max(distance(n) ,dist);end;end
 graphics_toolkit("gnuplot");

plot(y,distance,'-bo','LineWidth',3,y,z,'-ro','LineWidth',3,y,u,'-k', 'LineWidth',5)
 legend('d(n)','(1-\theta)^n')

set (gca, 'xtick', 1:10,"fontsize", 12)
 set (gca, 'ytick', 0:0.1:1,"fontsize", 12)

grid on
 xlabel('Time steps n',"fontsize", 12);ylabel('Distance',"fontsize", 12)

Coupling

We close this chapter with a general bound on the distance between the distri-
butions of two arbitrary discrete-time random sequences (Xn)n⩾0 and (Yn)n⩾0
on a state space S, for some random time called τ the coupling time of (Xn)n⩾0
and (Yn)n⩾0, such that

Xn = Yn, n ⩾ τ .

" 167

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://octave-online.net/
https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

Proposition 6.24. For all n ∈N, we have

Sup
x∈S

|P(Xn = x)−P(Yn = x)| ⩽ P(τ > n), n ⩾ 0.

Proof. By the law of total probability, for all x ∈ S and n ⩾ 0 we have

P(Xn = x) = P({Xn = x} ∩ {τ ⩽ n}) + P({Xn = x} ∩ {τ > n})
= P({Yn = x} ∩ {τ ⩽ n}) + P({Xn = x} ∩ {τ > n})
⩽ P(Yn = x) + P(τ > n).

Similarly to the above, we have

P(Yn = x) = P({Yn = x} ∩ {τ ⩽ n}) + P({Yn = x} ∩ {τ > n})
= P({Xn = x} ∩ {τ ⩽ n}) + P({Yn = x} ∩ {τ > n})
⩽ P(Xn = x) + P(τ > n),

hence

−P(τ > n) ⩽ P(Xn = x)−P(Yn = x) ⩽ P(τ > n), x ∈ S, n ⩾ 0,

which leads to

Sup
x∈S

|P(Xn = x)−P(Yn = x)| ⩽ P(τ > n), n ⩾ 0.

□

See Exercise 6.12-(f) for an application of the coupling technique to random
shuffling.

Notes

See e.g. § 4.3-4.5 of Levin et al. (2009) for further reading.

Exercises

Exercise 6.1 Compute the limiting and stationary distributions of the Markov
chain (Yk)k⩾0 with transition matrix (3.12).

Exercise 6.2 Find the stationary distribution [π0,π1] of the two-state Markov
chain on S = {0, 1} with transition probability matrix

168 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

P =

[0 1
0 1/3 2/3
1 2/3 1/3

]
.

Exercise 6.3 Let (Yk)k∈N denote the Markov chain considered in § 3.3.

a) Is the chain (Yk)k∈N reducible? Find its communicating classes.
b) Find the limiting distribution, and the possible stationary distributions of

the chain (Yk)k∈N.

Exercise 6.4 Consider a two-state {0, 1}-valued Markov chain (Xn)n⩾0 on the
state space with transition matrix

P =

[0 1
0 1− a a
1 b 1− b

]
,

where a, b ∈ (0, 1). This question is to be treated via explicit computations for
two-state Markov chains, without referring to general results.

a) Give the stationary distribution π = (π0,π1) of the chain (Xn)n⩾0.
b) Compute the mean return times µ0(0), µ1(1) and the mean hitting times

h0(1), h1(0) of the chain (Xn)n⩾0.
c) Compute the conditional expected values E[τ | X0 = 0] and E[τ | X0 = 1]

of the cycle length
τ := inf{l > 1 : Xl = X1}.

d) Compute the four expected values

E

[
τ−1∑
l=1

1{Xl=i}

∣∣∣X0 = j

]
, i, j = 0, 1.

e) Show that for any initial distribution (P(X0 = 0), P(X0 = 1)) we have

π0 =
E
[∑τ−1

l=1 1{Xl=0}

]
E[τ − 1] , π1 =

E
[∑τ−1

l=1 1{Xl=1}

]
E[τ − 1] .

Exercise 6.5 Given (Xn)n⩾0 an irreducible Markov chain with transition
matrix P and stationary distribution π = [π1,π2, . . . ,πN] on the state space
S = {1, 2, . . . ,N}, consider the distances to stationarity defined as

d(n) := Max
µ∈PN

∥µPn − π∥1 and d̂(n) := Max
k=1,2,...,N

∥∥[Pn]k,· − π
∥∥

1, n ⩾ 0,

where PN is the set of probability measures on {1, . . . ,N} and

" 169

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

∥µ− ν∥1 :=
N∑
k=1
|µk − νk|

denotes the ℓ1 distance between any two probability distributions µ = [µ1,µ2, . . . ,µN],
ν = [ν1,µ2, . . . , νN] on S.

a) Show that d̂(n) ⩽ d(n), n ⩾ 0.
b) Show that d(n) ⩽ d̂(n), n ⩾ 0.

Exercise 6.6 (Aldous and Diaconis (1986), Jonasson (2009)). Let (Xn)n⩾1
denote a Markov chain on a finite state space S, and let τ ⩾ 0 denote a random
time such that the distribution π of Xn given {τ ⩽ n} does not depend on
n ⩾ 0, i.e.

P(Xn ∈ A | τ ⩽ n) = π(A), A ⊂ S, n ⩾ 0.

a) Show that

P(Xn ∈ A) = π(A) + (P(Xn ∈ A | τ > n)− π(A))P(τ > n),

A ⊂ S, n ⩾ 0.
Hint. Split P(Xn ∈ A) as

P(Xn ∈ A) = P(Xn ∈ A and τ ⩽ n) + P(Xn ∈ A and τ > n).

b) Show the total variation distance bound

∥P(Xn ∈ ·)− π(·)∥TV := Sup
A⊂S

|P(Xn ∈ A)− π(A)| ⩽ P(τ > n),

between π and the distribution of Xn, n ⩾ 0.
Hint. Use the inequalities

−1 ⩽ a− 1 ⩽ a− b ⩽ 1− b ⩽ 1, a, b ∈ [0, 1].

c) Give an example of a random time such that the distribution π of Xn given
{τ ⩽ n} does not depend on n ⩾ 0.

Exercise 6.7 (Bryan and Leise (2006)) LetM = (Mi,j)1⩽i,j⩽n denote a column-
stochastic matrix, i.e. M is such that

n∑
i=1

Mi,j = 1, j = 1, 2, . . . ,n,

and assume that M has strictly positive entries, i.e.

Mi,j > 0, i, j = 1, 2, . . . ,n.

170 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

We let ∥x∥1 =
n∑
k=1
|xk| denote the ℓ1 norm of x = (x1, . . . ,xn) ∈ Rn. Prove

the following statements using only Markov chain reasoning.
a) Show that M admits 1 as (right) eigenvalue and that the corresponding

eigenspace has dimension 1.
b) Show that there exists a unique vector y ∈ Rn with positive compo-

nents such that My = y with ∥y∥1 = 1, which can be computed as
y = limk→∞ Mkx0 for any initial guess x0 with positive components such
that ∥x0∥1 = 1.

Exercise 6.8 Consider an irreducible positive recurrent Markov chain (Xn)n⩾0
with unique stationary distribution π on a state space S, and let

τx := inf{n ⩾ 1 : Xn = x}

denote the first return time to state x ∈ S.
a) Let

Rxn :=
n∑
k=1

1{Xk=x}

denote the number of returns to state x ∈ S from time 1 to time n. Show
that the stationary distribution π = (πx)x∈S satisfies

πx = lim
n→∞

E[Rxn]

n
, x ∈ S.

Hint. Show that the limit satisfies π = πP .
b) Let

Nx,y :=
τx∑
n=1

1{Xn=y}

denote the number of visits to state y before the first return to state x.
Show that we have

πy =
E[Nx,y | X0 = x]

E[τx | X0 = x]
, x, y ∈ S.

Hint. Use the law of large numbers for regenerative processes.
c) Show that Nx,y has a geometric distribution, and find its parameter in

terms of αx,y := P(Nx,y ⩾ 1 | X0 = x) and αy,x := P(Ny,x ⩾ 1 | X0 = y),
x, y ∈ S.

d) Find a relation between πx, πy, αx,y, αy,x.
Hint. Recall that we have

πx =
1

E[τx | X0 = x]
, x ∈ S,

" 171

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

and ∑
k⩾1

krk−1 =
1

(1− r)2 ,

for any r ∈ [0, 1), see (B.12).

Problem 6.9 Consider a two-state Markov chain (Xn)n⩾0 on S = {0, 1}, with
transition matrix

P =

[0 1
0 1− a a
1 b 1− b

]
,

where a, b ∈ (0, 1).
a) Find the lowest eigenvalue λ of P .
b) Find the stationary distribution (π0,π1) of the chain (Xn)n⩾0.
c) Show by induction on n ⩾ 0 that[

E
[

exp (t
∑n

k=1 Xk)
∣∣X0 = 0

]
E
[

exp (t
∑n

k=1 Xk)
∣∣X0 = 1

]] =

1− a aet

b (1− b)et

n 1

1

 ,

n ⩾ 0, t ∈ R. In the sequel, we assume that (Xn)n⩾0 is started in its
stationary distribution, i.e.

P(X0 = 0) = π0, P(X0 = 1) = π1.

d) Show that for all n ⩾ 1 we have

E

[
exp

(
t
n∑
k=1

Xk

)]

= [
√
π0,√π1e

t/2]

 λ+ (1− λ)π0 (1− λ)et/2√π0π1

(1− λ)et/2√π0π1 (λ+ (1− λ)π1)et

n−1  √
π0

√
π1et/2

 .

Hint. Diagonalize P as1− a a

b (1− b)

 =


1√
π0

0

0 1√
π1


√π0 −

√
π1

√
π1
√
π0

1 0

0 λ

 √π0
√
π1

−√π1
√
π0

√π0 0

0 √
π1

 ,

and use the fact that1− a aet

b (1− b)et

 =

1− a a

b 1− b

1 0

0 et

 .

172 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

e) Find the largest eigenvalue µ(t) of the matrix

M (t) :=

 λ+ (1− λ)π0 (1− λ)et/2√π0π1

(1− λ)et/2√π0π1 (λ+ (1− λ)π1)et

 .

In the sequel, we assume that λ ⩾ 0.
f) Show that for all n ⩾ 0 and t ∈ R+ we have

E

[
exp

(
t
n∑
k=1

Xk

)]
⩽ (π0 + π1e

t)(µ(t))n−1 ⩽ (µ(t))n.

Hint. Use e.g. Proposition 9 in Foucart (2010).
g) Using the Markov inequality, show that

P

(
1
n

n∑
k=1

(Xk − π1) ⩾ z

)
⩽ e−n((π1+z)t−logµ(t)), z > 0, t > 0.

h) Show that for all n ⩾ 1 we have

P

(
1
n

n∑
k=1

(Xk − π1) ⩾ z

)
⩽ exp

(
−2 1− λ

1 + λ
nz2
)

, z > 0.

Hint. Find the value t(x) of t > 0 that maximizes t 7→ xt− logµ(t) for x
fixed in (0, 1), and then show that

xt(x)− logµ(t(x))
(x− π1)2 ⩾ 2 1− λ

1 + λ
, x ∈ (0, 1).

Problem 6.10 Let (Xn)n⩾0 denote an irreducible aperiodic Markov chain on
a finite state space S, with transition matrix P = (Pi,j)i,j∈S and stationary
distribution π = (πi)i∈S. We let

Rin :=
n∑
k=1

1{Xk=i}

denote the number of returns to state i ∈ S from time 1 to time n. Recall that
by Exercise 6.8-(a) the stationary distribution π = (πi)i∈S satisfies

πi = lim
n→∞

E[Rin]

n
, i ∈ S. (6.19)

a) Define the sequence (τk)k⩾1 recursively as

" 173

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

τ1 := inf{l > 1 : Xl = X1},

and
τk := inf{l > τk−1 : Xl = X1}, k ⩾ 2.

Show, using e.g. Theorem 31 page 15 of Freedman (1983) and the law of large
numbers for regenerative processes, see Corollary 14 page 106 of Serfozo
(2009), that

πi =
E
[∑τ1−1

j=1 1{Xj=i}

]
E[τ1 − 1] , i ∈ S.

b) Let τ be a stopping time for Fn := σ(X0, . . . ,Xn), n ⩾ 0, with E[τ] <∞.
By writing

T := inf{l > τ : Xl = X1}

as T = τκ where κ is a stopping time∗ for (Fτk
)k⩾1, show that

πi =
E
[∑T−1

j=1 1{Xj=i}

]
E[T − 1] , i ∈ S.

Hint. Use e.g. Theorem 2 of Chewi (2017).

Problem 6.11 (Problem 4.2 continued). We consider an N -arm bandit in which
arm n◦i is modeled by a two-state Markov chain (X

(i)
n)n⩾0 on S := {0, 1}, with

transition matrix P (i) and stationary distribution
(
π
(i)
0 ,π(i)1

)
, i = 1, . . . ,N ,

ordered as π(1)1 ⩽ · · · ⩽ π
(N)
1 . Given an {1, . . . ,N}-valued policy (αk)k⩾1, we

let

T
(i,α)
n :=

n∑
k=1

1{αk=i}, i = 1, 2, . . . ,N ,

denote the number of times the arm i is selected by the policy (αk)k⩾1 until
time n ⩾ 1. The reward of arm n◦i after it has been pulled n ⩾ 1 times is X(i)

n ,
and the regret Rαn at time n of the policy (αk)k⩾1 is given by

Rαn := nπ
(N)
1 −E

 N∑
i=1

T
(i,α)
n∑
k=1

X
(i)
k

 , n ⩾ 1.

a) Bounded regret (Problem 6.9 continued).

i) Show that for any stopping time τ for Fn := σ(X
(i)
0 , . . . ,X(i)

n), n ⩾ 0,
letting R(i)

τ :=
∑τ

k=1 1{X(i)
k

=1}
denote the number of returns to state

∗ See e.g. § 2 of Chewi (2017).

174 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

1 until time τ by the chain (X
(i)
n)n⩾1, we have∣∣E[R

(i)
τ]− π(i)1 E[τ]

∣∣ ⩽ E[T − τ], i = 1, . . . ,N ,

where T := inf{l > τ : Xl = X1}.
Hint. Use the relations

R
(i)
T−1 − (T − τ) ⩽ R

(i)
T − (T − τ) ⩽ R

(i)
τ ⩽ R

(i)
T−1

in the notation of Question (b) of Problem 6.10.
ii) Show that∣∣∣∣∣∣∣E

 N∑
i=1

T
(i,α)
n∑
k=1

X
(i)
k −

N∑
i=1

π
(i)
1 T

(i,α)
n


∣∣∣∣∣∣∣ ⩽ 2

N∑
i=1

Max
l,j∈S

µ
(i)
l (j), n > N ,

where µ(i)l (j) denotes the first return time of state j ∈ S from state
l ∈ S by the chain (X

(i)
n)n⩾0.

iii) Show that the regret Rαn of the policy (αk)k⩾1 is bounded as

Rαn ⩽ Rαn +K, n > N ,

for some constant K > 0 independent of n ⩾ 1, where Rαn is the
modified regret defined as

Rαn := nπ
(N)
1 −E

[
N∑
i=1

π
(i)
1 T

(i,α)
n

]
, n ⩾ 1.

b) Learning at the logn speed. Let

m̂
(i,α)
n :=

1
T
(i,α)
n

T
(i,α)
n∑
k=1

X
(i)
k

denote the sample average reward obtained from arm n◦i until time n ⩾ 1
under the policy (αk)k⩾1.

Given L > 0, we define the policy (α∗
n)n⩾1 by α∗

n := n for n = 1, . . . ,N ,
and for n > N we let α∗

n be the index i ∈ {1, . . . ,N} that maximizes the
quantity

m̂
(i,α∗)
n−1 +

√
L logn
T
(i,α∗)
n−1

.

i) Let 1 ⩽ i < N and n ⩾ N . Show by contradiction that if α∗
n = i, then

at least one of the following three conditions must hold:

" 175

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

m̂
(N ,α∗)
n−1 +

√
L logn
T
(N ,α∗)
n−1

⩽ π
(N)
1 ,

m̂
(i,α∗)
n−1 > π

(i)
1 +

√
L logn
T
(i,α∗)
n−1

,

T
(i,α∗)
n−1 <

4L logn
(π

(N)
1 − π(i)1)2

.

ii) Show that letting n̂i := 4L(logn)/(π(N)
1 − π(i)1)2, we have

E
[
T
(i,α∗)
n

]
⩽ n̂i +

∑
n̂i<k⩽n

P

(
m̂

(N ,α∗)
k−1 +

√√√√ L log k
T
(N ,α∗)
k−1

⩽ π
(N)
1

)

+P

(
m̂

(i,α∗)
k−1 > π

(i)
1 +

√√√√L log k
T
(i,α∗)
k−1

) ,

1 ⩽ i < N , n ⩾ N .
iii) Letting λi denote the smallest eigenvalue of P (i), we assume that

min1⩽i⩽N λi ⩾ 0, let λ := Max1⩽i⩽N λi, and assume that L >
(1 + λ)/(1− λ).

Show that

P

m̂(N ,α∗)
k−1 +

√√√√ L log k
T
(N ,α∗)
k−1

⩽ π
(N)
1

 ⩽ 1
k2L(1−λ)/(1+λ)−1

and

P

m̂(i,α∗)
k−1 > π

(i)
1 +

√√√√L log k
T
(i,α∗)
k−1

 ⩽ 1
k2L(1−λ)/(1+λ)−1 ,

i = 1, . . . ,N , k > N .

Hint. Apply the result of Question (A)-(8) of Assignment 1.
iv) Show that the modified regret can be bounded for any L > (1+λ)/(1−

λ) by

Rα∗
n ⩽

N−1∑
i=1

π
(N)
1 − π(i)1

L(1− λ)/(1 + λ)− 1 +(logn)
N−1∑
i=1

4L
π
(N)
1 − π(i)1

, n > N .

Hint. Use a comparison argument between series and integrals.

176 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

Problem 6.12 (Aldous and Diaconis (1986), Jonasson (2009)). Random shuf-
fling is applied to a deck of N = 52 cards by inserting the top card back into
the deck at a random location i ∈ {1, . . . ,N} chosen uniformly among N = 52
possible positions.

1

2

3

i

i + 1

N − 1

N

Fig. 6.7: Top to random shuffling.

More formally, consider the Markov chain (Xn)n⩾0 on the group

SN = {(e1, . . . , eN) : e1, . . . , eN ∈ {1, . . . ,N}, ei ̸= ej , 1 ⩽ i ̸= j ⩽ N}

of N ! permutations of (1, . . . ,N), built by applying the cycle permutation of
indexes

(1, 2, . . . , i) 7→ (2, . . . , i, 1)

to Xn for some uniformly chosen i ∈ {1, . . . ,N} if i ⩾ 2, or the identity if
i = 1. The transition matrix P of the chain is given by

P(Xn+1 = (e1, . . . , eN) | Xn = (e1, . . . , eN)) :=
1
N

,

and

P(Xn+1 = (e2, . . . ei, e1, ei+1, . . . , eN) | Xn = (e1, . . . , eN)) :=
1
N

,

i = 2, . . . ,N , with Pσ,η := 0 in all other cases, with σ, η ∈ SN .

At time 0 we choose to start with the initial condition X0 := (1, . . . ,N). We
also let T0 := 0, and for k = 1, . . . ,N − 1 we denote by Tk the first time the
original bottom card has moved up to the rank N − k in the deck. Note that
at time TN−1, the original bottom card should have moved to the top of the
deck.

" 177

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

a) Find the probability distribution

P(Tl − Tl−1 = m), m ⩾ 1, for l = 1, . . . ,N − 1.

Hint. This is a geometric distribution. Find its parameter depending on
l = 1, . . . ,N − 1.

b) Find the mean time E[Tk] it takes until the original bottom card has moved
to the position N − k, k = 1, . . . ,N − 1.

Hint. Use the telescoping identity

Tk = (Tk − Tk−1) + (Tk−1 − Tk−2) + · · ·+ (T2 − T1) + (T1 − T0).

c) Compute Var[TN−1], and show that Var[TN−1] ⩽ CN2 for some constant
C > 0.

Hint. The random variables Tk − Tk−1, k = 1, . . . ,N − 1, are independent.
d) Show that for any a > 0 we have

lim
N→∞

P(TN−1 > (1 + a)N logN) = 0.

Hint. Use Chebyshev’s inequality

P(Z −E[Z] ⩾ x) ⩽
1
x2 Var[Z], x > 0,

and the bound
N−1∑
k=1

1
k
⩽ 1 + logN , N ⩾ 1.

e) What is the distribution of Xn given that n > TN−1 ?

Hint. The answer is intuitive. No proof is required.
f) Based on the answers to Questions (d)-(e) and the coupling argument of

Proposition 6.24, find the convergence rate of the distribution of (Xn)n⩾0
to the uniform distribution.

Problem 6.13 (Levin et al. (2009)). Convergence to equilibrium. In this prob-
lem we derive quantitative bounds for the convergence of a Markov chain to
its stationary distribution π. Let P be the transition matrix of a discrete-time
Markov chain (Xn)n⩾0 on S = {1, 2, . . . ,N}. Given two probability distribu-
tions µ = [µ1,µ2, . . . ,µN] and ν = [ν1,µ2, . . . , νN] on {1, 2, . . . ,N}, the total
variation distance between µ and ν is defined as

∥µ− ν∥TV :=
1
2

N∑
k=1
|µk − νk|.

178 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

Recall that the vector µPn = ([µPn]i)i=1,2,...,N denotes the probability dis-
tribution of the chain at time n ∈ N, given it was started with the initial
distribution µ = [µ1,µ2, . . . ,µN], i.e. we have, using matrix product notation,

P(Xn = i) =
N∑
j=1

P(Xn = i | X0 = j)P(X0 = j) =
N∑
j=1

µj [P
n]j,i = [µPn]i,

i = 1, 2, . . . ,N .

a) Show that for any two probability distributions µ = [µ1,µ2, . . . ,µN] and
ν = [ν1, ν2, . . . , νN] on {1, 2, . . . ,N} we always have ∥µ− ν∥TV ⩽ 1.

b) Show that for any two probability distributions µ = [µ1,µ2, . . . ,µN] and
ν = [ν1, ν2, . . . , νN] on {1, 2, . . . ,N} and any Markov transition matrix P
we have

∥µP − νP∥TV ⩽ ∥µ− ν∥TV.

Hint: Use the triangle inequality∣∣∣∣∣
n∑
k=1

xk

∣∣∣∣∣ ⩽
n∑
k=1
|xk|, x1,x2, . . . ,xn ∈ R.

c) Assume that the chain with transition matrix P admits a stationary dis-
tribution π = [π1,π2, . . . ,πN]. Show that for any probability distribution
µ = [µ1,µ2, . . . ,µN] we have

∥µPn+1 − π∥TV ⩽ ∥µPn − π∥TV, n ⩾ 0.

d) Show that the distance to stationarity, defined as

d(n) := Max
k=1,2,...,N

∥∥[Pn]k,· − π
∥∥

TV, n ⩾ 0,

satisfies d(n+ 1) ⩽ d(n), n ∈N.
e) Assume that all entries of P are strictly positive. Explain why the chain

is aperiodic and irreducible, and why it admits a limiting and stationary
distribution.

In what follows we assume that P admits an invariant (or stationary) dis-
tribution π = [π1,π2, . . . ,πN] such that πP = π, and that

Pi,j ⩾ θπj , for all i, j = 1, 2, . . . ,N , (6.20)

for some 0 < θ < 1. We also let

" 179

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

Π :=



π1 π2 π3 π4 · · · πN

π1 π2 π3 π4 · · · πN

π1 π2 π3 π4 · · · πN

...
...

...
...

. . .
...

π1 π2 π3 π4 · · · πN


,

hence (6.20) reads P ⩾ θΠ.
f) Show that for all 0 < θ < 1 the matrix

Qθ :=
1

1− θ (P − θΠ)

is the transition matrix of a Markov chain on S = {1, 2, . . . ,N}.
g) Show by induction on n ∈N that we have

Pn −Π = (1− θ)n(Qnθ −Π), n ∈N.

h) Show that given any X0 = k = 1, 2, . . . ,N the total variation distance
between the distribution

[Pn]k,· = ([Pn]k,1, . . . , [Pn]k,N)

= [P(Xn = 1 | X0 = k), . . . , P(Xn = N | X0 = k)]

of the chain at time n and the stationary distribution π = [π1,π2, . . . ,πN]
satisfies ∥∥[Pn]k,· − π

∥∥
TV ⩽ (1− θ)n, n ⩾ 1, k = 1, 2, . . . ,N .

Conclude that we have d(n) ⩽ (1− θ)n, n ⩾ 1.
i) Show that the mixing time of the chain with transition matrix P , defined

as
tmix := min{n ⩾ 0 : d(n) ⩽ 1/4},

satisfies
tmix ⩽

⌈
log 1/4

log(1− θ)

⌉
.

j) Find the optimal value of θ satisfying the condition Pi,j ⩾ θπj for all i, j =
1, 2, . . . ,N for the chain of Exercise 4.12 in Privault (2018), with N = 3.

Problem 6.14 (Lezaud (1998)). Consider an irreducible, reversible∗, Markov
chain (Xn)n⩾0 with transition matrix P = (Pi,j)1⩽i,j⩽d and admitting a sta-
∗ i.e. πiPi,j = πjPj,i, i, j = 1, . . . , d.

180 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

tionary distribution π on the finite state space S = {1, 2, . . . , d}. For any func-
tion f : R→ R, we let Df denote the diagonal matrix

Df =



f(1) 0 0 0 · · · 0

0 f(2) 0 0 · · · 0

0 0 f(3) 0 · · · 0
...

...
...

...
. . .

...

0 0 0 0 · · · f(d)


.

We use the scalar product ⟨·, ·⟩ and norm ∥ · ∥ on Rd defined as

⟨u, v⟩ :=
d∑
l=1

u(l)v(l)πl, ∥u∥2 :=
d∑
l=1
|u(l)|2πl, u, v ∈ Rd,

with the Cauchy-Schwarz inequality

|⟨u, v⟩| ⩽ ∥u∥ · ∥v∥, u, v ∈ Rd.

Recall that the norm ∥ · ∥ also defines a matrix norm on Rd×d as

∥M∥ = Sup
u∈Rd

u̸=0

∥Mu∥
∥u∥

= Sup
∥u∥=1

∥Mu∥, M ∈ Rd×d.

In what follows, we assume that (Xn)n⩾0 is started with π as initial distribu-
tion, and f : {1, . . . , d} → R denotes any function such that ∥f∥∞ ⩽ 1 and
E[f(Xn)] = 0, n ⩾ 0.

a) Show that 1 is an eigenvalue of single multiplicity for P , and give its eigen-
vector.
Hint. Use the irreducibility of (Xn)n⩾0 and the Perron-Frobenius theorem.

b) Write down the matrix Π of the orthogonal∗ projection operator on the
eigenvector of P with eigenvalue 1.

c) Show by induction on n ⩾ 0 that for any state k ∈ {1, . . . , d} and α ∈ R,
we have

E

[
exp

(
α

n∑
l=1

f(Xl)

) ∣∣∣X0 = k

]
=

d∑
l=1

[(
P eαDf

)n]
k,l, n ⩾ 0.

Remark. This extends Question (b) of Problem 6.9.
d) Show that for any α ⩾ 0 and γ ⩾ 0 we have
∗ Orthogonality is with respect to the scalar product ⟨·, ·⟩.

" 181

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://en.wikipedia.org/wiki/Perron%E2%80%93Frobenius_theorem
https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

P

(
n∑
l=1

f(Xl) ⩾ nγ
∣∣∣X0 = k

)
⩽ e−αγn

d∑
l=1

[(
P eαDf

)n]
k,l, n ⩾ 0.

Hint. Use the Chernoff argument.
e) Letting λ0(α) denote the largest eigenvalue of P eαDf , show that for all

α ⩾ 0 we have

d∑
k,l=1

πk
[(
P eαDf

)n]
k,l ⩽ eα(λ0(α))

n, n ⩾ 0. (6.21)

Hints. (i) Write the left hand side of (6.21) as a scalar product and use the
Cauchy-Schwarz inequality. (ii) Note that

P eαDf = e−αDf /2eαDf /2P eαDf /2eαDf /2

is similar to a self-adjoint operator. (iii) Apply e.g. Proposition 9 in Foucart
(2010).

f) Show that for any α ⩾ 0 and γ ⩾ 0 we have

P

(
1
n

n∑
l=1

f(Xl) ⩾ γ

)
⩽ eα−n(αγ−log λ0(α)), n ⩾ 0.

g) Show that for any matrix M we have the relation

tr(ΠPDn
fMDm

f) = tr(ΠDn
fMDm

f) = ⟨fn,Mfm⟩, n,m ⩾ 0. (6.22)
h) Show that λ0(α) can be expanded as the power series

λ0(α) = 1 +
∑
n⩾1

cnα
n

in the parameter α, with c1 = 0 and

cn =
n∑
p=1

(−1)p−1

p∑
ν1+···+νp=n

k1+···+kp=p−1
ν1⩾1,...,νp⩾1
k1⩾0,...,kp⩾0

1
ν1! · · · νp!

⟨fν1 ,Sk′
1P (Df)

ν2 · · ·Sk
′
p−2P (Df)

νp−1S
k′

p−1Pfνp⟩,

n ⩾ 2.

Hints. (i) Apply Relations II-(2.1) and II-(2.31) in Kato (1995) to the ex-
pansion

P eαDf =
∑
n⩾0

αnP
(Df)

n

n!

182 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://en.wikipedia.org/wiki/Chernoff_bound
https://en.wikipedia.org/wiki/Matrix_similarity
https://www3.nd.edu/~nancy/Math40760/Info/self-adjoint.pdf
https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

using the reduced resolvent S := (P − I)−1(I −Π), see II-(2.10)-(2.12) and
p. 74 line -1. (ii) Use the fact that at least one of k1, . . . , kp must be zero in
II-(2.31) of Kato (1995), and denote the non-zero indexes by k′

1, . . . , k′
p−1.

(iii) Use (6.22). (iv) Use tr(AB) = tr(BA).
i) Compute

∑
k1+···+kp=p−1

k1⩾0,...,kp⩾0

1. Hint. We have
∑

ν1+···+νp=n
ν1⩾1,...,νp⩾1

1 =

(
n− 1
p− 1

)
.

j) Show that cn ⩽ (5/(1− λ1))n−1/5, n ⩾ 2, where λ1 is the second largest
eigenvalue of P .
Hints. (i) Use the inequalities n! ⩾ 2n−1 and 4n ⩾ (2n

n)
√
πn, n ⩾ 1, Proposi-

tion 9 in Foucart (2010), and the Cauchy-Schwarz inequality. (ii) Show that
∥I −Π∥ ⩽ 1. (iii) Note that P − I is invertible on Im(I −Π). (iv) Show
that

n−1∑
p=0

(
n− 1
p

)
xp

p+ 1 =
(1 + x)n − 1

nx
⩽

(1 + x)n

nx
.

k) Show that for all γ ⩾ 0 and n ⩾ 0 we have

P

(
1
n

n∑
l=1

f(Xl) ⩾ γ

)
⩽ exp

(
1− λ1

5 − nγα+
nα2

1− λ1 − 5α

)
,

α ∈ [0, (1− λ1)/5).
Hint. Use the inequality log(1 + x) ⩽ x, x > 0.

l) Show that for all γ ⩾ 0 and n ⩾ 0 we have

P

(
1
n

n∑
l=1

f(Xl) ⩾ γ

)
⩽ e(1−λ1)/5 exp

(
−(1− λ1)

nγ2

12

)
.

Hint. Minimize the upper bound of Question (k) over α ∈ [0, (1− λ1)/5).

" 183

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

184 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Chapter 7
The Ising Model

This chapter presents the Ising model and studies its long run behavior via
its limiting and stationary distribution. Applications of the Ising model can be
found in spatial statistics, image analysis and segmentation, opinion studies, ur-
ban segregation, language change, metal alloys, magnetic materials, liquid/gas
coexistence, phase transitions, plasmas, cell membranes in biophysics, etc.

7.1 Construction . 185
7.2 Irreducibility, aperiodicity and recurrence. 189
7.3 Limiting and stationary distributions 190
7.4 Simulation examples . 194
Exercises . 197

7.1 Construction

The one-dimensional Ising model is built on the state space S := {−1,+1}N
made of elements z = (zk)1⩽k⩽N ∈ S whose components zk ∈ {−1, 1}, k =
1, 2, . . . N , are called spins. The state space S has cardinality 2N . For example,
2100 = 1.26× 1030.

Fig. 7.1: Simulation of the Ising model with N = 199, p = 0.98, and z0 = zN+1 = +1.†

" 185

This version: March 5, 2024 https://personal.ntu.edu.sg/nprivault/indext.html

https://en.wikipedia.org/wiki/Ising_model
https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

In the sequel, we write z = ± to mean that z can take the values +1 of −1,
i.e. z ∈ {−1,+1}. We consider a Markov chain (Zn)n⩾0 on the state space
S = {−1,+1}N , whose transitions from an initial configuration Z0 = z =
(zk)1⩽k⩽N to a new configuration Z1 = z̃ = (z̃k)1⩽k⩽N ∈ S are defined as
follows. Let p ∈ (0, 1) and q := 1− p.

First, randomly pick a component zk in z = (zk)1⩽k⩽N with probability
1/N , k = 1, 2, . . . ,N , and then consider the following cases:

(i) if (zk−1, zk+1) = (−1,+1) or (zk−1, zk+1) = (+1,−1):
⇒ flip the sign of zk, i.e. set z̃k := ±zk with probability 1/2,

(ii) if (zk−1, zk+1) = (+1,+1):
⇒ set z̃k := +1 with probability p > 0, and z̃k := −1 with probability
q > 0.

(iii) if (zk−1, zk+1) = (−1,−1):
⇒ set z̃k := −1 with probability p > 0, and z̃k := +1 with probability
q > 0,

where p+ q = 1. The probabilities p and q can be respectively viewed as the
probabilities of “agreeing”, resp. “disagreeing” with two neighbors who share
the same opinion, see Figure 7.2. The boundary conditions z0 and zN+1 can be
arbitrarily specified, and the corresponding instructions can be coded in as
follows:

 M=199; p=0.98;x=array(M+1); for(l in seq(1,M+2)) { x[l]=l-1; };z=array(M+2);
 z <- sample(c(-1,1), M+2, replace = TRUE, prob=c(0.5,0.5));z[1]=1;z[M+2]=1;

dev.new(width=13, height=4)
 for (ll in seq(0,1000)) {

plot(x,z,type="p",xlab="",ylab="",xlim=c(-5,M+1+5),ylim=c(-1.3,1),yaxt="n", xaxt="n",
xaxs="i", col="black",cex=1.2,main="",pch=20, bty="n");k <- 1+ceiling(runif(1,
min=0, max=M))

 for(l in seq(1,M+2)) {if (l!=k) segments(x0=x[l], y0=0, y1=z[l], lwd=2) else
segments(x0=x[k], y0=0, y1=z[l], lwd=3,col="purple")}

lines(c(k-1),c(z[k]),type="p",xlab="",ylab="",xlim=c(-5,M+1+5),ylim=c(-1.3,1),
yaxt="n", xaxt="n", xaxs="i",col="purple",cex=1.5,main="" ,pch=20,bty="n")

 zz=z[k];segments(x0=x[k], y0=0, y1=z[k], lwd=3,col="purple")
if (z[k-1]!=z[k+1]) z[k]=sample(c(-1,1), 1,prob=c(0.5,0.5))

 if (z[k-1]==1 && z[k+1]==1) z[k]=sample(c(-1,1), 1, prob=c(1-p,p))
if (z[k-1]==-1 && z[k+1]==-1) z[k]=sample(c(-1,1), 1, prob=c(p,1-p))

 axis(1,pos=1,at=seq(0,M+1,M+1),outer=TRUE,labels=FALSE,padj=-4,tcl=0.5)
axis(1,pos=0,at=seq(0,M+1,M+1),outer=TRUE,labels=FALSE)

 axis(1,pos=-1,at=seq(0,M+1,M+1),outer=TRUE)
text(8.0,-1.2,bquote(n == .(ll)));text(-3,1,"+1");text(-2,-1,"-1");ko=k;

 readline(prompt = "Pause. Press <Enter> to continue...")
plot(x,z,type="p",xlab="",ylab="",xlim=c(-5,M+1+5),ylim=c(-1.3,1),yaxt="n", xaxt="n",

xaxs="i", col="black",cex=1.2,main="",pch=20, bty="n");
 for(l in seq(1,M+2)) {if (l!=k) segments(x0=x[l], y0=0, y1=z[l], lwd=2) else

segments(x0=x[k], y0=0, y1=z[l], lwd=3,col="blue")}
lines(c(k-1),c(z[k]),type="p",xlab="",ylab="",xlim=c(-5,M+1+5),ylim=c(-1.3,1),

yaxt="n", xaxt="n", xaxs="i",col="blue",cex=1.5,main="" ,pch=20,bty="n")
 segments(x0=x[k], y0=0, y1=z[k], lwd=3,col="blue")

readline(prompt = "Pause. Press <Enter> to continue...")}

† Animated figure (works in Acrobat Reader).

186 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

Fig. 7.2: Simulation of the Ising model with N = 199, p = 0.02, and z0 = zN+1 = +1.∗

The next proposition allows us to formulate the transition probabilities of the
chain (Zn)n⩾0 in closed form. For any z = (z1, . . . , zN) ∈ {−1,+1}N and
k = 1, 2, . . . ,N , we let

z̄k := (z1, . . . , zk−1,−zk, zk+1, . . . , zN) (7.1)

denotes the transformation of the state z ∈ S obtained after flipping its k-th
component zk, k = 1, 2, . . . ,N .
Proposition 7.1. The transition probabilities

P(Z1 = (z1, . . . , zk−1,−zk, zk+1, . . . , zN) | Z0 = z)

given that Z0 = z = (z1, . . . , zN) take the general form

P
(
Z1 = z̄k

∣∣Z0 = z
)
=

1
N(1 + (p/q)zk(zk−1+zk+1)/2)

, k = 1, 2, . . . ,N .

(7.2)
Proof. The formula (7.2) follows from computing the transition probabilities

P(Z1 = (z1, . . . , zk−1,−zk, zk+1, . . . , zN) | Z0 = z), k = 1, 2, . . . ,N ,

given that Z0 = z = (zk)1⩽k⩽N , in the following cases:
(i) (zk−1, zk, zk+1) = (−1,±1,+1) or (zk−1, zk, zk+1) = (+1,±1,−1),
(ii) (zk−1, zk, zk+1) = (+1,+1,+1) or (zk−1, zk, zk+1) = (−1,−1,−1),
(iii) (zk−1, zk, zk+1) = (+,−1,+1) or (zk−1, zk, zk+1) = (−1,+1,−1),
k = 1, 2, . . . ,N . In order to conclude, we note that zk(zk−1 + zk+1)/2 can only
take the three possible values −1, 0,+1, and treat all cases separately. □

From (7.2) we can also confirm the relation

P(Z1 = z̄k | Z0 = z) + P(Z1 = z | Z0 = z̄k)

=
1

N(1 + (p/q)zk(zk−1+zk+1)/2)
+

1
N(1 + (p/q)−zk(zk−1+zk+1)/2)

∗ Animated figure (works in Acrobat Reader).

" 187

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

=
1
N

, k = 1, 2, . . . ,N .

Example

Taking N = 3 and setting z0 = z4 = −1, i.e. (z0, z1, z2, z3, z4) takes the form

(z0, z1, z2, z3, z4) = (−,±,±,±,−),

we find that the transition probability matrix P of (Zn)n⩾0 on the state space
S = {−−−,−−+,−+−,−−+,+−−,+−+,++−,+++} is given by

P =

−−−

−−+

−+−

−++

+−−

+−+

++−

+++

[
−−−

p

p/3
p/3

0
p/3

0
0
0

−−+

q/3
1/2

0
1/6

0
p/3

0
0

−+−

q/3
0

(1 + q)/3
1/6

0
0

1/6
0

−++

0
1/6
1/6
1/2

0
0
0

1/6

+−−

q/3
0
0
0

1/2
p/3
1/6

0

+−+

0
q/3
0
0
q/3
q

0
q/3

++−

0
0

1/6
0

1/6
0

1/2
1/6

+++

0
0
0

1/6
0
p/3
1/6

(1 + p)/3

] .

For example, since at most one spin may be flipped at any time step and given
that z0 = z4 = −1, we check that

P(Z1 = −−− | Z0 = −−−) = 1
3 × p+

1
3 × p+

1
3 × p = p,

P(Z1 = −−+ | Z0 = −−−) = 1
3 × 0 + 1

3 × 0 + 1
3 × q =

q

3 ,

P(Z1 = −++ | Z0 = −−+) =
1
3 × 0 + 1

3 ×
1
2 +

1
3 × 0 =

1
6 ,

P(Z1 = +++ | Z0 = +++) =
1
3 ×

1
2 +

1
3 × p+

1
3 ×

1
2 =

1 + p

3 ,

etc. When N = 3, the chain has the following graph:

188 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

- - -

- - +

- + -

+ - -

++ -

+ - +

- ++

+++p

1/2

(1 + q)/3

1/2

1/2

q

1/2

(1 + p)/3

q/3

q/3

q/3 1/6

q/3

1/6

p/3

1/6

q/3

p/3

q

1/6

1/6

1/6

1/6

1/6

1/6

1/6

p/3

p/3

p/3

p/3

1/6

1/6

7.2 Irreducibility, aperiodicity and recurrence

Aperiodicity

By construction the chain (Zn)n⩾0 is aperiodic since every state has a returning
loop because

P(Z1 = z | Z0 = z) ⩾ min(p, q) > 0, z ∈ S.

More precisely, we can compute P(Z1 = z | Z0 = z) for all z ∈ S using the
complement rule, Relation (7.2), and the law of total probability, as

P(Z1 = z | Z0 = z) = 1−
N∑
k=1

P(Z1 = z̄k | Z0 = z)

= 1− 1
N

N∑
k=1

1
1 + (p/q)zk(zk−1+zk+1)/2

=
1
N

N∑
k=1

(
1− 1

1 + (p/q)zk(zk−1+zk+1)/2

)

=
1
N

N∑
k=1

(p/q)zk(zk−1+zk+1)/2

1 + (p/q)zk(zk−1+zk+1)/2

=
1
N

N∑
k=1

1
1 + (q/p)zk(zk−1+zk+1)/2

> 0, z ∈ S.

" 189

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

Irreducibility

The chain is irreducible because starting from any configuration z = (zk)1⩽k⩽N ∈
S we can reach any other configuration ẑ = (ẑk)1⩽k⩽N ∈ S in a finite number
of time steps. In order to check this, we can for example count the number of
spins in z = (zk)1⩽k⩽N that differ from the spins in ẑ = (ẑk)1⩽k⩽N and flip
them one by one until we reach ẑ = (ẑk)1⩽k⩽N .

Alternatively, we could also enumerate all possible 2N configurations by
flipping one spin at a time, starting from z = (+1,+1, . . . ,+1) until we
reach z = (−1,−1, . . . ,−1), and back from z = (−1,−1, . . . ,−1) to z =
(+1,+1, . . . ,+1).

Recurrence

The chain has a finite state space of cardinality 2N and it is irreducible, hence it
is positive recurrent by Corollary 1.21. Since in addition the chain is aperiodic,
by Theorem 6.6 it admits a limiting distribution and a stationary distribution
which coincide.

7.3 Limiting and stationary distributions

The chain has a finite state space of cardinality 2N , it is aperiodic and positive
recurrent, hence by e.g. Theorem 6.2 it admits a limiting distribution indepen-
dent of its initial state, and a unique stationary distribution (πz)z∈S solution of
π = πP , which is known to coincide with its limiting distribution. In particular,
we have

lim
n→∞

P(Zn = z | Z0 = z̃) = lim
n→∞

[Pn]z̃,z = πz, z, z̃ ∈ S.

In Lemma 7.2, Relation (7.3) is a version of the detailed balance condition (6.8),
according to Lemma 6.4.

Lemma 7.2. Any probability distribution (πz)z∈S on S satisfying the relation

πz̄k

πz
=

P
(
Z1 = z̄k | Z0 = z

)
P
(
Z1 = z | Z0 = z̄k

) , k = 1, 2, . . . ,N , z ∈ S, (7.3)

where z̄k is defined in (7.1), is a stationary distribution for the chain (Zn)n⩾0,
i.e. we have π = πP and(

P(Z0 = z) = πz, ∀ z ∈ S
)

=⇒
(
P(Z1 = z) = πz, ∀ z ∈ S

)
.

190 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

Proof. Starting from the law of total probability

P(Z1 = z) =
∑
z̃∈S

P(Z1 = z | Z0 = z̃)P(Z0 = z̃)

= P(Z1 = z | Z0 = z)P(Z0 = z)

+
N∑
k=1

P(Z1 = z | Z0 = z̄k)P(Z0 = z̄k),

we show, using (7.3), that P(Z1 = z) equals πz if P(Z0 = z) = πz for all z ∈ S.
Indeed, using (7.3) we have

P(Z1 = z) = P(Z1 = z | Z0 = z)πz +
N∑
k=1

P(Z1 = z | Z0 = z̄k)πz̄k

= πzP(Z1 = z | Z0 = z) + πz

N∑
k=1

P(Z1 = z̄k | Z0 = z)

= πz

(
P(Z1 = z | Z0 = z) +

N∑
k=1

P(Z1 = z̄k | Z0 = z)

)
= πz,

hence (πz)z∈S is a stationary distribution for the chain (Zn)n⩾0. □

The stationary distribution (πz)z∈S is known as the Boltzmann distribution,
and is computed in the next proposition.

Proposition 7.3. The probability distribution (πz)z∈S defined as

πz := Cβ exp
(
β

N∑
l=0

zlzl+1

)
, z ∈ S, (7.4)

is the stationary and limiting distribution of (Zn)n⩾0, where

Cβ :=

(∑
z∈S

exp
(
β

N∑
l=0

zlzl+1

))−1

is a normalization constant and β is the inverse temperature given in terms of
p and q by

β =
1
4 log p

q
, i.e. p =

1
1 + e−4β .

" 191

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

Proof. Using Relation (7.5) in Lemma 7.4 below, we show that (πz)z∈S defined
in (7.4) satisfies (7.3). For all z ∈ S we have

πz̄k = Cβ exp
(
β
k−2∑
l=0

zlzl+1 − βzk−1zk − βzkzk+1 + β
N∑

l=k+1
zlzl+1

)

= Cβ exp
(
−2βzk(zk−1 + zk+1) + β

N∑
l=0

zlzl+1

)
= πze−2βzk(zk−1+zk+1)

= πz

(
q

p

)zk(zk−1+zk+1)/2

= πz
P(Z1 = z̄k | Z0 = z)

P(Z1 = z | Z0 = z̄k)
, k = 1, 2, . . . ,N ,

by (7.5) below, and the inverse temperature β is given by

β =
1
4 log p

q
= −1

4 log
(

1
p
− 1
)

,

i.e.
p =

1
1 + e−4β .

The constant Cβ is chosen so that

1 =
∑
z∈S

πz = Cβ
∑
z∈S

exp
(
β

N∑
l=0

zlzl+1

)
,

i.e.

Cβ =

(∑
z∈S

exp
(
β

N∑
l=0

zlzl+1

))−1

.

□

More generally, the stationary distribution (πz)z∈S can take the form

πz := CβeβH(z) z ∈ S,

where
H(z) =

∑
0⩽i,j⩽N+1

Ji,jzizj

is the Hamiltonian of the system, with

192 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

Ji,j = 1{j=i+1}, 0 ⩽ i, j ⩽ N + 1,

in Proposition 7.3. More general Hamiltonians can be used to model long range
interaction. We note that when the probability p of “agreeing” is larger than
half, then the temperature 1/β is negative, whereas it is positive when p < 1/2.

In particular, when −β < 0 the configuration with the lowest probability
Cβe−(N+1)β corresponds to a sequence (zk)0⩽k⩽N+1 with alternating signs,
while a constant spin sequence will have the highest probability Cβe(N+1)β .

Conversely, when −β > 0 the configuration with the lowest probability
Cβe(N+1)β corresponds to a constant spin sequence, while the highest prob-
ability Cβe−(N+1)β corresponds to a sequence (zk)0⩽k⩽N+1 with alternating
signs.
See Besag (1974) for the construction of a maximum pseudolikelihood estimate
(MPLE) of β in the Ising model, Bhattacharya and Mukherjee (2018) for the
consistency of this estimator, and Figure 4 therein for an estimation of β with
error bounds for a Facebook friendship-network in which spin values refer to
gender.

The next lemma has been used in the proof of Proposition 7.3.
Lemma 7.4. We have

P(Z1 = z̄k | Z0 = z)

P(Z1 = z | Z0 = z̄k)
=

(
q

p

)zk(zk−1+zk+1)/2
, k = 1, 2, . . . ,N , z ∈ S.

(7.5)
Proof. By (7.2), we have

P(Z1 = z̄k | Z0 = z)

P(Z1 = z | Z0 = z̄k)
=

1 + (p/q)z̄
k(z̄k

k−1+z̄
k
k+1)/2

1 + (p/q)zk(zk−1+zk+1)/2

=
1 + (p/q)−zk(zk−1+zk+1)/2

1 + (p/q)zk(zk−1+zk+1)/2

=
qzk(zk−1+zk+1)/2(1 + (q/p)zk(zk−1+zk+1)/2)

qzk(zk−1+zk+1)/2 + pzk(zk−1+zk+1)/2

=
(q/p)zk(zk−1+zk+1)/2(pzk(zk−1+zk+1)/2 + qzk(zk−1+zk+1)/2)

qzk(zk−1+zk+1)/2 + pzk(zk−1+zk+1)/2

=

(
q

p

)zk(zk−1+zk+1)/2
, k = 1, 2, . . . ,N .

We could also have more directly used the relations

1 + x

1 + 1/x
= x, x =

(
p

q

)−z̄k(z̄k
k−1+z̄

k
k+1)/2

> 0,

" 193

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

which imply
1 + (q/p)
1 + (p/q)

=
q

p
and 1 + (p/q)

1 + (q/p)
=
p

q
.

□

7.4 Simulation examples

In this section, we consider small scale simulation examples, although the real-
life applications of the Ising model involve large values of N .

(i) Taking N = 3 and z0 = z4 = +1, i.e. (z0, z1, z2, z3, z4) takes the form
(+,±,±,±,+), we find the limiting distribution on the 8 configurations in

S = {−−−,−−+,−+−,−−+,+−−,+−+,++−,+++},

and we compute the value of Cβ .

Fig. 7.3: Simulation with N = 3, p =
√

0.75 ≈ 0.87, β = −0.47, and z0 = z4 = +1.∗

Figure 7.3 is generated by the following code.
∗ Animated figure (works in Acrobat Reader).

194 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

 M=3;p=sqrt(0.75);x=array(M+1); for(l in seq(1,M+2)) { x[l]=l-1; }
z=array(M+2);z <- sample(c(-1,1), M+2, replace = TRUE, prob=c(0.3,0.7))

 z[1]=1;z[M+2]=1;dev.new(width=6, height=4);for(ll in seq(0,100)) {par(mar =
c(0,0,0,0));

plot(x,z,type="p",xlab="",ylab="",xlim=c(-5,M+1+5),ylim=c(-1.3,1),
yaxt="n",xaxt="n",xaxs="i", col="black",cex=1.2,main="",pch=20,bty="n")

 k <- 1+ceiling(runif(1, min=0, max=M))
for(l in seq(1,M+2)) {

 if (l!=k) segments(x0=x[l], y0=0, y1=z[l], lwd=2) else segments(x0=x[k], y0=0,
y1=z[l], lwd=3,col="purple")}

lines(c(k-1),c(z[k]),type="p",xlab="",ylab="",xlim=c(-5,M+1+5),ylim=c(-1.3,1),
yaxt="n",xaxt="n", xaxs="i",col="purple",cex=1.5,main="",pch=20,bty="n")

 zz=z[k];segments(x0=x[k], y0=0, y1=z[k], lwd=3,col="purple")
if (z[k-1]!=z[k+1]) z[k]=sample(c(-1,1), 1,prob=c(0.5,0.5))

 if (z[k-1]==1 && z[k+1]==1) z[k]=sample(c(-1,1), 1, prob=c(1-p,p))
if (z[k-1]==-1 && z[k+1]==-1) z[k]=sample(c(-1,1), 1, prob=c(p,1-p))

 axis(1,pos=1,at=seq(0,M+1,M+1),outer=TRUE,labels=FALSE,padj=-4,tcl=0.5)
axis(1,pos=0,at=seq(0,M+1,1),outer=TRUE)

 axis(1,pos=-1,at=seq(0,M+1,M+1),outer=TRUE)
text(0.26,-1.13,bquote(n == .(ll)));text(-0.12,1,"+1"); text(-0.09,-1,"-1")

 readline(prompt = "Pause. Press <Enter> to continue...")
segments(x0=x[k], y0=0, y1=zz, lwd=3,col="white")

 lines(c(k-1),c(zz),type="p",xlab="",ylab="",xlim=c(-5,M+1+5),ylim=c(-1.3,1),
yaxt="n",xaxt="n", xaxs="i",col="white",cex=1.5,main="",pch=20,bty="n")

segments(x0=x[k], y0=0, y1=z[k], lwd=3,col="blue")
 lines(c(k-1),c(z[k]),type="p",xlab="",ylab="",xlim=c(-5,M+1+5),ylim=c(-1.3,1),

yaxt="n",xaxt="n", xaxs="i",col="blue",cex=1.5,main="",pch=20,bty="n")
readline(prompt = "Pause. Press <Enter> to continue...")}

We have

π = [
π−−−

π−−+

π−+−

π−++

π+−−

π+−+

π++−

π+++

] = [
Cβ

Cβ

Cβe−4β

Cβ

Cβ

Cβ

Cβ

Cβe4β

] = Cβ [
1
1
q/p

1
1
1
1
p/q

] =
1

1 + 4pq [
pq

pq

q2

pq

pq

pq

pq

p2

]
−−−

−−+

−+−

−++

+−−

+−+

++−

+++

with q/p =
√

3/4/(1−
√

3/4) = 6.46, and from the relation

π−−− + π−−+ + π−+− + π−++ + π+−− + π+−+ + π++− + π+++ = 1,

we find

Cβ =
1

e4β + e−4β + 6

" 195

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

=
1

4 cosh2(2β) + 4
=

pq

q2 + p2 + 6pq

=
1

6 + p/q+ q/p

=
pq

1 + 4pq .

We note that when p > 1/2 the configuration “+++” has the highest prob-
ability p2, while “−+ −” has the lowest probability q2 in the long run, due
to the presence of two “opinion leaders” z0 = +1 and z4 = +1 who will not
change their minds.

We can also compute the probabilities of having more “+” than “-” in the
long run, as

π−++ + π+−+ + π++− + π+++ =
(1 + 2q)p
1 + 4pq ,

while the probability of having more “-” than “+” is

π−−− + π−−+ + π−+− + π+−− =
(1 + 2p)q
1 + 4pq .

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.25 0.5 0.75 1

p

Fig. 7.4: Probability of a majority of “+” in the long run as a function of p ∈ [0, 1].

Clearly, the end result is influenced by the boundary conditions z0 = z4 = +1.

(ii) For another example, taking z0 = −1 and z4 = +1, we have

196 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

π = [
π−−−

π−−+

π−+−

π−++

π+−−

π+−+

π++−

π+++

] = [
Cβe2β

Cβe2β

Cβe−2β

Cβe2β

Cβe−2β

Cβe−2β

Cβe−2β

Cβe2β

] = Cβ [
√
p/q√
p/q√
q/p√
p/q√
q/p√
q/p√
q/p√
p/q

] =
1
4 [

p

p

q

p

q

q

q

p

]
−−−

−−+

−+−

−++

+−−

+−+

++−

+++

where
Cβ =

1
4
√
p/q+ 4

√
q/p

=

√
pq

4 .

The probabilities of having more “+” than “-” in the long run are

π−++ + π+−+ + π++− + π+++ =
1
2

while the probability of having more “-” than “+” is also

π−−− + π−−+ + π−+− + π+−− =
1
2 .

Notes

See e.g. Agapie and Höns (2007) for further reading, and § 7.7.2 of Barbu and
Zhu (2020) for an application to image denoising.

Exercises

Exercise 7.1 We consider an ant moving randomly on the vertices of the
3-dimensional cube C3 represented as

C3 =
{
(e1, e2, e3) : e1, e2, e3 ∈ {0, 1}

}
,

by choosing a new edge with probability 1/3 at every time step.

" 197

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

(1, 1, 1)

(0, 1, 1) (1, 0, 1) (1, 1, 0)

(0, 0, 1) (0, 1, 0) (1, 0, 0)

(0, 0, 0)

Using first step analysis, compute the mean time h(r), r = 0, 1, 2, 3, until the
ant reaches the vertex (0, 0, 0) after starting from a vertex in the set Sr of
vertices which are at distance r = 0, 1, 2, 3 from (0, 0, 0), with S0 = {(0, 0, 0)}
and S3 = {(1, 1, 1)}.

Problem 7.2. We consider an ant moving randomly on the vertices of the
d-dimensional (hyper)cube Cd represented as

Cd =
{
(e1, . . . , ed) : e1, . . . , ed ∈ {0, 1}

}
,

by choosing a new edge with probability 1/d at every time step. We aim at
computing the mean time h(r) until the ant reaches the vertex (0, . . . , 0) after
starting from a vertex in the set Sr of vertices which are at distance r ∈
{0, . . . , d} of (1, . . . , 1), with S0 = {(1, . . . , 1)} and Sd = {(0, . . . , 0)}.

a) Give the value of h(d).
b) Find a relation between h(0) and h(1).
c) Using first step analysis, find a relationship between h(r), h(r − 1) and

h(r+ 1) for r = 1, 2, . . . , d− 1.
d) Letting f(r) := h(r+ 1)− h(r), r = 0, 1, . . . , d− 1, find a recurrence rela-

tion between f(r) and f(r− 1) for r = 1, 2, . . . , d− 1.
e) Find the value of f(0) and solve the equation of Question (d) for f(r),

r = 1, 2, . . . , d.

Hint. The solution of the equation

rf(r− 1) = d+ (d− r)f(r), r = 1, 2, . . . , d,

with f(0) = −1 is given by

f(r) = − 1
(d−1
r)

r∑
k=0

(
d

k

)
, r = 0, 1, . . . , d.

f) Using a telescoping identity, find the value of h(r) for r = 0, 1, . . . , d.

198 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

g) Give the values of h(0), h(1) and h(2).
h) Find the values of h(r) for r = 0, 1, . . . , d in the following cases:

i) d = 1,
ii) d = 2,
iii) d = 3.

" 199

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

200 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Chapter 8
Search Engines

In this chapter we describe the PageRank™ and related ranking algorithms for
search and meta search engines. This approach to ranking relies on the notions
of limiting and stationary distributions presented in the previous chapters. We
also apply the quantitative bounds on convergence to equilibrium discussed in
Chapter 6.

8.1 Markovian modeling of ranking 201
8.2 Limiting and stationary distributions 202
8.3 Matrix perturbation. 203
8.4 State ranking . 205
8.5 Meta search engines . 210
Exercises . 217

8.1 Markovian modeling of ranking

PageRank™ algorithm. We consider the ranking of five web pages a, b, c, d, e
which are linked according to the following sample graph.

c
b

d

e a
c

b

d

e
a

The algorithm works by constructing a self-improving random sequence (Xn)n⩾0
which is supposed to “converge” to the best possible search result. Given a
search result Xn = x ∈ S := {a, b, c, d, e}, we choose the next search result
Xn+1 with the conditional probability

" 201

This version: March 5, 2024 https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

P(Xn+1 = y | Xn = x) =
1
nx

1{x→y}, x, y ∈ S,

where nx denotes the number of outgoing links from x and “x → y” means
that x can lead to y in the graph. We also assume that “x→ x” is always true.

The process (Xn)n⩾0 is a Markov chain with state space (a, b, c, d, e) and
transition matrix

P =


0 0 0 1/2 1/2
0 1 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 1 0

 .

In addition, the chain (Xn)n⩾0 is clearly reducible, as can be seen from its
graph:

c
b

d

e a
c

b

d

e
a

1/2

1/2

1

1

1

1

8.2 Limiting and stationary distributions

We note that the chain (Xn)n⩾0 admits a limiting distribution which is de-
pendent of the initial state. Starting from state a , d or e , the limiting
distribution is (0, 0, 0, 1, 0), starting from state b or c , the limiting distribu-
tion is (0, 1, 0, 0, 0), so that although the chain admits limiting distributions,
it does not admit a limiting distribution independent of the initial state. More
precisely, it can be checked that the powers Pn of the transition matrix P take
the form

Pn =


0 0 0 1 0
0 1 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 1 0

 for all n ⩾ 2, hence lim
n→∞

Pn =


0 0 0 1 0
0 1 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 1 0

 .

The following proposition shows that the stationary distribution is not unique
here because the chain is reducible.
Proposition 8.1. Any probability distribution of the form

202 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

π = [πa,πb,πc,πd,πe] = [0, p, 0, 1− p, 0],

with p ∈ [0, 1], is a stationary distribution for the chain with matrix P .

Proof. The equation π = πP is satisfied by any probability distribution of the
form

π = [πa,πb,πc,πd,πe] = [0, p, 0, 1− p, 0],

with p ∈ [0, 1]. □

Clearly, in the long run the chain (Xk)k∈N will converge to state b if it starts
from c or b , and it will converge to state d if it starts from a , d , or e .
However, this does not allow us to compare the states b and d . This issue
is addressed in the next section.

8.3 Matrix perturbation

In PageRank™-type algorithms, one typically chooses to perturb the transition
matrix P into the new matrix

P (ε) :=
ε

n


1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

+ (1− ε)P

=



ε

5
ε

5
ε

5
5− 3ε

10
5− 3ε

10
ε

5
5− 4ε

5
ε

5
ε

5
ε

5
ε

5
5− 4ε

5
ε

5
ε

5
ε

5
ε
5

ε

5
ε

5
5− 4ε

5
ε

5
ε

5
ε

5
ε

5
5− 4ε

5
ε

5


,

with n = 5 here, and ε ∈ (0, 1), with 1− ε referred to as the damping factor.

We note that P (ε) is a Markov transition matrix, and that the corresponding
chain

(
X

(ε)
n

)
n⩾1 is irreducible and aperiodic. Indeed, all rows in the matrix P (ε)

clearly add up to 1, so P (ε) is a Markov transition matrix. On the other hand,
all states become accessible from each other so that the new chain is irreducible
and all states have period 1.

" 203

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

Since the chain is irreducible, aperiodic and has a finite state space, we know
by Corollary 6.7 that it admits a unique limiting and stationary distribution
π(ε). For example, taking with ε = 0.1 and n = 200, we have

P (ε)n =

ε

5


1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

+ (1− ε)


0 0 0 0.5 0.5
0 1 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 1 0




200

=


0.02 0.38 0.02 0.551 0.029
0.02 0.38 0.02 0.551 0.029
0.02 0.38 0.02 0.551 0.029
0.02 0.38 0.02 0.551 0.029
0.02 0.38 0.02 0.551 0.029

 ,

which can be obtained in Mathematica via the command

MatrixPower[(0.1/5)*[[1,1,1,1,1],[1,1,1,1,1],[1,1,1,1,1],[1,1,1,1,1],[1,1,1,1,1]]
+0.9*[[0,0,0,0.5,0.5],[0,1,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,1,0]],200]

with ε = 0.1. Since the chain is irreducible, aperiodic and has a finite state
space, we know by Corollary 6.7 that the limiting distribution π(ε) is also the
unique stationary distribution of the chain, which can be determined by solving
the equation π(ε) = π(ε)P (ε), i.e.

π(ε) = π(ε)P (ε)

=
ε

n
π(ε)


1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

+ (1− ε)π(ε)P

=
[ε

5 , ε5 , ε5 , ε5 , ε5

]
+ (1− ε)π(ε)P .

From the above calculation, we check that all probabilities in π(ε) are greater
than ε/5.

Proposition 8.2. The limiting and stationary distribution of P (ε) is given by
πa(ε) =

ε

5 , πb(ε) =
2− ε

5 , πc(ε) =
ε

5 ,

πd(ε) =
(2− ε)(3− ε)

10 , πe(ε) =
(3− ε)ε

10 .

(8.1)

Proof. The equation

π(ε) =
[ε

5 , ε5 , ε5 , ε5 , ε5

]
+ (1− ε)π(ε)P

204 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://www.wolframalpha.com/input/?i=MatrixPower[(0.1/5)*[[1,1,1,1,1],[1,1,1,1,1],[1,1,1,1,1],[1,1,1,1,1],[1,1,1,1,1]]%2B0.9*[[0,0,0,0.5,0.5],[0,1,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,1,0]],200]
https://www.wolframalpha.com/input/?i=MatrixPower[(0.1/5)*[[1,1,1,1,1],[1,1,1,1,1],[1,1,1,1,1],[1,1,1,1,1],[1,1,1,1,1]]%2B0.9*[[0,0,0,0.5,0.5],[0,1,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,1,0]],200]
https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

reads

[πa(ε),πb(ε),πc(ε),πd(ε),πe(ε)] =
[ε

5 , ε5 , ε5 , ε5 , ε5

]

+(1− ε)π(ε)


0 0 0 1/2 1/2
0 1 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 1 0

 ,

which yields (8.1). □

Note that the stationary distribution π can also be obtained as π = η⊤, where
η is the (normalized) eigenvector of eigenvalue 1 of the transposed transition
matrix P⊤, i.e. such that η = P⊤η, that can be obtained in Mathematica via
the command

Eigenvectors[(epsilon/5)*[[1,1,1,1,1],[1,1,1,1,1],[1,1,1,1,1],[1,1,1,1,1],[1,1,1,1,1]]
+(1-epsilon)*0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0.5,0,0,1,1,0.5,0,0,0,0],

see also Bryan and Leise (2006).

8.4 State ranking

We are now ready to provide a ranking of the states {a, b, c, d, e} based on
the limiting and stationary distribution π(ε) which is plotted as a function of
ε ∈ [0, 1] in Figure 8.1.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1

St
at

ion
ar

y d
ist

rib
ut

ion

ε

πa+πb+πc+πd+πe
πd
πb
πe
πc
πa

Fig. 8.1: Stationary distribution as a function of ε ∈ [0, 1].

We note that

πa(ε) = πc(ε) < πe(ε) < πb(ε) < πd(ε), ε ∈ (0, 1],

" 205

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://www.wolframalpha.com/input/?i=Eigenvectors[(epsilon/5)*[[1,1,1,1,1],[1,1,1,1,1],[1,1,1,1,1],[1,1,1,1,1],[1,1,1,1,1]]%2B(1-epsilon)*{{0,0,0,0,0},{0,1,1,0,0},{0,0,0,0,0},{0.5,0,0,1,1},{0.5,0,0,0,0}}]
https://www.wolframalpha.com/input/?i=Eigenvectors[(epsilon/5)*[[1,1,1,1,1],[1,1,1,1,1],[1,1,1,1,1],[1,1,1,1,1],[1,1,1,1,1]]%2B(1-epsilon)*{{0,0,0,0,0},{0,1,1,0,0},{0,0,0,0,0},{0.5,0,0,1,1},{0.5,0,0,0,0}}]
https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

hence we will rank the states as
Rank State

1 d

2 b

3 e

4 a ≃ c

based on the idea that the most visited states should rank higher.

Convergence analysis

We note that, proceeding similarly to (6.18), Assumption (C) page 161, i.e.

[P (ε)]i,j ⩾ θ(ε)πj(ε), i, j ∈ S,

reads, using componentwise ordering,

ε

5
ε

5
ε

5
5− 3ε

10
5− 3ε

10
ε

5
5− 4ε

5
ε

5
ε

5
ε

5
ε

5
5− 4ε

5
ε

5
ε

5
ε

5
ε

5
ε

5
ε

5
5− 4ε

5
ε

5
ε

5
ε

5
ε

5
5− 4ε

5
ε

5



⩾ θ(ε)×



ε

5
2− ε

5
ε

5
(2− ε)(3− ε)

10
(3− ε)ε

10
ε

5
2− ε

5
ε

5
(2− ε)(3− ε)

10
(3− ε)ε

10
ε

5
2− ε

5
ε

5
(2− ε)(3− ε)

10
(3− ε)ε

10
ε

5
2− ε

5
ε

5
(2− ε)(3− ε)

10
(3− ε)ε

10
ε

5
2− ε

5
ε

5
(2− ε)(3− ε)

10
(3− ε)ε

10


,

or equivalently

206 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

1 ε

2− ε 1 5− 3ε
(2− ε)(3− ε)

5− 3ε
(3− ε)ε

1 5− 4ε
2− ε 1 2ε

(2− ε)(3− ε)
2ε

(3− ε)ε

1 5− 4ε
2− ε 1 2ε

(2− ε)(3− ε)
2ε

(3− ε)ε

1 ε

2− ε 1 10− 8ε
(2− ε)(3− ε)

2ε
(3− ε)ε

1 ε

2− ε 1 10− 8ε
(2− ε)(3− ε)

2ε
(3− ε)ε



⩾


θ(ε) θ(ε) θ(ε) θ(ε) θ(ε)

θ(ε) θ(ε) θ(ε) θ(ε) θ(ε)

θ(ε) θ(ε) θ(ε) θ(ε) θ(ε)

θ(ε) θ(ε) θ(ε) θ(ε) θ(ε)

θ(ε) θ(ε) θ(ε) θ(ε) θ(ε)

 ,

which is satisfied for

θ(ε) =
ε

5πd(ε)
=

2ε
(2− ε)(3− ε) = 1− (6− ε)(1− ε)

(2− ε)(3− ε) , ε ∈ (0, 1).

From Proposition 6.21, the convergence to the stationary distribution π occurs
with speed at least equal to

d(n) := Max
k=1,2,...,N

∥∥[Pn]k,· − π
∥∥

TV

⩽ (1− θ(ε))n

=

(
(6− ε)(1− ε)
(2− ε)(3− ε)

)n
, n ⩾ 1,

see also Bryan and Leise (2006) and Exercise 6.7.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

ε

1-θ(ε)

Fig. 8.2: Graph of 1 − θ(ε) as a function of ε ∈ [0, 1].

" 207

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

We note that as ε tends to zero, Figure 8.1 allows us to select a stationary
distribution

π := lim
ε→0

π(ε) = lim
ε→0

[πa(ε),πb(ε),πc(ε),πd(ε),πe(ε)] = [0, 2/5, 0, 3/5, 0]

which is consistent with Proposition 8.1.

Mean return times analysis

By Theorem 6.6 and Proposition 8.2 we obtain the mean return times for P (ε),
and we note that they all remain below 5/ϵ. We have

µa(a) =
5
ε

, µb(b) =
5

2− ε , µc(c) =
5
ε

,

µd(d) =
10

(2− ε)(3− ε) , µe(e) =
10

(3− ε)ε .

We have limε→0 µa(a) = limε µc(c) = limε µe(e) = +∞, and

lim
ε→0

µb(b) =
5
2 , lim

ε→0
µd(d) =

5
3 ,

which do not recover the values µb(b) = µd(d) = 1 in case ε = 0. In the graph
of Figure 8.3 the mean return times are plotted as a function of ε ∈ [0, 1]. A
commonly used value in the literature is ε = 1/7 ≃ 0.14.

 0

 5

 10

 15

 20

 0 0.2 0.4 0.6 0.8 1

Me
an

 re
tu

rn
 ti

m
es

ε

5/ε
µa(a)
µc(c)
µe(e)
µb(b)
µd(d)

Fig. 8.3: Mean return times as functions of ε ∈ [0, 1].

We note that the ranking of states is clearer for smaller values of ε. In particular
ε cannot be chosen too large, for example taking ε = 1 makes all mean return
times equal and corresponds to a uniform stationary distribution. However,
the mean return times can be higher and hence the simulations can take longer
for small values of ε. This type of algorithm can contribute to the creation of
link farms as it tends to give higher rankings to the pages that have the most

208 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

backlinks. The following code provides a realization of the Markov chain
(Xn)n⩾0.

 install.packages("igraph"); install.packages("markovchain")
 library(igraph); library(markovchain)

P<-matrix(c(0,0,0,0.5,0.5,0,1,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,1,0),nrow=5, byrow=TRUE)
 MC <-new("markovchain",transitionMatrix=P,states=c("a","b","c","d","e"))

graph <- as(MC, "igraph"); epsilon=0.03
 plot(graph,vertex.size=50,edge.label.cex=2,edge.label=sprintf("%1.2f",

E(graph)$prob), edge.color='black', vertex.color='dodgerblue',
vertex.label.cex=3)

page_rank(graph,damping=1-epsilon)

with the output

 $vector
a b c d e

 0.00600 0.39400 0.00600 0.58509 0.00891

This output can be recovered by calculation of the relevant stationary distri-
bution, as follows.

 I <- matrix(data=1,nrow=5,ncol=5); Pe<-epsilon*I/5+(1-epsilon)*P
MCe <-new("markovchain",transitionMatrix=Pe,states=c("a","b","c","d","e"))

 graphe <- as(MCe, "igraph")
plot(graphe,vertex.size=50,edge.label.cex=2,edge.label=sprintf("%1.2f",

E(graphe)$prob),edge.color='black', vertex.color='dodgerblue',vertex.label.cex=3)

with the output

 steadyStates(object = MCe)
 a b c d e

[1,] 0.006 0.394 0.006 0.58509 0.00891

1

1

0.5 0.5

1

1

a

bc

d e

Fig. 8.4: Markovchain package output.

" 209

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

8.5 Meta search engines

In this section we consider a meta search engine which attempts to provide
a single optimized ranking of search results {a, b, c, d, e} based on the outputs
of 4 different search engines denoted S1, S2, S3, S4, a technique known as
rank aggregation, see Schalekamp and van Zuylen (2009) for further reading.
Precisely, we consider four search engines S1, S2, S3, S4 and five possible search
results a, b, c, d, e which have been respectively ranked as

Rank S1 S2 S3 S4
1 b c d e

2 c b e a

3 d d a d

4 a e b b

5 e a c c

by S1, S2, S3, S4.
Definition 8.3. Partial ordering. A state y ∈ {a, b, c, d, e} is said to be better
ranked than another state x ∈ {a, b, c, d, e}, and we write x ⪯ y and y ⪰ x if y
ranks higher than x in at least three of the four search rankings.
We also write “x ̸⪯ y” when neither “x ⪯ y” nor “x ⪰ y” is satisfied. A ranking
table for the order ⪯ can be completed as follows, using “x ⪯ y” or “x ̸⪯ y” at
the position (x, y).

⪯ a b c d e
a = ⪯̸ ⪯̸ ⪯ ⪯
b ⪯̸ = ⪰ ⪯̸ ⪯̸
c ⪯̸ ⪯ = ⪯̸ ⪯̸
d ⪰ ⪯̸ ⪯̸ = ⪰
e ⪰ ⪯̸ ⪯̸ ⪯ =

The diagonal entries, which are marked with “=”, are not relevant here.

The meta search engine works by constructing a self-improving random se-
quence (Xn)n⩾0 on a state space S = {a, b, c, d, e} of websites, which is sup-
posed to “converge” to the best possible search result based on the data of the
four rankings.

Given a search result Xn = x we choose the next search result Xn+1 by
assigning probability 1/5 to each of the search results that are better ranked
than x. If no search result is better than x, then we keep Xn+1 = x.

The process (Xn)n⩾0 is a Markov chain with state space (a, b, c, d, e) and
transition matrix

210 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

P =


3/5 0 0 1/5 1/5

0 1 0 0 0
0 1/5 4/5 0 0
0 0 0 1 0
0 0 0 1/5 4/5

 .

In addition, the chain (Xn)n⩾0 is clearly reducible, as can be seen from its
graph:

c
b

d

e a
c

b

d

e
a 3/5

1/5

1/5

1

1/5 4/5

1

1/5

4/5

Limiting and stationary distributions

We note that the chain (Xn)n⩾0 admits a limiting distribution which is de-
pendent on the initial state. Starting from states a , d or e , the limiting
distribution is (0, 0, 0, 1, 0), starting from states b or c , the limiting distribu-
tion is (0, 1, 0, 0, 0). More precisely, we check that the power Pn of order n ⩾ 1
of the transition matrix P takes the form

Pn =


(3/5)n 0 0 1− (4/5)n (4/5)n − (3/5)n

0 1 0 0 0
0 1− (4/5)n (4/5)n 0 0
0 0 0 1 0
0 0 0 1− (4/5)n (4/5)n


hence

lim
n→∞

Pn =


0 0 0 1 0
0 1 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 1 0

 .

The following proposition shows that the stationary distribution is not unique
here because the chain is reducible.

Proposition 8.4. Any probability distribution of the form

π(ε) = [πa(ε),πb(ε),πc(ε),πd(ε),πe(ε)] = [0, p, 0, 1− p, 0],

" 211

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

with p ∈ [0, 1], is a stationary distribution for the chain with matrix P .

Proof. The stationary distribution(s) of the chain (Xn)n⩾0 can be found by
solving the equation

π(ε) = π(ε)P

which reads

π(ε) = [πa(ε),πb(ε),πc(ε),πd(ε),πe(ε)]

= π


3/5 0 0 1/5 1/5

0 1 0 0 0
0 1/5 4/5 0 0
0 0 0 1 0
0 0 0 1/5 4/5


=

[
3πa(ε)5 ,πb(ε) +

πc(ε)

5 , 4πc(ε)5 , πa(ε)5 + πd(ε) +
πe(ε)

5 , πa(ε)5 + 4πe(ε)5

]
,

i.e.

[0, 0, 0, 0, 0] =
[
−2πa(ε)5 , πc(ε)5 ,−πc(ε)5 , πa(ε)5 +

πe(ε)

5 , πa(ε)5 − πe(ε)

5

]
,

or πa(ε) = 0,
πc(ε) = 0,
πe(ε) = 0.

Therefore, based on the normalization condition

πa(ε) + πb(ε) + πc(ε) + πd(ε) + πe(ε) = 1,

any probability distribution of the form

π(ε) = [πa(ε),πb(ε),πc(ε),πd(ε),πe(ε)] = [0, p, 0, 1− p, 0],

with p ∈ [0, 1], will be a stationary distribution for the chain with matrix P . □

Clearly, in the long run the chain (Xk)k∈N will converge to state b if it starts
from c or b , and it will converge to state d if it starts from a , d , or e .
However, this does not allow us to compare the states b and d . This issue
is addressed in the next section.

212 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

Matrix perturbation

In PageRank™-type algorithms, one typically chooses to perturb the transition
matrix P into the new matrix

P (ε) :=
ε

n


1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

+ (1− ε)P ,

with n = 5 here, and ε ∈ (0, 1).
We note that P (ε) is a Markov transition matrix, and that the corresponding

chain
(
X

(ε)
n

)
n⩾1 is irreducible and aperiodic. Indeed, all rows in the matrix P (ε)

clearly add up to 1, so P (ε) is a Markov transition matrix. On the other hand,
all states become accessible from each other so that the new chain is irreducible
and all states have period 1.

Since the chain is irreducible, aperiodic and has a finite state space, we
know by Corollary 6.7 that it admits a unique stationary distribution π(ε).
The equation π(ε) = π(ε)Pϵ reads

π(ε) = π(ε)Pϵ

=
ε

n
π(ε)


1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

+ (1− ε)π(ε)P

=
[ε

5 , ε5 , ε5 , ε5 , ε5

]
+ (1− ε)π(ε)P .

From the above calculation, we check that all probabilities in π(ε) are greater
than ε/5.
Proposition 8.5. The limiting and stationary distribution of P (ε) is given by


πa(ε) =

ε

2 + 3ε , πb(ε) =
2 + 3ε

5(1 + 4ε) , πc(ε) =
ε

1 + 4ε ,

πd(ε) =
3 + 2ε

5(1 + 4ε) , πe(ε) =
ε(3 + 2ε)

(1 + 4ε)(2 + 3ε) .

(8.2)

Proof. The equation

" 213

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

π(ε) =
[ε

5 , ε5 , ε5 , ε5 , ε5

]
+ (1− ε)π(ε)P

reads

[πa(ε),πb(ε),πc(ε),πd(ε),πe(ε)] =
[ε

5 , ε5 , ε5 , ε5 , ε5

]

+ (1− ε)π(ε)


3/5 0 0 1/5 1/5

0 1 0 0 0
0 1/5 4/5 0 0
0 0 0 1 0
0 0 0 1/5 4/5


=
[ε

5 , ε5 , ε5 , ε5 , ε5

]
+ (1− ε)

[
3πa(ε)5 ,πb(ε) +

πc(ε)

5 , 4πc(ε)5 , πa(ε)5 + πd(ε) +
πe(ε)

5 , πa(ε)5 + 4πe(ε)5

]
,

i.e.

[0, 0, 0, 0, 0]
= [ε+ 3(1− ε)πa(ε)− 5πa(ε), ε+ 5(1− ε)πb(ε)− 5πb(ε) + (1− ε)πc(ε),
ε+ 4(1− ε)πc(ε)− 5πc(ε), ε+ (1− ε)πa(ε) + 5(1− ε)πd(ε)
−5πd(ε) + (1− ε)πe(ε), ε+ (1− ε)πa(ε) + 4(1− ε)πe(ε)− 5πe(ε)] ,

i.e. 

ε− (2 + 3ε)πa(ε) = 0
ε− 5επb(ε) + (1− ε)πc(ε) = 0
ε− πc(ε)(1 + 4ε) = 0
ε+ (1− ε)πa(ε)− 5επd(ε) + (1− ε)πe(ε) = 0
ε+ (1− ε)πa(ε)− (1 + 4ε)πe(ε) = 0,

which yields (8.2). □

As in Proposition 8.2, the stationary distribution π can be obtained as the
transposed vector π = η⊤, where η is the (normalized) eigenvector of eigenvalue
1 of the P⊤, i.e., that can be obtained in Mathematica via the command
Eigenvectors[(epsilon/5)*[[1,1,1,1,1],[1,1,1,1,1],[1,1,1,1,1],[1,1,1,1,1],[1,1,1,1,1]]

+(1-epsilon)*0.6,0,0,0,0,0,1,0.2,0,0,0,0,0.8,0,0,0.2,0,0,1,0.2,0.2,0,0,0,0.8].
We can also check that

πa(ε) + πb(ε) + πc(ε) + πd(ε) + πe(ε)

=
ε

2 + 3ε +
2 + 3ε

5(1 + 4ε) +
ε

1 + 4ε +
3 + 2ε

5(1 + 4ε) +
ε(3 + 2ε)

(1 + 4ε)(2 + 3ε)
214 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://www.wolframalpha.com/input/?i=Eigenvectors[(epsilon/5)*[[1,1,1,1,1],[1,1,1,1,1],[1,1,1,1,1],[1,1,1,1,1],[1,1,1,1,1]]%2B(1-epsilon)*{{0.6,0,0,0,0},{0,1,0.2,0,0},{0,0,0.8,0,0},{0.2,0,0,1,0.2},{0.2,0,0,0,0.8}}]
https://www.wolframalpha.com/input/?i=Eigenvectors[(epsilon/5)*[[1,1,1,1,1],[1,1,1,1,1],[1,1,1,1,1],[1,1,1,1,1],[1,1,1,1,1]]%2B(1-epsilon)*{{0.6,0,0,0,0},{0,1,0.2,0,0},{0,0,0.8,0,0},{0.2,0,0,1,0.2},{0.2,0,0,0,0.8}}]
https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

=
5ε(1 + 4ε)

5(2 + 3ε)(1 + 4ε) +
(2 + 3ε)2

5(1 + 4ε)(2 + 3ε) +
5ε(2 + 3ε)

5(1 + 4ε)(2 + 3ε)

+
(3 + 2ε)(2 + 3ε)
5(2 + 3ε)(1 + 4ε) +

5ε(3 + 2ε)
5(1 + 4ε)(2 + 3ε)

=
5ε(1 + 4ε) + (2 + 3ε)(5 + 10ε) + 5ε(3 + 2ε)

5(1 + 4ε)(2 + 3ε)
= 1.

State ranking

We are now ready to provide a ranking of the states {a, b, c, d, e} based on the
limiting and stationary distribution π(ε). We note that

πa(ε) < πc(ε) < πe(ε) < πb(ε) < πd(ε),

hence we will rank the states as
Rank State

1 d
2 b
3 e
4 c
5 a

based on the idea that the most visited states in the long run should rank
higher. In the graph of Figure 8.5 the stationary distribution is plotted as a
function of ε ∈ [0, 1].

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1

St
at

io
na

ry
 d

ist
rib

ut
io

n

ε

πa+πb+πc+πd+πe
πd
πb
πe
πc
πa

Fig. 8.5: Stationary distribution as a function of ε ∈ [0, 1].

Convergence analysis

We note that Assumption (C) page 161 is satisfied for

" 215

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

θ(ε) =
ε

5πd(ε)
=
ε(1 + 4ε)

3 + 2ε ,

hence from Proposition 6.21 convergence to the stationary distribution π occurs
with speed at least equal to

d(n) := Max
k=1,2,...,N

∥∥[Pn]k,· − π
∥∥

TV

⩽ (1− θ(ε))n

=

(
3 + ε− 4ε2

3 + 2ε

)n
, n ⩾ 1.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

ε

1-θ(ε)

Fig. 8.6: Graph of 1 − θ(ε) as a function of ε ∈ [0, 1].

We note that as ε tends to zero, Figure 8.5 allows us to select a stationary
distribution

π = lim
ε→0

[πa(ε),πb(ε),πc(ε),πd(ε),πe(ε)] = [0, 0.4, 0, 0.6, 0]

which is consistent with Proposition 8.4.

Mean return times analysis

As above, by Theorem 6.6 and Proposition 8.5 we obtain the mean return times
for P (ε), and we note that they are all below 5/ϵ. We have

µa(a) = 3 + 2
ε

, µb(b) =
5(1 + 4ε)

2 + 3ε , µc(c) = 4 + 1
ε

,

µd(d) =
5(1 + 4ε)

3 + 2ε , µe(e) =
(1 + 4ε)(2 + 3ε)

ε(3 + 2ε) .

216 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

The remaining of the analysis is similar to that of Section 8.4. We have
limε→0 µa(a) = limε µc(c) = limε µe(e) = +∞, and

lim
ε→0

µb(b) =
5
2 , lim

ε→0
µd(d) =

5
3 ,

which do not recover the values µb(b) = µd(d) = 1 in case ε = 0. Figure 8.3
plots return times as a function of ε ∈ [0, 1].

 0

 5

 10

 15

 20

 0 1

M
ea

n
re

tu
rn

 ti
m

es

ε

5/ε
µa(a)
µc(c)
µe(e)
µb(b)
µd(d)

Fig. 8.7: Mean return times as functions of ε ∈ [0, 1].

Notes

The approach of Bryan and Leise (2006) does not make use of the Markov chain
interpretation, and replaces the stationary distribution π with the transposed
vector π⊤ which satisfies the adjoint eigenvalue equation P⊤π⊤ = π⊤. See
also Liu et al. (2008) for another approach to ranking based on user browsing
activity.

Exercises

Problem 8.1 PageRank™ algorithm. We consider the ranking of five web
pages a, b, c, d, e which are linked according to the following graph.

c
b

d

e a
c

b

d

e
a

" 217

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

The algorithm works by constructing a self-improving random sequence (Xn)n⩾0
which is supposed to “converge” to the best possible search result. Given a
search result Xn = x ∈ {a, b, c, d, e}, we choose the next search result Xn+1
with the conditional probability

P(Xn+1 = y | Xn = x) =
1
nx

1{x→y},

where nx denotes the number of outgoing links from x and “x → y” means
that x can lead to y in the graph.

a) Model the process (Xn)n⩾0 as a Markov chain, and find its transition ma-
trix.

b) Draw the graph of the chain (Xn)n⩾0.

Is the chain (Xn)n⩾0 reducible?
c) Does the Markov chain (Xn)n⩾0 admit a limiting distribution independent

of the initial state?
d) Does the Markov chain (Xn)n⩾0 admit a stationary distribution? Find all

stationary distribution(s) of the chain (Xn)n⩾0.
e) In PageRank™-type algorithms, one typically chooses to perturb the tran-

sition matrix P into the new matrix

P̃ :=
ε

n


1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

+ (1− ε)P , ε ∈ (0, 1),

with n = 5 here, where 1− ε is referred to as the damping factor.

Show that P̃ is a Markov transition matrix and that the corresponding chain
(X̃n)n⩾1 is irreducible and aperiodic.

f) Show that P̃ admits a stationary distribution π̃ that satisfies

π̃ =
[ε

5 , ε5 , ε5 , ε5 , ε5

]
+ (1− ε)π̃P ,

and that all probabilities in π̃ are greater than ε/5.
g) Compute the stationary distribution of P̃ .
h) Provide a ranking of the states {a, b, c, d, e} based on the stationary distri-

bution π̃.
i) Compute the mean return times for P̃ , and show that they are all below

5/ϵ.

218 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Chapter 9
Hidden Markov Model

Hidden Markov models attempt to capture hidden sequential information that
can be found in data sequences, and belong to the area of unsupervised machine
learning. They have numerous applications to clustering, collaborative filtering,
recommender systems, computational biology and sequence analysis, genomics,
sentiment analysis, natural language processing (NLP), speech and pattern
recognition, face recognition, emotion recognition, seismology, climate change
studies, finance, etc.

9.1 Graphical Markov model . 219
9.2 Forward-backward formulas . 222
9.3 Hidden state estimation . 226
9.4 Forward-backward algorithm . 229
9.5 Baum-Welch algorithm . 233
Exercises . 238

9.1 Graphical Markov model

In a hidden Markov model, a sequence (Ok)k∈N of observation is driven by
an unknown “hidden” Markov chain (Xn)n⩾0 through an emission probability
matrix M that encodes the distribution of Ok given the current state of Xk.

Hidden state Observation

“Thanks!!”

?????

100%

10%

90%

" 219

This version: March 5, 2024 https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

Our goal is to recover this emission matrix based on the sequence (Ok)k∈N of
observed states.

Hidden chain

We consider a “hidden” Markov chain (Xn)n⩾0 with state space S, transition
probability matrix P = (Pi,j)i,j∈S, and initial distribution π = (πi)i∈S. The
Markov chain rule (1.1) can be represented by the graphical Markov model of
Figure 9.1.

X0 = x0 X1 = x1 X2 = x2 X3 = x3 Xt = xt

Fig. 9.1: Markovian graphical model.

Observed process

We are observing a process (Ok)k∈N valued in a set O of observations. At time
k ∈N, the state Ok ∈ O of the observed process has a conditional distribution
given Xk ∈ S given by the matrix

M = (mi,j)(i,j)∈S×O = (P(Ot = o | Xt = i))(i,o)∈S×O,

called the emission probability matrix.

The combined dependency of hidden states and observations can be represented
by the graphical Markov model. of Figure 9.2.

X0 = x0 X1 = x1 X2 = x2 X3 = x3 Xt = xt

O0 = o0 O1 = o1 O2 = o2 O3 = o3 Ot = ot

Fig. 9.2: Hidden Markov graphical model.

The graph of Figure 9.2 translates into the following dependence relation which
will be assumed throughout this chapter:

P(Xt = xt, . . . ,X0 = x0, Ot = ot, . . . ,O0 = o0) (9.1)

220 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

= P(Ot = ot | Xt = xt) · · ·P(O0 = o0 | X0 = x0)

×P(Xt = xt | Xt−1 = xt−1) · · ·P(X1 = x1 | X0 = x0)P(X0 = x0) (9.2)
= Mxt,ot · · ·Mx0,o0Pxt−1,xt · · ·Px0,x1πx0 , t ⩾ 0,

and together with the chain rule (1.1), it also yields

P(Ot = ot, . . . ,O0 = o0 | Xt = xt, . . . ,X0 = x0) (9.3)
= P(Ot = ot | Xt = xt) · · ·P(O0 = o0 | X0 = x0) =Mxt,ot · · ·Mx0,o0 , t ⩾ 0.

Example

In the case of two hidden states we have S = {0, 1} and the hidden two-state
chain (Xn)n⩾0 has a transition probability matrix of the form:

P =

[
P0,0 P0,1

P1,0 P1,1

]
=

[
P(X1 = 0 | X0 = 0) P(X1 = 1 | X0 = 0)

P(X1 = 0 | X0 = 1) P(X1 = 1 | X0 = 1)

]

with initial distribution

π = [π0,π1] = [P(X0 = 0), P(X0 = 1)].

In case the set of observations is O := {a, b, c}, the conditional distribution of
Ok ∈ {a, b, c} given Xk ∈ {0, 1} at every time k ∈ N is given by the emission
matrix

M =

[
M0,a M0,b M0,c

M1,a M1,b M1,c

]

=

[
P(Ok = a | Xk = 0) P(Ok = b | Xk = 0) P(Ok = c | Xk = 0)

P(Ok = a | Xk = 1) P(Ok = b | Xk = 1) P(Ok = c | Xk = 1)

]
.

This example can be summarized in the graph of Figure 9.3.

" 221

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

0

Start

b

1

a c

π0 π1

P0,0
P1,0

P0,1

P1,1

M0,a
M0,c

M0,b M1,b
M1,a

M1,c

Fig. 9.3: Hidden Markov graph.

9.2 Forward-backward formulas

Proposition 9.1 (Forward formulas). For t = 1, 2, . . . ,N we have the follow-
ing identities:

P(Xt = xt | Xt−1 = xt−1, . . . ,X0 = x0) = P(Xt = xt | Xt−1 = xt−1),
(9.4)

P(Xt = xt | Xt−1 = xt−1, Ot−1 = ot−1, . . . ,O0 = o0)

= P(Xt = xt | Xt−1 = xt−1) = Pxt−1,xt , (9.5)

P(Ot = ot | Xt = xt,Xt−1 = xt−1,Ot−1 = ot−1, . . . ,O0 = o0)

= P(Ot = ot | Xt = xt) =Mxt,ot . (9.6)

Proof. (i) By summing (9.1) over o1, . . . , ot ∈ O, we have

P(Xt = xt, . . . ,X0 = x0)

= P(Xt = xt | Xt−1 = xt−1) · · ·P(X1 = x1 | X0 = x0)P(X0 = x0)

= P(Xt = xt | Xt−1 = xt−1)P(Xt−1 = xt−1, . . . ,X0 = x0),

222 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

which yields (9.4) and recovers (1.1).

(ii) By (9.1), we have

P(Xt = xt, . . . ,X0 = x0, Ot = ot, . . . ,O0 = o0) (9.7)
= P(Ot = ot | Xt = xt)P(Xt = xt | Xt−1 = xt−1)

×P(Xt−1 = xt−1, . . . ,X0 = x0,Ot−1 = ot−1, . . . ,O0 = o0),

hence by summing over x0,x1, . . . ,xt−2 ∈ S and ot ∈ O, we have

P(Xt = xt,Xt−1 = xt−1, Ot−1 = ot−1, . . . ,O0 = o0) (9.8)
= P(Xt = xt | Xt−1 = xt−1)P(Xt−1 = xt−1,Ot−1 = ot−1, . . . ,O0 = o0),

which implies (9.5).

(iii) By summing (9.7) over x0,x1, . . . ,xt−2 ∈ S, we have

P(Xt = xt,Xt−1 = xt−1, Ot = ot, . . . ,O0 = o0)

= P(Ot = ot | Xt = xt)P(Xt = xt | Xt−1 = xt−1)

×P(Xt−1 = xt−1,Ot−1 = ot−1, . . . ,O0 = o0),

and from (9.8) we obtain

P(Xt = xt,Xt−1 = xt−1, Ot = ot, . . . ,O0 = o0)

= P(Ot = ot | Xt = xt)P(Xt = xt,Xt−1 = xt−1, Ot−1 = ot−1, . . . ,O0 = o0),

hence (9.6) holds. □

Proposition 9.2 (Backward formulas). For t = 0, 1, . . . ,N − 1 we have the
following identities:

P(Ot+1 = ot+1 | Xt = xt,Xt+1 = xt+1, Ot+2 = ot+2, . . . ,ON = oN)

= P(Ot+1 = ot+1 | Xt+1 = xt+1) =Mxt+1,ot+1 , (9.9)

P(Xt = xt | Xt+1 = xt+1, . . . ,XN = xN , Ot+2 = ot+2, . . . ,ON = oN)

= P(Xt = xt | Xt+1 = xt+1). (9.10)

Proof. We have

P(X0 = x0, . . . ,XN = xN , O0 = o0, . . . ,ON = oN)

" 223

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

= P(X0 = x0)P(X1 = x1 | X0 = x0) · · ·P(XN = xN | XN−1 = xN−1)

×P(O0 = o0 | X1 = x1) · · ·P(ON = oN | XN = xN)

= P(X0 = x0, . . . ,Xt = xt, O0 = o0, . . . ,Ot−1 = ot−1)

×P(Xt+1 = xt+1 | Xt = xt) · · ·P(XN = xN | XN−1 = xN−1)

×P(Ot = ot | Xt = xt) · · ·P(ON = oN | XN = xN).

(i) By summing over x0, . . . ,xt−1,xt+2, . . . ,xN and o1, . . . , ot, we have

P(Xt = xt,Xt+1 = xt+1, Ot+1 = ot+1, . . . ,ON = oN)

= P(Ot+1 = ot+1 | Xt+1 = xt+1)

×P(Xt = xt,Xt+1 = xt+1, Ot+2 = ot+2, . . . ,ON = oN),

hence (9.9) follows.

(ii) We have

P(X0 = x0, . . . ,XN = xN , O0 = o0, . . . ,ON = oN)

= P(X0 = x0)P(X1 = x1 | X0 = x0) · · ·P(XN = xN | XN−1 = xN−1)

×P(O0 = o0 | X1 = x1) · · ·P(ON = oN | XN = xN)

=
P(X0 = x0)

P(Xt+1 = xt+1)
P(X1 = x1 | X0 = x0) · · ·P(Xt+1 = xt+1 | Xt = xt)

×P(O0 = o0 | X1 = x1) · · ·P(Ot+1 = ot+1 | Xt = xt+1)

×P(Xt+1 = xt+1, . . . ,XN = xN , Ot+2 = ot+2, . . . ,ON = oN)

=
P(X1 = x1,X0 = x0)

P(Xt+1 = xt+1)
P(X2 = x2 | X1 = x1) · · ·P(Xt+1 = xt+1 | Xt = xt)

×P(O0 = o0 | X1 = x1) · · ·P(Ot+1 = ot+1 | Xt = xt+1)

×P(Xt+1 = xt+1, . . . ,XN = xN , Ot+2 = ot+2, . . . ,ON = oN).

By summation over x0, . . . ,xt−1 and o0, . . . , ot+1, we find

P(Xt = xt, . . . ,XN = xN , Ot+2 = ot+2, . . . ,ON = oN)

=
P(Xt = xt,Xt+1 = xt+1)

P(Xt+1 = xt+1)

×P(Xt+1 = xt+1, . . . ,XN = xN , Ot+2 = ot+2, . . . ,ON = oN),

hence (9.10) follows. □

Proposition 9.3 (Forward-backward formula). For t = 0, 1, . . . ,N − 1 we
have the identity

224 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

P(Xt = xt, ON = oN , . . . ,O0 = o0) (9.11)
= P(ON = oN , . . . ,Ot+1 = ot+1 | Xt = xt)P(Xt = xt,Ot = ot, . . . ,O0 = o0).

Proof. From (9.2), we have

P(XN = xN , . . . ,X0 = x0, ON = oN , . . . ,O0 = o0)

= P(ON = oN | XN = xN) · · ·P(O0 = o0 | X0 = x0)

×P(XN = xN | XN−1 = xN−1) · · ·P(X1 = x1 | X0 = x0)P(X0 = x0)

= P(ON = oN | XN = xN) · · ·P(Ot+1 = ot+1 | Xt+1 = xt+1)

×P(XN = xN | XN−1 = xN−1) · · ·P(Xt+1 = xt+1 | Xt = xt)

×P(Xt = xt, . . . ,X0 = x0, Ot = ot, . . . ,O0 = o0)

=
1

P(Xt = xt)
P(XN = xN , . . . ,Xt = xt, ON = oN , . . . ,Ot+1 = ot+1)

×P(Xt = xt, . . . ,X0 = x0, Ot = ot, . . . ,O0 = o0), t = 0, 1, . . . ,N − 1,

and by summation over x1, . . . ,xt−1,xt+1, . . . ,xn we obtain

P(Xt = xt, ON = oN , . . . ,O0 = o0)

= P(Xt = xt, ON = oN , . . . ,Ot+1 = ot+1)

× 1
P(Xt = xt)

P(Xt = xt,Ot = ot, . . . ,O0 = o0) (9.12)

= P(ON = oN , . . . ,Ot+1 = ot+1 | Xt = xt)P(Xt = xt,Ot = ot, . . . ,O0 = o0),

t = 0, 1, . . . ,N − 1, which yields (9.11). □

By (9.3), the conditional probability of observing (O0,O1,O2) = (c, a, b) given
that (X0,X1,X2) = (1, 1, 0) splits as

P((O0,O1,O2) = (c, a, b) | (X0,X1,X2) = (1, 1, 0))
= P(O0 = c | X0 = 1)P(O1 = a | X1 = 1)P(O2 = b | X2 = 0)
= M1,cM1,aM0,b,

according to the graphical model of page 220. Using the matrix entries of π, P
and M , we can now compute e.g.

P((X0,X1,X2) = (1, 1, 0)) = P(X0 = 1,X1 = 1,X2 = 0) = π1P1,1P1,0,

by Relation (1.1), and the probability

P
(
(O0,O1,O2) = (c, a, b) and (X0,X1,X2) = (1, 1, 0)

)
" 225

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

of observing the sequence (O0,O1,O2) = (c, a, b) when (X0,X1,X2) =
(1, 1, 0), as

P
(
(O0,O1,O2) = (c, a, b) and (X0,X1,X2) = (1, 1, 0)

)
= P((O0,O1,O2) = (c, a, b) | (X0,X1,X2) = (1, 1, 0))P((X0,X1,X2) = (1, 1, 0))
= P(O0 = c | X0 = 1)P(O1 = a | X1 = 1)P(O2 = b | X2 = 0)
×P((X0,X1,X2) = (1, 1, 0))

= π1P1,1P1,0M1,cM1,aM0,b.

Using the law of total probability based on all possible values of (X0,X1,X2) we
can also compute the probability P((O0,O1,O2) = (c, a, b)) that the observed
sequence is (c, a, b), as

P((O0,O1,O2) = (c, a, b)) (9.13)
=

∑
x,y,z∈{0,1}

P
(
(O0,O1,O2) = (c, a, b) and (X0,X1,X2) = (x, y, z)

)
=

∑
x,y,z∈{0,1}

πxPx,yPy,zMx,cMy,aMz,b.

9.3 Hidden state estimation

In this section we take π = [π0,π1] := [0.6, 0.4], and

P :=

[
0.7 0.3

0.4 0.6

]
, M :=

[
M0,a M0,b M0,c

M1,a M1,b M1,c

]
=

[
0.1 0.4 0.5

0.7 0.2 0.1

]
.

226 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

0

Start

b

1

a c

0.6 0.4

0.7
0.3

0.4

0.6

0.1 0.50.4 0.20.7 0.1

Fig. 9.4: Hidden Markov graph.

Next, we compute the probabilities

P(X1 = 1 | (O0,O1,O2) = (c, a, b)), and P(X1 = 0 | (O0,O1,O2) = (c, a, b)).

We have

{
X1 = 1

}
=
{
(X0,X1,X2) = (0, 1, 0)

}⋃{
(X0,X1,X2) = (0, 1, 1)

}⋃{
(X0,X1,X2) = (1, 1, 0)

}⋃{
(X0,X1,X2) = (1, 1, 1)

}
=

⋃
x,z∈{0,1}

{
(X0,X1,X2) = (x, 1, z)

}
,

where the above union is a partition, hence

P(X1 = 1 | (O0,O1,O2) = (c, a, b)) (9.14)
=

∑
x,z∈{0,1}

P((X0,X1,X2) = (x, 1, z) | (O0,O1,O2) = (c, a, b))

=
1

P((O0,O1,O2) = (c, a, b))
×

∑
x,z∈{0,1}

P
(
(X0,X1,X2) = (x, 1, z) and (O0,O1,O2) = (c, a, b)

)
=

1
P((O0,O1,O2) = (c, a, b))

∑
x,z∈{0,1}

πxPx,1P1,zMx,cM1,aMz,b, (9.15)

where P((O0,O1,O2) = (c, a, b)) can be computed by (9.13).

" 227

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

Maximum likelihood estimation

We can compute the six probabilities

P(Xk = 1 | (O0,O1,O2) = (c, a, b)), P(Xk = 0 | (O0,O1,O2) = (c, a, b)),

k = 0, 1, 2. By proceeding as in (9.14), we find

P(X0 = 0 | (O0,O1,O2) = (c, a, b)) = 0.825,
P(X0 = 1 | (O0,O1,O2) = (c, a, b)) = 0.175,
P(X1 = 0 | (O0,O1,O2) = (c, a, b)) = 0.256,
P(X1 = 1 | (O0,O1,O2) = (c, a, b)) = 0.744,
P(X2 = 0 | (O0,O1,O2) = (c, a, b)) = 0.636,
P(X2 = 1 | (O0,O1,O2) = (c, a, b)) = 0.364.

According to the above estimates, the most likely sequence for (X0,X1,X2)
given the observation (O0,O1,O2) = (c, a, b) is

(X0,X1,X2) = (0, 1, 0). (9.16)

We can also compute the eight probabilities

P
(
(X0,X1,X2) = (x, y, z) and (O0,O1,O2) = (c, a, b)

)
for all x, y, z ∈ {0, 1}, and we identify the most likely sample sequence of values
for (X0,X1,X2).

By the results of Section 9.1, we find

P
(
(X0,X1,X2) = (0, 0, 0) and (O0,O1,O2) = (c, a, b)

)
= 0.00588,

P
(
(X0,X1,X2) = (0, 0, 1) and (O0,O1,O2) = (c, a, b)

)
= 0.00126,

P
(
(X0,X1,X2) = (0, 1, 0) and (O0,O1,O2) = (c, a, b)

)
= 0.0101,

P
(
(X0,X1,X2) = (0, 1, 1) and (O0,O1,O2) = (c, a, b)

)
= 0.00756,

P
(
(X0,X1,X2) = (1, 0, 0) and (O0,O1,O2) = (c, a, b)

)
= 0.000448,

P
(
(X0,X1,X2) = (1, 0, 1) and (O0,O1,O2) = (c, a, b)

)
= 0.0000960,

P
(
(X0,X1,X2) = (1, 1, 0) and (O0,O1,O2) = (c, a, b)

)
= 0.00269,

P
(
(X0,X1,X2) = (1, 1, 1) and (O0,O1,O2) = (c, a, b)

)
= 0.00202.

The probability P((O0,O1,O2) = (c, a, b)) that the observed sequence is
(c, a, b) is given by (9.13) as

P((O0,O1,O2) = (c, a, b)) = 0.030028 ≃ 3%. (9.17)

From the above computation, we deduce that the sample sequence of values for
(X0,X1,X2) which maximizes likelihood given the observation (O0,O1,O2) =
(c, a, b) is (X0,X1,X2) = (0, 1, 0), with the probability

228 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

P
(
(X0,X1,X2) = (0, 1, 0) and (O0,O1,O2) = (c, a, b)

)
= 0.0101, (9.18)

while the least likely hidden sequence is (X0,X1,X2) = (1, 0, 1), with the
probability

P
(
(X0,X1,X2) = (1, 0, 1) and (O0,O1,O2) = (c, a, b)

)
= 0.0000960.

9.4 Forward-backward algorithm

Instead of using the formulas

P(O1, . . . ,ON) =
∑

x1,...,xN ∈S

πx1Px1,x2 · · ·PxN−1,xNMx1,O1 · · ·MxN ,On

and

P(Xt = x | O1, . . . ,ON) =
1

P((O0,O1,O2) = (c, a, b))
×

∑
x1,...,xt−1,xt+1,...,xN ∈S

πx1Px1,x2 · · ·Pxt−1,xPx,xt+1 · · ·PxN−1,xN

×Mx1,O1 · · ·Mxt−1,Ot−1Mx,OtMxt+1,Ot+1 · · ·MxN ,ON
,

which have complexity O(N × LN) where L is the cardinality of the hidden
state space S, we can apply the forward-backward algorithm which instead has
complexity O(L2N).

Forward algorithm

Proposition 9.4. The forward probabilities

αt(x) := P(Xt = x,O1, . . . ,Ot), t = 1, 2, . . . ,N , x ∈ S,

can be updated by the forward linear recursion

αt(x) =Mx,Ot

∑
y∈S

Py,xαt−1(y), t = 1, 2, . . . ,N , x ∈ S,

with the initial condition α0(x) := πx = P(X0 = x), x ∈ S.

Proof. Using (9.5)-(9.6), for t ⩾ 1, we have

αt(x) = P(Xt = x,O1, . . . ,Ot)

" 229

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

=
∑
y∈S

P(Xt = x,Xt−1 = y,O1, . . . ,Ot)

=
∑
y∈S

P(Ot | Xt = x,Xt−1 = y,O1, . . . ,Ot−1)P(Xt = x,Xt−1 = y,O1, . . . ,Ot−1)

=
∑
y∈S

P(Ot | Xt = x,Xt−1 = y,O1, . . . ,Ot−1)P(Xt = x | Xt−1 = y,O1, . . . ,Ot−1)

×P(Xt−1 = y,O1, . . . ,Ot−1)

= P(Ot | Xt = x)
∑
y∈S

P(Xt = x | Xt−1 = y)αt−1(y)

= Mx,Ot

∑
y∈S

Py,xαt−1(y), t = 1, 2, . . . ,N , x ∈ S.

In addition, we check that with the initial condition α0(x) := πx = P(X0 = x),
x ∈ S, we recover

α1(x) = Mx,O1

∑
y∈S

Py,xα0(y)

= Mx,O1

∑
y∈S

Py,xP(X0 = y)

= P(O1 | X1 = x)P(X0 = x)

= P(X1 = x, O1).

□

Relation (9.17) can be recovered by the forward algorithm using a ∗

or a implementation that may be run here or here, see also Chap-
ter 6 of Shukla (2018).

Backward algorithm

Proposition 9.5. The backward probabilities

βt(x) := P(Ot+1, . . . ,ON | Xt = x), t = 0, 1, . . . ,N − 1, x ∈ S.

can be updated by the backward linear recursion

βt(x) =
∑
y∈S

My,Ot+1Px,yβt+1(y), t = 0, 1, . . . ,N − 1, x ∈ S,

with the terminal condition βN (x) := 1, x ∈ S.

∗ Right-click to save as attachment (may not work on
)
.

230 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

{
 "cells": [
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "# pip install tensorflow==1.15.0"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "# pip install numpy==1.16.4"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "import numpy as np\n",
 "# import tensorflow as tf\n",
 "import tensorflow.compat.v1 as tf\n",
 "tf.disable_v2_behavior()\n",
 "\n",
 "# initial parameters can be learned on training data\n",
 "# theory reference https://web.stanford.edu/~jurafsky/slp3/8.pdf\n",
 "# code reference https://phvu.net/2013/12/06/sweet-implementation-of-viterbi-in-python/\n",
 "class HMM(object):\n",
 " def __init__(self, initial_prob, trans_prob, obs_prob):\n",
 " self.N = np.size(initial_prob)\n",
 " self.initial_prob = initial_prob\n",
 " self.trans_prob = trans_prob\n",
 " self.obs_prob = obs_prob\n",
 " self.emission = tf.constant(obs_prob)\n",
 " assert self.initial_prob.shape == (self.N, 1)\n",
 " assert self.trans_prob.shape == (self.N, self.N)\n",
 " assert self.obs_prob.shape[0] == self.N\n",
 " self.obs = tf.placeholder(tf.int32)\n",
 " self.fwd = tf.placeholder(tf.float64)\n",
 " self.viterbi = tf.placeholder(tf.float64)\n",
 "\n",
 " def get_emission(self, obs_idx):\n",
 " slice_location = [0, obs_idx]\n",
 " num_rows = tf.shape(self.emission)[0]\n",
 " slice_shape = [num_rows, 1]\n",
 " return tf.slice(self.emission, slice_location, slice_shape)\n",
 "\n",
 " def forward_init_op(self):\n",
 " obs_prob = self.get_emission(self.obs)\n",
 " fwd = tf.multiply(self.initial_prob, obs_prob)\n",
 " return fwd\n",
 "\n",
 " def forward_op(self):\n",
 " transitions = tf.matmul(self.fwd, tf.transpose(self.get_emission(self.obs)))\n",
 " weighted_transitions = transitions * self.trans_prob\n",
 " fwd = tf.reduce_sum(weighted_transitions, 0)\n",
 " return tf.reshape(fwd, tf.shape(self.fwd))\n",
 "\n",
 " def decode_op(self):\n",
 " transitions = tf.matmul(self.viterbi, tf.transpose(self.get_emission(self.obs)))\n",
 " weighted_transitions = transitions * self.trans_prob\n",
 " viterbi = tf.reduce_max(weighted_transitions, 0)\n",
 " return tf.reshape(viterbi, tf.shape(self.viterbi))\n",
 "\n",
 " def backpt_op(self):\n",
 " back_transitions = tf.matmul(self.viterbi, np.ones((1, self.N)))\n",
 " weighted_back_transitions = back_transitions * self.trans_prob\n",
 " return tf.argmax(weighted_back_transitions, 0)"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "def forward_algorithm(sess, hmm, observations):\n",
 " fwd = sess.run(hmm.forward_init_op(), feed_dict={hmm.obs: observations[0]})\n",
 " for t in range(1, len(observations)):\n",
 " fwd = sess.run(hmm.forward_op(), feed_dict={hmm.obs: observations[t], hmm.fwd: fwd})\n",
 " prob = sess.run(tf.reduce_sum(fwd))\n",
 " return prob"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "initial_prob = np.array([[0.6], [0.4]])\n",
 "trans_prob = np.array([[0.7, 0.3], [0.4, 0.6]])\n",
 "obs_prob = np.array([[0.1, 0.4, 0.5], [0.7, 0.2, 0.1]])\n",
 " \n",
 "hmm = HMM(initial_prob=initial_prob, trans_prob=trans_prob, obs_prob=obs_prob)\n",
 "\n",
 "observations = [2,0,1]\n",
 "\n",
 "with tf.Session() as sess:\n",
 " prob = forward_algorithm(sess, hmm, observations)\n",
 " print('Probability of observing {} is {}'.format(observations, prob))"
]
 }
],
 "metadata": {
 "kernelspec": {
 "display_name": "Python 3 (ipykernel)",
 "language": "python",
 "name": "python3"
 },
 "language_info": {
 "codemirror_mode": {
 "name": "ipython",
 "version": 3
 },
 "file_extension": ".py",
 "mimetype": "text/x-python",
 "name": "python",
 "nbconvert_exporter": "python",
 "pygments_lexer": "ipython3",
 "version": "3.11.2"
 }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}

{
 "cells": [
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "!pip install torch==1.4.0"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "import torch"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "import numpy as np\n",
 "\n",
 "class HMM(torch.nn.Module):\n",
 " \"\"\"\n",
 " Hidden Markov Model with discrete observations.\n",
 " \"\"\"\n",
 " def __init__(self, M, N):\n",
 " super(HMM, self).__init__()\n",
 " self.M = M # number of possible observations\n",
 " self.N = N # number of states\n",
 "\n",
 " # A\n",
 " self.transition_model = TransitionModel(self.N)\n",
 "\n",
 " # b(x_t)\n",
 " self.emission_model = EmissionModel(self.N,self.M)\n",
 "\n",
 " # pi\n",
 " self.unnormalized_state_priors = torch.nn.Parameter(torch.randn(self.N))\n",
 "\n",
 " # use the GPU\n",
 " self.is_cuda = torch.cuda.is_available()\n",
 " if self.is_cuda: self.cuda()\n",
 "\n",
 "class TransitionModel(torch.nn.Module):\n",
 " def __init__(self, N):\n",
 " super(TransitionModel, self).__init__()\n",
 " self.N = N\n",
 " self.unnormalized_transition_matrix = torch.nn.Parameter(torch.randn(N,N))\n",
 "\n",
 "class EmissionModel(torch.nn.Module):\n",
 " def __init__(self, N, M):\n",
 " super(EmissionModel, self).__init__()\n",
 " self.N = N\n",
 " self.M = M\n",
 " self.unnormalized_emission_matrix = torch.nn.Parameter(torch.randn(N,M))"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "import string\n",
 "#alphabet = string.ascii_lowercase\n",
 "alphabet = 'abc'\n",
 "\n",
 "def encode(s):\n",
 " \"\"\"\n",
 " Convert a string into a list of integers\n",
 " \"\"\"\n",
 " x = [alphabet.index(ss) for ss in s]\n",
 " return x\n",
 "\n",
 "def decode(x):\n",
 " \"\"\"\n",
 " Convert list of ints to string\n",
 " \"\"\"\n",
 " s = \"\".join([alphabet[xx] for xx in x])\n",
 " return s\n",
 "\n",
 "# Initialize the model\n",
 "model = HMM(M=len(alphabet), N=2) \n",
 "\n",
 "# Hard-wiring the parameters (the input is in exp(x) >> need to log p)!\n",
 "# Let state 0 = consonant, state 1 = vowel\n",
 "model.unnormalized_state_priors.data[0] = np.log(0.6) \n",
 "model.unnormalized_state_priors.data[1] = np.log(0.4)\n",
 "print(\"State priors:\", torch.nn.functional.softmax(model.unnormalized_state_priors, dim=0))\n",
 "\n",
 "model.emission_model.unnormalized_emission_matrix.data[0, 0] = np.log(0.1)\n",
 "model.emission_model.unnormalized_emission_matrix.data[0, 1] = np.log(0.4)\n",
 "model.emission_model.unnormalized_emission_matrix.data[0, 2] = np.log(0.5)\n",
 "model.emission_model.unnormalized_emission_matrix.data[1, 0] = np.log(0.7)\n",
 "model.emission_model.unnormalized_emission_matrix.data[1, 1] = np.log(0.2)\n",
 "model.emission_model.unnormalized_emission_matrix.data[1, 2] = np.log(0.1)\n",
 "\n",
 "#Transposed !!!\n",
 "model.transition_model.unnormalized_transition_matrix.data[0,0] = np.log(0.7)\n",
 "model.transition_model.unnormalized_transition_matrix.data[0,1] = np.log(0.4)\n",
 "model.transition_model.unnormalized_transition_matrix.data[1,0] = np.log(0.3)\n",
 "model.transition_model.unnormalized_transition_matrix.data[1,1] = np.log(0.6)\n",
 "\n",
 "# In state 0, only allow consonants; in state 1, only allow vowels\n",
 "#vowel_indices = torch.tensor([alphabet.index(letter) for letter in \"aeiou\"])\n",
 "#consonant_indices = torch.tensor([alphabet.index(letter) for letter in \"bcdfghjklmnpqrstvwxyz\"])\n",
 "#model.emission_model.unnormalized_emission_matrix[0, vowel_indices] = -np.inf\n",
 "#model.emission_model.unnormalized_emission_matrix[1, consonant_indices] = -np.inf \n",
 "print(\"Emission matrix:\", torch.nn.functional.softmax(model.emission_model.unnormalized_emission_matrix, dim=1))\n",
 "\n",
 "# Only allow vowel -> consonant and consonant -> vowel\n",
 "#model.transition_model.unnormalized_transition_matrix[0,0] = -np.inf # consonant -> consonant\n",
 "#model.transition_model.unnormalized_transition_matrix[0,1] = 0. # vowel -> consonant\n",
 "#model.transition_model.unnormalized_transition_matrix[1,0] = 0. # consonant -> vowel\n",
 "#model.transition_model.unnormalized_transition_matrix[1,1] = -np.inf # vowel -> vowel\n",
 "print(\"Transition matrix:\", torch.nn.functional.softmax(model.transition_model.unnormalized_transition_matrix, dim=0))\n"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "def HMM_forward(self, x, T):\n",
 " \"\"\"\n",
 " x : IntTensor of shape (batch size, T_max)\n",
 " T : IntTensor of shape (batch size)\n",
 "\n",
 " Compute log p(x) for each example in the batch.\n",
 " T = length of each example\n",
 " \"\"\"\n",
 " if self.is_cuda:\n",
 " \tx = x.cuda()\n",
 " \tT = T.cuda()\n",
 "\n",
 " batch_size = x.shape[0]; T_max = x.shape[1]\n",
 " log_state_priors = torch.nn.functional.log_softmax(self.unnormalized_state_priors, dim=0)\n",
 " log_alpha = torch.zeros(batch_size, T_max, self.N)\n",
 " if self.is_cuda: log_alpha = log_alpha.cuda()\n",
 "\n",
 " log_alpha[:, 0, :] = self.emission_model(x[:,0]) + log_state_priors\n",
 " for t in range(1, T_max):\n",
 " log_alpha[:, t, :] = self.emission_model(x[:,t]) + self.transition_model(log_alpha[:, t-1, :])\n",
 "\n",
 " # Select the sum for the final timestep (each x may have different length).\n",
 " log_sums = log_alpha.logsumexp(dim=2)\n",
 " log_probs = torch.gather(log_sums, 1, T.view(-1,1) - 1)\n",
 " return log_probs\n",
 "\n",
 "def emission_model_forward(self, x_t):\n",
 " log_emission_matrix = torch.nn.functional.log_softmax(self.unnormalized_emission_matrix, dim=1)\n",
 " out = log_emission_matrix[:, x_t].transpose(0,1)\n",
 " return out\n",
 "\n",
 "def transition_model_forward(self, log_alpha):\n",
 " \"\"\"\n",
 " log_alpha : Tensor of shape (batch size, N)\n",
 " Multiply previous timestep's alphas by transition matrix (in log domain)\n",
 " \"\"\"\n",
 " log_transition_matrix = torch.nn.functional.log_softmax(self.unnormalized_transition_matrix, dim=0)\n",
 "\n",
 " # Matrix multiplication in the log domain\n",
 " out = log_domain_matmul(log_transition_matrix, log_alpha.transpose(0,1)).transpose(0,1)\n",
 " return out\n",
 "\n",
 "def log_domain_matmul(log_A, log_B):\n",
 "\t\"\"\"\n",
 "\tlog_A : m x n\n",
 "\tlog_B : n x p\n",
 "\toutput : m x p matrix\n",
 "\n",
 "\tNormally, a matrix multiplication\n",
 "\tcomputes out_{i,j} = sum_k A_{i,k} x B_{k,j}\n",
 "\n",
 "\tA log domain matrix multiplication\n",
 "\tcomputes out_{i,j} = logsumexp_k log_A_{i,k} + log_B_{k,j}\n",
 "\t\"\"\"\n",
 "\tm = log_A.shape[0]\n",
 "\tn = log_A.shape[1]\n",
 "\tp = log_B.shape[1]\n",
 "\n",
 "\tlog_A_expanded = torch.stack([log_A] * p, dim=2)\n",
 "\tlog_B_expanded = torch.stack([log_B] * m, dim=0)\n",
 "\n",
 "\telementwise_sum = log_A_expanded + log_B_expanded\n",
 "\tout = torch.logsumexp(elementwise_sum, dim=1)\n",
 "\n",
 "\treturn out\n",
 "\n",
 "TransitionModel.forward = transition_model_forward\n",
 "EmissionModel.forward = emission_model_forward\n",
 "HMM.forward = HMM_forward"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "x = torch.stack([torch.tensor(encode(\"cab\"))])\n",
 "T = torch.tensor([3])\n",
 "temp = model.forward(x, T).item() \n",
 "print(np.exp(temp)) #probability instead of log probability"
]
 }
],
 "metadata": {
 "kernelspec": {
 "display_name": "Python 3",
 "language": "python",
 "name": "python3"
 },
 "language_info": {
 "codemirror_mode": {
 "name": "ipython",
 "version": 3
 },
 "file_extension": ".py",
 "mimetype": "text/x-python",
 "name": "python",
 "nbconvert_exporter": "python",
 "pygments_lexer": "ipython3",
 "version": "3.9.5"
 }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}

https://jupyter.org/try
https://research.google.com/colaboratory/
https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

Proof. Using (9.9)-(9.10) we have, for t < N ,

βt(x) = P(Ot+1, . . . ,ON | Xt = x)

=
P(Xt = x,Ot+1,Ot+2, . . . ,ON)

P(Xt = x)

=
1

P(Xt = x)

∑
y∈S

P(Xt = x,Xt+1 = y,Ot+1, . . . ,ON)

=
1

P(Xt = x)

∑
y∈S

P(Ot+1 | Xt = x,Xt+1 = y,Ot+2, . . . ,ON)

×P(Xt = x,Xt+1 = y,Ot+2, . . . ,ON)

=
1

P(Xt = x)

∑
y∈S

P(Ot+1 | Xt = x,Xt+1 = y,Ot+2, . . . ,ON)

×P(Xt = x | Xt+1 = y,Ot+2, . . . ,ON)P(Xt+1 = y,Ot+2, . . . ,ON)

=
∑
y∈S

P(Ot+1 | Xt+1 = y)
P(Xt = x | Xt+1 = y)

P(Xt = x)
P(Xt+1 = y,Ot+2, . . . ,ON)

=
∑
y∈S

P(Ot+1 | Xt+1 = y)
P(Xt+1 = y | Xt = x)

P(Xt+1 = y)
P(Xt+1 = y,Ot+2, . . . ,ON)

=
∑
y∈S

P(Ot+1 | Xt+1 = y)P(Xt+1 = y | Xt = x)
P(Xt+1 = y,Ot+2, . . . ,ON)

P(Xt+1 = y)

=
∑
y∈S

P(Ot+1 | Xt+1 = y)P(Xt+1 = y | Xt = x)P(Ot+2, . . . ,ON | Xt+1 = y)

=
∑
y∈S

My,Ot+1Px,yβt+1(y), t = 0, 1, . . . ,N − 1, x ∈ S.

In addition, we check that with the terminal condition βN (x) := 1, x ∈ S, we
recover

βN−1(x) =
∑
y∈S

My,ON
Px,yβN (y)

=
∑
y∈S

P(ON | XN = y)Px,y

=
∑
y∈S

P(ON | XN = y, XN−1 = x)Px,y

=
∑
y∈S

P(ON , XN = y, XN−1 = x)

P(XN = y, XN−1 = x)
P(XN = y | XN−1 = x)

=
∑
y∈S

P(ON , XN = y, XN−1 = x)

P(XN−1 = x)

" 231

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

=
P(ON , XN−1 = x)

P(XN−1 = x)

= P(ON | XN−1 = x), x ∈ S.

□

Forward-backward algorithm

Proposition 9.6. For t = 0, 1, . . . ,N , we have

P(Xt = x | O1, . . . ,ON) =
αt(x)βt(x)

P(O1, . . . ,ON)
, x ∈ S,

where
P(O1, . . . ,ON) =

∑
x∈S

αt(x)βt(x).

Proof. By (9.11) we have

P(Xt = x,O1, . . . ,ON) = P(O1, . . . ,ON | Xt = x)P(Xt = x)

= P(O1, . . . ,Ot | Xt = x)P(Ot+1, . . . ,ON | Xt = x)P(Xt = x)

= P(Xt = x,O1, . . . ,Ot)P(Ot+1, . . . ,ON | Xt = x)

= αt(x)βt(x), t = 1, 2, . . . ,N , x ∈ S,

hence

P(Xt = x | O1, . . . ,ON) =
P(Xt = x,O1, . . . ,Ot)

P(O1, . . . ,ON)

=
αt(x)βt(x)

P(O1, . . . ,ON)
,

where P(O1, . . . ,ON) can be recovered from the normalization condition∑
x∈S

P(Xt = x | O1, . . . ,ON) = 1,

which yields

P(O1, . . . ,ON) =
∑
x∈S

P(Xt = x,O1, . . . ,ON)

=
∑
x∈S

P(O1, . . . ,Ot,Xt = x)P(Ot+1, . . . ,ON | Xt = x)

232 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

=
∑
x∈S

αt(x)βt(x).

□

Relation (9.18) can be recovered by the Viterbi algorithm using a ∗

or a implementation that may be run here or here, see also Chap-
ter 6 of Shukla (2018).

9.5 Baum-Welch algorithm

Starting from some initial condition π̂(0), P̂ (0), M̂ (0), we build a recursive
estimator π̂(n), P̂ (n), M̂ (n) for the model parameters π, P and M , as

π̂
(n+1)
i := P(n)(X0 = i | (O0,O1,O2) = (c, a, b)),

P̂
(n+1)
i,j :=

N−1∑
t=0

P(n)(Xt = i,Xt+1 = j | (O0,O1,O2) = (c, a, b))

N−1∑
t=0

P(n)(Xt = i | (O0,O1,O2) = (c, a, b))

M̂
(n+1)
i,k :=

N∑
t=0

1{Ot=k}P(n)(Xt = i | (O0,O1,O2) = (c, a, b))

N∑
t=0

P(n)(Xt = i | (O0,O1,O2) = (c, a, b))
,

(9.19a)

(9.19b)

(9.19c)

where P(n)(Xt = i | (O0,O1,O2) = (c, a, b)) is estimated using Proposition 9.6
and π̂(n), P̂ (n), M̂ (n), and similarly for P(n)(Xt = i,Xt+1 = j | (O0,O1,O2) =
(c, a, b)). Here, (9.19c) averages the number of times the observed state is “k”
given that the hidden state is “i”, which gives an estimate of the conditional
emission probability Mi,k.

For example, taking the data of the previous section as initial condition, i.e.
π(0) =

[
π̂
(0)
0 , π̂(0)1

]
:= [0.6, 0.4], and

∗ Right-click to save as attachment (may not work on
)
.

" 233

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

{
 "cells": [
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "# pip install tensorflow==1.15.0"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "import numpy as np\n",
 "# import tensorflow as tf\n",
 "import tensorflow.compat.v1 as tf\n",
 "tf.disable_v2_behavior()\n",
 "\n",
 "# initial parameters can be learned on training data\n",
 "# theory reference https://web.stanford.edu/~jurafsky/slp3/8.pdf\n",
 "# code reference https://phvu.net/2013/12/06/sweet-implementation-of-viterbi-in-python/\n",
 "class HMM(object):\n",
 " def __init__(self, initial_prob, trans_prob, obs_prob):\n",
 " self.N = np.size(initial_prob)\n",
 " self.initial_prob = initial_prob\n",
 " self.trans_prob = trans_prob\n",
 " self.obs_prob = obs_prob\n",
 " self.emission = tf.constant(obs_prob)\n",
 " assert self.initial_prob.shape == (self.N, 1)\n",
 " assert self.trans_prob.shape == (self.N, self.N)\n",
 " assert self.obs_prob.shape[0] == self.N\n",
 " self.obs = tf.placeholder(tf.int32)\n",
 " self.fwd = tf.placeholder(tf.float64)\n",
 " self.viterbi = tf.placeholder(tf.float64)\n",
 "\n",
 " def get_emission(self, obs_idx):\n",
 " slice_location = [0, obs_idx]\n",
 " num_rows = tf.shape(self.emission)[0]\n",
 " slice_shape = [num_rows, 1]\n",
 " return tf.slice(self.emission, slice_location, slice_shape)\n",
 "\n",
 " def forward_init_op(self):\n",
 " obs_prob = self.get_emission(self.obs)\n",
 " fwd = tf.multiply(self.initial_prob, obs_prob)\n",
 " return fwd\n",
 "\n",
 " def forward_op(self):\n",
 " transitions = tf.matmul(self.fwd, tf.transpose(self.get_emission(self.obs)))\n",
 " weighted_transitions = transitions * self.trans_prob\n",
 " fwd = tf.reduce_sum(weighted_transitions, 0)\n",
 " return tf.reshape(fwd, tf.shape(self.fwd))\n",
 "\n",
 " def decode_op(self):\n",
 " transitions = tf.matmul(self.viterbi, tf.transpose(self.get_emission(self.obs)))\n",
 " weighted_transitions = transitions * self.trans_prob\n",
 " viterbi = tf.reduce_max(weighted_transitions, 0)\n",
 " return tf.reshape(viterbi, tf.shape(self.viterbi))\n",
 "\n",
 " def backpt_op(self):\n",
 " back_transitions = tf.matmul(self.viterbi, np.ones((1, self.N)))\n",
 " weighted_back_transitions = back_transitions * self.trans_prob\n",
 " return tf.argmax(weighted_back_transitions, 0)"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "def forward_algorithm(sess, hmm, observations):\n",
 " fwd = sess.run(hmm.forward_init_op(), feed_dict={hmm.obs: observations[0]})\n",
 " for t in range(1, len(observations)):\n",
 " fwd = sess.run(hmm.forward_op(), feed_dict={hmm.obs: observations[t], hmm.fwd: fwd})\n",
 " prob = sess.run(tf.reduce_sum(fwd))\n",
 " return prob\n",
 "\n",
 "def viterbi_decode(sess, hmm, observations):\n",
 " viterbi = sess.run(hmm.forward_init_op(), feed_dict={hmm.obs: observations[0]})\n",
 " backpts = np.ones((hmm.N, len(observations)), 'int32') * -1\n",
 " for t in range(1, len(observations)):\n",
 " viterbi, backpt = sess.run([hmm.decode_op(), hmm.backpt_op()],\n",
 " feed_dict={hmm.obs: observations[t],\n",
 " hmm.viterbi: viterbi})\n",
 " backpts[:, t] = backpt\n",
 " tokens = [viterbi[:, -1].argmax()]\n",
 " for i in range(len(observations) - 1, 0, -1):\n",
 " tokens.append(backpts[tokens[-1], i])\n",
 " return tokens[::-1]"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "initial_prob = np.array([[0.6], [0.4]])\n",
 "trans_prob = np.array([[0.7, 0.3], [0.4, 0.6]])\n",
 "obs_prob = np.array([[0.1, 0.4, 0.5], [0.7, 0.2, 0.1]])\n",
 " \n",
 "hmm = HMM(initial_prob=initial_prob, trans_prob=trans_prob, obs_prob=obs_prob)\n",
 "\n",
 "observations = [2,0,1]\n",
 "\n",
 "with tf.Session() as sess:\n",
 "\n",
 " seq = viterbi_decode(sess, hmm, observations)\n",
 " print('Most likely hidden states are {}'.format(seq))"
]
 }
],
 "metadata": {
 "kernelspec": {
 "display_name": "Python 3 (ipykernel)",
 "language": "python",
 "name": "python3"
 },
 "language_info": {
 "codemirror_mode": {
 "name": "ipython",
 "version": 3
 },
 "file_extension": ".py",
 "mimetype": "text/x-python",
 "name": "python",
 "nbconvert_exporter": "python",
 "pygments_lexer": "ipython3",
 "version": "3.11.2"
 }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}

{
 "cells": [
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "!pip install torch==1.4.0"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "import torch"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "import numpy as np\n",
 "\n",
 "class HMM(torch.nn.Module):\n",
 " \"\"\"\n",
 " Hidden Markov Model with discrete observations.\n",
 " \"\"\"\n",
 " def __init__(self, M, N):\n",
 " super(HMM, self).__init__()\n",
 " self.M = M # number of possible observations\n",
 " self.N = N # number of states\n",
 "\n",
 " # A\n",
 " self.transition_model = TransitionModel(self.N)\n",
 "\n",
 " # b(x_t)\n",
 " self.emission_model = EmissionModel(self.N,self.M)\n",
 "\n",
 " # pi\n",
 " self.unnormalized_state_priors = torch.nn.Parameter(torch.randn(self.N))\n",
 "\n",
 " # use the GPU\n",
 " self.is_cuda = torch.cuda.is_available()\n",
 " if self.is_cuda: self.cuda()\n",
 "\n",
 "class TransitionModel(torch.nn.Module):\n",
 " def __init__(self, N):\n",
 " super(TransitionModel, self).__init__()\n",
 " self.N = N\n",
 " self.unnormalized_transition_matrix = torch.nn.Parameter(torch.randn(N,N))\n",
 "\n",
 "class EmissionModel(torch.nn.Module):\n",
 " def __init__(self, N, M):\n",
 " super(EmissionModel, self).__init__()\n",
 " self.N = N\n",
 " self.M = M\n",
 " self.unnormalized_emission_matrix = torch.nn.Parameter(torch.randn(N,M))"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "import string\n",
 "#alphabet = string.ascii_lowercase\n",
 "alphabet = 'abc'\n",
 "\n",
 "def encode(s):\n",
 " \"\"\"\n",
 " Convert a string into a list of integers\n",
 " \"\"\"\n",
 " x = [alphabet.index(ss) for ss in s]\n",
 " return x\n",
 "\n",
 "def decode(x):\n",
 " \"\"\"\n",
 " Convert list of ints to string\n",
 " \"\"\"\n",
 " s = \"\".join([alphabet[xx] for xx in x])\n",
 " return s\n",
 "\n",
 "# Initialize the model\n",
 "model = HMM(M=len(alphabet), N=2) \n",
 "\n",
 "# Hard-wiring the parameters (the input is in exp(x) >> need to log p)!\n",
 "# Let state 0 = consonant, state 1 = vowel\n",
 "model.unnormalized_state_priors.data[0] = np.log(0.6) \n",
 "model.unnormalized_state_priors.data[1] = np.log(0.4)\n",
 "print(\"State priors:\", torch.nn.functional.softmax(model.unnormalized_state_priors, dim=0))\n",
 "\n",
 "model.emission_model.unnormalized_emission_matrix.data[0, 0] = np.log(0.1)\n",
 "model.emission_model.unnormalized_emission_matrix.data[0, 1] = np.log(0.4)\n",
 "model.emission_model.unnormalized_emission_matrix.data[0, 2] = np.log(0.5)\n",
 "model.emission_model.unnormalized_emission_matrix.data[1, 0] = np.log(0.7)\n",
 "model.emission_model.unnormalized_emission_matrix.data[1, 1] = np.log(0.2)\n",
 "model.emission_model.unnormalized_emission_matrix.data[1, 2] = np.log(0.1)\n",
 "\n",
 "#Transposed !!!\n",
 "model.transition_model.unnormalized_transition_matrix.data[0,0] = np.log(0.7)\n",
 "model.transition_model.unnormalized_transition_matrix.data[0,1] = np.log(0.4)\n",
 "model.transition_model.unnormalized_transition_matrix.data[1,0] = np.log(0.3)\n",
 "model.transition_model.unnormalized_transition_matrix.data[1,1] = np.log(0.6)\n",
 "\n",
 "# In state 0, only allow consonants; in state 1, only allow vowels\n",
 "#vowel_indices = torch.tensor([alphabet.index(letter) for letter in \"aeiou\"])\n",
 "#consonant_indices = torch.tensor([alphabet.index(letter) for letter in \"bcdfghjklmnpqrstvwxyz\"])\n",
 "#model.emission_model.unnormalized_emission_matrix[0, vowel_indices] = -np.inf\n",
 "#model.emission_model.unnormalized_emission_matrix[1, consonant_indices] = -np.inf \n",
 "print(\"Emission matrix:\", torch.nn.functional.softmax(model.emission_model.unnormalized_emission_matrix, dim=1))\n",
 "\n",
 "# Only allow vowel -> consonant and consonant -> vowel\n",
 "#model.transition_model.unnormalized_transition_matrix[0,0] = -np.inf # consonant -> consonant\n",
 "#model.transition_model.unnormalized_transition_matrix[0,1] = 0. # vowel -> consonant\n",
 "#model.transition_model.unnormalized_transition_matrix[1,0] = 0. # consonant -> vowel\n",
 "#model.transition_model.unnormalized_transition_matrix[1,1] = -np.inf # vowel -> vowel\n",
 "print(\"Transition matrix:\", torch.nn.functional.softmax(model.transition_model.unnormalized_transition_matrix, dim=0))\n"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "\n",
 "def emission_model_forward(self, x_t):\n",
 " log_emission_matrix = torch.nn.functional.log_softmax(self.unnormalized_emission_matrix, dim=1)\n",
 " out = log_emission_matrix[:, x_t].transpose(0,1)\n",
 " return out\n",
 "\n",
 "def transition_model_forward(self, log_alpha):\n",
 " \"\"\"\n",
 " log_alpha : Tensor of shape (batch size, N)\n",
 " Multiply previous timestep's alphas by transition matrix (in log domain)\n",
 " \"\"\"\n",
 " log_transition_matrix = torch.nn.functional.log_softmax(self.unnormalized_transition_matrix, dim=0)\n",
 "\n",
 " # Matrix multiplication in the log domain\n",
 " out = log_domain_matmul(log_transition_matrix, log_alpha.transpose(0,1)).transpose(0,1)\n",
 " return out\n",
 "\n",
 "def log_domain_matmul(log_A, log_B):\n",
 "\t\"\"\"\n",
 "\tlog_A : m x n\n",
 "\tlog_B : n x p\n",
 "\toutput : m x p matrix\n",
 "\n",
 "\tNormally, a matrix multiplication\n",
 "\tcomputes out_{i,j} = sum_k A_{i,k} x B_{k,j}\n",
 "\n",
 "\tA log domain matrix multiplication\n",
 "\tcomputes out_{i,j} = logsumexp_k log_A_{i,k} + log_B_{k,j}\n",
 "\t\"\"\"\n",
 "\tm = log_A.shape[0]\n",
 "\tn = log_A.shape[1]\n",
 "\tp = log_B.shape[1]\n",
 "\n",
 "\tlog_A_expanded = torch.stack([log_A] * p, dim=2)\n",
 "\tlog_B_expanded = torch.stack([log_B] * m, dim=0)\n",
 "\n",
 "\telementwise_sum = log_A_expanded + log_B_expanded\n",
 "\tout = torch.logsumexp(elementwise_sum, dim=1)\n",
 "\n",
 "\treturn out\n",
 "\n",
 "TransitionModel.forward = transition_model_forward\n",
 "EmissionModel.forward = emission_model_forward\n"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "## Part a ##"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "def viterbi(self, x, T):\n",
 " \"\"\"\n",
 " x : IntTensor of shape (batch size, T_max)\n",
 " T : IntTensor of shape (batch size)\n",
 " Find argmax_z log p(x|z) for each (x) in the batch.\n",
 " \"\"\"\n",
 " if self.is_cuda:\n",
 " x = x.cuda()\n",
 " T = T.cuda()\n",
 "\n",
 " batch_size = x.shape[0]; T_max = x.shape[1]\n",
 " log_state_priors = torch.nn.functional.log_softmax(self.unnormalized_state_priors, dim=0)\n",
 " log_delta = torch.zeros(batch_size, T_max, self.N).float()\n",
 " psi = torch.zeros(batch_size, T_max, self.N).long()\n",
 " if self.is_cuda:\n",
 " log_delta = log_delta.cuda()\n",
 " psi = psi.cuda()\n",
 "\n",
 " log_delta[:, 0, :] = self.emission_model(x[:,0]) + log_state_priors\n",
 " for t in range(1, T_max):\n",
 " max_val, argmax_val = self.transition_model.maxmul(log_delta[:, t-1, :])\n",
 " log_delta[:, t, :] = self.emission_model(x[:,t]) + max_val\n",
 " psi[:, t, :] = argmax_val\n",
 "\n",
 " # Get the log probability of the best path\n",
 " log_max = log_delta.max(dim=2)[0]\n",
 " best_path_scores = torch.gather(log_max, 1, T.view(-1,1) - 1)\n",
 "\n",
 " # This next part is a bit tricky to parallelize across the batch,\n",
 " # so we will do it separately for each example.\n",
 " z_star = []\n",
 " for i in range(0, batch_size):\n",
 " z_star_i = [log_delta[i, T[i] - 1, :].max(dim=0)[1].item()]\n",
 " for t in range(T[i] - 1, 0, -1):\n",
 " z_t = psi[i, t, z_star_i[0]].item()\n",
 " z_star_i.insert(0, z_t)\n",
 "\n",
 " z_star.append(z_star_i)\n",
 "\n",
 " return z_star, best_path_scores # return both the best path and its log probability\n",
 "\n",
 "def transition_model_maxmul(self, log_alpha):\n",
 " log_transition_matrix = torch.nn.functional.log_softmax(self.unnormalized_transition_matrix, dim=0)\n",
 "\n",
 " out1, out2 = maxmul(log_transition_matrix, log_alpha.transpose(0,1))\n",
 " return out1.transpose(0,1), out2.transpose(0,1)\n",
 "\n",
 "def maxmul(log_A, log_B):\n",
 "\t\"\"\"\n",
 "\tlog_A : m x n\n",
 "\tlog_B : n x p\n",
 "\toutput : m x p matrix\n",
 "\n",
 "\tSimilar to the log domain matrix multiplication,\n",
 "\tthis computes out_{i,j} = max_k log_A_{i,k} + log_B_{k,j}\n",
 "\t\"\"\"\n",
 "\tm = log_A.shape[0]\n",
 "\tn = log_A.shape[1]\n",
 "\tp = log_B.shape[1]\n",
 "\n",
 "\tlog_A_expanded = torch.stack([log_A] * p, dim=2)\n",
 "\tlog_B_expanded = torch.stack([log_B] * m, dim=0)\n",
 "\n",
 "\telementwise_sum = log_A_expanded + log_B_expanded\n",
 "\tout1,out2 = torch.max(elementwise_sum, dim=1)\n",
 "\n",
 "\treturn out1,out2\n",
 "\n",
 "TransitionModel.maxmul = transition_model_maxmul\n",
 "HMM.viterbi = viterbi"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "## Part b ##"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "x = torch.stack([torch.tensor(encode(\"cab\"))])\n",
 "T = torch.tensor([3])\n",
 "temp = model.viterbi(x, T)\n",
 "print(temp[0])\n",
 "print(np.exp(temp[1].item()))"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": []
 }
],
 "metadata": {
 "kernelspec": {
 "display_name": "Python 3",
 "language": "python",
 "name": "python3"
 },
 "language_info": {
 "codemirror_mode": {
 "name": "ipython",
 "version": 3
 },
 "file_extension": ".py",
 "mimetype": "text/x-python",
 "name": "python",
 "nbconvert_exporter": "python",
 "pygments_lexer": "ipython3",
 "version": "3.9.5"
 }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}

https://jupyter.org/try
https://research.google.com/colaboratory/
https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

P (0) :=

[
0.7 0.3

0.4 0.6

]
, M (0) :=

M (0)
0,a M

(0)
0,b M

(0)
0,c

M
(0)
1,a M

(0)
1,b M

(0)
1,c

 =

[
0.1 0.4 0.5

0.7 0.2 0.1

]
,

using (9.19a) we can compute a vector estimate π̂(1) =
[
π̂
(1)
0 , π̂(1)1

]
as

π̂(1) =
[
π̂
(1)
0 , π̂(1)1

]
= [0.825, 0.175],

a matrix estimate using (9.19b) as

P̂ (1) =

 0.415 0.585

0.482 0.518

 ,

and a matrix estimate M̂ (1) using (9.19c) as

M̂ (1) =

[
0.149 0.370 0.481
0.580 0.284 0.136

]
.

In practice, the equations (9.19a)-(9.19c) are initialized with arbitrary initial
values of π̂, P̂ and M̂ , and then applied iteratively.

Iterating the estimates (9.19a)-(9.19c) is computationally intensive, how-
ever this procedure admits an efficient recursive implementation via the Baum-
Welch algorithm which is based on the Expectation-Maximization (EM) algo-
rithm, see e.g. Yang et al. (2017) for convergence results for the Baum-Welch
algorithm.

Simulation example

Hidden Markov Model estimation can be implemented by the Baum-Welch
algorithm in ∗, using a neural network in , or using the
hmmlearn package. Those notebooks may be run here or here.

Package Tensorflow PyTorch hmmlearn (Python) hmm (R)
Code

Table 9.1: Summary of Hidden Markov Models implementations.

In the following example we use the HMM (Hidden Markov Model) package
in to estimate the corresponding emission probability matrix M using sam-
ples of a {0, 1}-valued hidden Markov chain (Xn)n⩾0. The source code of the
HMM package is available at https://cran.r-project.org/web/packages/
HMM/index.html.
∗ Right-click to save as attachment (may not work on

)
.

234 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

{
 "cells": [
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "# pip install tensorflow==1.15.0"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "import os\n",
 "print(os.getcwd())"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "# -*- coding: utf-8 -*-\n",
 "\"\"\"\n",
 "Created on Tue Dec 3 23:19:18 2019\n",
 "\n",
 "@author: owgs (ghimsiong.ow@gmail.com)\n",
 "\n",
 "\"\"\"\n",
 "\n",
 "import numpy as np\n",
 "#import tensorflow as tf\n",
 "import tensorflow.compat.v1 as tf\n",
 "tf.disable_v2_behavior()\n",
 "\n",
 "import pandas as pd\n",
 "import re, string, time\n",
 "import matplotlib.pyplot as plt\n",
 " \n",
 "class HMM(object):\n",
 " '''\n",
 " This HMM class comprises functions from two sources:\n",
 " A) Nishant Shukla - Machine Learning with TensorFlow (2018, Manning Publications)\n",
 " o used for implementing the forward algorithm\n",
 " o used for implementing the Viterbi algorithm\n",
 " B) Marvin Bertin - https://github.com/MarvinBertin/HiddenMarkovModel_TensorFlow\n",
 " o used for implementing the Baum-Welch algorithm\n",
 " ''' \n",
 " \n",
 " def __init__(self, initial_prob, trans_prob, obs_prob,\n",
 " epsilon=0.1, maxStep=5):\n",
 " \n",
 " T = trans_prob # No need to convert as required format is the same.\n",
 " E = obs_prob.T # To convert the format from Source (A) to Source (B)\n",
 " T0 = initial_prob.T[0] # to convert to a row vector \n",
 " \n",
 " with tf.name_scope('Inital_Parameters'):\n",
 " with tf.name_scope('Scalar_constants'):\n",
 " # Max number of iteration\n",
 " self.maxStep = maxStep\n",
 "\n",
 " # convergence criteria\n",
 " self.epsilon = epsilon \n",
 "\n",
 " # Number of possible states\n",
 " self.S = T.shape[0]\n",
 "\n",
 " # Number of possible observations\n",
 " self.O = E.shape[0]\n",
 " \n",
 " self.prob_state_1 = []\n",
 "\n",
 " with tf.name_scope('Model_Parameters'):\n",
 " # Emission probability\n",
 " self.E = tf.Variable(E, dtype=tf.float64, name='emission_matrix')\n",
 "\n",
 " # Transition matrix\n",
 " self.T = tf.Variable(T, dtype=tf.float64, name='transition_matrix')\n",
 "\n",
 " # Initial state vector\n",
 " self.T0 = tf.Variable(tf.constant(T0, dtype=tf.float64, name='inital_state_vector'))\n",
 "\t\t\n",
 " \n",
 "\n",
 " def initialize_forw_back_variables(self, shape):\n",
 " self.forward = tf.Variable(tf.zeros(shape, dtype=tf.float64), name='forward')\n",
 " self.backward = tf.Variable(tf.zeros(shape, dtype=tf.float64), name='backward')\n",
 " self.posterior = tf.Variable(tf.zeros(shape, dtype=tf.float64), name='posteriror')\n",
 "\n",
 "\n",
 " def _forward(self, obs_prob_list):\n",
 " \n",
 " with tf.name_scope('init_scaling_factor'):\n",
 " self.scale = tf.Variable(tf.zeros([self.N], tf.float64)) #scale factors\n",
 " \n",
 " with tf.name_scope('forward_first_step'):\n",
 " # initialize with state starting priors\n",
 " init_prob = tf.multiply(self.T0, tf.squeeze(obs_prob_list[0]))\n",
 "\n",
 " # scaling factor at t=0\n",
 " #owgs - self.scale = tf.scatter_update(self.scale, 0, 1.0 / tf.reduce_sum(init_prob))\n",
 " self.scale = tf.scatter_update(self.scale, 0, 1.0 / tf.reduce_sum(init_prob))\n",
 " \n",
 " # scaled belief at t=0\n",
 " #owgs self.forward = tf.scatter_update(self.forward, 0, self.scale[0] * init_prob)\n",
 " self.forward = tf.scatter_update(self.forward, 0, self.scale[0] * init_prob)\n",
 " \n",
 " # propagate belief\n",
 " for step, obs_prob in enumerate(obs_prob_list[1:]):\n",
 " with tf.name_scope('time_step-%s' %step):\n",
 " # previous state probability\n",
 " prev_prob = tf.expand_dims(self.forward[step, :], 0)\n",
 " # transition prior\n",
 " prior_prob = tf.matmul(prev_prob, self.T)\n",
 " # forward belief propagation\n",
 " forward_score = tf.multiply(prior_prob, tf.squeeze(obs_prob))\n",
 "\n",
 " forward_prob = tf.squeeze(forward_score)\n",
 " # scaling factor\n",
 " #owgs - self.scale = tf.scatter_update(self.scale, step+1, 1.0 / tf.reduce_sum(forward_prob))\n",
 " self.scale = tf.scatter_update(self.scale, step+1, 1.0 / tf.reduce_sum(forward_prob))\n",
 " \n",
 " # Update forward matrix\n",
 " #owgs - self.forward = tf.scatter_update(self.forward, step+1, self.scale[step+1] * forward_prob)\n",
 " self.forward = tf.scatter_update(self.forward, step+1, self.scale[step+1] * forward_prob)\n",
 " \n",
 "\n",
 " def _backward(self, obs_prob_list):\n",
 " with tf.name_scope('backward_last_step'):\n",
 " # initialize with state ending priors\n",
 " #owgs self.backward = tf.scatter_update(self.backward, 0, self.scale[self.N-1] * tf.ones([self.S], dtype=tf.float64)) \n",
 " self.backward = tf.scatter_update(self.backward, 0, self.scale[self.N-1] * tf.ones([self.S], dtype=tf.float64)) \n",
 "\n",
 " # propagate belief\n",
 " for step, obs_prob in enumerate(obs_prob_list[:-1]):\n",
 " with tf.name_scope('time_step-%s' %step):\n",
 " # next state probability\n",
 " next_prob = tf.expand_dims(self.backward[step, :], 1)\n",
 " # observation emission probabilities\n",
 " obs_prob_d = tf.linalg.tensor_diag(tf.squeeze(obs_prob)) #owgs - tf.diag(tf.squeeze(obs_prob))\n",
 " # transition prior\n",
 " prior_prob = tf.matmul(self.T, obs_prob_d)\n",
 " # backward belief propagation\n",
 " backward_score = tf.matmul(prior_prob, next_prob)\n",
 "\n",
 " backward_prob = tf.squeeze(backward_score)\n",
 "\n",
 " # Update backward matrix\n",
 " #owgs self.backward = tf.scatter_update(self.backward, step+1, self.scale[self.N-2-step] * backward_prob)\n",
 " self.backward = tf.scatter_update(self.backward, step+1, self.scale[self.N-2-step] * backward_prob)\n",
 " \n",
 " self.backward = tf.assign(self.backward, tf.reverse(self.backward, [True, False])) #owgs- tf.assign(self.backward, tf.reverse(self.backward, [True, False]))\n",
 "\n",
 " \n",
 " def _posterior(self):\n",
 " # posterior score\n",
 " self.posterior = tf.multiply(self.forward, self.backward)\n",
 "\n",
 " marginal = tf.reduce_sum(self.posterior, 1)\n",
 " self.posterior = self.posterior / tf.expand_dims(marginal, 1) \n",
 " \n",
 " \n",
 " def re_estimate_emission(self, x):\n",
 " \n",
 " states_marginal = tf.reduce_sum(self.gamma, 0)\n",
 " seq_one_hot = tf.one_hot(tf.cast(x, tf.int64), self.O, 1, 0)\n",
 " emission_score = tf.matmul(tf.cast(seq_one_hot, tf.float64), self.gamma, transpose_a=True)\n",
 " return emission_score / states_marginal\n",
 " \n",
 " def re_estimate_transition(self, x):\n",
 " \n",
 " with tf.name_scope('Init_3D_tensor'):\n",
 " self.M = tf.Variable(tf.zeros((self.N-1, self.S, self.S), tf.float64))\n",
 " \n",
 " with tf.name_scope('3D_tensor_transition'):\n",
 " for t in range(self.N - 1):\n",
 " with tf.name_scope('time_step-%s' %t):\n",
 " tmp_0 = tf.matmul(tf.expand_dims(self.forward[t, :], 0), self.T)\n",
 " tmp_1 = tf.multiply(tmp_0, tf.expand_dims(tf.gather(self.E, x[t+1]), 0))\n",
 " denom = tf.squeeze(tf.matmul(tmp_1, tf.expand_dims(self.backward[t+1, :], 1)))\n",
 "\n",
 " with tf.name_scope('Init_new_transition'):\n",
 " trans_re_estimate = tf.Variable(tf.zeros((self.S, self.S), tf.float64))\n",
 " \n",
 " for i in range(self.S):\n",
 " with tf.name_scope('State-%s' %i):\n",
 " numer = self.forward[t, i] * self.T[i, :] * tf.gather(self.E, x[t+1]) * self.backward[t+1, :]\n",
 " #owgs trans_re_estimate = tf.scatter_update(trans_re_estimate, i, numer / denom)\n",
 " trans_re_estimate = tf.scatter_update(trans_re_estimate, i, numer / denom)\n",
 " \n",
 " #self.M = tf.scatter_update(self.M, t, trans_re_estimate)\n",
 " self.M = tf.scatter_update(self.M, t, trans_re_estimate)\n",
 "\n",
 " with tf.name_scope('Smooth_gamma'):\n",
 " self.gamma = tf.squeeze(tf.reduce_sum(self.M, 2))\n",
 " T_new = tf.reduce_sum(self.M, 0) / tf.expand_dims(tf.reduce_sum(self.gamma, 0), 1)\n",
 " \n",
 " with tf.name_scope('New_init_states_prob'):\n",
 " T0_new = self.gamma[0,:]\n",
 "\n",
 " with tf.name_scope('Append_gamma_final_time_step'):\n",
 " prod = tf.expand_dims(tf.multiply(self.forward[self.N-1, :], self.backward[self.N-1, :]), 0)\n",
 " s= prod/ tf.reduce_sum(prod)\n",
 " self.gamma = tf.concat([self.gamma, s], 0)\n",
 " \n",
 " self.prob_state_1.append(self.gamma[:, 0])\n",
 " \n",
 " return T0_new, T_new\n",
 " \n",
 " def check_convergence(self, new_T0, new_transition, new_emission):\n",
 " \n",
 " delta_T0 = tf.reduce_max(tf.abs(self.T0 - new_T0)) < self.epsilon\n",
 " delta_T = tf.reduce_max(tf.abs(self.T - new_transition)) < self.epsilon\n",
 " delta_E = tf.reduce_max(tf.abs(self.E - new_emission)) < self.epsilon\n",
 "\n",
 " return tf.logical_and(tf.logical_and(delta_T0, delta_T), delta_E)\n",
 " \n",
 " def forward_backward(self, obs_prob_seq):\n",
 " obs_prob_list_for = tf.split(obs_prob_seq, self.N, 0)\n",
 " \n",
 " with tf.name_scope('forward_belief_propagation'):\n",
 " # forward belief propagation\n",
 " self._forward(obs_prob_list_for)\n",
 "\n",
 " obs_prob_seq_rev = tf.reverse(obs_prob_seq, [True, False])\n",
 " obs_prob_list_back = tf.split(obs_prob_seq_rev, self.N, 0)\n",
 "\n",
 " with tf.name_scope('backward_belief_propagation'):\n",
 " # backward belief propagation\n",
 " self._backward(obs_prob_list_back)\n",
 " \n",
 " def expectation_maximization_step(self, x):\n",
 " \n",
 " # probability of emission sequence\n",
 " obs_prob_seq = tf.gather(self.E, x)\n",
 "\n",
 " with tf.name_scope('Forward_Backward'):\n",
 " self.forward_backward(obs_prob_seq)\n",
 "\n",
 " with tf.name_scope('Re_estimate_transition'):\n",
 " new_T0, new_transition = self.re_estimate_transition(x)\n",
 " \n",
 " with tf.name_scope('Re_estimate_emission'):\n",
 " new_emission = self.re_estimate_emission(x)\n",
 "\n",
 " with tf.name_scope('Check_Convergence'):\n",
 " converged = self.check_convergence(new_T0, new_transition, new_emission)\n",
 "\n",
 " with tf.name_scope('Update_parameters'):\n",
 " self.T0 = tf.assign(self.T0, new_T0)\n",
 " self.E = tf.assign(self.E, new_emission)\n",
 " self.T = tf.assign(self.T, new_transition)\n",
 " #self.count = tf.assign_add(self.count, 1)\n",
 " \n",
 " with tf.name_scope('histogram_summary'):\n",
 " _ = tf.summary.histogram(self.T0.name, self.T0) #owgs - tf.summary.histogram(self.T0.name, self.T0)\n",
 " _ = tf.summary.histogram(self.T.name, self.T) #owgs - tf.summary.histogram(self.T.name, self.T)\n",
 " _ = tf.summary.histogram(self.E.name, self.E) #owgs - tf.summary.histogram(self.E.name, self.E)\n",
 " return converged\n",
 " \n",
 " \n",
 " def Baum_Welch_EM(self, obs_seq):\n",
 " \n",
 " with tf.name_scope('Input_Observed_Sequence'):\n",
 " # length of observed sequence\n",
 " self.N = len(obs_seq)\n",
 "\n",
 " # shape of Variables\n",
 " shape = [self.N, self.S]\n",
 "\n",
 " # observed sequence\n",
 " x = tf.constant(obs_seq, dtype=tf.int32, name='observation_sequence')\n",
 " \n",
 " with tf.name_scope('Initialize_variables'):\n",
 " # initialize variables\n",
 " self.initialize_forw_back_variables(shape)\n",
 " \n",
 " converged = tf.cast(False, tf.bool)\n",
 " #self.count = tf.Variable(tf.constant(0))\n",
 " \n",
 " with tf.name_scope('Train_Baum_Welch'):\n",
 " for i in range(self.maxStep):\n",
 " \n",
 " with tf.name_scope('EM_step-%s' %i):\n",
 " converged = self.expectation_maximization_step(x)\n",
 " \n",
 " return converged\n",
 " \n",
 "def run_Baum_Welch_EM(sess, hmm, obs_seq, summary=False, monitor_state_1=False):\n",
 " \n",
 " converged = hmm.Baum_Welch_EM(obs_seq)\n",
 " \n",
 " # Build the summary operation based on the TF collection of Summaries.\n",
 " summary_op = tf.summary.merge_all() #owgs - tf.summary.merge_all()\n",
 " \n",
 " # Run \n",
 " sess.run(tf.global_variables_initializer())\n",
 " trans0, transition, emission, c = sess.run([hmm.T0, hmm.T, hmm.E, converged])\n",
 "\n",
 " return trans0, transition, emission, c \n"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "from google.colab import files\n",
 "fp = files.upload()"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "# Initalise the session\n",
 "sess = tf.Session()\n",
 " \n",
 "# Load and prepare the data\n",
 "fp = \"text.txt\"\n",
 "s = open(fp).read()[:10000]\n",
 "s2 = re.sub(\"[^a-z]\", \"_\", s.lower())\n",
 " \n",
 "# Prepare the dataframe of data\n",
 "alpha_states = [\"_\"] + list(string.ascii_lowercase)\n",
 "mapper = dict(zip(alpha_states, range(len(alpha_states))))\n",
 "V = pd.Series(list(s2)).map(mapper).values\n",
 "data = pd.DataFrame({\"Visible\": V, \"Alphabet\": list(s2)})\n",
 "data[\"Hidden\"] = data[\"Alphabet\"].map({\"a\": 1, \"e\": 1, \"i\": 1, \"o\": 1, \"u\": 1}).replace(np.nan, 0).astype(int)\n",
 "data = data[[\"Alphabet\", \"Hidden\", \"Visible\"]] "
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "# Define the initial distributions\n",
 "initial_distribution = np.array([[0.6],[0.4]])\n",
 "initial_T = np.array([[0.6177499,0.3822501], [0.8826096,0.1173904]])\n",
 "initial_E = np.array([\n",
 " [0.037192964,0.009902360,0.032833978,0.044882670,0.057331132,\n",
 " 0.052143890,0.013665015,0.036187536,0.072293323,0.044793972,0.060008388,\n",
 " 0.004256270,0.024770706,0.053520546,0.014232306,0.046981769,0.053733382,\n",
 " 0.066355203,0.046817817,0.006912535,0.016201697,0.013425499,0.024694447,\n",
 " 0.064902148,0.046170421,0.033586536,0.022203489],\n",
 " [0.0389931197,0.0697183142,0.0239154174,0.0512772632,0.0404732634,0.0059687348,\n",
 " 0.0211687193,0.0625229746,0.0039632091,0.0567828864,0.0468108656,0.0168355418,\n",
 " 0.0627882213,0.0286478204,0.0389215263,0.0064318198,0.0001698078,0.0493758725,\n",
 " 0.0652709152,0.0069580806,0.0093043072,0.0028807932,0.0521827110,0.0608822385,\n",
 " 0.0645417465,0.0555249876,0.0576888424]\n",
 "])"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "num_chars = 100\n",
 "maxStep = 2\n",
 "\n",
 "# Start logs\n",
 "print (\"Start time: %s\" % time.asctime())\n",
 "start_time = time.perf_counter()\n",
 " \n",
 "# Initialise the model\n",
 "hmm = HMM(initial_distribution, initial_T, initial_E,epsilon=0.1, maxStep=maxStep)\n",
 " \n",
 "# Run the baum welch algorithm\n",
 "trans0, transition, emission, c = run_Baum_Welch_EM(\n",
 " sess, hmm,\n",
 " data[\"Visible\"].values[:num_chars], summary=False, monitor_state_1=True) \n",
 " \n",
 "# End logs\n",
 "print (\"End time: %s\" % time.asctime())\n",
 "end_time = time.perf_counter()\n",
 "print (\"Time taken: %s hrs\" % ((end_time-start_time)/60/60))\n",
 " \n",
 "print(\"Transition Matrix: \")\n",
 "print(transition)\n",
 "print()\n",
 "print(\"Emission Matrix: \")\n",
 "print(emission)\n",
 "print()\n",
 "print(\"Reached Convergence: \")\n",
 "print(c) \n",
 " \n",
 "# plot\n",
 "plt.bar(alpha_states, emission[:,0])"
]
 }
],
 "metadata": {
 "kernelspec": {
 "display_name": "Python 3 (ipykernel)",
 "language": "python",
 "name": "python3"
 },
 "language_info": {
 "codemirror_mode": {
 "name": "ipython",
 "version": 3
 },
 "file_extension": ".py",
 "mimetype": "text/x-python",
 "name": "python",
 "nbconvert_exporter": "python",
 "pygments_lexer": "ipython3",
 "version": "3.11.2"
 }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}

{
 "cells": [
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {
 "colab": {
 "base_uri": "https://localhost:8080/",
 "height": 307
 },
 "id": "hSU6VQyqd5iK",
 "outputId": "af9e4bff-568b-4fa4-bb7b-5e9a82adc218"
 },
 "outputs": [],
 "source": [
 "!pip install torch==1.4.0"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {
 "id": "0bWLdlhrc35P"
 },
 "outputs": [],
 "source": [
 "import torch"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {
 "id": "PsPKXXTcc35S"
 },
 "outputs": [],
 "source": [
 "import numpy as np\n",
 "\n",
 "class HMM(torch.nn.Module):\n",
 " \"\"\"\n",
 " Hidden Markov Model with discrete observations.\n",
 " \"\"\"\n",
 " def __init__(self, M, N):\n",
 " super(HMM, self).__init__()\n",
 " self.M = M # number of possible observations\n",
 " self.N = N # number of states\n",
 "\n",
 " # A\n",
 " self.transition_model = TransitionModel(self.N)\n",
 "\n",
 " # b(x_t)\n",
 " self.emission_model = EmissionModel(self.N,self.M)\n",
 "\n",
 " # pi\n",
 " self.unnormalized_state_priors = torch.nn.Parameter(torch.randn(self.N))\n",
 "\n",
 " # use the GPU\n",
 " self.is_cuda = torch.cuda.is_available()\n",
 " if self.is_cuda: self.cuda()\n",
 "\n",
 "class TransitionModel(torch.nn.Module):\n",
 " def __init__(self, N):\n",
 " super(TransitionModel, self).__init__()\n",
 " self.N = N\n",
 " self.unnormalized_transition_matrix = torch.nn.Parameter(torch.randn(N,N))\n",
 "\n",
 "class EmissionModel(torch.nn.Module):\n",
 " def __init__(self, N, M):\n",
 " super(EmissionModel, self).__init__()\n",
 " self.N = N\n",
 " self.M = M\n",
 " self.unnormalized_emission_matrix = torch.nn.Parameter(torch.randn(N,M))"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {
 "id": "cV2OB6Ihc35U"
 },
 "outputs": [],
 "source": [
 "def sample(self, T=3):\n",
 " state_priors = torch.nn.functional.softmax(self.unnormalized_state_priors, dim=0)\n",
 " transition_matrix = torch.nn.functional.softmax(self.transition_model.unnormalized_transition_matrix, dim=0)\n",
 " emission_matrix = torch.nn.functional.softmax(self.emission_model.unnormalized_emission_matrix, dim=1)\n",
 "\n",
 " # sample initial state\n",
 " z_t = torch.distributions.categorical.Categorical(state_priors).sample().item()\n",
 " z = []; x = []\n",
 " z.append(z_t)\n",
 " for t in range(0,T):\n",
 " # sample emission\n",
 " x_t = torch.distributions.categorical.Categorical(emission_matrix[z_t]).sample().item()\n",
 " x.append(x_t)\n",
 "\n",
 " # sample transition\n",
 " z_t = torch.distributions.categorical.Categorical(transition_matrix[:,z_t]).sample().item()\n",
 " if t < T-1: z.append(z_t)\n",
 "\n",
 " return x, z\n",
 "\n",
 "# Add the sampling method to our HMM class\n",
 "HMM.sample = sample"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {
 "colab": {
 "base_uri": "https://localhost:8080/"
 },
 "id": "bFOmIsyBc35U",
 "outputId": "25d05631-0703-4de8-c6fc-ef4907fd61f4"
 },
 "outputs": [],
 "source": [
 "import string\n",
 "#alphabet = string.ascii_lowercase\n",
 "alphabet = 'abc'\n",
 "\n",
 "def encode(s):\n",
 " \"\"\"\n",
 " Convert a string into a list of integers\n",
 " \"\"\"\n",
 " x = [alphabet.index(ss) for ss in s]\n",
 " return x\n",
 "\n",
 "def decode(x):\n",
 " \"\"\"\n",
 " Convert list of ints to string\n",
 " \"\"\"\n",
 " s = \"\".join([alphabet[xx] for xx in x])\n",
 " return s\n",
 "\n",
 "# Initialize the model\n",
 "model = HMM(M=len(alphabet), N=2) \n",
 "\n",
 "# Hard-wiring the parameters (the input is in exp(x) >> need to log p)!\n",
 "# Let state 0 = consonant, state 1 = vowel\n",
 "model.unnormalized_state_priors.data[0] = np.log(0.6) \n",
 "model.unnormalized_state_priors.data[1] = np.log(0.4)\n",
 "print(\"State priors:\", torch.nn.functional.softmax(model.unnormalized_state_priors, dim=0))\n",
 "\n",
 "model.emission_model.unnormalized_emission_matrix.data[0, 0] = np.log(0.1)\n",
 "model.emission_model.unnormalized_emission_matrix.data[0, 1] = np.log(0.4)\n",
 "model.emission_model.unnormalized_emission_matrix.data[0, 2] = np.log(0.5)\n",
 "model.emission_model.unnormalized_emission_matrix.data[1, 0] = np.log(0.7)\n",
 "model.emission_model.unnormalized_emission_matrix.data[1, 1] = np.log(0.2)\n",
 "model.emission_model.unnormalized_emission_matrix.data[1, 2] = np.log(0.1)\n",
 "\n",
 "#Transposed !!!\n",
 "model.transition_model.unnormalized_transition_matrix.data[0,0] = np.log(0.7)\n",
 "model.transition_model.unnormalized_transition_matrix.data[0,1] = np.log(0.4)\n",
 "model.transition_model.unnormalized_transition_matrix.data[1,0] = np.log(0.3)\n",
 "model.transition_model.unnormalized_transition_matrix.data[1,1] = np.log(0.6)\n",
 "\n",
 "# In state 0, only allow consonants; in state 1, only allow vowels\n",
 "#vowel_indices = torch.tensor([alphabet.index(letter) for letter in \"aeiou\"])\n",
 "#consonant_indices = torch.tensor([alphabet.index(letter) for letter in \"bcdfghjklmnpqrstvwxyz\"])\n",
 "#model.emission_model.unnormalized_emission_matrix[0, vowel_indices] = -np.inf\n",
 "#model.emission_model.unnormalized_emission_matrix[1, consonant_indices] = -np.inf \n",
 "print(\"Emission matrix:\", torch.nn.functional.softmax(model.emission_model.unnormalized_emission_matrix, dim=1))\n",
 "\n",
 "# Only allow vowel -> consonant and consonant -> vowel\n",
 "#model.transition_model.unnormalized_transition_matrix[0,0] = -np.inf # consonant -> consonant\n",
 "#model.transition_model.unnormalized_transition_matrix[0,1] = 0. # vowel -> consonant\n",
 "#model.transition_model.unnormalized_transition_matrix[1,0] = 0. # consonant -> vowel\n",
 "#model.transition_model.unnormalized_transition_matrix[1,1] = -np.inf # vowel -> vowel\n",
 "print(\"Transition matrix:\", torch.nn.functional.softmax(model.transition_model.unnormalized_transition_matrix, dim=0))\n"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {
 "id": "8xXtZrtoc35X"
 },
 "outputs": [],
 "source": [
 "def HMM_forward(self, x, T):\n",
 " \"\"\"\n",
 " x : IntTensor of shape (batch size, T_max)\n",
 " T : IntTensor of shape (batch size)\n",
 "\n",
 " Compute log p(x) for each example in the batch.\n",
 " T = length of each example\n",
 " \"\"\"\n",
 " if self.is_cuda:\n",
 " \tx = x.cuda()\n",
 " \tT = T.cuda()\n",
 "\n",
 " batch_size = x.shape[0]; T_max = x.shape[1]\n",
 " log_state_priors = torch.nn.functional.log_softmax(self.unnormalized_state_priors, dim=0)\n",
 " log_alpha = torch.zeros(batch_size, T_max, self.N)\n",
 " if self.is_cuda: log_alpha = log_alpha.cuda()\n",
 "\n",
 " log_alpha[:, 0, :] = self.emission_model(x[:,0]) + log_state_priors\n",
 " for t in range(1, T_max):\n",
 " log_alpha[:, t, :] = self.emission_model(x[:,t]) + self.transition_model(log_alpha[:, t-1, :])\n",
 "\n",
 " # Select the sum for the final timestep (each x may have different length).\n",
 " log_sums = log_alpha.logsumexp(dim=2)\n",
 " log_probs = torch.gather(log_sums, 1, T.view(-1,1) - 1)\n",
 " return log_probs\n",
 "\n",
 "def emission_model_forward(self, x_t):\n",
 " log_emission_matrix = torch.nn.functional.log_softmax(self.unnormalized_emission_matrix, dim=1)\n",
 " out = log_emission_matrix[:, x_t].transpose(0,1)\n",
 " return out\n",
 "\n",
 "def transition_model_forward(self, log_alpha):\n",
 " \"\"\"\n",
 " log_alpha : Tensor of shape (batch size, N)\n",
 " Multiply previous timestep's alphas by transition matrix (in log domain)\n",
 " \"\"\"\n",
 " log_transition_matrix = torch.nn.functional.log_softmax(self.unnormalized_transition_matrix, dim=0)\n",
 "\n",
 " # Matrix multiplication in the log domain\n",
 " out = log_domain_matmul(log_transition_matrix, log_alpha.transpose(0,1)).transpose(0,1)\n",
 " return out\n",
 "\n",
 "def log_domain_matmul(log_A, log_B):\n",
 "\t\"\"\"\n",
 "\tlog_A : m x n\n",
 "\tlog_B : n x p\n",
 "\toutput : m x p matrix\n",
 "\n",
 "\tNormally, a matrix multiplication\n",
 "\tcomputes out_{i,j} = sum_k A_{i,k} x B_{k,j}\n",
 "\n",
 "\tA log domain matrix multiplication\n",
 "\tcomputes out_{i,j} = logsumexp_k log_A_{i,k} + log_B_{k,j}\n",
 "\t\"\"\"\n",
 "\tm = log_A.shape[0]\n",
 "\tn = log_A.shape[1]\n",
 "\tp = log_B.shape[1]\n",
 "\n",
 "\tlog_A_expanded = torch.stack([log_A] * p, dim=2)\n",
 "\tlog_B_expanded = torch.stack([log_B] * m, dim=0)\n",
 "\n",
 "\telementwise_sum = log_A_expanded + log_B_expanded\n",
 "\tout = torch.logsumexp(elementwise_sum, dim=1)\n",
 "\n",
 "\treturn out\n",
 "\n",
 "TransitionModel.forward = transition_model_forward\n",
 "EmissionModel.forward = emission_model_forward\n",
 "HMM.forward = HMM_forward"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {
 "id": "LdqXEQlTc35c"
 },
 "outputs": [],
 "source": [
 "import torch.utils.data\n",
 "from collections import Counter\n",
 "from sklearn.model_selection import train_test_split\n",
 "\n",
 "class TextDataset(torch.utils.data.Dataset):\n",
 " def __init__(self, lines):\n",
 " self.lines = lines # list of strings\n",
 " collate = Collate() # function for generating a minibatch from strings\n",
 " \n",
 " self.loader = torch.utils.data.DataLoader(self, batch_size=1024, num_workers=1, shuffle=True, collate_fn=collate)\n",
 " #self.loader = torch.utils.data.DataLoader(self, batch_size=2048, num_workers=1, shuffle=True, collate_fn=collate)\n",
 "\n",
 " def __len__(self):\n",
 " return len(self.lines)\n",
 "\n",
 " def __getitem__(self, idx):\n",
 " line = self.lines[idx].lstrip(\" \").rstrip(\"\\n\").rstrip(\" \").rstrip(\"\\n\")\n",
 " return line\n",
 "\n",
 "class Collate:\n",
 " def __init__(self):\n",
 " pass\n",
 "\n",
 " def __call__(self, batch):\n",
 " \"\"\"\n",
 " Returns a minibatch of strings, padded to have the same length.\n",
 " \"\"\"\n",
 " x = []\n",
 " batch_size = len(batch)\n",
 " for index in range(batch_size):\n",
 " x_ = batch[index]\n",
 "\n",
 " # convert letters to integers\n",
 " x.append(encode(x_))\n",
 "\n",
 " # pad all sequences with 0 to have same length\n",
 " x_lengths = [len(x_) for x_ in x]\n",
 " T = max(x_lengths)\n",
 " for index in range(batch_size):\n",
 " x[index] += [0] * (T - len(x[index]))\n",
 " x[index] = torch.tensor(x[index])\n",
 "\n",
 " # stack into single tensor\n",
 " x = torch.stack(x)\n",
 " x_lengths = torch.tensor(x_lengths)\n",
 " return (x,x_lengths)"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {
 "colab": {
 "base_uri": "https://localhost:8080/",
 "height": 72,
 "resources": {
 "http://localhost:8080/nbextensions/google.colab/files.js": {
 "data": "Ly8gQ29weXJpZ2h0IDIwMTcgR29vZ2xlIExMQwovLwovLyBMaWNlbnNlZCB1bmRlciB0aGUgQXBhY2hlIExpY2Vuc2UsIFZlcnNpb24gMi4wICh0aGUgIkxpY2Vuc2UiKTsKLy8geW91IG1heSBub3QgdXNlIHRoaXMgZmlsZSBleGNlcHQgaW4gY29tcGxpYW5jZSB3aXRoIHRoZSBMaWNlbnNlLgovLyBZb3UgbWF5IG9idGFpbiBhIGNvcHkgb2YgdGhlIExpY2Vuc2UgYXQKLy8KLy8gICAgICBodHRwOi8vd3d3LmFwYWNoZS5vcmcvbGljZW5zZXMvTElDRU5TRS0yLjAKLy8KLy8gVW5sZXNzIHJlcXVpcmVkIGJ5IGFwcGxpY2FibGUgbGF3IG9yIGFncmVlZCB0byBpbiB3cml0aW5nLCBzb2Z0d2FyZQovLyBkaXN0cmlidXRlZCB1bmRlciB0aGUgTGljZW5zZSBpcyBkaXN0cmlidXRlZCBvbiBhbiAiQVMgSVMiIEJBU0lTLAovLyBXSVRIT1VUIFdBUlJBTlRJRVMgT1IgQ09ORElUSU9OUyBPRiBBTlkgS0lORCwgZWl0aGVyIGV4cHJlc3Mgb3IgaW1wbGllZC4KLy8gU2VlIHRoZSBMaWNlbnNlIGZvciB0aGUgc3BlY2lmaWMgbGFuZ3VhZ2UgZ292ZXJuaW5nIHBlcm1pc3Npb25zIGFuZAovLyBsaW1pdGF0aW9ucyB1bmRlciB0aGUgTGljZW5zZS4KCi8qKgogKiBAZmlsZW92ZXJ2aWV3IEhlbHBlcnMgZm9yIGdvb2dsZS5jb2xhYiBQeXRob24gbW9kdWxlLgogKi8KKGZ1bmN0aW9uKHNjb3BlKSB7CmZ1bmN0aW9uIHNwYW4odGV4dCwgc3R5bGVBdHRyaWJ1dGVzID0ge30pIHsKICBjb25zdCBlbGVtZW50ID0gZG9jdW1lbnQuY3JlYXRlRWxlbWVudCgnc3BhbicpOwogIGVsZW1lbnQudGV4dENvbnRlbnQgPSB0ZXh0OwogIGZvciAoY29uc3Qga2V5IG9mIE9iamVjdC5rZXlzKHN0eWxlQXR0cmlidXRlcykpIHsKICAgIGVsZW1lbnQuc3R5bGVba2V5XSA9IHN0eWxlQXR0cmlidXRlc1trZXldOwogIH0KICByZXR1cm4gZWxlbWVudDsKfQoKLy8gTWF4IG51bWJlciBvZiBieXRlcyB3aGljaCB3aWxsIGJlIHVwbG9hZGVkIGF0IGEgdGltZS4KY29uc3QgTUFYX1BBWUxPQURfU0laRSA9IDEwMCAqIDEwMjQ7CgpmdW5jdGlvbiBfdXBsb2FkRmlsZXMoaW5wdXRJZCwgb3V0cHV0SWQpIHsKICBjb25zdCBzdGVwcyA9IHVwbG9hZEZpbGVzU3RlcChpbnB1dElkLCBvdXRwdXRJZCk7CiAgY29uc3Qgb3V0cHV0RWxlbWVudCA9IGRvY3VtZW50LmdldEVsZW1lbnRCeUlkKG91dHB1dElkKTsKICAvLyBDYWNoZSBzdGVwcyBvbiB0aGUgb3V0cHV0RWxlbWVudCB0byBtYWtlIGl0IGF2YWlsYWJsZSBmb3IgdGhlIG5leHQgY2FsbAogIC8vIHRvIHVwbG9hZEZpbGVzQ29udGludWUgZnJvbSBQeXRob24uCiAgb3V0cHV0RWxlbWVudC5zdGVwcyA9IHN0ZXBzOwoKICByZXR1cm4gX3VwbG9hZEZpbGVzQ29udGludWUob3V0cHV0SWQpOwp9CgovLyBUaGlzIGlzIHJvdWdobHkgYW4gYXN5bmMgZ2VuZXJhdG9yIChub3Qgc3VwcG9ydGVkIGluIHRoZSBicm93c2VyIHlldCksCi8vIHdoZXJlIHRoZXJlIGFyZSBtdWx0aXBsZSBhc3luY2hyb25vdXMgc3RlcHMgYW5kIHRoZSBQeXRob24gc2lkZSBpcyBnb2luZwovLyB0byBwb2xsIGZvciBjb21wbGV0aW9uIG9mIGVhY2ggc3RlcC4KLy8gVGhpcyB1c2VzIGEgUHJvbWlzZSB0byBibG9jayB0aGUgcHl0aG9uIHNpZGUgb24gY29tcGxldGlvbiBvZiBlYWNoIHN0ZXAsCi8vIHRoZW4gcGFzc2VzIHRoZSByZXN1bHQgb2YgdGhlIHByZXZpb3VzIHN0ZXAgYXMgdGhlIGlucHV0IHRvIHRoZSBuZXh0IHN0ZXAuCmZ1bmN0aW9uIF91cGxvYWRGaWxlc0NvbnRpbnVlKG91dHB1dElkKSB7CiAgY29uc3Qgb3V0cHV0RWxlbWVudCA9IGRvY3VtZW50LmdldEVsZW1lbnRCeUlkKG91dHB1dElkKTsKICBjb25zdCBzdGVwcyA9IG91dHB1dEVsZW1lbnQuc3RlcHM7CgogIGNvbnN0IG5leHQgPSBzdGVwcy5uZXh0KG91dHB1dEVsZW1lbnQubGFzdFByb21pc2VWYWx1ZSk7CiAgcmV0dXJuIFByb21pc2UucmVzb2x2ZShuZXh0LnZhbHVlLnByb21pc2UpLnRoZW4oKHZhbHVlKSA9PiB7CiAgICAvLyBDYWNoZSB0aGUgbGFzdCBwcm9taXNlIHZhbHVlIHRvIG1ha2UgaXQgYXZhaWxhYmxlIHRvIHRoZSBuZXh0CiAgICAvLyBzdGVwIG9mIHRoZSBnZW5lcmF0b3IuCiAgICBvdXRwdXRFbGVtZW50Lmxhc3RQcm9taXNlVmFsdWUgPSB2YWx1ZTsKICAgIHJldHVybiBuZXh0LnZhbHVlLnJlc3BvbnNlOwogIH0pOwp9CgovKioKICogR2VuZXJhdG9yIGZ1bmN0aW9uIHdoaWNoIGlzIGNhbGxlZCBiZXR3ZWVuIGVhY2ggYXN5bmMgc3RlcCBvZiB0aGUgdXBsb2FkCiAqIHByb2Nlc3MuCiAqIEBwYXJhbSB7c3RyaW5nfSBpbnB1dElkIEVsZW1lbnQgSUQgb2YgdGhlIGlucHV0IGZpbGUgcGlja2VyIGVsZW1lbnQuCiAqIEBwYXJhbSB7c3RyaW5nfSBvdXRwdXRJZCBFbGVtZW50IElEIG9mIHRoZSBvdXRwdXQgZGlzcGxheS4KICogQHJldHVybiB7IUl0ZXJhYmxlPCFPYmplY3Q+fSBJdGVyYWJsZSBvZiBuZXh0IHN0ZXBzLgogKi8KZnVuY3Rpb24qIHVwbG9hZEZpbGVzU3RlcChpbnB1dElkLCBvdXRwdXRJZCkgewogIGNvbnN0IGlucHV0RWxlbWVudCA9IGRvY3VtZW50LmdldEVsZW1lbnRCeUlkKGlucHV0SWQpOwogIGlucHV0RWxlbWVudC5kaXNhYmxlZCA9IGZhbHNlOwoKICBjb25zdCBvdXRwdXRFbGVtZW50ID0gZG9jdW1lbnQuZ2V0RWxlbWVudEJ5SWQob3V0cHV0SWQpOwogIG91dHB1dEVsZW1lbnQuaW5uZXJIVE1MID0gJyc7CgogIGNvbnN0IHBpY2tlZFByb21pc2UgPSBuZXcgUHJvbWlzZSgocmVzb2x2ZSkgPT4gewogICAgaW5wdXRFbGVtZW50LmFkZEV2ZW50TGlzdGVuZXIoJ2NoYW5nZScsIChlKSA9PiB7CiAgICAgIHJlc29sdmUoZS50YXJnZXQuZmlsZXMpOwogICAgfSk7CiAgfSk7CgogIGNvbnN0IGNhbmNlbCA9IGRvY3VtZW50LmNyZWF0ZUVsZW1lbnQoJ2J1dHRvbicpOwogIGlucHV0RWxlbWVudC5wYXJlbnRFbGVtZW50LmFwcGVuZENoaWxkKGNhbmNlbCk7CiAgY2FuY2VsLnRleHRDb250ZW50ID0gJ0NhbmNlbCB1cGxvYWQnOwogIGNvbnN0IGNhbmNlbFByb21pc2UgPSBuZXcgUHJvbWlzZSgocmVzb2x2ZSkgPT4gewogICAgY2FuY2VsLm9uY2xpY2sgPSAoKSA9PiB7CiAgICAgIHJlc29sdmUobnVsbCk7CiAgICB9OwogIH0pOwoKICAvLyBXYWl0IGZvciB0aGUgdXNlciB0byBwaWNrIHRoZSBmaWxlcy4KICBjb25zdCBmaWxlcyA9IHlpZWxkIHsKICAgIHByb21pc2U6IFByb21pc2UucmFjZShbcGlja2VkUHJvbWlzZSwgY2FuY2VsUHJvbWlzZV0pLAogICAgcmVzcG9uc2U6IHsKICAgICAgYWN0aW9uOiAnc3RhcnRpbmcnLAogICAgfQogIH07CgogIGNhbmNlbC5yZW1vdmUoKTsKCiAgLy8gRGlzYWJsZSB0aGUgaW5wdXQgZWxlbWVudCBzaW5jZSBmdXJ0aGVyIHBpY2tzIGFyZSBub3QgYWxsb3dlZC4KICBpbnB1dEVsZW1lbnQuZGlzYWJsZWQgPSB0cnVlOwoKICBpZiAoIWZpbGVzKSB7CiAgICByZXR1cm4gewogICAgICByZXNwb25zZTogewogICAgICAgIGFjdGlvbjogJ2NvbXBsZXRlJywKICAgICAgfQogICAgfTsKICB9CgogIGZvciAoY29uc3QgZmlsZSBvZiBmaWxlcykgewogICAgY29uc3QgbGkgPSBkb2N1bWVudC5jcmVhdGVFbGVtZW50KCdsaScpOwogICAgbGkuYXBwZW5kKHNwYW4oZmlsZS5uYW1lLCB7Zm9udFdlaWdodDogJ2JvbGQnfSkpOwogICAgbGkuYXBwZW5kKHNwYW4oCiAgICAgICAgYCgke2ZpbGUudHlwZSB8fCAnbi9hJ30pIC0gJHtmaWxlLnNpemV9IGJ5dGVzLCBgICsKICAgICAgICBgbGFzdCBtb2RpZmllZDogJHsKICAgICAgICAgICAgZmlsZS5sYXN0TW9kaWZpZWREYXRlID8gZmlsZS5sYXN0TW9kaWZpZWREYXRlLnRvTG9jYWxlRGF0ZVN0cmluZygpIDoKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgJ24vYSd9IC0gYCkpOwogICAgY29uc3QgcGVyY2VudCA9IHNwYW4oJzAlIGRvbmUnKTsKICAgIGxpLmFwcGVuZENoaWxkKHBlcmNlbnQpOwoKICAgIG91dHB1dEVsZW1lbnQuYXBwZW5kQ2hpbGQobGkpOwoKICAgIGNvbnN0IGZpbGVEYXRhUHJvbWlzZSA9IG5ldyBQcm9taXNlKChyZXNvbHZlKSA9PiB7CiAgICAgIGNvbnN0IHJlYWRlciA9IG5ldyBGaWxlUmVhZGVyKCk7CiAgICAgIHJlYWRlci5vbmxvYWQgPSAoZSkgPT4gewogICAgICAgIHJlc29sdmUoZS50YXJnZXQucmVzdWx0KTsKICAgICAgfTsKICAgICAgcmVhZGVyLnJlYWRBc0FycmF5QnVmZmVyKGZpbGUpOwogICAgfSk7CiAgICAvLyBXYWl0IGZvciB0aGUgZGF0YSB0byBiZSByZWFkeS4KICAgIGxldCBmaWxlRGF0YSA9IHlpZWxkIHsKICAgICAgcHJvbWlzZTogZmlsZURhdGFQcm9taXNlLAogICAgICByZXNwb25zZTogewogICAgICAgIGFjdGlvbjogJ2NvbnRpbnVlJywKICAgICAgfQogICAgfTsKCiAgICAvLyBVc2UgYSBjaHVua2VkIHNlbmRpbmcgdG8gYXZvaWQgbWVzc2FnZSBzaXplIGxpbWl0cy4gU2VlIGIvNjIxMTU2NjAuCiAgICBsZXQgcG9zaXRpb24gPSAwOwogICAgZG8gewogICAgICBjb25zdCBsZW5ndGggPSBNYXRoLm1pbihmaWxlRGF0YS5ieXRlTGVuZ3RoIC0gcG9zaXRpb24sIE1BWF9QQVlMT0FEX1NJWkUpOwogICAgICBjb25zdCBjaHVuayA9IG5ldyBVaW50OEFycmF5KGZpbGVEYXRhLCBwb3NpdGlvbiwgbGVuZ3RoKTsKICAgICAgcG9zaXRpb24gKz0gbGVuZ3RoOwoKICAgICAgY29uc3QgYmFzZTY0ID0gYnRvYShTdHJpbmcuZnJvbUNoYXJDb2RlLmFwcGx5KG51bGwsIGNodW5rKSk7CiAgICAgIHlpZWxkIHsKICAgICAgICByZXNwb25zZTogewogICAgICAgICAgYWN0aW9uOiAnYXBwZW5kJywKICAgICAgICAgIGZpbGU6IGZpbGUubmFtZSwKICAgICAgICAgIGRhdGE6IGJhc2U2NCwKICAgICAgICB9LAogICAgICB9OwoKICAgICAgbGV0IHBlcmNlbnREb25lID0gZmlsZURhdGEuYnl0ZUxlbmd0aCA9PT0gMCA/CiAgICAgICAgICAxMDAgOgogICAgICAgICAgTWF0aC5yb3VuZCgocG9zaXRpb24gLyBmaWxlRGF0YS5ieXRlTGVuZ3RoKSAqIDEwMCk7CiAgICAgIHBlcmNlbnQudGV4dENvbnRlbnQgPSBgJHtwZXJjZW50RG9uZX0lIGRvbmVgOwoKICAgIH0gd2hpbGUgKHBvc2l0aW9uIDwgZmlsZURhdGEuYnl0ZUxlbmd0aCk7CiAgfQoKICAvLyBBbGwgZG9uZS4KICB5aWVsZCB7CiAgICByZXNwb25zZTogewogICAgICBhY3Rpb246ICdjb21wbGV0ZScsCiAgICB9CiAgfTsKfQoKc2NvcGUuZ29vZ2xlID0gc2NvcGUuZ29vZ2xlIHx8IHt9OwpzY29wZS5nb29nbGUuY29sYWIgPSBzY29wZS5nb29nbGUuY29sYWIgfHwge307CnNjb3BlLmdvb2dsZS5jb2xhYi5fZmlsZXMgPSB7CiAgX3VwbG9hZEZpbGVzLAogIF91cGxvYWRGaWxlc0NvbnRpbnVlLAp9Owp9KShzZWxmKTsK",
 "headers": [
 [
 "content-type",
 "application/javascript"
]
],
 "ok": true,
 "status": 200,
 "status_text": ""
 }
 }
 },
 "id": "H9Y3kZ3adZrc",
 "outputId": "669d72ba-611f-4c2b-a5d4-cbc9e1a356a9"
 },
 "outputs": [],
 "source": [
 "from google.colab import files\n",
 "\n",
 "uploaded = files.upload()"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {
 "id": "lYQqwbLGc35d"
 },
 "outputs": [],
 "source": [
 "#!wget https://raw.githubusercontent.com/lorenlugosch/pytorch_HMM/master/data/train/training.txt\n",
 "import re\n",
 " \n",
 "#filename = \"training_edited-2.txt\"\n",
 "filename = \"text.txt\"\n",
 "\n",
 "with open(filename, \"r\") as f:\n",
 " lines = f.readlines() # each line of lines will have one word\n",
 "lines2 = [x.lower() for x in lines]\n",
 "lines3 = [re.sub(\"[^a-z]\", \" \", y) for y in lines2]\n",
 "\n",
 "temp = []\n",
 "for x in lines3:\n",
 " if not not x.split():\n",
 " temp.append(x.split())\n",
 " \n",
 "temp2 = []\n",
 "for i in range(0,len(temp)):\n",
 " for j in range(0,len(temp[i])):\n",
 " temp2.append(temp[i][j])\n",
 " \n",
 "#temp3 = [x+'\\n' for x in temp2]\n",
 "#temp2.sort()\n",
 "\n",
 "#alphabet = list(Counter((\"\".join(lines))).keys())\n",
 "#alphabet = list(Counter((\"\".join(temp2))).keys())\n",
 "temp = string.ascii_lowercase\n",
 "alphabet = [x for x in temp]\n",
 "\n",
 "#train_lines, valid_lines = train_test_split(lines, test_size=0.1, random_state=42)\n",
 "train_lines, valid_lines = train_test_split(temp2, test_size=0.1, random_state=42)\n",
 "train_dataset = TextDataset(train_lines)\n",
 "valid_dataset = TextDataset(valid_lines)\n",
 "\n",
 "M = len(alphabet)"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {
 "id": "mUu3CEAQc35e"
 },
 "outputs": [],
 "source": [
 "from tqdm import tqdm # for displaying progress bar\n",
 "\n",
 "class Trainer:\n",
 " def __init__(self, model, lr):\n",
 " self.model = model\n",
 " self.lr = lr\n",
 " self.optimizer = torch.optim.Adam(model.parameters(), lr=self.lr, weight_decay=0.00001)\n",
 " \n",
 " def train(self, dataset):\n",
 " train_loss = 0\n",
 " num_samples = 0\n",
 " self.model.train()\n",
 " print_interval = 50\n",
 " for idx, batch in enumerate(tqdm(dataset.loader)):\n",
 " x,T = batch\n",
 " batch_size = len(x)\n",
 " num_samples += batch_size\n",
 " log_probs = self.model(x,T)\n",
 " loss = -log_probs.mean()\n",
 " self.optimizer.zero_grad()\n",
 " loss.backward()\n",
 " self.optimizer.step()\n",
 " train_loss += loss.cpu().data.numpy().item() * batch_size\n",
 " if idx % print_interval == 0:\n",
 " print(\"loss:\", loss.item())\n",
 " for _ in range(5):\n",
 " sampled_x, sampled_z = self.model.sample()\n",
 " print(decode(sampled_x))\n",
 " print(sampled_z)\n",
 " train_loss /= num_samples\n",
 " return train_loss\n",
 "\n",
 " def test(self, dataset):\n",
 " test_loss = 0\n",
 " num_samples = 0\n",
 " self.model.eval()\n",
 " print_interval = 50\n",
 " for idx, batch in enumerate(dataset.loader):\n",
 " x,T = batch\n",
 " batch_size = len(x)\n",
 " num_samples += batch_size\n",
 " log_probs = self.model(x,T)\n",
 " loss = -log_probs.mean()\n",
 " test_loss += loss.cpu().data.numpy().item() * batch_size\n",
 " if idx % print_interval == 0:\n",
 " print(\"loss:\", loss.item())\n",
 " sampled_x, sampled_z = self.model.sample()\n",
 " print(decode(sampled_x))\n",
 " print(sampled_z)\n",
 " test_loss /= num_samples\n",
 " return test_loss"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {
 "colab": {
 "base_uri": "https://localhost:8080/"
 },
 "id": "JJ1FXwkJc35e",
 "outputId": "09d69eb7-a63e-4076-ce25-1c1374d6f03c"
 },
 "outputs": [],
 "source": [
 "# Initialize model\n",
 "model = HMM(N=2, M=M)\n",
 "\n",
 "# Train the model\n",
 "num_epochs = 10\n",
 "trainer = Trainer(model, lr=0.01)\n",
 "#trainer = Trainer(model, lr=0.1)\n",
 "\n",
 "for epoch in range(num_epochs):\n",
 " print(\"========= Epoch %d of %d =========\" % (epoch+1, num_epochs))\n",
 " train_loss = trainer.train(train_dataset)\n",
 " valid_loss = trainer.test(valid_dataset)\n",
 " \n",
 " #train_loss = trainer.train(train_lines)\n",
 " #valid_loss = trainer.test(valid_lines)\n",
 "\n",
 " print(\"========= Results: epoch %d of %d =========\" % (epoch+1, num_epochs))\n",
 " print(\"train loss: %.2f| valid loss: %.2f\\n\" % (train_loss, valid_loss))"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {
 "id": "ONaQOqBBc35f"
 },
 "source": [
 "## Emission Probability for State 0 ##"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {
 "colab": {
 "base_uri": "https://localhost:8080/",
 "height": 265
 },
 "id": "dHDpJKvtc35f",
 "outputId": "920d7b36-5315-4b47-e4ab-170e742a1261"
 },
 "outputs": [],
 "source": [
 "import matplotlib.pyplot as plt\n",
 "emission = torch.nn.functional.softmax(model.emission_model.unnormalized_emission_matrix, dim=1)\n",
 "temp0 = [emission[0][x].item() for x in range(0,26)] \n",
 "i = list(range(1,27))\n",
 "plt.bar(i, temp0,tick_label=alphabet)\n",
 "plt.show()"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {
 "id": "sWBXCx4hc35g"
 },
 "source": [
 "## Emission Probability for State 1 ##"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {
 "colab": {
 "base_uri": "https://localhost:8080/",
 "height": 265
 },
 "id": "LPdlklKYc35g",
 "outputId": "49fdef68-2cb6-4543-b6dd-2ed3dc38d9e9"
 },
 "outputs": [],
 "source": [
 "import matplotlib.pyplot as plt\n",
 "emission = torch.nn.functional.softmax(model.emission_model.unnormalized_emission_matrix, dim=1)\n",
 "temp1 = [emission[1][x].item() for x in range(0,26)] \n",
 "plt.bar(i,temp1,tick_label = alphabet)\n",
 "plt.show()"
]
 }
],
 "metadata": {
 "colab": {
 "collapsed_sections": [],
 "name": "HMM_Assignment.ipynb",
 "provenance": []
 },
 "kernelspec": {
 "display_name": "Python 3",
 "language": "python",
 "name": "python3"
 },
 "language_info": {
 "codemirror_mode": {
 "name": "ipython",
 "version": 3
 },
 "file_extension": ".py",
 "mimetype": "text/x-python",
 "name": "python",
 "nbconvert_exporter": "python",
 "pygments_lexer": "ipython3",
 "version": "3.9.5"
 }
 },
 "nbformat": 4,
 "nbformat_minor": 1
}

{
 "cells": [
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {
 "colab": {
 "base_uri": "https://localhost:8080/",
 "height": 307
 },
 "id": "hSU6VQyqd5iK",
 "outputId": "af9e4bff-568b-4fa4-bb7b-5e9a82adc218"
 },
 "outputs": [],
 "source": [
 "!pip install torch==1.4.0"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {
 "id": "0bWLdlhrc35P"
 },
 "outputs": [],
 "source": [
 "import torch"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {
 "id": "PsPKXXTcc35S"
 },
 "outputs": [],
 "source": [
 "import numpy as np\n",
 "\n",
 "class HMM(torch.nn.Module):\n",
 " \"\"\"\n",
 " Hidden Markov Model with discrete observations.\n",
 " \"\"\"\n",
 " def __init__(self, M, N):\n",
 " super(HMM, self).__init__()\n",
 " self.M = M # number of possible observations\n",
 " self.N = N # number of states\n",
 "\n",
 " # A\n",
 " self.transition_model = TransitionModel(self.N)\n",
 "\n",
 " # b(x_t)\n",
 " self.emission_model = EmissionModel(self.N,self.M)\n",
 "\n",
 " # pi\n",
 " self.unnormalized_state_priors = torch.nn.Parameter(torch.randn(self.N))\n",
 "\n",
 " # use the GPU\n",
 " self.is_cuda = torch.cuda.is_available()\n",
 " if self.is_cuda: self.cuda()\n",
 "\n",
 "class TransitionModel(torch.nn.Module):\n",
 " def __init__(self, N):\n",
 " super(TransitionModel, self).__init__()\n",
 " self.N = N\n",
 " self.unnormalized_transition_matrix = torch.nn.Parameter(torch.randn(N,N))\n",
 "\n",
 "class EmissionModel(torch.nn.Module):\n",
 " def __init__(self, N, M):\n",
 " super(EmissionModel, self).__init__()\n",
 " self.N = N\n",
 " self.M = M\n",
 " self.unnormalized_emission_matrix = torch.nn.Parameter(torch.randn(N,M))"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {
 "id": "cV2OB6Ihc35U"
 },
 "outputs": [],
 "source": [
 "def sample(self, T=3):\n",
 " state_priors = torch.nn.functional.softmax(self.unnormalized_state_priors, dim=0)\n",
 " transition_matrix = torch.nn.functional.softmax(self.transition_model.unnormalized_transition_matrix, dim=0)\n",
 " emission_matrix = torch.nn.functional.softmax(self.emission_model.unnormalized_emission_matrix, dim=1)\n",
 "\n",
 " # sample initial state\n",
 " z_t = torch.distributions.categorical.Categorical(state_priors).sample().item()\n",
 " z = []; x = []\n",
 " z.append(z_t)\n",
 " for t in range(0,T):\n",
 " # sample emission\n",
 " x_t = torch.distributions.categorical.Categorical(emission_matrix[z_t]).sample().item()\n",
 " x.append(x_t)\n",
 "\n",
 " # sample transition\n",
 " z_t = torch.distributions.categorical.Categorical(transition_matrix[:,z_t]).sample().item()\n",
 " if t < T-1: z.append(z_t)\n",
 "\n",
 " return x, z\n",
 "\n",
 "# Add the sampling method to our HMM class\n",
 "HMM.sample = sample"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {
 "colab": {
 "base_uri": "https://localhost:8080/"
 },
 "id": "bFOmIsyBc35U",
 "outputId": "25d05631-0703-4de8-c6fc-ef4907fd61f4"
 },
 "outputs": [],
 "source": [
 "import string\n",
 "#alphabet = string.ascii_lowercase\n",
 "alphabet = 'abc'\n",
 "\n",
 "def encode(s):\n",
 " \"\"\"\n",
 " Convert a string into a list of integers\n",
 " \"\"\"\n",
 " x = [alphabet.index(ss) for ss in s]\n",
 " return x\n",
 "\n",
 "def decode(x):\n",
 " \"\"\"\n",
 " Convert list of ints to string\n",
 " \"\"\"\n",
 " s = \"\".join([alphabet[xx] for xx in x])\n",
 " return s\n",
 "\n",
 "# Initialize the model\n",
 "model = HMM(M=len(alphabet), N=2) \n",
 "\n",
 "# Hard-wiring the parameters (the input is in exp(x) >> need to log p)!\n",
 "# Let state 0 = consonant, state 1 = vowel\n",
 "model.unnormalized_state_priors.data[0] = np.log(0.6) \n",
 "model.unnormalized_state_priors.data[1] = np.log(0.4)\n",
 "print(\"State priors:\", torch.nn.functional.softmax(model.unnormalized_state_priors, dim=0))\n",
 "\n",
 "model.emission_model.unnormalized_emission_matrix.data[0, 0] = np.log(0.1)\n",
 "model.emission_model.unnormalized_emission_matrix.data[0, 1] = np.log(0.4)\n",
 "model.emission_model.unnormalized_emission_matrix.data[0, 2] = np.log(0.5)\n",
 "model.emission_model.unnormalized_emission_matrix.data[1, 0] = np.log(0.7)\n",
 "model.emission_model.unnormalized_emission_matrix.data[1, 1] = np.log(0.2)\n",
 "model.emission_model.unnormalized_emission_matrix.data[1, 2] = np.log(0.1)\n",
 "\n",
 "#Transposed !!!\n",
 "model.transition_model.unnormalized_transition_matrix.data[0,0] = np.log(0.7)\n",
 "model.transition_model.unnormalized_transition_matrix.data[0,1] = np.log(0.4)\n",
 "model.transition_model.unnormalized_transition_matrix.data[1,0] = np.log(0.3)\n",
 "model.transition_model.unnormalized_transition_matrix.data[1,1] = np.log(0.6)\n",
 "\n",
 "# In state 0, only allow consonants; in state 1, only allow vowels\n",
 "#vowel_indices = torch.tensor([alphabet.index(letter) for letter in \"aeiou\"])\n",
 "#consonant_indices = torch.tensor([alphabet.index(letter) for letter in \"bcdfghjklmnpqrstvwxyz\"])\n",
 "#model.emission_model.unnormalized_emission_matrix[0, vowel_indices] = -np.inf\n",
 "#model.emission_model.unnormalized_emission_matrix[1, consonant_indices] = -np.inf \n",
 "print(\"Emission matrix:\", torch.nn.functional.softmax(model.emission_model.unnormalized_emission_matrix, dim=1))\n",
 "\n",
 "# Only allow vowel -> consonant and consonant -> vowel\n",
 "#model.transition_model.unnormalized_transition_matrix[0,0] = -np.inf # consonant -> consonant\n",
 "#model.transition_model.unnormalized_transition_matrix[0,1] = 0. # vowel -> consonant\n",
 "#model.transition_model.unnormalized_transition_matrix[1,0] = 0. # consonant -> vowel\n",
 "#model.transition_model.unnormalized_transition_matrix[1,1] = -np.inf # vowel -> vowel\n",
 "print(\"Transition matrix:\", torch.nn.functional.softmax(model.transition_model.unnormalized_transition_matrix, dim=0))\n"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {
 "id": "8xXtZrtoc35X"
 },
 "outputs": [],
 "source": [
 "def HMM_forward(self, x, T):\n",
 " \"\"\"\n",
 " x : IntTensor of shape (batch size, T_max)\n",
 " T : IntTensor of shape (batch size)\n",
 "\n",
 " Compute log p(x) for each example in the batch.\n",
 " T = length of each example\n",
 " \"\"\"\n",
 " if self.is_cuda:\n",
 " \tx = x.cuda()\n",
 " \tT = T.cuda()\n",
 "\n",
 " batch_size = x.shape[0]; T_max = x.shape[1]\n",
 " log_state_priors = torch.nn.functional.log_softmax(self.unnormalized_state_priors, dim=0)\n",
 " log_alpha = torch.zeros(batch_size, T_max, self.N)\n",
 " if self.is_cuda: log_alpha = log_alpha.cuda()\n",
 "\n",
 " log_alpha[:, 0, :] = self.emission_model(x[:,0]) + log_state_priors\n",
 " for t in range(1, T_max):\n",
 " log_alpha[:, t, :] = self.emission_model(x[:,t]) + self.transition_model(log_alpha[:, t-1, :])\n",
 "\n",
 " # Select the sum for the final timestep (each x may have different length).\n",
 " log_sums = log_alpha.logsumexp(dim=2)\n",
 " log_probs = torch.gather(log_sums, 1, T.view(-1,1) - 1)\n",
 " return log_probs\n",
 "\n",
 "def emission_model_forward(self, x_t):\n",
 " log_emission_matrix = torch.nn.functional.log_softmax(self.unnormalized_emission_matrix, dim=1)\n",
 " out = log_emission_matrix[:, x_t].transpose(0,1)\n",
 " return out\n",
 "\n",
 "def transition_model_forward(self, log_alpha):\n",
 " \"\"\"\n",
 " log_alpha : Tensor of shape (batch size, N)\n",
 " Multiply previous timestep's alphas by transition matrix (in log domain)\n",
 " \"\"\"\n",
 " log_transition_matrix = torch.nn.functional.log_softmax(self.unnormalized_transition_matrix, dim=0)\n",
 "\n",
 " # Matrix multiplication in the log domain\n",
 " out = log_domain_matmul(log_transition_matrix, log_alpha.transpose(0,1)).transpose(0,1)\n",
 " return out\n",
 "\n",
 "def log_domain_matmul(log_A, log_B):\n",
 "\t\"\"\"\n",
 "\tlog_A : m x n\n",
 "\tlog_B : n x p\n",
 "\toutput : m x p matrix\n",
 "\n",
 "\tNormally, a matrix multiplication\n",
 "\tcomputes out_{i,j} = sum_k A_{i,k} x B_{k,j}\n",
 "\n",
 "\tA log domain matrix multiplication\n",
 "\tcomputes out_{i,j} = logsumexp_k log_A_{i,k} + log_B_{k,j}\n",
 "\t\"\"\"\n",
 "\tm = log_A.shape[0]\n",
 "\tn = log_A.shape[1]\n",
 "\tp = log_B.shape[1]\n",
 "\n",
 "\tlog_A_expanded = torch.stack([log_A] * p, dim=2)\n",
 "\tlog_B_expanded = torch.stack([log_B] * m, dim=0)\n",
 "\n",
 "\telementwise_sum = log_A_expanded + log_B_expanded\n",
 "\tout = torch.logsumexp(elementwise_sum, dim=1)\n",
 "\n",
 "\treturn out\n",
 "\n",
 "TransitionModel.forward = transition_model_forward\n",
 "EmissionModel.forward = emission_model_forward\n",
 "HMM.forward = HMM_forward"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {
 "id": "LdqXEQlTc35c"
 },
 "outputs": [],
 "source": [
 "import torch.utils.data\n",
 "from collections import Counter\n",
 "from sklearn.model_selection import train_test_split\n",
 "\n",
 "class TextDataset(torch.utils.data.Dataset):\n",
 " def __init__(self, lines):\n",
 " self.lines = lines # list of strings\n",
 " collate = Collate() # function for generating a minibatch from strings\n",
 " \n",
 " self.loader = torch.utils.data.DataLoader(self, batch_size=1024, num_workers=1, shuffle=True, collate_fn=collate)\n",
 " #self.loader = torch.utils.data.DataLoader(self, batch_size=2048, num_workers=1, shuffle=True, collate_fn=collate)\n",
 "\n",
 " def __len__(self):\n",
 " return len(self.lines)\n",
 "\n",
 " def __getitem__(self, idx):\n",
 " line = self.lines[idx].lstrip(\" \").rstrip(\"\\n\").rstrip(\" \").rstrip(\"\\n\")\n",
 " return line\n",
 "\n",
 "class Collate:\n",
 " def __init__(self):\n",
 " pass\n",
 "\n",
 " def __call__(self, batch):\n",
 " \"\"\"\n",
 " Returns a minibatch of strings, padded to have the same length.\n",
 " \"\"\"\n",
 " x = []\n",
 " batch_size = len(batch)\n",
 " for index in range(batch_size):\n",
 " x_ = batch[index]\n",
 "\n",
 " # convert letters to integers\n",
 " x.append(encode(x_))\n",
 "\n",
 " # pad all sequences with 0 to have same length\n",
 " x_lengths = [len(x_) for x_ in x]\n",
 " T = max(x_lengths)\n",
 " for index in range(batch_size):\n",
 " x[index] += [0] * (T - len(x[index]))\n",
 " x[index] = torch.tensor(x[index])\n",
 "\n",
 " # stack into single tensor\n",
 " x = torch.stack(x)\n",
 " x_lengths = torch.tensor(x_lengths)\n",
 " return (x,x_lengths)"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {
 "colab": {
 "base_uri": "https://localhost:8080/",
 "height": 72,
 "resources": {
 "http://localhost:8080/nbextensions/google.colab/files.js": {
 "data": "Ly8gQ29weXJpZ2h0IDIwMTcgR29vZ2xlIExMQwovLwovLyBMaWNlbnNlZCB1bmRlciB0aGUgQXBhY2hlIExpY2Vuc2UsIFZlcnNpb24gMi4wICh0aGUgIkxpY2Vuc2UiKTsKLy8geW91IG1heSBub3QgdXNlIHRoaXMgZmlsZSBleGNlcHQgaW4gY29tcGxpYW5jZSB3aXRoIHRoZSBMaWNlbnNlLgovLyBZb3UgbWF5IG9idGFpbiBhIGNvcHkgb2YgdGhlIExpY2Vuc2UgYXQKLy8KLy8gICAgICBodHRwOi8vd3d3LmFwYWNoZS5vcmcvbGljZW5zZXMvTElDRU5TRS0yLjAKLy8KLy8gVW5sZXNzIHJlcXVpcmVkIGJ5IGFwcGxpY2FibGUgbGF3IG9yIGFncmVlZCB0byBpbiB3cml0aW5nLCBzb2Z0d2FyZQovLyBkaXN0cmlidXRlZCB1bmRlciB0aGUgTGljZW5zZSBpcyBkaXN0cmlidXRlZCBvbiBhbiAiQVMgSVMiIEJBU0lTLAovLyBXSVRIT1VUIFdBUlJBTlRJRVMgT1IgQ09ORElUSU9OUyBPRiBBTlkgS0lORCwgZWl0aGVyIGV4cHJlc3Mgb3IgaW1wbGllZC4KLy8gU2VlIHRoZSBMaWNlbnNlIGZvciB0aGUgc3BlY2lmaWMgbGFuZ3VhZ2UgZ292ZXJuaW5nIHBlcm1pc3Npb25zIGFuZAovLyBsaW1pdGF0aW9ucyB1bmRlciB0aGUgTGljZW5zZS4KCi8qKgogKiBAZmlsZW92ZXJ2aWV3IEhlbHBlcnMgZm9yIGdvb2dsZS5jb2xhYiBQeXRob24gbW9kdWxlLgogKi8KKGZ1bmN0aW9uKHNjb3BlKSB7CmZ1bmN0aW9uIHNwYW4odGV4dCwgc3R5bGVBdHRyaWJ1dGVzID0ge30pIHsKICBjb25zdCBlbGVtZW50ID0gZG9jdW1lbnQuY3JlYXRlRWxlbWVudCgnc3BhbicpOwogIGVsZW1lbnQudGV4dENvbnRlbnQgPSB0ZXh0OwogIGZvciAoY29uc3Qga2V5IG9mIE9iamVjdC5rZXlzKHN0eWxlQXR0cmlidXRlcykpIHsKICAgIGVsZW1lbnQuc3R5bGVba2V5XSA9IHN0eWxlQXR0cmlidXRlc1trZXldOwogIH0KICByZXR1cm4gZWxlbWVudDsKfQoKLy8gTWF4IG51bWJlciBvZiBieXRlcyB3aGljaCB3aWxsIGJlIHVwbG9hZGVkIGF0IGEgdGltZS4KY29uc3QgTUFYX1BBWUxPQURfU0laRSA9IDEwMCAqIDEwMjQ7CgpmdW5jdGlvbiBfdXBsb2FkRmlsZXMoaW5wdXRJZCwgb3V0cHV0SWQpIHsKICBjb25zdCBzdGVwcyA9IHVwbG9hZEZpbGVzU3RlcChpbnB1dElkLCBvdXRwdXRJZCk7CiAgY29uc3Qgb3V0cHV0RWxlbWVudCA9IGRvY3VtZW50LmdldEVsZW1lbnRCeUlkKG91dHB1dElkKTsKICAvLyBDYWNoZSBzdGVwcyBvbiB0aGUgb3V0cHV0RWxlbWVudCB0byBtYWtlIGl0IGF2YWlsYWJsZSBmb3IgdGhlIG5leHQgY2FsbAogIC8vIHRvIHVwbG9hZEZpbGVzQ29udGludWUgZnJvbSBQeXRob24uCiAgb3V0cHV0RWxlbWVudC5zdGVwcyA9IHN0ZXBzOwoKICByZXR1cm4gX3VwbG9hZEZpbGVzQ29udGludWUob3V0cHV0SWQpOwp9CgovLyBUaGlzIGlzIHJvdWdobHkgYW4gYXN5bmMgZ2VuZXJhdG9yIChub3Qgc3VwcG9ydGVkIGluIHRoZSBicm93c2VyIHlldCksCi8vIHdoZXJlIHRoZXJlIGFyZSBtdWx0aXBsZSBhc3luY2hyb25vdXMgc3RlcHMgYW5kIHRoZSBQeXRob24gc2lkZSBpcyBnb2luZwovLyB0byBwb2xsIGZvciBjb21wbGV0aW9uIG9mIGVhY2ggc3RlcC4KLy8gVGhpcyB1c2VzIGEgUHJvbWlzZSB0byBibG9jayB0aGUgcHl0aG9uIHNpZGUgb24gY29tcGxldGlvbiBvZiBlYWNoIHN0ZXAsCi8vIHRoZW4gcGFzc2VzIHRoZSByZXN1bHQgb2YgdGhlIHByZXZpb3VzIHN0ZXAgYXMgdGhlIGlucHV0IHRvIHRoZSBuZXh0IHN0ZXAuCmZ1bmN0aW9uIF91cGxvYWRGaWxlc0NvbnRpbnVlKG91dHB1dElkKSB7CiAgY29uc3Qgb3V0cHV0RWxlbWVudCA9IGRvY3VtZW50LmdldEVsZW1lbnRCeUlkKG91dHB1dElkKTsKICBjb25zdCBzdGVwcyA9IG91dHB1dEVsZW1lbnQuc3RlcHM7CgogIGNvbnN0IG5leHQgPSBzdGVwcy5uZXh0KG91dHB1dEVsZW1lbnQubGFzdFByb21pc2VWYWx1ZSk7CiAgcmV0dXJuIFByb21pc2UucmVzb2x2ZShuZXh0LnZhbHVlLnByb21pc2UpLnRoZW4oKHZhbHVlKSA9PiB7CiAgICAvLyBDYWNoZSB0aGUgbGFzdCBwcm9taXNlIHZhbHVlIHRvIG1ha2UgaXQgYXZhaWxhYmxlIHRvIHRoZSBuZXh0CiAgICAvLyBzdGVwIG9mIHRoZSBnZW5lcmF0b3IuCiAgICBvdXRwdXRFbGVtZW50Lmxhc3RQcm9taXNlVmFsdWUgPSB2YWx1ZTsKICAgIHJldHVybiBuZXh0LnZhbHVlLnJlc3BvbnNlOwogIH0pOwp9CgovKioKICogR2VuZXJhdG9yIGZ1bmN0aW9uIHdoaWNoIGlzIGNhbGxlZCBiZXR3ZWVuIGVhY2ggYXN5bmMgc3RlcCBvZiB0aGUgdXBsb2FkCiAqIHByb2Nlc3MuCiAqIEBwYXJhbSB7c3RyaW5nfSBpbnB1dElkIEVsZW1lbnQgSUQgb2YgdGhlIGlucHV0IGZpbGUgcGlja2VyIGVsZW1lbnQuCiAqIEBwYXJhbSB7c3RyaW5nfSBvdXRwdXRJZCBFbGVtZW50IElEIG9mIHRoZSBvdXRwdXQgZGlzcGxheS4KICogQHJldHVybiB7IUl0ZXJhYmxlPCFPYmplY3Q+fSBJdGVyYWJsZSBvZiBuZXh0IHN0ZXBzLgogKi8KZnVuY3Rpb24qIHVwbG9hZEZpbGVzU3RlcChpbnB1dElkLCBvdXRwdXRJZCkgewogIGNvbnN0IGlucHV0RWxlbWVudCA9IGRvY3VtZW50LmdldEVsZW1lbnRCeUlkKGlucHV0SWQpOwogIGlucHV0RWxlbWVudC5kaXNhYmxlZCA9IGZhbHNlOwoKICBjb25zdCBvdXRwdXRFbGVtZW50ID0gZG9jdW1lbnQuZ2V0RWxlbWVudEJ5SWQob3V0cHV0SWQpOwogIG91dHB1dEVsZW1lbnQuaW5uZXJIVE1MID0gJyc7CgogIGNvbnN0IHBpY2tlZFByb21pc2UgPSBuZXcgUHJvbWlzZSgocmVzb2x2ZSkgPT4gewogICAgaW5wdXRFbGVtZW50LmFkZEV2ZW50TGlzdGVuZXIoJ2NoYW5nZScsIChlKSA9PiB7CiAgICAgIHJlc29sdmUoZS50YXJnZXQuZmlsZXMpOwogICAgfSk7CiAgfSk7CgogIGNvbnN0IGNhbmNlbCA9IGRvY3VtZW50LmNyZWF0ZUVsZW1lbnQoJ2J1dHRvbicpOwogIGlucHV0RWxlbWVudC5wYXJlbnRFbGVtZW50LmFwcGVuZENoaWxkKGNhbmNlbCk7CiAgY2FuY2VsLnRleHRDb250ZW50ID0gJ0NhbmNlbCB1cGxvYWQnOwogIGNvbnN0IGNhbmNlbFByb21pc2UgPSBuZXcgUHJvbWlzZSgocmVzb2x2ZSkgPT4gewogICAgY2FuY2VsLm9uY2xpY2sgPSAoKSA9PiB7CiAgICAgIHJlc29sdmUobnVsbCk7CiAgICB9OwogIH0pOwoKICAvLyBXYWl0IGZvciB0aGUgdXNlciB0byBwaWNrIHRoZSBmaWxlcy4KICBjb25zdCBmaWxlcyA9IHlpZWxkIHsKICAgIHByb21pc2U6IFByb21pc2UucmFjZShbcGlja2VkUHJvbWlzZSwgY2FuY2VsUHJvbWlzZV0pLAogICAgcmVzcG9uc2U6IHsKICAgICAgYWN0aW9uOiAnc3RhcnRpbmcnLAogICAgfQogIH07CgogIGNhbmNlbC5yZW1vdmUoKTsKCiAgLy8gRGlzYWJsZSB0aGUgaW5wdXQgZWxlbWVudCBzaW5jZSBmdXJ0aGVyIHBpY2tzIGFyZSBub3QgYWxsb3dlZC4KICBpbnB1dEVsZW1lbnQuZGlzYWJsZWQgPSB0cnVlOwoKICBpZiAoIWZpbGVzKSB7CiAgICByZXR1cm4gewogICAgICByZXNwb25zZTogewogICAgICAgIGFjdGlvbjogJ2NvbXBsZXRlJywKICAgICAgfQogICAgfTsKICB9CgogIGZvciAoY29uc3QgZmlsZSBvZiBmaWxlcykgewogICAgY29uc3QgbGkgPSBkb2N1bWVudC5jcmVhdGVFbGVtZW50KCdsaScpOwogICAgbGkuYXBwZW5kKHNwYW4oZmlsZS5uYW1lLCB7Zm9udFdlaWdodDogJ2JvbGQnfSkpOwogICAgbGkuYXBwZW5kKHNwYW4oCiAgICAgICAgYCgke2ZpbGUudHlwZSB8fCAnbi9hJ30pIC0gJHtmaWxlLnNpemV9IGJ5dGVzLCBgICsKICAgICAgICBgbGFzdCBtb2RpZmllZDogJHsKICAgICAgICAgICAgZmlsZS5sYXN0TW9kaWZpZWREYXRlID8gZmlsZS5sYXN0TW9kaWZpZWREYXRlLnRvTG9jYWxlRGF0ZVN0cmluZygpIDoKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgJ24vYSd9IC0gYCkpOwogICAgY29uc3QgcGVyY2VudCA9IHNwYW4oJzAlIGRvbmUnKTsKICAgIGxpLmFwcGVuZENoaWxkKHBlcmNlbnQpOwoKICAgIG91dHB1dEVsZW1lbnQuYXBwZW5kQ2hpbGQobGkpOwoKICAgIGNvbnN0IGZpbGVEYXRhUHJvbWlzZSA9IG5ldyBQcm9taXNlKChyZXNvbHZlKSA9PiB7CiAgICAgIGNvbnN0IHJlYWRlciA9IG5ldyBGaWxlUmVhZGVyKCk7CiAgICAgIHJlYWRlci5vbmxvYWQgPSAoZSkgPT4gewogICAgICAgIHJlc29sdmUoZS50YXJnZXQucmVzdWx0KTsKICAgICAgfTsKICAgICAgcmVhZGVyLnJlYWRBc0FycmF5QnVmZmVyKGZpbGUpOwogICAgfSk7CiAgICAvLyBXYWl0IGZvciB0aGUgZGF0YSB0byBiZSByZWFkeS4KICAgIGxldCBmaWxlRGF0YSA9IHlpZWxkIHsKICAgICAgcHJvbWlzZTogZmlsZURhdGFQcm9taXNlLAogICAgICByZXNwb25zZTogewogICAgICAgIGFjdGlvbjogJ2NvbnRpbnVlJywKICAgICAgfQogICAgfTsKCiAgICAvLyBVc2UgYSBjaHVua2VkIHNlbmRpbmcgdG8gYXZvaWQgbWVzc2FnZSBzaXplIGxpbWl0cy4gU2VlIGIvNjIxMTU2NjAuCiAgICBsZXQgcG9zaXRpb24gPSAwOwogICAgZG8gewogICAgICBjb25zdCBsZW5ndGggPSBNYXRoLm1pbihmaWxlRGF0YS5ieXRlTGVuZ3RoIC0gcG9zaXRpb24sIE1BWF9QQVlMT0FEX1NJWkUpOwogICAgICBjb25zdCBjaHVuayA9IG5ldyBVaW50OEFycmF5KGZpbGVEYXRhLCBwb3NpdGlvbiwgbGVuZ3RoKTsKICAgICAgcG9zaXRpb24gKz0gbGVuZ3RoOwoKICAgICAgY29uc3QgYmFzZTY0ID0gYnRvYShTdHJpbmcuZnJvbUNoYXJDb2RlLmFwcGx5KG51bGwsIGNodW5rKSk7CiAgICAgIHlpZWxkIHsKICAgICAgICByZXNwb25zZTogewogICAgICAgICAgYWN0aW9uOiAnYXBwZW5kJywKICAgICAgICAgIGZpbGU6IGZpbGUubmFtZSwKICAgICAgICAgIGRhdGE6IGJhc2U2NCwKICAgICAgICB9LAogICAgICB9OwoKICAgICAgbGV0IHBlcmNlbnREb25lID0gZmlsZURhdGEuYnl0ZUxlbmd0aCA9PT0gMCA/CiAgICAgICAgICAxMDAgOgogICAgICAgICAgTWF0aC5yb3VuZCgocG9zaXRpb24gLyBmaWxlRGF0YS5ieXRlTGVuZ3RoKSAqIDEwMCk7CiAgICAgIHBlcmNlbnQudGV4dENvbnRlbnQgPSBgJHtwZXJjZW50RG9uZX0lIGRvbmVgOwoKICAgIH0gd2hpbGUgKHBvc2l0aW9uIDwgZmlsZURhdGEuYnl0ZUxlbmd0aCk7CiAgfQoKICAvLyBBbGwgZG9uZS4KICB5aWVsZCB7CiAgICByZXNwb25zZTogewogICAgICBhY3Rpb246ICdjb21wbGV0ZScsCiAgICB9CiAgfTsKfQoKc2NvcGUuZ29vZ2xlID0gc2NvcGUuZ29vZ2xlIHx8IHt9OwpzY29wZS5nb29nbGUuY29sYWIgPSBzY29wZS5nb29nbGUuY29sYWIgfHwge307CnNjb3BlLmdvb2dsZS5jb2xhYi5fZmlsZXMgPSB7CiAgX3VwbG9hZEZpbGVzLAogIF91cGxvYWRGaWxlc0NvbnRpbnVlLAp9Owp9KShzZWxmKTsK",
 "headers": [
 [
 "content-type",
 "application/javascript"
]
],
 "ok": true,
 "status": 200,
 "status_text": ""
 }
 }
 },
 "id": "H9Y3kZ3adZrc",
 "outputId": "669d72ba-611f-4c2b-a5d4-cbc9e1a356a9"
 },
 "outputs": [],
 "source": [
 "from google.colab import files\n",
 "\n",
 "uploaded = files.upload()"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {
 "id": "lYQqwbLGc35d"
 },
 "outputs": [],
 "source": [
 "#!wget https://raw.githubusercontent.com/lorenlugosch/pytorch_HMM/master/data/train/training.txt\n",
 "import re\n",
 " \n",
 "#filename = \"training_edited-2.txt\"\n",
 "filename = \"text.txt\"\n",
 "\n",
 "with open(filename, \"r\") as f:\n",
 " lines = f.readlines() # each line of lines will have one word\n",
 "lines2 = [x.lower() for x in lines]\n",
 "lines3 = [re.sub(\"[^a-z]\", \" \", y) for y in lines2]\n",
 "\n",
 "temp = []\n",
 "for x in lines3:\n",
 " if not not x.split():\n",
 " temp.append(x.split())\n",
 " \n",
 "temp2 = []\n",
 "for i in range(0,len(temp)):\n",
 " for j in range(0,len(temp[i])):\n",
 " temp2.append(temp[i][j])\n",
 " \n",
 "#temp3 = [x+'\\n' for x in temp2]\n",
 "#temp2.sort()\n",
 "\n",
 "#alphabet = list(Counter((\"\".join(lines))).keys())\n",
 "#alphabet = list(Counter((\"\".join(temp2))).keys())\n",
 "temp = string.ascii_lowercase\n",
 "alphabet = [x for x in temp]\n",
 "\n",
 "#train_lines, valid_lines = train_test_split(lines, test_size=0.1, random_state=42)\n",
 "train_lines, valid_lines = train_test_split(temp2, test_size=0.1, random_state=42)\n",
 "train_dataset = TextDataset(train_lines)\n",
 "valid_dataset = TextDataset(valid_lines)\n",
 "\n",
 "M = len(alphabet)"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {
 "id": "mUu3CEAQc35e"
 },
 "outputs": [],
 "source": [
 "from tqdm import tqdm # for displaying progress bar\n",
 "\n",
 "class Trainer:\n",
 " def __init__(self, model, lr):\n",
 " self.model = model\n",
 " self.lr = lr\n",
 " self.optimizer = torch.optim.Adam(model.parameters(), lr=self.lr, weight_decay=0.00001)\n",
 " \n",
 " def train(self, dataset):\n",
 " train_loss = 0\n",
 " num_samples = 0\n",
 " self.model.train()\n",
 " print_interval = 50\n",
 " for idx, batch in enumerate(tqdm(dataset.loader)):\n",
 " x,T = batch\n",
 " batch_size = len(x)\n",
 " num_samples += batch_size\n",
 " log_probs = self.model(x,T)\n",
 " loss = -log_probs.mean()\n",
 " self.optimizer.zero_grad()\n",
 " loss.backward()\n",
 " self.optimizer.step()\n",
 " train_loss += loss.cpu().data.numpy().item() * batch_size\n",
 " if idx % print_interval == 0:\n",
 " print(\"loss:\", loss.item())\n",
 " for _ in range(5):\n",
 " sampled_x, sampled_z = self.model.sample()\n",
 " print(decode(sampled_x))\n",
 " print(sampled_z)\n",
 " train_loss /= num_samples\n",
 " return train_loss\n",
 "\n",
 " def test(self, dataset):\n",
 " test_loss = 0\n",
 " num_samples = 0\n",
 " self.model.eval()\n",
 " print_interval = 50\n",
 " for idx, batch in enumerate(dataset.loader):\n",
 " x,T = batch\n",
 " batch_size = len(x)\n",
 " num_samples += batch_size\n",
 " log_probs = self.model(x,T)\n",
 " loss = -log_probs.mean()\n",
 " test_loss += loss.cpu().data.numpy().item() * batch_size\n",
 " if idx % print_interval == 0:\n",
 " print(\"loss:\", loss.item())\n",
 " sampled_x, sampled_z = self.model.sample()\n",
 " print(decode(sampled_x))\n",
 " print(sampled_z)\n",
 " test_loss /= num_samples\n",
 " return test_loss"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {
 "colab": {
 "base_uri": "https://localhost:8080/"
 },
 "id": "JJ1FXwkJc35e",
 "outputId": "09d69eb7-a63e-4076-ce25-1c1374d6f03c"
 },
 "outputs": [],
 "source": [
 "# Initialize model\n",
 "model = HMM(N=2, M=M)\n",
 "\n",
 "# Train the model\n",
 "num_epochs = 10\n",
 "trainer = Trainer(model, lr=0.01)\n",
 "#trainer = Trainer(model, lr=0.1)\n",
 "\n",
 "for epoch in range(num_epochs):\n",
 " print(\"========= Epoch %d of %d =========\" % (epoch+1, num_epochs))\n",
 " train_loss = trainer.train(train_dataset)\n",
 " valid_loss = trainer.test(valid_dataset)\n",
 " \n",
 " #train_loss = trainer.train(train_lines)\n",
 " #valid_loss = trainer.test(valid_lines)\n",
 "\n",
 " print(\"========= Results: epoch %d of %d =========\" % (epoch+1, num_epochs))\n",
 " print(\"train loss: %.2f| valid loss: %.2f\\n\" % (train_loss, valid_loss))"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {
 "id": "ONaQOqBBc35f"
 },
 "source": [
 "## Emission Probability for State 0 ##"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {
 "colab": {
 "base_uri": "https://localhost:8080/",
 "height": 265
 },
 "id": "dHDpJKvtc35f",
 "outputId": "920d7b36-5315-4b47-e4ab-170e742a1261"
 },
 "outputs": [],
 "source": [
 "import matplotlib.pyplot as plt\n",
 "emission = torch.nn.functional.softmax(model.emission_model.unnormalized_emission_matrix, dim=1)\n",
 "temp0 = [emission[0][x].item() for x in range(0,26)] \n",
 "i = list(range(1,27))\n",
 "plt.bar(i, temp0,tick_label=alphabet)\n",
 "plt.show()"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {
 "id": "sWBXCx4hc35g"
 },
 "source": [
 "## Emission Probability for State 1 ##"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {
 "colab": {
 "base_uri": "https://localhost:8080/",
 "height": 265
 },
 "id": "LPdlklKYc35g",
 "outputId": "49fdef68-2cb6-4543-b6dd-2ed3dc38d9e9"
 },
 "outputs": [],
 "source": [
 "import matplotlib.pyplot as plt\n",
 "emission = torch.nn.functional.softmax(model.emission_model.unnormalized_emission_matrix, dim=1)\n",
 "temp1 = [emission[1][x].item() for x in range(0,26)] \n",
 "plt.bar(i,temp1,tick_label = alphabet)\n",
 "plt.show()"
]
 }
],
 "metadata": {
 "colab": {
 "collapsed_sections": [],
 "name": "HMM_Assignment.ipynb",
 "provenance": []
 },
 "kernelspec": {
 "display_name": "Python 3",
 "language": "python",
 "name": "python3"
 },
 "language_info": {
 "codemirror_mode": {
 "name": "ipython",
 "version": 3
 },
 "file_extension": ".py",
 "mimetype": "text/x-python",
 "name": "python",
 "nbconvert_exporter": "python",
 "pygments_lexer": "ipython3",
 "version": "3.9.5"
 }
 },
 "nbformat": 4,
 "nbformat_minor": 1
}

{
 "cells": [
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "# pip install tensorflow==1.15.0"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "import os\n",
 "print(os.getcwd())"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "# -*- coding: utf-8 -*-\n",
 "\"\"\"\n",
 "Created on Tue Dec 3 23:19:18 2019\n",
 "\n",
 "@author: owgs (ghimsiong.ow@gmail.com)\n",
 "\n",
 "\"\"\"\n",
 "\n",
 "import numpy as np\n",
 "#import tensorflow as tf\n",
 "import tensorflow.compat.v1 as tf\n",
 "tf.disable_v2_behavior()\n",
 "\n",
 "import pandas as pd\n",
 "import re, string, time\n",
 "import matplotlib.pyplot as plt\n",
 " \n",
 "class HMM(object):\n",
 " '''\n",
 " This HMM class comprises functions from two sources:\n",
 " A) Nishant Shukla - Machine Learning with TensorFlow (2018, Manning Publications)\n",
 " o used for implementing the forward algorithm\n",
 " o used for implementing the Viterbi algorithm\n",
 " B) Marvin Bertin - https://github.com/MarvinBertin/HiddenMarkovModel_TensorFlow\n",
 " o used for implementing the Baum-Welch algorithm\n",
 " ''' \n",
 " \n",
 " def __init__(self, initial_prob, trans_prob, obs_prob,\n",
 " epsilon=0.1, maxStep=5):\n",
 " \n",
 " T = trans_prob # No need to convert as required format is the same.\n",
 " E = obs_prob.T # To convert the format from Source (A) to Source (B)\n",
 " T0 = initial_prob.T[0] # to convert to a row vector \n",
 " \n",
 " with tf.name_scope('Inital_Parameters'):\n",
 " with tf.name_scope('Scalar_constants'):\n",
 " # Max number of iteration\n",
 " self.maxStep = maxStep\n",
 "\n",
 " # convergence criteria\n",
 " self.epsilon = epsilon \n",
 "\n",
 " # Number of possible states\n",
 " self.S = T.shape[0]\n",
 "\n",
 " # Number of possible observations\n",
 " self.O = E.shape[0]\n",
 " \n",
 " self.prob_state_1 = []\n",
 "\n",
 " with tf.name_scope('Model_Parameters'):\n",
 " # Emission probability\n",
 " self.E = tf.Variable(E, dtype=tf.float64, name='emission_matrix')\n",
 "\n",
 " # Transition matrix\n",
 " self.T = tf.Variable(T, dtype=tf.float64, name='transition_matrix')\n",
 "\n",
 " # Initial state vector\n",
 " self.T0 = tf.Variable(tf.constant(T0, dtype=tf.float64, name='inital_state_vector'))\n",
 "\t\t\n",
 " \n",
 "\n",
 " def initialize_forw_back_variables(self, shape):\n",
 " self.forward = tf.Variable(tf.zeros(shape, dtype=tf.float64), name='forward')\n",
 " self.backward = tf.Variable(tf.zeros(shape, dtype=tf.float64), name='backward')\n",
 " self.posterior = tf.Variable(tf.zeros(shape, dtype=tf.float64), name='posteriror')\n",
 "\n",
 "\n",
 " def _forward(self, obs_prob_list):\n",
 " \n",
 " with tf.name_scope('init_scaling_factor'):\n",
 " self.scale = tf.Variable(tf.zeros([self.N], tf.float64)) #scale factors\n",
 " \n",
 " with tf.name_scope('forward_first_step'):\n",
 " # initialize with state starting priors\n",
 " init_prob = tf.multiply(self.T0, tf.squeeze(obs_prob_list[0]))\n",
 "\n",
 " # scaling factor at t=0\n",
 " #owgs - self.scale = tf.scatter_update(self.scale, 0, 1.0 / tf.reduce_sum(init_prob))\n",
 " self.scale = tf.scatter_update(self.scale, 0, 1.0 / tf.reduce_sum(init_prob))\n",
 " \n",
 " # scaled belief at t=0\n",
 " #owgs self.forward = tf.scatter_update(self.forward, 0, self.scale[0] * init_prob)\n",
 " self.forward = tf.scatter_update(self.forward, 0, self.scale[0] * init_prob)\n",
 " \n",
 " # propagate belief\n",
 " for step, obs_prob in enumerate(obs_prob_list[1:]):\n",
 " with tf.name_scope('time_step-%s' %step):\n",
 " # previous state probability\n",
 " prev_prob = tf.expand_dims(self.forward[step, :], 0)\n",
 " # transition prior\n",
 " prior_prob = tf.matmul(prev_prob, self.T)\n",
 " # forward belief propagation\n",
 " forward_score = tf.multiply(prior_prob, tf.squeeze(obs_prob))\n",
 "\n",
 " forward_prob = tf.squeeze(forward_score)\n",
 " # scaling factor\n",
 " #owgs - self.scale = tf.scatter_update(self.scale, step+1, 1.0 / tf.reduce_sum(forward_prob))\n",
 " self.scale = tf.scatter_update(self.scale, step+1, 1.0 / tf.reduce_sum(forward_prob))\n",
 " \n",
 " # Update forward matrix\n",
 " #owgs - self.forward = tf.scatter_update(self.forward, step+1, self.scale[step+1] * forward_prob)\n",
 " self.forward = tf.scatter_update(self.forward, step+1, self.scale[step+1] * forward_prob)\n",
 " \n",
 "\n",
 " def _backward(self, obs_prob_list):\n",
 " with tf.name_scope('backward_last_step'):\n",
 " # initialize with state ending priors\n",
 " #owgs self.backward = tf.scatter_update(self.backward, 0, self.scale[self.N-1] * tf.ones([self.S], dtype=tf.float64)) \n",
 " self.backward = tf.scatter_update(self.backward, 0, self.scale[self.N-1] * tf.ones([self.S], dtype=tf.float64)) \n",
 "\n",
 " # propagate belief\n",
 " for step, obs_prob in enumerate(obs_prob_list[:-1]):\n",
 " with tf.name_scope('time_step-%s' %step):\n",
 " # next state probability\n",
 " next_prob = tf.expand_dims(self.backward[step, :], 1)\n",
 " # observation emission probabilities\n",
 " obs_prob_d = tf.linalg.tensor_diag(tf.squeeze(obs_prob)) #owgs - tf.diag(tf.squeeze(obs_prob))\n",
 " # transition prior\n",
 " prior_prob = tf.matmul(self.T, obs_prob_d)\n",
 " # backward belief propagation\n",
 " backward_score = tf.matmul(prior_prob, next_prob)\n",
 "\n",
 " backward_prob = tf.squeeze(backward_score)\n",
 "\n",
 " # Update backward matrix\n",
 " #owgs self.backward = tf.scatter_update(self.backward, step+1, self.scale[self.N-2-step] * backward_prob)\n",
 " self.backward = tf.scatter_update(self.backward, step+1, self.scale[self.N-2-step] * backward_prob)\n",
 " \n",
 " self.backward = tf.assign(self.backward, tf.reverse(self.backward, [True, False])) #owgs- tf.assign(self.backward, tf.reverse(self.backward, [True, False]))\n",
 "\n",
 " \n",
 " def _posterior(self):\n",
 " # posterior score\n",
 " self.posterior = tf.multiply(self.forward, self.backward)\n",
 "\n",
 " marginal = tf.reduce_sum(self.posterior, 1)\n",
 " self.posterior = self.posterior / tf.expand_dims(marginal, 1) \n",
 " \n",
 " \n",
 " def re_estimate_emission(self, x):\n",
 " \n",
 " states_marginal = tf.reduce_sum(self.gamma, 0)\n",
 " seq_one_hot = tf.one_hot(tf.cast(x, tf.int64), self.O, 1, 0)\n",
 " emission_score = tf.matmul(tf.cast(seq_one_hot, tf.float64), self.gamma, transpose_a=True)\n",
 " return emission_score / states_marginal\n",
 " \n",
 " def re_estimate_transition(self, x):\n",
 " \n",
 " with tf.name_scope('Init_3D_tensor'):\n",
 " self.M = tf.Variable(tf.zeros((self.N-1, self.S, self.S), tf.float64))\n",
 " \n",
 " with tf.name_scope('3D_tensor_transition'):\n",
 " for t in range(self.N - 1):\n",
 " with tf.name_scope('time_step-%s' %t):\n",
 " tmp_0 = tf.matmul(tf.expand_dims(self.forward[t, :], 0), self.T)\n",
 " tmp_1 = tf.multiply(tmp_0, tf.expand_dims(tf.gather(self.E, x[t+1]), 0))\n",
 " denom = tf.squeeze(tf.matmul(tmp_1, tf.expand_dims(self.backward[t+1, :], 1)))\n",
 "\n",
 " with tf.name_scope('Init_new_transition'):\n",
 " trans_re_estimate = tf.Variable(tf.zeros((self.S, self.S), tf.float64))\n",
 " \n",
 " for i in range(self.S):\n",
 " with tf.name_scope('State-%s' %i):\n",
 " numer = self.forward[t, i] * self.T[i, :] * tf.gather(self.E, x[t+1]) * self.backward[t+1, :]\n",
 " #owgs trans_re_estimate = tf.scatter_update(trans_re_estimate, i, numer / denom)\n",
 " trans_re_estimate = tf.scatter_update(trans_re_estimate, i, numer / denom)\n",
 " \n",
 " #self.M = tf.scatter_update(self.M, t, trans_re_estimate)\n",
 " self.M = tf.scatter_update(self.M, t, trans_re_estimate)\n",
 "\n",
 " with tf.name_scope('Smooth_gamma'):\n",
 " self.gamma = tf.squeeze(tf.reduce_sum(self.M, 2))\n",
 " T_new = tf.reduce_sum(self.M, 0) / tf.expand_dims(tf.reduce_sum(self.gamma, 0), 1)\n",
 " \n",
 " with tf.name_scope('New_init_states_prob'):\n",
 " T0_new = self.gamma[0,:]\n",
 "\n",
 " with tf.name_scope('Append_gamma_final_time_step'):\n",
 " prod = tf.expand_dims(tf.multiply(self.forward[self.N-1, :], self.backward[self.N-1, :]), 0)\n",
 " s= prod/ tf.reduce_sum(prod)\n",
 " self.gamma = tf.concat([self.gamma, s], 0)\n",
 " \n",
 " self.prob_state_1.append(self.gamma[:, 0])\n",
 " \n",
 " return T0_new, T_new\n",
 " \n",
 " def check_convergence(self, new_T0, new_transition, new_emission):\n",
 " \n",
 " delta_T0 = tf.reduce_max(tf.abs(self.T0 - new_T0)) < self.epsilon\n",
 " delta_T = tf.reduce_max(tf.abs(self.T - new_transition)) < self.epsilon\n",
 " delta_E = tf.reduce_max(tf.abs(self.E - new_emission)) < self.epsilon\n",
 "\n",
 " return tf.logical_and(tf.logical_and(delta_T0, delta_T), delta_E)\n",
 " \n",
 " def forward_backward(self, obs_prob_seq):\n",
 " obs_prob_list_for = tf.split(obs_prob_seq, self.N, 0)\n",
 " \n",
 " with tf.name_scope('forward_belief_propagation'):\n",
 " # forward belief propagation\n",
 " self._forward(obs_prob_list_for)\n",
 "\n",
 " obs_prob_seq_rev = tf.reverse(obs_prob_seq, [True, False])\n",
 " obs_prob_list_back = tf.split(obs_prob_seq_rev, self.N, 0)\n",
 "\n",
 " with tf.name_scope('backward_belief_propagation'):\n",
 " # backward belief propagation\n",
 " self._backward(obs_prob_list_back)\n",
 " \n",
 " def expectation_maximization_step(self, x):\n",
 " \n",
 " # probability of emission sequence\n",
 " obs_prob_seq = tf.gather(self.E, x)\n",
 "\n",
 " with tf.name_scope('Forward_Backward'):\n",
 " self.forward_backward(obs_prob_seq)\n",
 "\n",
 " with tf.name_scope('Re_estimate_transition'):\n",
 " new_T0, new_transition = self.re_estimate_transition(x)\n",
 " \n",
 " with tf.name_scope('Re_estimate_emission'):\n",
 " new_emission = self.re_estimate_emission(x)\n",
 "\n",
 " with tf.name_scope('Check_Convergence'):\n",
 " converged = self.check_convergence(new_T0, new_transition, new_emission)\n",
 "\n",
 " with tf.name_scope('Update_parameters'):\n",
 " self.T0 = tf.assign(self.T0, new_T0)\n",
 " self.E = tf.assign(self.E, new_emission)\n",
 " self.T = tf.assign(self.T, new_transition)\n",
 " #self.count = tf.assign_add(self.count, 1)\n",
 " \n",
 " with tf.name_scope('histogram_summary'):\n",
 " _ = tf.summary.histogram(self.T0.name, self.T0) #owgs - tf.summary.histogram(self.T0.name, self.T0)\n",
 " _ = tf.summary.histogram(self.T.name, self.T) #owgs - tf.summary.histogram(self.T.name, self.T)\n",
 " _ = tf.summary.histogram(self.E.name, self.E) #owgs - tf.summary.histogram(self.E.name, self.E)\n",
 " return converged\n",
 " \n",
 " \n",
 " def Baum_Welch_EM(self, obs_seq):\n",
 " \n",
 " with tf.name_scope('Input_Observed_Sequence'):\n",
 " # length of observed sequence\n",
 " self.N = len(obs_seq)\n",
 "\n",
 " # shape of Variables\n",
 " shape = [self.N, self.S]\n",
 "\n",
 " # observed sequence\n",
 " x = tf.constant(obs_seq, dtype=tf.int32, name='observation_sequence')\n",
 " \n",
 " with tf.name_scope('Initialize_variables'):\n",
 " # initialize variables\n",
 " self.initialize_forw_back_variables(shape)\n",
 " \n",
 " converged = tf.cast(False, tf.bool)\n",
 " #self.count = tf.Variable(tf.constant(0))\n",
 " \n",
 " with tf.name_scope('Train_Baum_Welch'):\n",
 " for i in range(self.maxStep):\n",
 " \n",
 " with tf.name_scope('EM_step-%s' %i):\n",
 " converged = self.expectation_maximization_step(x)\n",
 " \n",
 " return converged\n",
 " \n",
 "def run_Baum_Welch_EM(sess, hmm, obs_seq, summary=False, monitor_state_1=False):\n",
 " \n",
 " converged = hmm.Baum_Welch_EM(obs_seq)\n",
 " \n",
 " # Build the summary operation based on the TF collection of Summaries.\n",
 " summary_op = tf.summary.merge_all() #owgs - tf.summary.merge_all()\n",
 " \n",
 " # Run \n",
 " sess.run(tf.global_variables_initializer())\n",
 " trans0, transition, emission, c = sess.run([hmm.T0, hmm.T, hmm.E, converged])\n",
 "\n",
 " return trans0, transition, emission, c \n"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "from google.colab import files\n",
 "fp = files.upload()"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "# Initalise the session\n",
 "sess = tf.Session()\n",
 " \n",
 "# Load and prepare the data\n",
 "fp = \"text.txt\"\n",
 "s = open(fp).read()[:10000]\n",
 "s2 = re.sub(\"[^a-z]\", \"_\", s.lower())\n",
 " \n",
 "# Prepare the dataframe of data\n",
 "alpha_states = [\"_\"] + list(string.ascii_lowercase)\n",
 "mapper = dict(zip(alpha_states, range(len(alpha_states))))\n",
 "V = pd.Series(list(s2)).map(mapper).values\n",
 "data = pd.DataFrame({\"Visible\": V, \"Alphabet\": list(s2)})\n",
 "data[\"Hidden\"] = data[\"Alphabet\"].map({\"a\": 1, \"e\": 1, \"i\": 1, \"o\": 1, \"u\": 1}).replace(np.nan, 0).astype(int)\n",
 "data = data[[\"Alphabet\", \"Hidden\", \"Visible\"]] "
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "# Define the initial distributions\n",
 "initial_distribution = np.array([[0.6],[0.4]])\n",
 "initial_T = np.array([[0.6177499,0.3822501], [0.8826096,0.1173904]])\n",
 "initial_E = np.array([\n",
 " [0.037192964,0.009902360,0.032833978,0.044882670,0.057331132,\n",
 " 0.052143890,0.013665015,0.036187536,0.072293323,0.044793972,0.060008388,\n",
 " 0.004256270,0.024770706,0.053520546,0.014232306,0.046981769,0.053733382,\n",
 " 0.066355203,0.046817817,0.006912535,0.016201697,0.013425499,0.024694447,\n",
 " 0.064902148,0.046170421,0.033586536,0.022203489],\n",
 " [0.0389931197,0.0697183142,0.0239154174,0.0512772632,0.0404732634,0.0059687348,\n",
 " 0.0211687193,0.0625229746,0.0039632091,0.0567828864,0.0468108656,0.0168355418,\n",
 " 0.0627882213,0.0286478204,0.0389215263,0.0064318198,0.0001698078,0.0493758725,\n",
 " 0.0652709152,0.0069580806,0.0093043072,0.0028807932,0.0521827110,0.0608822385,\n",
 " 0.0645417465,0.0555249876,0.0576888424]\n",
 "])"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "num_chars = 100\n",
 "maxStep = 2\n",
 "\n",
 "# Start logs\n",
 "print (\"Start time: %s\" % time.asctime())\n",
 "start_time = time.perf_counter()\n",
 " \n",
 "# Initialise the model\n",
 "hmm = HMM(initial_distribution, initial_T, initial_E,epsilon=0.1, maxStep=maxStep)\n",
 " \n",
 "# Run the baum welch algorithm\n",
 "trans0, transition, emission, c = run_Baum_Welch_EM(\n",
 " sess, hmm,\n",
 " data[\"Visible\"].values[:num_chars], summary=False, monitor_state_1=True) \n",
 " \n",
 "# End logs\n",
 "print (\"End time: %s\" % time.asctime())\n",
 "end_time = time.perf_counter()\n",
 "print (\"Time taken: %s hrs\" % ((end_time-start_time)/60/60))\n",
 " \n",
 "print(\"Transition Matrix: \")\n",
 "print(transition)\n",
 "print()\n",
 "print(\"Emission Matrix: \")\n",
 "print(emission)\n",
 "print()\n",
 "print(\"Reached Convergence: \")\n",
 "print(c) \n",
 " \n",
 "# plot\n",
 "plt.bar(alpha_states, emission[:,0])"
]
 }
],
 "metadata": {
 "kernelspec": {
 "display_name": "Python 3 (ipykernel)",
 "language": "python",
 "name": "python3"
 },
 "language_info": {
 "codemirror_mode": {
 "name": "ipython",
 "version": 3
 },
 "file_extension": ".py",
 "mimetype": "text/x-python",
 "name": "python",
 "nbconvert_exporter": "python",
 "pygments_lexer": "ipython3",
 "version": "3.11.2"
 }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}

{
 "cells": [
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {
 "colab": {
 "base_uri": "https://localhost:8080/",
 "height": 307
 },
 "id": "hSU6VQyqd5iK",
 "outputId": "af9e4bff-568b-4fa4-bb7b-5e9a82adc218"
 },
 "outputs": [],
 "source": [
 "!pip install torch==1.4.0"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {
 "id": "0bWLdlhrc35P"
 },
 "outputs": [],
 "source": [
 "import torch"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {
 "id": "PsPKXXTcc35S"
 },
 "outputs": [],
 "source": [
 "import numpy as np\n",
 "\n",
 "class HMM(torch.nn.Module):\n",
 " \"\"\"\n",
 " Hidden Markov Model with discrete observations.\n",
 " \"\"\"\n",
 " def __init__(self, M, N):\n",
 " super(HMM, self).__init__()\n",
 " self.M = M # number of possible observations\n",
 " self.N = N # number of states\n",
 "\n",
 " # A\n",
 " self.transition_model = TransitionModel(self.N)\n",
 "\n",
 " # b(x_t)\n",
 " self.emission_model = EmissionModel(self.N,self.M)\n",
 "\n",
 " # pi\n",
 " self.unnormalized_state_priors = torch.nn.Parameter(torch.randn(self.N))\n",
 "\n",
 " # use the GPU\n",
 " self.is_cuda = torch.cuda.is_available()\n",
 " if self.is_cuda: self.cuda()\n",
 "\n",
 "class TransitionModel(torch.nn.Module):\n",
 " def __init__(self, N):\n",
 " super(TransitionModel, self).__init__()\n",
 " self.N = N\n",
 " self.unnormalized_transition_matrix = torch.nn.Parameter(torch.randn(N,N))\n",
 "\n",
 "class EmissionModel(torch.nn.Module):\n",
 " def __init__(self, N, M):\n",
 " super(EmissionModel, self).__init__()\n",
 " self.N = N\n",
 " self.M = M\n",
 " self.unnormalized_emission_matrix = torch.nn.Parameter(torch.randn(N,M))"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {
 "id": "cV2OB6Ihc35U"
 },
 "outputs": [],
 "source": [
 "def sample(self, T=3):\n",
 " state_priors = torch.nn.functional.softmax(self.unnormalized_state_priors, dim=0)\n",
 " transition_matrix = torch.nn.functional.softmax(self.transition_model.unnormalized_transition_matrix, dim=0)\n",
 " emission_matrix = torch.nn.functional.softmax(self.emission_model.unnormalized_emission_matrix, dim=1)\n",
 "\n",
 " # sample initial state\n",
 " z_t = torch.distributions.categorical.Categorical(state_priors).sample().item()\n",
 " z = []; x = []\n",
 " z.append(z_t)\n",
 " for t in range(0,T):\n",
 " # sample emission\n",
 " x_t = torch.distributions.categorical.Categorical(emission_matrix[z_t]).sample().item()\n",
 " x.append(x_t)\n",
 "\n",
 " # sample transition\n",
 " z_t = torch.distributions.categorical.Categorical(transition_matrix[:,z_t]).sample().item()\n",
 " if t < T-1: z.append(z_t)\n",
 "\n",
 " return x, z\n",
 "\n",
 "# Add the sampling method to our HMM class\n",
 "HMM.sample = sample"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {
 "colab": {
 "base_uri": "https://localhost:8080/"
 },
 "id": "bFOmIsyBc35U",
 "outputId": "25d05631-0703-4de8-c6fc-ef4907fd61f4"
 },
 "outputs": [],
 "source": [
 "import string\n",
 "#alphabet = string.ascii_lowercase\n",
 "alphabet = 'abc'\n",
 "\n",
 "def encode(s):\n",
 " \"\"\"\n",
 " Convert a string into a list of integers\n",
 " \"\"\"\n",
 " x = [alphabet.index(ss) for ss in s]\n",
 " return x\n",
 "\n",
 "def decode(x):\n",
 " \"\"\"\n",
 " Convert list of ints to string\n",
 " \"\"\"\n",
 " s = \"\".join([alphabet[xx] for xx in x])\n",
 " return s\n",
 "\n",
 "# Initialize the model\n",
 "model = HMM(M=len(alphabet), N=2) \n",
 "\n",
 "# Hard-wiring the parameters (the input is in exp(x) >> need to log p)!\n",
 "# Let state 0 = consonant, state 1 = vowel\n",
 "model.unnormalized_state_priors.data[0] = np.log(0.6) \n",
 "model.unnormalized_state_priors.data[1] = np.log(0.4)\n",
 "print(\"State priors:\", torch.nn.functional.softmax(model.unnormalized_state_priors, dim=0))\n",
 "\n",
 "model.emission_model.unnormalized_emission_matrix.data[0, 0] = np.log(0.1)\n",
 "model.emission_model.unnormalized_emission_matrix.data[0, 1] = np.log(0.4)\n",
 "model.emission_model.unnormalized_emission_matrix.data[0, 2] = np.log(0.5)\n",
 "model.emission_model.unnormalized_emission_matrix.data[1, 0] = np.log(0.7)\n",
 "model.emission_model.unnormalized_emission_matrix.data[1, 1] = np.log(0.2)\n",
 "model.emission_model.unnormalized_emission_matrix.data[1, 2] = np.log(0.1)\n",
 "\n",
 "#Transposed !!!\n",
 "model.transition_model.unnormalized_transition_matrix.data[0,0] = np.log(0.7)\n",
 "model.transition_model.unnormalized_transition_matrix.data[0,1] = np.log(0.4)\n",
 "model.transition_model.unnormalized_transition_matrix.data[1,0] = np.log(0.3)\n",
 "model.transition_model.unnormalized_transition_matrix.data[1,1] = np.log(0.6)\n",
 "\n",
 "# In state 0, only allow consonants; in state 1, only allow vowels\n",
 "#vowel_indices = torch.tensor([alphabet.index(letter) for letter in \"aeiou\"])\n",
 "#consonant_indices = torch.tensor([alphabet.index(letter) for letter in \"bcdfghjklmnpqrstvwxyz\"])\n",
 "#model.emission_model.unnormalized_emission_matrix[0, vowel_indices] = -np.inf\n",
 "#model.emission_model.unnormalized_emission_matrix[1, consonant_indices] = -np.inf \n",
 "print(\"Emission matrix:\", torch.nn.functional.softmax(model.emission_model.unnormalized_emission_matrix, dim=1))\n",
 "\n",
 "# Only allow vowel -> consonant and consonant -> vowel\n",
 "#model.transition_model.unnormalized_transition_matrix[0,0] = -np.inf # consonant -> consonant\n",
 "#model.transition_model.unnormalized_transition_matrix[0,1] = 0. # vowel -> consonant\n",
 "#model.transition_model.unnormalized_transition_matrix[1,0] = 0. # consonant -> vowel\n",
 "#model.transition_model.unnormalized_transition_matrix[1,1] = -np.inf # vowel -> vowel\n",
 "print(\"Transition matrix:\", torch.nn.functional.softmax(model.transition_model.unnormalized_transition_matrix, dim=0))\n"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {
 "id": "8xXtZrtoc35X"
 },
 "outputs": [],
 "source": [
 "def HMM_forward(self, x, T):\n",
 " \"\"\"\n",
 " x : IntTensor of shape (batch size, T_max)\n",
 " T : IntTensor of shape (batch size)\n",
 "\n",
 " Compute log p(x) for each example in the batch.\n",
 " T = length of each example\n",
 " \"\"\"\n",
 " if self.is_cuda:\n",
 " \tx = x.cuda()\n",
 " \tT = T.cuda()\n",
 "\n",
 " batch_size = x.shape[0]; T_max = x.shape[1]\n",
 " log_state_priors = torch.nn.functional.log_softmax(self.unnormalized_state_priors, dim=0)\n",
 " log_alpha = torch.zeros(batch_size, T_max, self.N)\n",
 " if self.is_cuda: log_alpha = log_alpha.cuda()\n",
 "\n",
 " log_alpha[:, 0, :] = self.emission_model(x[:,0]) + log_state_priors\n",
 " for t in range(1, T_max):\n",
 " log_alpha[:, t, :] = self.emission_model(x[:,t]) + self.transition_model(log_alpha[:, t-1, :])\n",
 "\n",
 " # Select the sum for the final timestep (each x may have different length).\n",
 " log_sums = log_alpha.logsumexp(dim=2)\n",
 " log_probs = torch.gather(log_sums, 1, T.view(-1,1) - 1)\n",
 " return log_probs\n",
 "\n",
 "def emission_model_forward(self, x_t):\n",
 " log_emission_matrix = torch.nn.functional.log_softmax(self.unnormalized_emission_matrix, dim=1)\n",
 " out = log_emission_matrix[:, x_t].transpose(0,1)\n",
 " return out\n",
 "\n",
 "def transition_model_forward(self, log_alpha):\n",
 " \"\"\"\n",
 " log_alpha : Tensor of shape (batch size, N)\n",
 " Multiply previous timestep's alphas by transition matrix (in log domain)\n",
 " \"\"\"\n",
 " log_transition_matrix = torch.nn.functional.log_softmax(self.unnormalized_transition_matrix, dim=0)\n",
 "\n",
 " # Matrix multiplication in the log domain\n",
 " out = log_domain_matmul(log_transition_matrix, log_alpha.transpose(0,1)).transpose(0,1)\n",
 " return out\n",
 "\n",
 "def log_domain_matmul(log_A, log_B):\n",
 "\t\"\"\"\n",
 "\tlog_A : m x n\n",
 "\tlog_B : n x p\n",
 "\toutput : m x p matrix\n",
 "\n",
 "\tNormally, a matrix multiplication\n",
 "\tcomputes out_{i,j} = sum_k A_{i,k} x B_{k,j}\n",
 "\n",
 "\tA log domain matrix multiplication\n",
 "\tcomputes out_{i,j} = logsumexp_k log_A_{i,k} + log_B_{k,j}\n",
 "\t\"\"\"\n",
 "\tm = log_A.shape[0]\n",
 "\tn = log_A.shape[1]\n",
 "\tp = log_B.shape[1]\n",
 "\n",
 "\tlog_A_expanded = torch.stack([log_A] * p, dim=2)\n",
 "\tlog_B_expanded = torch.stack([log_B] * m, dim=0)\n",
 "\n",
 "\telementwise_sum = log_A_expanded + log_B_expanded\n",
 "\tout = torch.logsumexp(elementwise_sum, dim=1)\n",
 "\n",
 "\treturn out\n",
 "\n",
 "TransitionModel.forward = transition_model_forward\n",
 "EmissionModel.forward = emission_model_forward\n",
 "HMM.forward = HMM_forward"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {
 "id": "LdqXEQlTc35c"
 },
 "outputs": [],
 "source": [
 "import torch.utils.data\n",
 "from collections import Counter\n",
 "from sklearn.model_selection import train_test_split\n",
 "\n",
 "class TextDataset(torch.utils.data.Dataset):\n",
 " def __init__(self, lines):\n",
 " self.lines = lines # list of strings\n",
 " collate = Collate() # function for generating a minibatch from strings\n",
 " \n",
 " self.loader = torch.utils.data.DataLoader(self, batch_size=1024, num_workers=1, shuffle=True, collate_fn=collate)\n",
 " #self.loader = torch.utils.data.DataLoader(self, batch_size=2048, num_workers=1, shuffle=True, collate_fn=collate)\n",
 "\n",
 " def __len__(self):\n",
 " return len(self.lines)\n",
 "\n",
 " def __getitem__(self, idx):\n",
 " line = self.lines[idx].lstrip(\" \").rstrip(\"\\n\").rstrip(\" \").rstrip(\"\\n\")\n",
 " return line\n",
 "\n",
 "class Collate:\n",
 " def __init__(self):\n",
 " pass\n",
 "\n",
 " def __call__(self, batch):\n",
 " \"\"\"\n",
 " Returns a minibatch of strings, padded to have the same length.\n",
 " \"\"\"\n",
 " x = []\n",
 " batch_size = len(batch)\n",
 " for index in range(batch_size):\n",
 " x_ = batch[index]\n",
 "\n",
 " # convert letters to integers\n",
 " x.append(encode(x_))\n",
 "\n",
 " # pad all sequences with 0 to have same length\n",
 " x_lengths = [len(x_) for x_ in x]\n",
 " T = max(x_lengths)\n",
 " for index in range(batch_size):\n",
 " x[index] += [0] * (T - len(x[index]))\n",
 " x[index] = torch.tensor(x[index])\n",
 "\n",
 " # stack into single tensor\n",
 " x = torch.stack(x)\n",
 " x_lengths = torch.tensor(x_lengths)\n",
 " return (x,x_lengths)"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {
 "colab": {
 "base_uri": "https://localhost:8080/",
 "height": 72,
 "resources": {
 "http://localhost:8080/nbextensions/google.colab/files.js": {
 "data": "Ly8gQ29weXJpZ2h0IDIwMTcgR29vZ2xlIExMQwovLwovLyBMaWNlbnNlZCB1bmRlciB0aGUgQXBhY2hlIExpY2Vuc2UsIFZlcnNpb24gMi4wICh0aGUgIkxpY2Vuc2UiKTsKLy8geW91IG1heSBub3QgdXNlIHRoaXMgZmlsZSBleGNlcHQgaW4gY29tcGxpYW5jZSB3aXRoIHRoZSBMaWNlbnNlLgovLyBZb3UgbWF5IG9idGFpbiBhIGNvcHkgb2YgdGhlIExpY2Vuc2UgYXQKLy8KLy8gICAgICBodHRwOi8vd3d3LmFwYWNoZS5vcmcvbGljZW5zZXMvTElDRU5TRS0yLjAKLy8KLy8gVW5sZXNzIHJlcXVpcmVkIGJ5IGFwcGxpY2FibGUgbGF3IG9yIGFncmVlZCB0byBpbiB3cml0aW5nLCBzb2Z0d2FyZQovLyBkaXN0cmlidXRlZCB1bmRlciB0aGUgTGljZW5zZSBpcyBkaXN0cmlidXRlZCBvbiBhbiAiQVMgSVMiIEJBU0lTLAovLyBXSVRIT1VUIFdBUlJBTlRJRVMgT1IgQ09ORElUSU9OUyBPRiBBTlkgS0lORCwgZWl0aGVyIGV4cHJlc3Mgb3IgaW1wbGllZC4KLy8gU2VlIHRoZSBMaWNlbnNlIGZvciB0aGUgc3BlY2lmaWMgbGFuZ3VhZ2UgZ292ZXJuaW5nIHBlcm1pc3Npb25zIGFuZAovLyBsaW1pdGF0aW9ucyB1bmRlciB0aGUgTGljZW5zZS4KCi8qKgogKiBAZmlsZW92ZXJ2aWV3IEhlbHBlcnMgZm9yIGdvb2dsZS5jb2xhYiBQeXRob24gbW9kdWxlLgogKi8KKGZ1bmN0aW9uKHNjb3BlKSB7CmZ1bmN0aW9uIHNwYW4odGV4dCwgc3R5bGVBdHRyaWJ1dGVzID0ge30pIHsKICBjb25zdCBlbGVtZW50ID0gZG9jdW1lbnQuY3JlYXRlRWxlbWVudCgnc3BhbicpOwogIGVsZW1lbnQudGV4dENvbnRlbnQgPSB0ZXh0OwogIGZvciAoY29uc3Qga2V5IG9mIE9iamVjdC5rZXlzKHN0eWxlQXR0cmlidXRlcykpIHsKICAgIGVsZW1lbnQuc3R5bGVba2V5XSA9IHN0eWxlQXR0cmlidXRlc1trZXldOwogIH0KICByZXR1cm4gZWxlbWVudDsKfQoKLy8gTWF4IG51bWJlciBvZiBieXRlcyB3aGljaCB3aWxsIGJlIHVwbG9hZGVkIGF0IGEgdGltZS4KY29uc3QgTUFYX1BBWUxPQURfU0laRSA9IDEwMCAqIDEwMjQ7CgpmdW5jdGlvbiBfdXBsb2FkRmlsZXMoaW5wdXRJZCwgb3V0cHV0SWQpIHsKICBjb25zdCBzdGVwcyA9IHVwbG9hZEZpbGVzU3RlcChpbnB1dElkLCBvdXRwdXRJZCk7CiAgY29uc3Qgb3V0cHV0RWxlbWVudCA9IGRvY3VtZW50LmdldEVsZW1lbnRCeUlkKG91dHB1dElkKTsKICAvLyBDYWNoZSBzdGVwcyBvbiB0aGUgb3V0cHV0RWxlbWVudCB0byBtYWtlIGl0IGF2YWlsYWJsZSBmb3IgdGhlIG5leHQgY2FsbAogIC8vIHRvIHVwbG9hZEZpbGVzQ29udGludWUgZnJvbSBQeXRob24uCiAgb3V0cHV0RWxlbWVudC5zdGVwcyA9IHN0ZXBzOwoKICByZXR1cm4gX3VwbG9hZEZpbGVzQ29udGludWUob3V0cHV0SWQpOwp9CgovLyBUaGlzIGlzIHJvdWdobHkgYW4gYXN5bmMgZ2VuZXJhdG9yIChub3Qgc3VwcG9ydGVkIGluIHRoZSBicm93c2VyIHlldCksCi8vIHdoZXJlIHRoZXJlIGFyZSBtdWx0aXBsZSBhc3luY2hyb25vdXMgc3RlcHMgYW5kIHRoZSBQeXRob24gc2lkZSBpcyBnb2luZwovLyB0byBwb2xsIGZvciBjb21wbGV0aW9uIG9mIGVhY2ggc3RlcC4KLy8gVGhpcyB1c2VzIGEgUHJvbWlzZSB0byBibG9jayB0aGUgcHl0aG9uIHNpZGUgb24gY29tcGxldGlvbiBvZiBlYWNoIHN0ZXAsCi8vIHRoZW4gcGFzc2VzIHRoZSByZXN1bHQgb2YgdGhlIHByZXZpb3VzIHN0ZXAgYXMgdGhlIGlucHV0IHRvIHRoZSBuZXh0IHN0ZXAuCmZ1bmN0aW9uIF91cGxvYWRGaWxlc0NvbnRpbnVlKG91dHB1dElkKSB7CiAgY29uc3Qgb3V0cHV0RWxlbWVudCA9IGRvY3VtZW50LmdldEVsZW1lbnRCeUlkKG91dHB1dElkKTsKICBjb25zdCBzdGVwcyA9IG91dHB1dEVsZW1lbnQuc3RlcHM7CgogIGNvbnN0IG5leHQgPSBzdGVwcy5uZXh0KG91dHB1dEVsZW1lbnQubGFzdFByb21pc2VWYWx1ZSk7CiAgcmV0dXJuIFByb21pc2UucmVzb2x2ZShuZXh0LnZhbHVlLnByb21pc2UpLnRoZW4oKHZhbHVlKSA9PiB7CiAgICAvLyBDYWNoZSB0aGUgbGFzdCBwcm9taXNlIHZhbHVlIHRvIG1ha2UgaXQgYXZhaWxhYmxlIHRvIHRoZSBuZXh0CiAgICAvLyBzdGVwIG9mIHRoZSBnZW5lcmF0b3IuCiAgICBvdXRwdXRFbGVtZW50Lmxhc3RQcm9taXNlVmFsdWUgPSB2YWx1ZTsKICAgIHJldHVybiBuZXh0LnZhbHVlLnJlc3BvbnNlOwogIH0pOwp9CgovKioKICogR2VuZXJhdG9yIGZ1bmN0aW9uIHdoaWNoIGlzIGNhbGxlZCBiZXR3ZWVuIGVhY2ggYXN5bmMgc3RlcCBvZiB0aGUgdXBsb2FkCiAqIHByb2Nlc3MuCiAqIEBwYXJhbSB7c3RyaW5nfSBpbnB1dElkIEVsZW1lbnQgSUQgb2YgdGhlIGlucHV0IGZpbGUgcGlja2VyIGVsZW1lbnQuCiAqIEBwYXJhbSB7c3RyaW5nfSBvdXRwdXRJZCBFbGVtZW50IElEIG9mIHRoZSBvdXRwdXQgZGlzcGxheS4KICogQHJldHVybiB7IUl0ZXJhYmxlPCFPYmplY3Q+fSBJdGVyYWJsZSBvZiBuZXh0IHN0ZXBzLgogKi8KZnVuY3Rpb24qIHVwbG9hZEZpbGVzU3RlcChpbnB1dElkLCBvdXRwdXRJZCkgewogIGNvbnN0IGlucHV0RWxlbWVudCA9IGRvY3VtZW50LmdldEVsZW1lbnRCeUlkKGlucHV0SWQpOwogIGlucHV0RWxlbWVudC5kaXNhYmxlZCA9IGZhbHNlOwoKICBjb25zdCBvdXRwdXRFbGVtZW50ID0gZG9jdW1lbnQuZ2V0RWxlbWVudEJ5SWQob3V0cHV0SWQpOwogIG91dHB1dEVsZW1lbnQuaW5uZXJIVE1MID0gJyc7CgogIGNvbnN0IHBpY2tlZFByb21pc2UgPSBuZXcgUHJvbWlzZSgocmVzb2x2ZSkgPT4gewogICAgaW5wdXRFbGVtZW50LmFkZEV2ZW50TGlzdGVuZXIoJ2NoYW5nZScsIChlKSA9PiB7CiAgICAgIHJlc29sdmUoZS50YXJnZXQuZmlsZXMpOwogICAgfSk7CiAgfSk7CgogIGNvbnN0IGNhbmNlbCA9IGRvY3VtZW50LmNyZWF0ZUVsZW1lbnQoJ2J1dHRvbicpOwogIGlucHV0RWxlbWVudC5wYXJlbnRFbGVtZW50LmFwcGVuZENoaWxkKGNhbmNlbCk7CiAgY2FuY2VsLnRleHRDb250ZW50ID0gJ0NhbmNlbCB1cGxvYWQnOwogIGNvbnN0IGNhbmNlbFByb21pc2UgPSBuZXcgUHJvbWlzZSgocmVzb2x2ZSkgPT4gewogICAgY2FuY2VsLm9uY2xpY2sgPSAoKSA9PiB7CiAgICAgIHJlc29sdmUobnVsbCk7CiAgICB9OwogIH0pOwoKICAvLyBXYWl0IGZvciB0aGUgdXNlciB0byBwaWNrIHRoZSBmaWxlcy4KICBjb25zdCBmaWxlcyA9IHlpZWxkIHsKICAgIHByb21pc2U6IFByb21pc2UucmFjZShbcGlja2VkUHJvbWlzZSwgY2FuY2VsUHJvbWlzZV0pLAogICAgcmVzcG9uc2U6IHsKICAgICAgYWN0aW9uOiAnc3RhcnRpbmcnLAogICAgfQogIH07CgogIGNhbmNlbC5yZW1vdmUoKTsKCiAgLy8gRGlzYWJsZSB0aGUgaW5wdXQgZWxlbWVudCBzaW5jZSBmdXJ0aGVyIHBpY2tzIGFyZSBub3QgYWxsb3dlZC4KICBpbnB1dEVsZW1lbnQuZGlzYWJsZWQgPSB0cnVlOwoKICBpZiAoIWZpbGVzKSB7CiAgICByZXR1cm4gewogICAgICByZXNwb25zZTogewogICAgICAgIGFjdGlvbjogJ2NvbXBsZXRlJywKICAgICAgfQogICAgfTsKICB9CgogIGZvciAoY29uc3QgZmlsZSBvZiBmaWxlcykgewogICAgY29uc3QgbGkgPSBkb2N1bWVudC5jcmVhdGVFbGVtZW50KCdsaScpOwogICAgbGkuYXBwZW5kKHNwYW4oZmlsZS5uYW1lLCB7Zm9udFdlaWdodDogJ2JvbGQnfSkpOwogICAgbGkuYXBwZW5kKHNwYW4oCiAgICAgICAgYCgke2ZpbGUudHlwZSB8fCAnbi9hJ30pIC0gJHtmaWxlLnNpemV9IGJ5dGVzLCBgICsKICAgICAgICBgbGFzdCBtb2RpZmllZDogJHsKICAgICAgICAgICAgZmlsZS5sYXN0TW9kaWZpZWREYXRlID8gZmlsZS5sYXN0TW9kaWZpZWREYXRlLnRvTG9jYWxlRGF0ZVN0cmluZygpIDoKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgJ24vYSd9IC0gYCkpOwogICAgY29uc3QgcGVyY2VudCA9IHNwYW4oJzAlIGRvbmUnKTsKICAgIGxpLmFwcGVuZENoaWxkKHBlcmNlbnQpOwoKICAgIG91dHB1dEVsZW1lbnQuYXBwZW5kQ2hpbGQobGkpOwoKICAgIGNvbnN0IGZpbGVEYXRhUHJvbWlzZSA9IG5ldyBQcm9taXNlKChyZXNvbHZlKSA9PiB7CiAgICAgIGNvbnN0IHJlYWRlciA9IG5ldyBGaWxlUmVhZGVyKCk7CiAgICAgIHJlYWRlci5vbmxvYWQgPSAoZSkgPT4gewogICAgICAgIHJlc29sdmUoZS50YXJnZXQucmVzdWx0KTsKICAgICAgfTsKICAgICAgcmVhZGVyLnJlYWRBc0FycmF5QnVmZmVyKGZpbGUpOwogICAgfSk7CiAgICAvLyBXYWl0IGZvciB0aGUgZGF0YSB0byBiZSByZWFkeS4KICAgIGxldCBmaWxlRGF0YSA9IHlpZWxkIHsKICAgICAgcHJvbWlzZTogZmlsZURhdGFQcm9taXNlLAogICAgICByZXNwb25zZTogewogICAgICAgIGFjdGlvbjogJ2NvbnRpbnVlJywKICAgICAgfQogICAgfTsKCiAgICAvLyBVc2UgYSBjaHVua2VkIHNlbmRpbmcgdG8gYXZvaWQgbWVzc2FnZSBzaXplIGxpbWl0cy4gU2VlIGIvNjIxMTU2NjAuCiAgICBsZXQgcG9zaXRpb24gPSAwOwogICAgZG8gewogICAgICBjb25zdCBsZW5ndGggPSBNYXRoLm1pbihmaWxlRGF0YS5ieXRlTGVuZ3RoIC0gcG9zaXRpb24sIE1BWF9QQVlMT0FEX1NJWkUpOwogICAgICBjb25zdCBjaHVuayA9IG5ldyBVaW50OEFycmF5KGZpbGVEYXRhLCBwb3NpdGlvbiwgbGVuZ3RoKTsKICAgICAgcG9zaXRpb24gKz0gbGVuZ3RoOwoKICAgICAgY29uc3QgYmFzZTY0ID0gYnRvYShTdHJpbmcuZnJvbUNoYXJDb2RlLmFwcGx5KG51bGwsIGNodW5rKSk7CiAgICAgIHlpZWxkIHsKICAgICAgICByZXNwb25zZTogewogICAgICAgICAgYWN0aW9uOiAnYXBwZW5kJywKICAgICAgICAgIGZpbGU6IGZpbGUubmFtZSwKICAgICAgICAgIGRhdGE6IGJhc2U2NCwKICAgICAgICB9LAogICAgICB9OwoKICAgICAgbGV0IHBlcmNlbnREb25lID0gZmlsZURhdGEuYnl0ZUxlbmd0aCA9PT0gMCA/CiAgICAgICAgICAxMDAgOgogICAgICAgICAgTWF0aC5yb3VuZCgocG9zaXRpb24gLyBmaWxlRGF0YS5ieXRlTGVuZ3RoKSAqIDEwMCk7CiAgICAgIHBlcmNlbnQudGV4dENvbnRlbnQgPSBgJHtwZXJjZW50RG9uZX0lIGRvbmVgOwoKICAgIH0gd2hpbGUgKHBvc2l0aW9uIDwgZmlsZURhdGEuYnl0ZUxlbmd0aCk7CiAgfQoKICAvLyBBbGwgZG9uZS4KICB5aWVsZCB7CiAgICByZXNwb25zZTogewogICAgICBhY3Rpb246ICdjb21wbGV0ZScsCiAgICB9CiAgfTsKfQoKc2NvcGUuZ29vZ2xlID0gc2NvcGUuZ29vZ2xlIHx8IHt9OwpzY29wZS5nb29nbGUuY29sYWIgPSBzY29wZS5nb29nbGUuY29sYWIgfHwge307CnNjb3BlLmdvb2dsZS5jb2xhYi5fZmlsZXMgPSB7CiAgX3VwbG9hZEZpbGVzLAogIF91cGxvYWRGaWxlc0NvbnRpbnVlLAp9Owp9KShzZWxmKTsK",
 "headers": [
 [
 "content-type",
 "application/javascript"
]
],
 "ok": true,
 "status": 200,
 "status_text": ""
 }
 }
 },
 "id": "H9Y3kZ3adZrc",
 "outputId": "669d72ba-611f-4c2b-a5d4-cbc9e1a356a9"
 },
 "outputs": [],
 "source": [
 "from google.colab import files\n",
 "\n",
 "uploaded = files.upload()"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {
 "id": "lYQqwbLGc35d"
 },
 "outputs": [],
 "source": [
 "#!wget https://raw.githubusercontent.com/lorenlugosch/pytorch_HMM/master/data/train/training.txt\n",
 "import re\n",
 " \n",
 "#filename = \"training_edited-2.txt\"\n",
 "filename = \"text.txt\"\n",
 "\n",
 "with open(filename, \"r\") as f:\n",
 " lines = f.readlines() # each line of lines will have one word\n",
 "lines2 = [x.lower() for x in lines]\n",
 "lines3 = [re.sub(\"[^a-z]\", \" \", y) for y in lines2]\n",
 "\n",
 "temp = []\n",
 "for x in lines3:\n",
 " if not not x.split():\n",
 " temp.append(x.split())\n",
 " \n",
 "temp2 = []\n",
 "for i in range(0,len(temp)):\n",
 " for j in range(0,len(temp[i])):\n",
 " temp2.append(temp[i][j])\n",
 " \n",
 "#temp3 = [x+'\\n' for x in temp2]\n",
 "#temp2.sort()\n",
 "\n",
 "#alphabet = list(Counter((\"\".join(lines))).keys())\n",
 "#alphabet = list(Counter((\"\".join(temp2))).keys())\n",
 "temp = string.ascii_lowercase\n",
 "alphabet = [x for x in temp]\n",
 "\n",
 "#train_lines, valid_lines = train_test_split(lines, test_size=0.1, random_state=42)\n",
 "train_lines, valid_lines = train_test_split(temp2, test_size=0.1, random_state=42)\n",
 "train_dataset = TextDataset(train_lines)\n",
 "valid_dataset = TextDataset(valid_lines)\n",
 "\n",
 "M = len(alphabet)"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {
 "id": "mUu3CEAQc35e"
 },
 "outputs": [],
 "source": [
 "from tqdm import tqdm # for displaying progress bar\n",
 "\n",
 "class Trainer:\n",
 " def __init__(self, model, lr):\n",
 " self.model = model\n",
 " self.lr = lr\n",
 " self.optimizer = torch.optim.Adam(model.parameters(), lr=self.lr, weight_decay=0.00001)\n",
 " \n",
 " def train(self, dataset):\n",
 " train_loss = 0\n",
 " num_samples = 0\n",
 " self.model.train()\n",
 " print_interval = 50\n",
 " for idx, batch in enumerate(tqdm(dataset.loader)):\n",
 " x,T = batch\n",
 " batch_size = len(x)\n",
 " num_samples += batch_size\n",
 " log_probs = self.model(x,T)\n",
 " loss = -log_probs.mean()\n",
 " self.optimizer.zero_grad()\n",
 " loss.backward()\n",
 " self.optimizer.step()\n",
 " train_loss += loss.cpu().data.numpy().item() * batch_size\n",
 " if idx % print_interval == 0:\n",
 " print(\"loss:\", loss.item())\n",
 " for _ in range(5):\n",
 " sampled_x, sampled_z = self.model.sample()\n",
 " print(decode(sampled_x))\n",
 " print(sampled_z)\n",
 " train_loss /= num_samples\n",
 " return train_loss\n",
 "\n",
 " def test(self, dataset):\n",
 " test_loss = 0\n",
 " num_samples = 0\n",
 " self.model.eval()\n",
 " print_interval = 50\n",
 " for idx, batch in enumerate(dataset.loader):\n",
 " x,T = batch\n",
 " batch_size = len(x)\n",
 " num_samples += batch_size\n",
 " log_probs = self.model(x,T)\n",
 " loss = -log_probs.mean()\n",
 " test_loss += loss.cpu().data.numpy().item() * batch_size\n",
 " if idx % print_interval == 0:\n",
 " print(\"loss:\", loss.item())\n",
 " sampled_x, sampled_z = self.model.sample()\n",
 " print(decode(sampled_x))\n",
 " print(sampled_z)\n",
 " test_loss /= num_samples\n",
 " return test_loss"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {
 "colab": {
 "base_uri": "https://localhost:8080/"
 },
 "id": "JJ1FXwkJc35e",
 "outputId": "09d69eb7-a63e-4076-ce25-1c1374d6f03c"
 },
 "outputs": [],
 "source": [
 "# Initialize model\n",
 "model = HMM(N=2, M=M)\n",
 "\n",
 "# Train the model\n",
 "num_epochs = 10\n",
 "trainer = Trainer(model, lr=0.01)\n",
 "#trainer = Trainer(model, lr=0.1)\n",
 "\n",
 "for epoch in range(num_epochs):\n",
 " print(\"========= Epoch %d of %d =========\" % (epoch+1, num_epochs))\n",
 " train_loss = trainer.train(train_dataset)\n",
 " valid_loss = trainer.test(valid_dataset)\n",
 " \n",
 " #train_loss = trainer.train(train_lines)\n",
 " #valid_loss = trainer.test(valid_lines)\n",
 "\n",
 " print(\"========= Results: epoch %d of %d =========\" % (epoch+1, num_epochs))\n",
 " print(\"train loss: %.2f| valid loss: %.2f\\n\" % (train_loss, valid_loss))"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {
 "id": "ONaQOqBBc35f"
 },
 "source": [
 "## Emission Probability for State 0 ##"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {
 "colab": {
 "base_uri": "https://localhost:8080/",
 "height": 265
 },
 "id": "dHDpJKvtc35f",
 "outputId": "920d7b36-5315-4b47-e4ab-170e742a1261"
 },
 "outputs": [],
 "source": [
 "import matplotlib.pyplot as plt\n",
 "emission = torch.nn.functional.softmax(model.emission_model.unnormalized_emission_matrix, dim=1)\n",
 "temp0 = [emission[0][x].item() for x in range(0,26)] \n",
 "i = list(range(1,27))\n",
 "plt.bar(i, temp0,tick_label=alphabet)\n",
 "plt.show()"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {
 "id": "sWBXCx4hc35g"
 },
 "source": [
 "## Emission Probability for State 1 ##"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {
 "colab": {
 "base_uri": "https://localhost:8080/",
 "height": 265
 },
 "id": "LPdlklKYc35g",
 "outputId": "49fdef68-2cb6-4543-b6dd-2ed3dc38d9e9"
 },
 "outputs": [],
 "source": [
 "import matplotlib.pyplot as plt\n",
 "emission = torch.nn.functional.softmax(model.emission_model.unnormalized_emission_matrix, dim=1)\n",
 "temp1 = [emission[1][x].item() for x in range(0,26)] \n",
 "plt.bar(i,temp1,tick_label = alphabet)\n",
 "plt.show()"
]
 }
],
 "metadata": {
 "colab": {
 "collapsed_sections": [],
 "name": "HMM_Assignment.ipynb",
 "provenance": []
 },
 "kernelspec": {
 "display_name": "Python 3",
 "language": "python",
 "name": "python3"
 },
 "language_info": {
 "codemirror_mode": {
 "name": "ipython",
 "version": 3
 },
 "file_extension": ".py",
 "mimetype": "text/x-python",
 "name": "python",
 "nbconvert_exporter": "python",
 "pygments_lexer": "ipython3",
 "version": "3.9.5"
 }
 },
 "nbformat": 4,
 "nbformat_minor": 1
}

{
 "cells": [
 {
 "cell_type": "code",
 "execution_count": 1,
 "metadata": {},
 "outputs": [],
 "source": [
 "import pandas as pd\n",
 "import numpy as np\n",
 "from hmmlearn import hmm\n",
 "import tensorflow as tf\n",
 "import re"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "### Question a\n",
 "\n",
 "Recover the numerical probability value P((O0, O1, O2) = (c, a, b)) = 0.030028 in ยง5.2 of the\n",
 "lecture notes using the forward algorithm for the computation of observation probabilities."
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "#### Set the model"
]
 },
 {
 "cell_type": "code",
 "execution_count": 2,
 "metadata": {},
 "outputs": [],
 "source": [
 "states = ['state 0', 'state 1'] # This model has two states\n",
 "n_states = len(states)\n",
 "\n",
 "observations = ['a', 'b', 'c'] # The observations are a, b, c\n",
 "n_observations = len(observations)\n",
 "\n",
 "start_probability = np.array([0.6, 0.4]) # initial probability\n",
 "\n",
 "\n",
 "# transition probability\n",
 "transition_probability = np.array([\n",
 " [0.7, 0.3],\n",
 " [0.4, 0.6]\n",
 "])\n",
 "\n",
 "# emmission probability\n",
 "emission_probability = np.array([\n",
 " [0.1, 0.4, 0.5],\n",
 " [0.7, 0.2, 0.1]\n",
 "])\n",
 "\n",
 "# model definition\n",
 "model = hmm.MultinomialHMM(n_components=n_states)\n",
 "\n",
 "# set start probability\n",
 "model.startprob_=start_probability\n",
 "\n",
 "# set transition probability\n",
 "model.transmat_=transition_probability\n",
 "\n",
 "# set emission probability\n",
 "model.emissionprob_=emission_probability"
]
 },
 {
 "cell_type": "code",
 "execution_count": 3,
 "metadata": {},
 "outputs": [
 {
 "name": "stdout",
 "output_type": "stream",
 "text": [
 "The probability is 0.030028000000000013. \n",
 "\n",
 "P((O0, O1, O2) = (c, a, b)) = 3.00%\n"
]
 }
],
 "source": [
 "# Compute the numerical probability value P((O0, O1, O2) = (c, a, b))\n",
 "\n",
 "# The observations are ['c', 'a', 'b']\n",
 "\n",
 "# Convert the observations into array\n",
 "seen = np.array([[2,0,1]]).T\n",
 "\n",
 "# Use the method \"score\" to compute the numerical probability\n",
 "# The result is Log likelihood of probability\n",
 "prob = np.e ** model.score(seen)\n",
 "\n",
 "print('The probability is {}.'.format(prob), '\\n')\n",
 "print('P((O0, O1, O2) = (c, a, b)) = {}'.format(format(prob, '.2%')))\n"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "### Question b\n",
 "\n",
 "Recover the most likely sequence (0, 1, 0) given the observation (O0, O1, O2) = (c, a, b) in ยง5.2 of\n",
 "the lecture notes by the Viterbi algorithm."
]
 },
 {
 "cell_type": "code",
 "execution_count": 4,
 "metadata": {},
 "outputs": [],
 "source": [
 "states = ['state 0', 'state 1'] # This model has two states\n",
 "n_states = len(states)\n",
 "\n",
 "observations = ['a', 'b', 'c'] # The observations are a, b, c\n",
 "n_observations = len(observations)\n",
 "\n",
 "start_probability = np.array([0.6, 0.4]) # initial probability\n",
 "\n",
 "\n",
 "# transition probability\n",
 "transition_probability = np.array([\n",
 " [0.7, 0.3],\n",
 " [0.4, 0.6]\n",
 "])\n",
 "\n",
 "# emmission probability\n",
 "emission_probability = np.array([\n",
 " [0.1, 0.4, 0.5],\n",
 " [0.7, 0.2, 0.1]\n",
 "])\n",
 "\n",
 "# model definition\n",
 "model = hmm.MultinomialHMM(n_components=n_states)\n",
 "\n",
 "# set start probability\n",
 "model.startprob_=start_probability\n",
 "\n",
 "# set transition probability\n",
 "model.transmat_=transition_probability\n",
 "\n",
 "# set emission probability\n",
 "model.emissionprob_=emission_probability"
]
 },
 {
 "cell_type": "code",
 "execution_count": 5,
 "metadata": {},
 "outputs": [
 {
 "name": "stdout",
 "output_type": "stream",
 "text": [
 "The hidden state is [0 1 0]\n"
]
 }
],
 "source": [
 "# The observations are ['c', 'a', 'b']\n",
 "# Convert the observations into array\n",
 "seen = np.array([[2,0,1]]).T\n",
 "\n",
 "# Use the method \"viterbi\" algorithm to decode the HMM model\n",
 "logprob, box = model.decode(seen, algorithm=\"viterbi\")\n",
 "\n",
 "print('The hidden state is {}'.format(box))"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "### Question c\n",
 "\n",
 "Run the algorithm on a text file of your choice (minimum 1000 characters) as in ยง5.5 in the notes."
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "#### Read the text file and preprocess\n",
 "\n",
 "I download the book \"JaneEyre\" and use the chaper one of this book as my text file.\n",
 "It contains 1954 words and 10753 characters including space."
]
 },
 {
 "cell_type": "code",
 "execution_count": 6,
 "metadata": {},
 "outputs": [],
 "source": [
 "with open('my_own_text_file.txt', 'r', encoding='utf-8') as f:\n",
 " text = f.read()"
]
 },
 {
 "cell_type": "code",
 "execution_count": 7,
 "metadata": {
 "scrolled": true
 },
 "outputs": [
 {
 "data": {
 "text/plain": [
 "'There was no possibility of taking a walk that day. We had been wandering, indeed, in the leafless shrubbery an hour in the morning; but since dinner (Mrs. Reed, when there was no company, dined early) the cold winter wind had brought with it clouds so sombre, and a rain so penetrating, that further out-door exercise was now out of the question.\\nI was glad of it: I never liked long walks, especially on chilly afternoons: dreadful to me was the coming home in the raw twilight, with nipped fingers and toes, and a heart saddened by the chidings of Bessie, the nurse, and humbled by the consciousness of my physical inferiority to Eliza, John, and Georgiana Reed.\\nThe said Eliza, John, and Georgiana were now clustered round their mama in the drawing-room: she lay reclined on a sofa by the fireside, and with her darlings about her (for the time neither quarrelling nor crying) looked perfectly happy. Me, she had dispensed from joining the group; saying, โ��She regretted to be under the necessity of keeping me at a distance; but that until she heard from Bessie, and could discover by her own observation, that I was endeavouring in good earnest to acquire a more sociable and childlike disposition, a more attractive and sprightly mannerโ�� something lighter, franker, more natural, as it wereโ��she really must exclude me from privileges intended only for contented, happy, little children.โ��\\nโ��What does Bessie say I have done?โ�� I asked.\\nโ��Jane, I donโ��t like cavillers or questioners; besides, there is something truly forbidding in a child taking up her elders in that manner. Be seated somewhere; and until you can speak pleasantly, remain silent.โ��\\nA breakfast-room adjoined the drawing-room, I slipped in there. It contained a bookcase: I soon possessed myself of a volume, taking care that it should be one stored with pictures. I mounted into the window-seat: gathering up my feet, I sat cross-legged, like a Turk; and, having drawn the red moreen curtain nearly close, I was shrined in double retirement.\\nFolds of scarlet drapery shut in my view to the right hand; to the left were the clear panes of glass, protecting, but not separating me from the drear November day. At intervals, while turning over the leaves of my book, I studied the aspect of that winter afternoon. Afar, it offered a pale blank of mist and cloud; near a scene of wet lawn and storm-beat shrub, with ceaseless rain sweeping away wildly before a long and lamentable blast.\\nI returned to my bookโ��Bewickโ��s History of British Birds: the letterpress thereof I cared little for, generally speaking; and yet there were certain introductory pages that, child as I was, I could not pass quite as a blank. They were those which treat of the haunts of sea-fowl; of โ��the solitary rocks and promontoriesโ�� by them only inhabited; of the coast of Norway, studded with isles from its southern extremity, the Lindeness, or Naze, to the North Capeโ��\\nโ��Where the Northern Ocean, in vast whirls,\\nBoils round the naked, melancholy isles\\nOf farthest Thule; and the Atlantic surge\\nPours in among the stormy Hebrides.โ��\\nNor could I pass unnoticed the suggestion of the bleak shores of Lapland, Siberia, Spitzbergen, Nova Zembla, Iceland, Greenland, with โ��the vast sweep of the Arctic Zone, and those forlorn regions of dreary space,โ��that reservoir of frost and snow, where firm fields of ice, the accumulation of centuries of winters, glazed in Alpine heights above heights, surround the pole, and concentre the multiplied rigours of extreme cold.โ�� Of these death-white realms I formed an idea of my own: shadowy, like all the half-comprehended notions that float dim through childrenโ��s brains, but strangely impressive. The words in these introductory pages connected themselves with the succeeding vignettes, and gave significance to the rock standing up alone in a sea of billow and spray; to the broken boat stranded on a desolate coast; to the cold and ghastly moon glancing through bars of cloud at a wreck just sinking.\\nI cannot tell what sentiment haunted the quite solitary churchyard, with its inscribed headstone; its gate, its two trees, its low horizon, girdled by a broken wall, and its newly-risen crescent, attesting the hour of eventide.\\nThe two ships becalmed on a torpid sea, I believed to be marine phantoms.\\nThe fiend pinning down the thiefโ��s pack behind him, I passed over quickly: it was an object of terror.\\nSo was the black horned thing seated aloof on a rock, surveying a distant crowd surrounding a gallows.\\nEach picture told a story; mysterious often to my undeveloped understanding and imperfect feelings, yet ever profoundly interesting: as interesting as the tales Bessie sometimes narrated on winter evenings, when she chanced to be in good humour; and when, having brought her ironing-table to the nursery hearth, she allowed us to sit about it, and while she got up Mrs. Reedโ��s lace frills, and crimped her nightcap borders, fed our eager attention with passages of love and adventure taken from old fairy tales and other ballads; or (as at a later period I discovered) from the pages of Pamela, and Henry, Earl of Moreland.\\nWith Bewick on my knee, I was then happy: happy at least in my way. I feared nothing but interruption, and that came too soon. The breakfast-room door opened.\\nโ��Boh! Madam Mope!โ�� cried the voice of John Reed; then he paused: he found the room apparently empty.\\nโ��Where the dickens is she!โ�� he continued. โ��Lizzy! Georgy! (calling to his sisters) Joan is not here: tell mama she is run out into the rainโ��bad animal!โ��\\nโ��It is well I drew the curtain,โ�� thought I; and I wished fervently he might not discover my hiding-place: nor would John Reed have found it out himself; he was not quick either of vision or conception; but Eliza just put her head in at the door, and said at onceโ��\\nโ��She is in the window-seat, to be sure, Jack.โ��\\nAnd I came out immediately, for I trembled at the idea of being dragged forth by the said Jack.\\nโ��What do you want?โ�� I asked, with awkward diffidence.\\nโ��Say, โ��What do you want, Master Reed?โ��โ�� was the answer. โ��I want you to come here;โ�� and seating himself in an arm-chair, he intimated by a gesture that I was to approach and stand before him.\\nJohn Reed was a schoolboy of fourteen years old; four years older than I, for I was but ten: large and stout for his age, with a dingy and unwholesome skin; thick lineaments in a spacious visage, heavy limbs and large extremities. He gorged himself habitually at table, which made him bilious, and gave him a dim and bleared eye and flabby cheeks. He ought now to have been at school; but his mama had taken him home for a month or two, โ��on account of his delicate health.โ�� Mr. Miles, the master, affirmed that he would do very well if he had fewer cakes and sweetmeats sent him from home; but the motherโ��s heart turned from an opinion so harsh, and inclined rather to the more refined idea that Johnโ��s sallowness was owing to over-application and, perhaps, to pining after home.\\nJohn had not much affection for his mother and sisters, and an antipathy to me. He bullied and punished me; not two or three times in the week, nor once or twice in the day, but continually: every nerve I had feared him, and every morsel of flesh in my bones shrank when he came near. There were moments when I was bewildered by the terror he inspired, because I had no appeal whatever against either his menaces or his inflictions; the servants did not like to offend their young master by taking my part against him, and Mrs. Reed was blind and deaf on the subject: she never saw him strike or heard him abuse me, though he did both now and then in her very presence, more frequently, however, behind her back.\\nHabitually obedient to John, I came up to his chair: he spent some three minutes in thrusting out his tongue at me as far as he could without damaging the roots: I knew he would soon strike, and while dreading the blow, I mused on the disgusting and ugly appearance of him who would presently deal it. I wonder if he read that notion in my face; for, all at once, without speaking, he struck suddenly and strongly. I tottered, and on regaining my equilibrium retired back a step or two from his chair.\\nโ��That is for your impudence in answering mama awhile since,โ�� said he, โ��and for your sneaking way of getting behind curtains, and for the look you had in your eyes two minutes since, you rat!โ��\\nAccustomed to John Reedโ��s abuse, I never had an idea of replying to it; my care was how to endure the blow which would certainly follow the insult.\\nโ��What were you doing behind the curtain?โ�� he asked.\\nโ��I was reading.โ��\\nโ��Show the book.โ��\\nI returned to the window and fetched it thence.\\nโ��You have no business to take our books; you are a dependent, mama says; you have no money; your father left you none; you ought to beg, and not to live here with gentlemenโ��s children like us, and eat the same meals we do, and wear clothes at our mamaโ��s expense. Now, Iโ��ll teach you to rummage my bookshelves: for they are mine; all the house belongs to me, or will do in a few years. Go and stand by the door, out of the way of the mirror and the windows.โ��\\nI did so, not at first aware what was his intention; but when I saw him lift and poise the book and stand in act to hurl it, I instinctively started aside with a cry of alarm: not soon enough, however; the volume was flung, it hit me, and I fell, striking my head against the door and cutting it. The cut bled, the pain was sharp: my terror had passed its climax; other feelings succeeded.\\nโ��Wicked and cruel boy!โ�� I said. โ��You are like a murdererโ��you are like a slave-driverโ��you are like the Roman emperors!โ��\\nI had read Goldsmithโ��s History of Rome, and had formed my opinion of Nero, Caligula, &c. Also I had drawn parallels in silence, which I never thought thus to have declared aloud.\\nโ��What! what!โ�� he cried. โ��Did she say that to me? Did you hear her, Eliza and Georgiana? Wonโ��t I tell mama? but firstโ��โ��\\nHe ran headlong at me: I felt him grasp my hair and my shoulder: he had closed with a desperate thing. I really saw in him a tyrant, a murderer. I felt a drop or two of blood from my head trickle down my neck, and was sensible of somewhat pungent suffering: these sensations for the time predominated over fear, and I received him in frantic sort. I donโ��t very well know what I did with my hands, but he called me โ��Rat! Rat!โ�� and bellowed out aloud. Aid was near him: Eliza and Georgiana had run for Mrs. Reed, who was gone upstairs: she now came upon the scene, followed by Bessie and her maid Abbot. We were parted: I heard the wordsโ��\\nโ��Dear! dear! What a fury to fly at Master John!โ��\\nโ��Did ever anybody see such a picture of passion!โ��\\nThen Mrs. Reed subjoinedโ��\\nโ��Take her away to the red-room, and lock her in there.โ�� Four hands were immediately laid upon me, and I was borne upstairs.'"
]
 },
 "execution_count": 7,
 "metadata": {},
 "output_type": "execute_result"
 }
],
 "source": [
 "text"
]
 },
 {
 "cell_type": "code",
 "execution_count": 8,
 "metadata": {},
 "outputs": [
 {
 "name": "stdout",
 "output_type": "stream",
 "text": [
 "The length of the text file is 10322\n"
]
 }
],
 "source": [
 "# clean the text\n",
 "\n",
 "pattern = re.compile('[a-zA-Z]')\n",
 "clean_text = pattern.findall(text)\n",
 "for i in range(len(clean_text)):\n",
 " if clean_text[i] == ' ':\n",
 " clean_text[i] = '_'\n",
 " else:\n",
 " clean_text[i] = str.lower(clean_text[i])\n",
 "print('The length of the text file is {}'.format(len(clean_text)))"
]
 },
 {
 "cell_type": "code",
 "execution_count": 9,
 "metadata": {},
 "outputs": [
 {
 "data": {
 "text/plain": [
 "['t',\n",
 " 'h',\n",
 " 'e',\n",
 " 'r',\n",
 " 'e',\n",
 " '_',\n",
 " 'w',\n",
 " 'a',\n",
 " 's',\n",
 " '_',\n",
 " 'n',\n",
 " 'o',\n",
 " '_',\n",
 " 'p',\n",
 " 'o',\n",
 " 's',\n",
 " 's',\n",
 " 'i',\n",
 " 'b',\n",
 " 'i',\n",
 " 'l',\n",
 " 'i',\n",
 " 't',\n",
 " 'y',\n",
 " '_',\n",
 " 'o',\n",
 " 'f',\n",
 " '_',\n",
 " 't',\n",
 " 'a',\n",
 " 'k',\n",
 " 'i',\n",
 " 'n',\n",
 " 'g',\n",
 " '_',\n",
 " 'a',\n",
 " '_',\n",
 " 'w',\n",
 " 'a',\n",
 " 'l',\n",
 " 'k',\n",
 " '_',\n",
 " 't',\n",
 " 'h',\n",
 " 'a',\n",
 " 't',\n",
 " '_',\n",
 " 'd',\n",
 " 'a',\n",
 " 'y',\n",
 " '_',\n",
 " 'w',\n",
 " 'e',\n",
 " '_',\n",
 " 'h',\n",
 " 'a',\n",
 " 'd',\n",
 " '_',\n",
 " 'b',\n",
 " 'e',\n",
 " 'e',\n",
 " 'n',\n",
 " '_',\n",
 " 'w',\n",
 " 'a',\n",
 " 'n',\n",
 " 'd',\n",
 " 'e',\n",
 " 'r',\n",
 " 'i',\n",
 " 'n',\n",
 " 'g',\n",
 " '_',\n",
 " 'i',\n",
 " 'n',\n",
 " 'd',\n",
 " 'e',\n",
 " 'e',\n",
 " 'd',\n",
 " '_',\n",
 " 'i',\n",
 " 'n',\n",
 " '_',\n",
 " 't',\n",
 " 'h',\n",
 " 'e',\n",
 " '_',\n",
 " 'l',\n",
 " 'e',\n",
 " 'a',\n",
 " 'f',\n",
 " 'l',\n",
 " 'e',\n",
 " 's',\n",
 " 's',\n",
 " '_',\n",
 " 's',\n",
 " 'h',\n",
 " 'r',\n",
 " 'u',\n",
 " 'b',\n",
 " 'b',\n",
 " 'e',\n",
 " 'r',\n",
 " 'y',\n",
 " '_',\n",
 " 'a',\n",
 " 'n',\n",
 " '_',\n",
 " 'h',\n",
 " 'o',\n",
 " 'u',\n",
 " 'r',\n",
 " '_',\n",
 " 'i',\n",
 " 'n',\n",
 " '_',\n",
 " 't',\n",
 " 'h',\n",
 " 'e',\n",
 " '_',\n",
 " 'm',\n",
 " 'o',\n",
 " 'r',\n",
 " 'n',\n",
 " 'i',\n",
 " 'n',\n",
 " 'g',\n",
 " '_',\n",
 " 'b',\n",
 " 'u',\n",
 " 't',\n",
 " '_',\n",
 " 's',\n",
 " 'i',\n",
 " 'n',\n",
 " 'c',\n",
 " 'e',\n",
 " '_',\n",
 " 'd',\n",
 " 'i',\n",
 " 'n',\n",
 " 'n',\n",
 " 'e',\n",
 " 'r',\n",
 " '_',\n",
 " 'm',\n",
 " 'r',\n",
 " 's',\n",
 " '_',\n",
 " 'r',\n",
 " 'e',\n",
 " 'e',\n",
 " 'd',\n",
 " '_',\n",
 " 'w',\n",
 " 'h',\n",
 " 'e',\n",
 " 'n',\n",
 " '_',\n",
 " 't',\n",
 " 'h',\n",
 " 'e',\n",
 " 'r',\n",
 " 'e',\n",
 " '_',\n",
 " 'w',\n",
 " 'a',\n",
 " 's',\n",
 " '_',\n",
 " 'n',\n",
 " 'o',\n",
 " '_',\n",
 " 'c',\n",
 " 'o',\n",
 " 'm',\n",
 " 'p',\n",
 " 'a',\n",
 " 'n',\n",
 " 'y',\n",
 " '_',\n",
 " 'd',\n",
 " 'i',\n",
 " 'n',\n",
 " 'e',\n",
 " 'd',\n",
 " '_',\n",
 " 'e',\n",
 " 'a',\n",
 " 'r',\n",
 " 'l',\n",
 " 'y',\n",
 " '_',\n",
 " 't',\n",
 " 'h',\n",
 " 'e',\n",
 " '_',\n",
 " 'c',\n",
 " 'o',\n",
 " 'l',\n",
 " 'd',\n",
 " '_',\n",
 " 'w',\n",
 " 'i',\n",
 " 'n',\n",
 " 't',\n",
 " 'e',\n",
 " 'r',\n",
 " '_',\n",
 " 'w',\n",
 " 'i',\n",
 " 'n',\n",
 " 'd',\n",
 " '_',\n",
 " 'h',\n",
 " 'a',\n",
 " 'd',\n",
 " '_',\n",
 " 'b',\n",
 " 'r',\n",
 " 'o',\n",
 " 'u',\n",
 " 'g',\n",
 " 'h',\n",
 " 't',\n",
 " '_',\n",
 " 'w',\n",
 " 'i',\n",
 " 't',\n",
 " 'h',\n",
 " '_',\n",
 " 'i',\n",
 " 't',\n",
 " '_',\n",
 " 'c',\n",
 " 'l',\n",
 " 'o',\n",
 " 'u',\n",
 " 'd',\n",
 " 's',\n",
 " '_',\n",
 " 's',\n",
 " 'o',\n",
 " '_',\n",
 " 's',\n",
 " 'o',\n",
 " 'm',\n",
 " 'b',\n",
 " 'r',\n",
 " 'e',\n",
 " '_',\n",
 " 'a',\n",
 " 'n',\n",
 " 'd',\n",
 " '_',\n",
 " 'a',\n",
 " '_',\n",
 " 'r',\n",
 " 'a',\n",
 " 'i',\n",
 " 'n',\n",
 " '_',\n",
 " 's',\n",
 " 'o',\n",
 " '_',\n",
 " 'p',\n",
 " 'e',\n",
 " 'n',\n",
 " 'e',\n",
 " 't',\n",
 " 'r',\n",
 " 'a',\n",
 " 't',\n",
 " 'i',\n",
 " 'n',\n",
 " 'g',\n",
 " '_',\n",
 " 't',\n",
 " 'h',\n",
 " 'a',\n",
 " 't',\n",
 " '_',\n",
 " 'f',\n",
 " 'u',\n",
 " 'r',\n",
 " 't',\n",
 " 'h',\n",
 " 'e',\n",
 " 'r',\n",
 " '_',\n",
 " 'o',\n",
 " 'u',\n",
 " 't',\n",
 " 'd',\n",
 " 'o',\n",
 " 'o',\n",
 " 'r',\n",
 " '_',\n",
 " 'e',\n",
 " 'x',\n",
 " 'e',\n",
 " 'r',\n",
 " 'c',\n",
 " 'i',\n",
 " 's',\n",
 " 'e',\n",
 " '_',\n",
 " 'w',\n",
 " 'a',\n",
 " 's',\n",
 " '_',\n",
 " 'n',\n",
 " 'o',\n",
 " 'w',\n",
 " '_',\n",
 " 'o',\n",
 " 'u',\n",
 " 't',\n",
 " '_',\n",
 " 'o',\n",
 " 'f',\n",
 " '_',\n",
 " 't',\n",
 " 'h',\n",
 " 'e',\n",
 " '_',\n",
 " 'q',\n",
 " 'u',\n",
 " 'e',\n",
 " 's',\n",
 " 't',\n",
 " 'i',\n",
 " 'o',\n",
 " 'n',\n",
 " 'i',\n",
 " '_',\n",
 " 'w',\n",
 " 'a',\n",
 " 's',\n",
 " '_',\n",
 " 'g',\n",
 " 'l',\n",
 " 'a',\n",
 " 'd',\n",
 " '_',\n",
 " 'o',\n",
 " 'f',\n",
 " '_',\n",
 " 'i',\n",
 " 't',\n",
 " '_',\n",
 " 'i',\n",
 " '_',\n",
 " 'n',\n",
 " 'e',\n",
 " 'v',\n",
 " 'e',\n",
 " 'r',\n",
 " '_',\n",
 " 'l',\n",
 " 'i',\n",
 " 'k',\n",
 " 'e',\n",
 " 'd',\n",
 " '_',\n",
 " 'l',\n",
 " 'o',\n",
 " 'n',\n",
 " 'g',\n",
 " '_',\n",
 " 'w',\n",
 " 'a',\n",
 " 'l',\n",
 " 'k',\n",
 " 's',\n",
 " '_',\n",
 " 'e',\n",
 " 's',\n",
 " 'p',\n",
 " 'e',\n",
 " 'c',\n",
 " 'i',\n",
 " 'a',\n",
 " 'l',\n",
 " 'l',\n",
 " 'y',\n",
 " '_',\n",
 " 'o',\n",
 " 'n',\n",
 " '_',\n",
 " 'c',\n",
 " 'h',\n",
 " 'i',\n",
 " 'l',\n",
 " 'l',\n",
 " 'y',\n",
 " '_',\n",
 " 'a',\n",
 " 'f',\n",
 " 't',\n",
 " 'e',\n",
 " 'r',\n",
 " 'n',\n",
 " 'o',\n",
 " 'o',\n",
 " 'n',\n",
 " 's',\n",
 " '_',\n",
 " 'd',\n",
 " 'r',\n",
 " 'e',\n",
 " 'a',\n",
 " 'd',\n",
 " 'f',\n",
 " 'u',\n",
 " 'l',\n",
 " '_',\n",
 " 't',\n",
 " 'o',\n",
 " '_',\n",
 " 'm',\n",
 " 'e',\n",
 " '_',\n",
 " 'w',\n",
 " 'a',\n",
 " 's',\n",
 " '_',\n",
 " 't',\n",
 " 'h',\n",
 " 'e',\n",
 " '_',\n",
 " 'c',\n",
 " 'o',\n",
 " 'm',\n",
 " 'i',\n",
 " 'n',\n",
 " 'g',\n",
 " '_',\n",
 " 'h',\n",
 " 'o',\n",
 " 'm',\n",
 " 'e',\n",
 " '_',\n",
 " 'i',\n",
 " 'n',\n",
 " '_',\n",
 " 't',\n",
 " 'h',\n",
 " 'e',\n",
 " '_',\n",
 " 'r',\n",
 " 'a',\n",
 " 'w',\n",
 " '_',\n",
 " 't',\n",
 " 'w',\n",
 " 'i',\n",
 " 'l',\n",
 " 'i',\n",
 " 'g',\n",
 " 'h',\n",
 " 't',\n",
 " '_',\n",
 " 'w',\n",
 " 'i',\n",
 " 't',\n",
 " 'h',\n",
 " '_',\n",
 " 'n',\n",
 " 'i',\n",
 " 'p',\n",
 " 'p',\n",
 " 'e',\n",
 " 'd',\n",
 " '_',\n",
 " 'f',\n",
 " 'i',\n",
 " 'n',\n",
 " 'g',\n",
 " 'e',\n",
 " 'r',\n",
 " 's',\n",
 " '_',\n",
 " 'a',\n",
 " 'n',\n",
 " 'd',\n",
 " '_',\n",
 " 't',\n",
 " 'o',\n",
 " 'e',\n",
 " 's',\n",
 " '_',\n",
 " 'a',\n",
 " 'n',\n",
 " 'd',\n",
 " '_',\n",
 " 'a',\n",
 " '_',\n",
 " 'h',\n",
 " 'e',\n",
 " 'a',\n",
 " 'r',\n",
 " 't',\n",
 " '_',\n",
 " 's',\n",
 " 'a',\n",
 " 'd',\n",
 " 'd',\n",
 " 'e',\n",
 " 'n',\n",
 " 'e',\n",
 " 'd',\n",
 " '_',\n",
 " 'b',\n",
 " 'y',\n",
 " '_',\n",
 " 't',\n",
 " 'h',\n",
 " 'e',\n",
 " '_',\n",
 " 'c',\n",
 " 'h',\n",
 " 'i',\n",
 " 'd',\n",
 " 'i',\n",
 " 'n',\n",
 " 'g',\n",
 " 's',\n",
 " '_',\n",
 " 'o',\n",
 " 'f',\n",
 " '_',\n",
 " 'b',\n",
 " 'e',\n",
 " 's',\n",
 " 's',\n",
 " 'i',\n",
 " 'e',\n",
 " '_',\n",
 " 't',\n",
 " 'h',\n",
 " 'e',\n",
 " '_',\n",
 " 'n',\n",
 " 'u',\n",
 " 'r',\n",
 " 's',\n",
 " 'e',\n",
 " '_',\n",
 " 'a',\n",
 " 'n',\n",
 " 'd',\n",
 " '_',\n",
 " 'h',\n",
 " 'u',\n",
 " 'm',\n",
 " 'b',\n",
 " 'l',\n",
 " 'e',\n",
 " 'd',\n",
 " '_',\n",
 " 'b',\n",
 " 'y',\n",
 " '_',\n",
 " 't',\n",
 " 'h',\n",
 " 'e',\n",
 " '_',\n",
 " 'c',\n",
 " 'o',\n",
 " 'n',\n",
 " 's',\n",
 " 'c',\n",
 " 'i',\n",
 " 'o',\n",
 " 'u',\n",
 " 's',\n",
 " 'n',\n",
 " 'e',\n",
 " 's',\n",
 " 's',\n",
 " '_',\n",
 " 'o',\n",
 " 'f',\n",
 " '_',\n",
 " 'm',\n",
 " 'y',\n",
 " '_',\n",
 " 'p',\n",
 " 'h',\n",
 " 'y',\n",
 " 's',\n",
 " 'i',\n",
 " 'c',\n",
 " 'a',\n",
 " 'l',\n",
 " '_',\n",
 " 'i',\n",
 " 'n',\n",
 " 'f',\n",
 " 'e',\n",
 " 'r',\n",
 " 'i',\n",
 " 'o',\n",
 " 'r',\n",
 " 'i',\n",
 " 't',\n",
 " 'y',\n",
 " '_',\n",
 " 't',\n",
 " 'o',\n",
 " '_',\n",
 " 'e',\n",
 " 'l',\n",
 " 'i',\n",
 " 'z',\n",
 " 'a',\n",
 " '_',\n",
 " 'j',\n",
 " 'o',\n",
 " 'h',\n",
 " 'n',\n",
 " '_',\n",
 " 'a',\n",
 " 'n',\n",
 " 'd',\n",
 " '_',\n",
 " 'g',\n",
 " 'e',\n",
 " 'o',\n",
 " 'r',\n",
 " 'g',\n",
 " 'i',\n",
 " 'a',\n",
 " 'n',\n",
 " 'a',\n",
 " '_',\n",
 " 'r',\n",
 " 'e',\n",
 " 'e',\n",
 " 'd',\n",
 " 't',\n",
 " 'h',\n",
 " 'e',\n",
 " '_',\n",
 " 's',\n",
 " 'a',\n",
 " 'i',\n",
 " 'd',\n",
 " '_',\n",
 " 'e',\n",
 " 'l',\n",
 " 'i',\n",
 " 'z',\n",
 " 'a',\n",
 " '_',\n",
 " 'j',\n",
 " 'o',\n",
 " 'h',\n",
 " 'n',\n",
 " '_',\n",
 " 'a',\n",
 " 'n',\n",
 " 'd',\n",
 " '_',\n",
 " 'g',\n",
 " 'e',\n",
 " 'o',\n",
 " 'r',\n",
 " 'g',\n",
 " 'i',\n",
 " 'a',\n",
 " 'n',\n",
 " 'a',\n",
 " '_',\n",
 " 'w',\n",
 " 'e',\n",
 " 'r',\n",
 " 'e',\n",
 " '_',\n",
 " 'n',\n",
 " 'o',\n",
 " 'w',\n",
 " '_',\n",
 " 'c',\n",
 " 'l',\n",
 " 'u',\n",
 " 's',\n",
 " 't',\n",
 " 'e',\n",
 " 'r',\n",
 " 'e',\n",
 " 'd',\n",
 " '_',\n",
 " 'r',\n",
 " 'o',\n",
 " 'u',\n",
 " 'n',\n",
 " 'd',\n",
 " '_',\n",
 " 't',\n",
 " 'h',\n",
 " 'e',\n",
 " 'i',\n",
 " 'r',\n",
 " '_',\n",
 " 'm',\n",
 " 'a',\n",
 " 'm',\n",
 " 'a',\n",
 " '_',\n",
 " 'i',\n",
 " 'n',\n",
 " '_',\n",
 " 't',\n",
 " 'h',\n",
 " 'e',\n",
 " '_',\n",
 " 'd',\n",
 " 'r',\n",
 " 'a',\n",
 " 'w',\n",
 " 'i',\n",
 " 'n',\n",
 " 'g',\n",
 " 'r',\n",
 " 'o',\n",
 " 'o',\n",
 " 'm',\n",
 " '_',\n",
 " 's',\n",
 " 'h',\n",
 " 'e',\n",
 " '_',\n",
 " 'l',\n",
 " 'a',\n",
 " 'y',\n",
 " '_',\n",
 " 'r',\n",
 " 'e',\n",
 " 'c',\n",
 " 'l',\n",
 " 'i',\n",
 " 'n',\n",
 " 'e',\n",
 " 'd',\n",
 " '_',\n",
 " 'o',\n",
 " 'n',\n",
 " '_',\n",
 " 'a',\n",
 " '_',\n",
 " 's',\n",
 " 'o',\n",
 " 'f',\n",
 " 'a',\n",
 " '_',\n",
 " 'b',\n",
 " 'y',\n",
 " '_',\n",
 " 't',\n",
 " 'h',\n",
 " 'e',\n",
 " '_',\n",
 " 'f',\n",
 " 'i',\n",
 " 'r',\n",
 " 'e',\n",
 " 's',\n",
 " 'i',\n",
 " 'd',\n",
 " 'e',\n",
 " '_',\n",
 " 'a',\n",
 " 'n',\n",
 " 'd',\n",
 " '_',\n",
 " 'w',\n",
 " 'i',\n",
 " 't',\n",
 " 'h',\n",
 " '_',\n",
 " 'h',\n",
 " 'e',\n",
 " 'r',\n",
 " '_',\n",
 " 'd',\n",
 " 'a',\n",
 " 'r',\n",
 " 'l',\n",
 " 'i',\n",
 " 'n',\n",
 " 'g',\n",
 " 's',\n",
 " '_',\n",
 " 'a',\n",
 " 'b',\n",
 " 'o',\n",
 " 'u',\n",
 " 't',\n",
 " '_',\n",
 " 'h',\n",
 " 'e',\n",
 " 'r',\n",
 " '_',\n",
 " 'f',\n",
 " 'o',\n",
 " 'r',\n",
 " '_',\n",
 " 't',\n",
 " 'h',\n",
 " 'e',\n",
 " '_',\n",
 " 't',\n",
 " 'i',\n",
 " 'm',\n",
 " 'e',\n",
 " '_',\n",
 " 'n',\n",
 " 'e',\n",
 " 'i',\n",
 " 't',\n",
 " 'h',\n",
 " 'e',\n",
 " 'r',\n",
 " '_',\n",
 " 'q',\n",
 " 'u',\n",
 " 'a',\n",
 " 'r',\n",
 " 'r',\n",
 " 'e',\n",
 " 'l',\n",
 " 'l',\n",
 " 'i',\n",
 " 'n',\n",
 " 'g',\n",
 " '_',\n",
 " 'n',\n",
 " 'o',\n",
 " 'r',\n",
 " '_',\n",
 " 'c',\n",
 " 'r',\n",
 " 'y',\n",
 " 'i',\n",
 " 'n',\n",
 " 'g',\n",
 " '_',\n",
 " 'l',\n",
 " 'o',\n",
 " 'o',\n",
 " 'k',\n",
 " 'e',\n",
 " 'd',\n",
 " '_',\n",
 " 'p',\n",
 " 'e',\n",
 " 'r',\n",
 " 'f',\n",
 " 'e',\n",
 " 'c',\n",
 " 't',\n",
 " 'l',\n",
 " 'y',\n",
 " '_',\n",
 " 'h',\n",
 " 'a',\n",
 " 'p',\n",
 " 'p',\n",
 " 'y',\n",
 " '_',\n",
 " 'm',\n",
 " 'e',\n",
 " '_',\n",
 " 's',\n",
 " 'h',\n",
 " 'e',\n",
 " '_',\n",
 " 'h',\n",
 " 'a',\n",
 " 'd',\n",
 " '_',\n",
 " 'd',\n",
 " 'i',\n",
 " 's',\n",
 " 'p',\n",
 " 'e',\n",
 " 'n',\n",
 " 's',\n",
 " 'e',\n",
 " 'd',\n",
 " '_',\n",
 " 'f',\n",
 " 'r',\n",
 " 'o',\n",
 " 'm',\n",
 " '_',\n",
 " 'j',\n",
 " 'o',\n",
 " 'i',\n",
 " 'n',\n",
 " 'i',\n",
 " 'n',\n",
 " 'g',\n",
 " '_',\n",
 " 't',\n",
 " 'h',\n",
 " 'e',\n",
 " '_',\n",
 " 'g',\n",
 " 'r',\n",
 " 'o',\n",
 " 'u',\n",
 " 'p',\n",
 " '_',\n",
 " 's',\n",
 " 'a',\n",
 " 'y',\n",
 " 'i',\n",
 " 'n',\n",
 " 'g',\n",
 " '_',\n",
 " 's',\n",
 " 'h',\n",
 " 'e',\n",
 " '_',\n",
 " 'r',\n",
 " 'e',\n",
 " 'g',\n",
 " 'r',\n",
 " 'e',\n",
 " 't',\n",
 " 't',\n",
 " 'e',\n",
 " 'd',\n",
 " '_',\n",
 " 't',\n",
 " 'o',\n",
 " '_',\n",
 " 'b',\n",
 " 'e',\n",
 " '_',\n",
 " 'u',\n",
 " 'n',\n",
 " 'd',\n",
 " 'e',\n",
 " 'r',\n",
 " '_',\n",
 " 't',\n",
 " 'h',\n",
 " 'e',\n",
 " '_',\n",
 " 'n',\n",
 " 'e',\n",
 " 'c',\n",
 " 'e',\n",
 " 's',\n",
 " 's',\n",
 " 'i',\n",
 " 't',\n",
 " 'y',\n",
 " '_',\n",
 " 'o',\n",
 " 'f',\n",
 " '_',\n",
 " 'k',\n",
 " 'e',\n",
 " 'e',\n",
 " 'p',\n",
 " 'i',\n",
 " 'n',\n",
 " 'g',\n",
 " '_',\n",
 " 'm',\n",
 " 'e',\n",
 " '_',\n",
 " 'a',\n",
 " 't',\n",
 " '_',\n",
 " 'a',\n",
 " '_',\n",
 " 'd',\n",
 " 'i',\n",
 " 's',\n",
 " 't',\n",
 " 'a',\n",
 " 'n',\n",
 " 'c',\n",
 " 'e',\n",
 " '_',\n",
 " 'b',\n",
 " 'u',\n",
 " 't',\n",
 " '_',\n",
 " 't',\n",
 " 'h',\n",
 " 'a',\n",
 " 't',\n",
 " '_',\n",
 " ...]"
]
 },
 "execution_count": 9,
 "metadata": {},
 "output_type": "execute_result"
 }
],
 "source": [
 "clean_text"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "#### Set the model"
]
 },
 {
 "cell_type": "code",
 "execution_count": 10,
 "metadata": {},
 "outputs": [],
 "source": [
 "def process(array):\n",
 " return array / array.sum(axis=1).reshape(-1,1)"
]
 },
 {
 "cell_type": "code",
 "execution_count": 11,
 "metadata": {},
 "outputs": [],
 "source": [
 "states = ['state 0', 'state 1'] # This model has two states\n",
 "n_states = len(states)\n",
 "\n",
 "observations = list('_abcdefghijklmnopqrstuvwxyz') # The observations are alphabet charaters\n",
 "n_observations = len(observations)\n",
 "\n",
 "start_probability = np.array([0.1, 0.9]) # initial probability\n",
 "\n",
 "\n",
 "# random transition probability\n",
 "transition_probability = process(np.random.rand(2,2))\n",
 "\n",
 "# random emmission probability\n",
 "emission_probability = process(np.random.rand(2,27))\n",
 "\n",
 "# model definition\n",
 "model = hmm.MultinomialHMM(n_components=n_states, n_iter=100) # 100 iterations\n",
 "\n",
 "# set start probability\n",
 "model.startprob_=start_probability\n",
 "\n",
 "# set transition probability\n",
 "model.transmat_=transition_probability\n",
 "\n",
 "# set emission probability\n",
 "model.emissionprob_=emission_probability"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "#### Estimate matrix M"
]
 },
 {
 "cell_type": "code",
 "execution_count": 12,
 "metadata": {},
 "outputs": [
 {
 "name": "stderr",
 "output_type": "stream",
 "text": [
 "Even though the 'startprob_' attribute is set, it will be overwritten during initialization because 'init_params' contains 's'\n",
 "Even though the 'transmat_' attribute is set, it will be overwritten during initialization because 'init_params' contains 't'\n"
]
 }
],
 "source": [
 "# Convert observations into array\n",
 "\n",
 "map_dict = dict(zip(observations, list(range(n_observations))))\n",
 "X = [map_dict[x] for x in clean_text]\n",
 "X = np.array(X).reshape(-1,1)\n",
 "\n",
 "# train HMM model on the text by the Baum-Welch algorithm\n",
 "model.fit(X)\n",
 "\n",
 "# emmition matrix\n",
 "M = model.emissionprob_"
]
 },
 {
 "cell_type": "code",
 "execution_count": 13,
 "metadata": {},
 "outputs": [
 {
 "data": {
 "text/plain": [
 "array([[1.10683814e-11, 7.23736660e-02, 2.41032417e-02, 2.86514908e-02,\n",
 " 7.45333953e-02, 1.12037192e-01, 3.04134589e-02, 2.87192899e-02,\n",
 " 3.42619416e-02, 5.99038754e-02, 3.30769837e-03, 8.75364154e-03,\n",
 " 2.34649781e-02, 3.84495542e-02, 4.26954509e-02, 5.50136106e-02,\n",
 " 1.68417837e-02, 1.70948154e-03, 6.69603881e-02, 8.22019825e-02,\n",
 " 1.17594660e-01, 1.25707177e-02, 1.50684165e-03, 3.50414167e-02,\n",
 " 6.33599084e-16, 2.88902381e-02, 4.82320451e-09],\n",
 " [4.21038679e-01, 6.16317058e-02, 5.86092001e-07, 7.91467893e-03,\n",
 " 3.13096596e-18, 9.02478488e-02, 2.00288618e-05, 3.15090182e-18,\n",
 " 6.29605995e-02, 5.82653794e-02, 3.69134022e-04, 6.66184447e-03,\n",
 " 4.08598224e-02, 4.65224847e-04, 8.18919730e-02, 6.82394375e-02,\n",
 " 7.03896327e-03, 3.23934347e-41, 3.42778754e-02, 4.72709497e-03,\n",
 " 4.70312887e-04, 3.47619049e-02, 1.36810488e-02, 3.86502187e-06,\n",
 " 1.56519955e-03, 1.50885562e-22, 2.90679285e-03]])"
]
 },
 "execution_count": 13,
 "metadata": {},
 "output_type": "execute_result"
 }
],
 "source": [
 "M"
]
 },
 {
 "cell_type": "code",
 "execution_count": 14,
 "metadata": {},
 "outputs": [
 {
 "data": {
 "text/plain": [
 "<matplotlib.axes._subplots.AxesSubplot at 0x7f22e313fbe0>"
]
 },
 "execution_count": 14,
 "metadata": {},
 "output_type": "execute_result"
 }
],
 "source": [
 "# The estimates of the matrix M obtained from the R code can be plotted as follows\n",
 "\n",
 "pd.Series(M[0], index=observations).plot.bar(figsize=(15, 6))"
]
 },
 {
 "cell_type": "code",
 "execution_count": 104,
 "metadata": {},
 "outputs": [
 {
 "data": {
 "text/plain": [
 "<AxesSubplot:>"
]
 },
 "execution_count": 104,
 "metadata": {},
 "output_type": "execute_result"
 },
 {
 "data": {
 "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3AAAAFlCAYAAACqbgrWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAbeElEQVR4nO3df7Dl5V0f8PfH3aKVxhrDRjPABqJUZBQsriRO8AepyYDobDL+CJlorBp3iDJqW22ZamP9NYJj7JgWs9JIrbEM1Uyo22ENZKIzGJN0dokIgQRdN1jWNQJJjIlGgebTP87Z5ORy4X6Xvedenr2v18yde77P93nO5zlnz95z3uf7nPOt7g4AAABPf5+12RMAAABgGgEOAABgEAIcAADAIAQ4AACAQQhwAAAAgxDgAAAABrF9syewmtNOO63POuuszZ4GAADAprjjjjse7u4dK9uflgHurLPOysGDBzd7GgAAAJuiqv58tXZLKAEAAAYhwAEAAAxCgAMAABiEAAcAADAIAQ4AAGAQAhwAAMAgBDgAAIBBCHAAAACDEOAAAAAGIcABAAAMQoADAAAYhAAHAAAwCAEOAABgEAIcAADAILZv9gSO11lX33JC4++/5vJ1mgkAAMDGcgQOAABgEAIcAADAIAQ4AACAQQhwAAAAgxDgAAAABjEpwFXVpVV1X1UdqqqrV9m/u6ruqqo7q+pgVV28sO/+qrr72L71nDwAAMBWsuZpBKpqW5Lrkrw4yZEkB6pqX3ffu9Dt7Un2dXdX1flJfivJuQv7L+nuh9dx3gAAAFvOlCNwFyU51N2Hu/uRJDcl2b3Yobs/3t093zw1SQcAAIB1NSXAnZ7kgYXtI/O2z1BVL6uq9ye5Jcn3LuzqJLdV1R1VtedEJgsAALCVTQlwtUrb446wdffN3X1ukpcm+ZmFXS/s7guTXJbkB6vq61YtUrVn/vm5gw899NCEaQEAAGwtUwLckSRnLmyfkeToE3Xu7tuTfHFVnTbfPjr//WCSmzNbkrnauOu7e1d379qxY8fE6QMAAGwdUwLcgSTnVNXZVXVKkiuS7FvsUFVfUlU1v3xhklOSfKiqTq2qZ8zbT03ykiTvXc8bAAAAsFWs+S2U3f1YVV2V5NYk25Lc0N33VNWV8/17k3xrkldV1aNJPpHk5fNvpPzCJDfPs932JDd291uXdFsAAABOamsGuCTp7v1J9q9o27tw+dok164y7nCSC05wjgAAAGTiibwBAADYfAIcAADAIAQ4AACAQQhwAAAAgxDgAAAABiHAAQAADEKAAwAAGIQABwAAMAgBDgAAYBACHAAAwCAEOAAAgEEIcAAAAIMQ4AAAAAYhwAEAAAxCgAMAABiEAAcAADAIAQ4AAGAQAhwAAMAgBDgAAIBBCHAAAACDEOAAAAAGIcABAAAMQoADAAAYhAAHAAAwCAEOAABgEAIcAADAIAQ4AACAQQhwAAAAgxDgAAAABiHAAQAADEKAAwAAGIQABwAAMAgBDgAAYBACHAAAwCAmBbiqurSq7quqQ1V19Sr7d1fVXVV1Z1UdrKqLp44FAABgmjUDXFVtS3JdksuSnJfkFVV13opub09yQXd/ZZLvTfLG4xgLAADABFOOwF2U5FB3H+7uR5LclGT3Yofu/nh393zz1CQ9dSwAAADTTAlwpyd5YGH7yLztM1TVy6rq/Uluyewo3OSxAAAArG1KgKtV2vpxDd03d/e5SV6a5GeOZ2ySVNWe+efnDj700EMTpgUAALC1TAlwR5KcubB9RpKjT9S5u29P8sVVddrxjO3u67t7V3fv2rFjx4RpAQAAbC1TAtyBJOdU1dlVdUqSK5LsW+xQVV9SVTW/fGGSU5J8aMpYAAAAptm+Vofufqyqrkpya5JtSW7o7nuq6sr5/r1JvjXJq6rq0SSfSPLy+ZearDp2SbcFAADgpLZmgEuS7t6fZP+Ktr0Ll69Ncu3UsQAAABy/SSfyBgAAYPMJcAAAAIMQ4AAAAAYhwAEAAAxCgAMAABiEAAcAADAIAQ4AAGAQAhwAAMAgBDgAAIBBCHAAAACDEOAAAAAGIcABAAAMQoADAAAYhAAHAAAwCAEOAABgEAIcAADAIAQ4AACAQQhwAAAAgxDgAAAABiHAAQAADEKAAwAAGIQABwAAMAgBDgAAYBACHAAAwCAEOAAAgEEIcAAAAIMQ4AAAAAYhwAEAAAxCgAMAABiEAAcAADAIAQ4AAGAQAhwAAMAgBDgAAIBBCHAAAACDmBTgqurSqrqvqg5V1dWr7H9lVd01/3lnVV2wsO/+qrq7qu6sqoPrOXkAAICtZPtaHapqW5Lrkrw4yZEkB6pqX3ffu9DtA0m+vrs/UlWXJbk+yfMX9l/S3Q+v47wBAAC2nClH4C5Kcqi7D3f3I0luSrJ7sUN3v7O7PzLffHeSM9Z3mgAAAEwJcKcneWBh+8i87Yl8X5LfXdjuJLdV1R1Vtef4pwgAAEAyYQllklqlrVftWHVJZgHu4oXmF3b30ap6dpK3VdX7u/v2VcbuSbInSXbu3DlhWgAAAFvLlCNwR5KcubB9RpKjKztV1flJ3phkd3d/6Fh7dx+d/34wyc2ZLcl8nO6+vrt3dfeuHTt2TL8FAAAAW8SUAHcgyTlVdXZVnZLkiiT7FjtU1c4kb0nyXd39Jwvtp1bVM45dTvKSJO9dr8kDAABsJWsuoezux6rqqiS3JtmW5Ibuvqeqrpzv35vktUmeleRXqipJHuvuXUm+MMnN87btSW7s7rcu5ZYAAACc5KZ8Bi7dvT/J/hVtexcuvzrJq1cZdzjJBSvbAQAAOH6TTuQNAADA5hPgAAAABiHAAQAADEKAAwAAGIQABwAAMAgBDgAAYBACHAAAwCAEOAAAgEEIcAAAAIMQ4AAAAAYhwAEAAAxCgAMAABiEAAcAADAIAQ4AAGAQAhwAAMAgBDgAAIBBCHAAAACDEOAAAAAGIcABAAAMQoADAAAYhAAHAAAwCAEOAABgEAIcAADAIAQ4AACAQQhwAAAAgxDgAAAABiHAAQAADEKAAwAAGIQABwAAMAgBDgAAYBACHAAAwCAEOAAAgEEIcAAAAIMQ4AAAAAaxfUqnqro0yS8n2Zbkjd19zYr9r0zy7+abH0/ymu7+4ylj4enqrKtvOaHx919z+TrNBAAAZtY8AldV25Jcl+SyJOcleUVVnbei2weSfH13n5/kZ5JcfxxjAQAAmGDKEsqLkhzq7sPd/UiSm5LsXuzQ3e/s7o/MN9+d5IypYwEAAJhmSoA7PckDC9tH5m1P5PuS/O5THAsAAMATmPIZuFqlrVftWHVJZgHu4qcwdk+SPUmyc+fOCdMCAADYWqYcgTuS5MyF7TOSHF3ZqarOT/LGJLu7+0PHMzZJuvv67t7V3bt27NgxZe4AAABbypQAdyDJOVV1dlWdkuSKJPsWO1TVziRvSfJd3f0nxzMWAACAadZcQtndj1XVVUluzexUADd09z1VdeV8/94kr03yrCS/UlVJ8tj8aNqqY5d0WwAAAE5qk84D1937k+xf0bZ34fKrk7x66lgAAACO35QllAAAADwNCHAAAACDEOAAAAAGIcABAAAMQoADAAAYhAAHAAAwCAEOAABgEAIcAADAIAQ4AACAQQhwAAAAgxDgAAAABiHAAQAADEKAAwAAGIQABwAAMAgBDgAAYBACHAAAwCAEOAAAgEEIcAAAAIMQ4AAAAAYhwAEAAAxCgAMAABiEAAcAADAIAQ4AAGAQAhwAAMAgBDgAAIBBCHAAAACDEOAAAAAGIcABAAAMQoADAAAYhAAHAAAwCAEOAABgEAIcAADAIAQ4AACAQQhwAAAAg5gU4Krq0qq6r6oOVdXVq+w/t6reVVX/UFU/umLf/VV1d1XdWVUH12viAAAAW832tTpU1bYk1yV5cZIjSQ5U1b7uvneh24eT/FCSlz7B1VzS3Q+f4FwBAAC2tClH4C5Kcqi7D3f3I0luSrJ7sUN3P9jdB5I8uoQ5AgAAkGkB7vQkDyxsH5m3TdVJbquqO6pqz/FMDgAAgE9bcwllklqlrY+jxgu7+2hVPTvJ26rq/d19++OKzMLdniTZuXPncVw9AADA1jDlCNyRJGcubJ+R5OjUAt19dP77wSQ3Z7Ykc7V+13f3ru7etWPHjqlXDwAAsGVMCXAHkpxTVWdX1SlJrkiyb8qVV9WpVfWMY5eTvCTJe5/qZAEAALayNZdQdvdjVXVVkluTbEtyQ3ffU1VXzvfvraovSnIwyecl+WRV/UiS85KcluTmqjpW68bufutSbgkAAMBJbspn4NLd+5PsX9G2d+HyBzNbWrnS3yS54EQmCAAAwMykE3kDAACw+QQ4AACAQQhwAAAAgxDgAAAABiHAAQAADEKAAwAAGIQABwAAMAgBDgAAYBCTTuTNzFlX33JC4++/5vJ1mgkAALAVOQIHAAAwCAEOAABgEAIcAADAIAQ4AACAQQhwAAAAgxDgAAAABiHAAQAADEKAAwAAGIQABwAAMAgBDgAAYBACHAAAwCC2b/YEAICNcdbVt5zQ+PuvuXydZgLAU+UIHAAAwCAEOAAAgEFYQgkQS8sAgDE4AgcAADAIAQ4AAGAQAhwAAMAgBDgAAIBBCHAAAACDEOAAAAAGIcABAAAMQoADAAAYhAAHAAAwCAEOAABgEJMCXFVdWlX3VdWhqrp6lf3nVtW7quofqupHj2csAAAA06wZ4KpqW5LrklyW5Lwkr6iq81Z0+3CSH0ryi09hLAAAABNMOQJ3UZJD3X24ux9JclOS3YsduvvB7j6Q5NHjHQsAAMA0UwLc6UkeWNg+Mm+bYvLYqtpTVQer6uBDDz008eoBAAC2jikBrlZp64nXP3lsd1/f3bu6e9eOHTsmXj0AAMDWMSXAHUly5sL2GUmOTrz+ExkLAADAgikB7kCSc6rq7Ko6JckVSfZNvP4TGQsAAMCC7Wt16O7HquqqJLcm2Zbkhu6+p6qunO/fW1VflORgks9L8smq+pEk53X336w2dkm3BQAA4KS2ZoBLku7en2T/ira9C5c/mNnyyEljAQAAOH6TTuQNAADA5hPgAAAABiHAAQAADEKAAwAAGIQABwAAMAgBDgAAYBACHAAAwCAEOAAAgEEIcAAAAIMQ4AAAAAYhwAEAAAxCgAMAABiEAAcAADAIAQ4AAGAQAhwAAMAgBDgAAIBBCHAAAACDEOAAAAAGIcABAAAMQoADAAAYhAAHAAAwCAEOAABgEAIcAADAIAQ4AACAQQhwAAAAgxDgAAAABiHAAQAADEKAAwAAGIQABwAAMAgBDgAAYBACHAAAwCAEOAAAgEEIcAAAAIOYFOCq6tKquq+qDlXV1avsr6p6/Xz/XVV14cK++6vq7qq6s6oOrufkAQAAtpLta3Woqm1Jrkvy4iRHkhyoqn3dfe9Ct8uSnDP/eX6SN8x/H3NJdz+8brMGAADYgqYcgbsoyaHuPtzdjyS5KcnuFX12J/mNnnl3ks+vques81wBAAC2tCkB7vQkDyxsH5m3Te3TSW6rqjuqas9TnSgAAMBWt+YSyiS1SlsfR58XdvfRqnp2krdV1fu7+/bHFZmFuz1JsnPnzgnTAgAA2FqmHIE7kuTMhe0zkhyd2qe7j/1+MMnNmS3JfJzuvr67d3X3rh07dkybPQAAwBYyJcAdSHJOVZ1dVackuSLJvhV99iV51fzbKF+Q5KPd/ZdVdWpVPSNJqurUJC9J8t51nD8AAMCWseYSyu5+rKquSnJrkm1Jbujue6rqyvn+vUn2J/mmJIeS/F2S75kP/8IkN1fVsVo3dvdb1/1WAAAAbAFTPgOX7t6fWUhbbNu7cLmT/OAq4w4nueAE5wgAAEAmnsgbAACAzSfAAQAADGLSEkoAABjBWVffckLj77/m8nWaCSyHI3AAAACDEOAAAAAGIcABAAAMQoADAAAYhAAHAAAwCAEOAABgEAIcAADAIAQ4AACAQQhwAAAAgxDgAAAABiHAAQAADEKAAwAAGIQABwAAMAgBDgAAYBACHAAAwCAEOAAAgEEIcAAAAIMQ4AAAAAYhwAEAAAxCgAMAABiEAAcAADAIAQ4AAGAQAhwAAMAgBDgAAIBBCHAAAACDEOAAAAAGIcABAAAMQoADAAAYhAAHAAAwiO2bPQEAtqazrr7lhMbff83l6zQTABiHAAd8Bi+qAThRnktgeSYtoayqS6vqvqo6VFVXr7K/qur18/13VdWFU8cCAAAwzZoBrqq2JbkuyWVJzkvyiqo6b0W3y5KcM//Zk+QNxzEWAACACaYcgbsoyaHuPtzdjyS5KcnuFX12J/mNnnl3ks+vqudMHAsAAMAEUz4Dd3qSBxa2jyR5/oQ+p08cCwCc5HwmCmB9TAlwtUpbT+wzZezsCqr2ZLb8Mkk+XlX3TZjbak5L8vAT7axrn+K1Dl57ydRexVb993a7N772kj1ta7vPN76251C1N6q2x5raaidJnrta45QAdyTJmQvbZyQ5OrHPKRPGJkm6+/ok10+Yz5OqqoPdvetEr0dttdVWW2211VZbbbXVVvvpVnvKZ+AOJDmnqs6uqlOSXJFk34o++5K8av5tlC9I8tHu/suJYwEAAJhgzSNw3f1YVV2V5NYk25Lc0N33VNWV8/17k+xP8k1JDiX5uyTf82Rjl3JLAAAATnKTTuTd3fszC2mLbXsXLneSH5w6dslOeBmm2mqrrbbaaqutttpqq63207F2zbIXAAAAT3dTPgM3rKp65mbPAQAAYL2c1AEuyds3ewIAAMfMv/DtzLV7AqzuZA9wq52Hbv2LVD2zqi6qqq879rMRddl48yfe76yq1863d1bVRUus96b57x9eVg2ePqrqHfPfH6uqv1nx89Gq+kBV/cAGzOOrVmn7lmXXZfNU1QVVddX854LNns/JbP69Af9rs+ex0aoef3a11dpONlX1r6rqjE2q/aaq+v6qOncTap+3Sts3bFDtqzZrFV5Vvb2qvmlF27p/Du6k/gxcVb2nuy9cco1XJ/nhzM5xd2eSFyR5V3e/aJl157U/J8kPJLk4sxOkvyPJG7r77zeg9n9P8sPd/dfz7WcmeV13f+8Sa/7rJ9vf3b+0rNoLc3hDkk8meVF3f9n8dt/W3V+9pHr3Jrkss9NvfENWvCnR3R9eRt1V5rHaff/RJHd0951Lrv3ZSb41yVlZ+OKl7v7pZdZ9OqqqZyV5Z3d/6ZLrvCfJd3f33fPtVyT5ke5+/jLrbraq2pXkxzM7cer2zP6/dXefvwG1N+1xPn+D6PuTvGXe9LIk13f3f96A2pv5PLZpzylVdV2SX+/uA8uq8SS1vz3JW7v7Y1X1E0kuTPKz3f2eJdd93GuyqrprI/5/zWu9drX2Zf8fq6qfTPIdST6c5KYkb+7uv1pmzYXaL8rs/9bXJnleZq9Tb+/uX96A2u9N8qYkv5Dkc+a/d3X312xA7Z/N7NRl70lyQ5Jbe4MCT1UdTvJAkt/r7p+at617HhHgTrzG3Um+Osm7u/sr5+9y/FR3v3yZdee1fyvJx5L85rzpFUme2d3fvgG1/6i7//labetc8yfnF780s/v82DkFvyWzP0ivXlbthTm8p7svXLytVfXH3b2Ud6yr6oeSvCazP7x/kc8McN3dz1tG3VXmcWOSXUn+97zp8szO83hukt/u7l9YYu23Zh4Wk/y/Y+3d/bol1nxHd19cVR/L7EXlp3bNSvfnLav2WqrqOfPzbC6zxvOSvDnJKzN78n9Vkm/u7o8usebK+/pTu7JB93lV3Zfkx5LcndkbNcms+J9vQO0Nf5wv1L4rydd099/Ot0/N7I3IjQium/k8dmNWeS7J7MVXjr34WlLte5P8syR/nuRvs7FvFtzV3edX1cVJfj7JLyb598t6g6aqXpNZSH9ekj9b2PWMJH/Y3d+5jLqrzOPfLGx+TpJvTvK+Zb7xvKL++UlentkbNUe6+xs3qO62zB7nlyS5MsknunvpR+Tmf0euTfJVmf1b/48k13b3J5904PrVryQvyezUZruS/FaSX+vuP3vSgSde9z1JLkry+iRnJvnOJL+/3nlk0mkEBrYRSyj/vrv/vqpSVZ/d3e+vqqW+O77gS1cEh9+vqj/eoNqfVVXP7O6PJElVfUGW/HhaeCfjtiQXdvfH5tv/MclvL7P2gkfnfwx7XntHFl7orbfufn2S11fVG7r7NcuqM8GzMrvPP558Kky/OcnXZfaCc2kBLskZ3X3pEq//cbr74vnvZ2xk3SmWHd7mNQ5X1RWZLfN6IMlLuvsTS675dLivH+rufWt3W4oNf5wvqCyExvnlDfkIQjb3eey0rPJcshFvBma2smKzHPu3vjyzo52/M7/ty3Jjkt/NLCxevdD+sY1aRZI8/s2QqvrFfDq8b4QHk3wwyYeSPHsjClbV25OcmuRdSf4gyVd394MbUTvJo0k+keQfZxaYP7BR4S2ZvRtSVR/M7D5/LMkzk7y5qt7W3f92iaWrux9L8gNV9S8zW1Ww7ss5T/YA9y82oMaRqvr8zF7ovK2qPpLk6AbUTZI/qqoXdPe7k6Sqnp/kDzeo9uuSvLOq3pxZmPmOJD+3QbV3JnlkYfuRzJYdbYTXJ7k5ybOr6ueSfFuSn1h20U0Ob8nj7/NHkzy3uz9RVf+w5NrvrKqvOLacj+WZryhYPAr2BUm2Jfk/VZWNWuq0iX6yqt6Y2Rdgfepx3d1veeIh62YzH+f/LbN/45vn2y9N8msbVHszn8c27blkI47qPom/qKpfTfKNSa6dL99d2ncizI/cfzSzo6tPJ5+b2VHBpZofgXx5kh2ZvfH5/d1977Lrzt2V2RGwL8/s3+Cvq+pdy35Dbu5Akt/J7Ojfs5L8alV9W3d/27ILz1cvfXeSh5O8McmPdfejVfVZSf40yTID3OJ5sn99/ry66rmyT8RJvYRyo1XV1yf5p5mtLX9krf4nUOfYi6x/lNlywv87335uknu7+8uXVXvFPM5L8qLM3ql9+0b9QaqqH88sMN6c2e1+WZL/2d0/v0H1z83szYFjt/t9G1F3M1XVf8jsfv6dedO3ZPbO5esy+6zMK5dQ89jjfHuSc5IczuxF9YYtNdpqquq5T7Z/k190Ll1V/WZmy4LvyaePrPdGLLGaL6n7kiQfyCY8zqvqwsyWy1ZmS9L/aIPqvi+ffh5LZqHqfZnd/0u9/Zv9XLJZqupzk1ya5O7u/tOqek6Sr+ju2zZ5aku14g2qbZkFqp/u7v+y5LrXJLmpl/x58TXm8E8yW0r4o0m+qLs/ewNq7urugyvavqu737QBtX86s+WSj3vOqqovOxletwlwA9rqL7KST73Y+Nr55oa92NjKavbNhMde4L1j5R/mJdTb8o9zNlZV3d3dX7FJtVd9vJ/sj/PN/n/uuWTrWPFYeyzJX82Xup20quqqzB7fX5XZ5y1vT/IH3f17mzoxTpgABwBJquq/JvlPG7i8CWBpqurHMgttd5zsYXWrEeAAIJ9azvfF2aRljAAwhQAHANm6yxgBGIsABwAAMIilfW0sAAAA60uAAwAAGIQABwAAMAgBDgAAYBACHAAAwCD+PzTmEQ0uZLXjAAAAAElFTkSuQmCC\n",
 "text/plain": [
 "<Figure size 1080x432 with 1 Axes>"
]
 },
 "metadata": {
 "needs_background": "light"
 },
 "output_type": "display_data"
 }
],
 "source": [
 "# plot\n",
 "\n",
 "pd.Series(M[1], index=observations).plot.bar(figsize=(15, 6))"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "### Question d\n",
 "\n",
 "Format the HMMLearn output and compare it to the output of the HMM R package."
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "#### R code\n",
 "\n",
 "library (HMM)\n",
 "library (lattice)\n",
 "\n",
 "text = readChar(\"JaneEyreChapter1.txt\",nchars=10000, useBytes = TRUE)\n",
 "data <- unlist(strsplit(tolower(gsub(\"[^a-zA-Z]\", \"_\", text)), \"\"))\n",
 "\n",
 "pi=c(0.4,0.6)\n",
 "\n",
 "P=t(matrix(c(c(0.6177499,0.3822501),c(0.8826096,0.1173904)),nrow=2,ncol=2))\n",
 "\n",
 "M=t(matrix(c(c(0.037192964,0.009902360,0.032833978,0.044882670,0.057331132,\n",
 "0.052143890,0.013665015,0.036187536,0.072293323,0.044793972,0.060008388,\n",
 "0.004256270,0.024770706,0.053520546,0.014232306,0.046981769,0.053733382,\n",
 "0.066355203,0.046817817,0.006912535,0.016201697,0.013425499,0.024694447,\n",
 "0.064902148,0.046170421,0.033586536,0.022203489),\n",
 "c(0.0389931197,0.0697183142,0.0239154174,0.0512772632,0.0404732634,0.0059687348,\n",
 "0.0211687193,0.0625229746,0.0039632091,0.0567828864,0.0468108656,0.0168355418,\n",
 "0.0627882213,0.0286478204,0.0389215263,0.0064318198,0.0001698078,0.0493758725,\n",
 "0.0652709152,0.0069580806,0.0093043072,0.0028807932,0.0521827110,0.0608822385,\n",
 "0.0645417465,0.0555249876,0.0576888424)),nrow=27,ncol=2))\n",
 "\n",
 "model <- initHMM(c(\"0\", \"1\"), c(\"_\", letters), pi, P, M)\n",
 "\n",
 "system.time(estimate <- baumWelch(model, data, 100)) # 100 iterations\n",
 "\n",
 "xyplot(estimatehmmemissionProbs[1,] ~ c(1:27), scales=list(x=list(at=1:27,\n",
 "labels=c(\"_\", letters))),type=\"h\", lwd=5, xlab=\"\", ylab=\"\")\n",
 "\n",
 "xyplot(estimatehmmemissionProbs[2,] ~ c(1:27), scales=list(x=list(at=1:27,\n",
 "labels=c(\"_\", letters))),type=\"h\", lwd=5, xlab=\"\", ylab=\"\")"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "#### Result from R package HMM\n",
 "\n",
 "The estimates of the matrix M obtained from the R code are plotted as follows:"
]
 },
 {
 "attachments": {
 "Rresult1.png": {
 "image/png": "iVBORw0KGgoAAAANSUhEUgAAArkAAAGDCAYAAAAvVwjiAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACacSURBVHhe7d1/iF3neSfwAYHAVR1DigumBEMR6h/G+I/AUAbD4KKoIRgSzBoaizJQUSGQjWMW7zY2S5Y6RULYXSUblIQ6UWkCXuRgYxubWBBECCL6o8IVIVkhRYhWpit2HYwdFIQwvHvP/TFz595XozPnfadz3nM+H3hBd+bq8TnPc398de4744UAAAAdI+QCANA5Qi4AAJ0j5AIA0DlCLgAAnSPkAgDQOUIuAACdI+QCANA5Qi4AAJ0j5AIA0DlCLgAAnSPkAgDQOUIuAACdI+QCANA5Qi4AAJ0j5AIA0DlCbgfcf//94z/loV4a9ZrTuzTqpclZT+/SqJcmd71SCbkdsLCQd4zqpVGvOb1Lo16anPX0Lo16aXLXK5UudIAnbxr10uSsp3dp1EuTs57epVEvTe56pdKFDvDkTaNempz19C6Nemly1tO7NOqlyV2vVLrQAZ68adRLk7Oe3qVRL03OenqXRr00ueuVShc6wJM3jXppctbTuzTqpclZT+/SqJcmd71S6UIHePKmUS9Nznp6l0a9NDnr6V0a9dLkrlcqXWig+tUcbVrVgzn29aZLvbSlXvOld2lLvbSVs57epS310lbuejnWdhByG6gePFevXrUsy7Isy7LusKrctB2E3Aa2a1gAAKURcgsi5AIA1CPktkxsP8lkCbkAAPVUuSmWpyZrq0hrtxHbUzJZQi4AQD1VborlqcnaKtJaA0IuAEA925WbpLUGhFwAgHqE3IIIuQAA9Qi5BRFyAQDqEXILIuQCANQj5BZEyAUAqEfILYiQCwBQj5BbECEXAKAeIbcgQi4AQD1CbkGEXACAeoTcggi5AAD1CLkFEXIBAOoRcgvSppD70LfXFgBA2wi5BWlLyK2C7cJ/X1uCLgDQNkJuQdoScqcD7mQBALSJkFsQIRcAoB4htyBCLgBAPUJuQYRcAIB6hNyCCLkAAPUIuQURcgEA6hFyCyLkAgDUI+QWRMgFAKhHyC2IkAsAUI+QWxAhFwCgHiG3IEIuAEA9Qm5BhFwAgHqE3IIIuQAA9Qi5BRFyAQDqEXILIuQCANQj5BZEyAUAqEfILYiQCwBQj5BbECEXAKAeIbcgQi4AQD1CbkGEXACAeoTcggi5AAD1CLkFEXIBAOoRcgsi5AIA1CPkFkTIBQCoR8gtiJALAFCPkFsQIRcAoB4htyBCLgBAPUJuQYRcAIB6hNyCCLkAAPUIuQURcgEA6hFy57wfXj28HJaXq/ViODf+atT7r4bDw/uN1ovTd5753vLhVweV0wi5AAD1CLkzzr24GHbvPxrOnDkTjj56X3hwXXKddi68uLg77D96ZnjfM0cfDfc9eDi8OkmyZ74SPvXoqM5wnb8Wfjf+VlNCLgBAPULuOufCc/c9EJ78yQfDWx/85MnwwH3Pxa/mnnsu3PfAk2F81+rO4ckHPhW+cmZ089xz94UH/u7C6EYmQi4AQD1C7rT3vxs+t7A//GhyyfV3Pwr7Fz4XvhvbZ/DBxZmrs2fCVz61EA6+U/35/fDdzz0QnjuXeu12PSEXAKAeIXfa5eNhaeFgGObUoXfCwYWlcPzy+OYG3n/1y1NXdqvAuxS++FeTPblT2xjuYHUPb2QJuQAA9VS5KZanJmurdCrkvv/q4bC4e384OrmyO7wivBSee3O8H/fMt8NXFu/wQ2xjq3t4I0vIBQCop8pNsTw1WVulMyF3FHCXwpM/vBgm23PD766F82fOh2uruxWqOrfZ9rAJQi4AQD3blZvaGXJn9+DO7tGdsXoFd12gjam/7WEjQi4AQD1C7jofhH969FNh9wujjQXnXtgdPvXoP61doZ32/qvhr2av4E6cezGs+x27VVh+4LmQ+nNoQi4AQD1C7owPLh4Nj9734HBD8oP3PRqOXlyLsOdeXA6Hxz9BNgzAC4NAvLh+E/Pw1+p+cDH88MnPhQcnX1/8Svi235MLAPAfRsid80G4uLopef1V2g8ungnnx/sSqj/PbmCu1iQT/+7a+amvR672NiDkAgDUI+QWRMgFAKhHyC2IkAsAUI+QWxAhFwCgHiG3IEIuAEA9Qm5BhFwAgHqE3IIIuQAA9Qi5BRFyAQDqEXILIuQCANQj5BZEyAUAqEfILYiQCwBQj5BbECEXAKAeIbcgQi4AQD1CbkGEXACAeoTcggi5AAD1CLkFEXIBAOoRcgsi5AIA1CPkFkTIBQCoR8gtiJALAFCPkFsQIRcAoB4htyBCLgBAPUJuQYRcAIB6hNyCCLkAAPUIuQURcgEA6hFyCyLkAgDUI+QWRMgFAKhHyC2IkAsAUI+QWxAhFwCgHiG3IEIuAEA9Qm5BhFwAgHqE3IIIuQAA9Qi5BRFyAQDqEXILIuQCANQj5BZEyAUAqEfILYiQCwBQj5BbECEXAKAeIbcgQi4AQD1CbkGEXACAeoTcggi5AAD1CLlzrod3X1gJKyvVOhkujL8adf3d8MLwfqN1ct2dN1GnJiEXAKAeIXfGhZOPhcXHnwknT54MzyzvCXvXJ9cpF8LJxxbD48+cHN735DPLYc/eF8K718ffrV2nPiEXAKAeIXedC+Hre3aHJ16/Nrx17fUnwu49X49fhb3w9bBn9xNhfNfqzuGJ3feGZ39W3dhEnU0QcgEA6hFyp13/fvjCwuPhlY/Gtz96JTy+8IXw/fHV2XWunQ0n3/5lmNw1hJ+FZ+9dCAffGfxxM3U2QcgFAKhHyJ12+XhYWjgYqpw68k44uLAUjl8e39zA9XcPrV3ZTagz2d8bW0IuAEA9VW6K5anJ2iqdCrnX330hPLb4eHhmcmU3IeQO9/feZgm53M7K62sLABjkk0FuiuWpydoqnQm5o4C7FJ44ejZMtuemhNyNCLnEVMF2ehaCLgAM3hO3KTe1M+TO7p2d3Vs7Y/UK7sm3wy+n77PJOnUJucSYBwDME3LXuRa+s3xvWPzG6PcgXPjGYrh3+TtrV2inXX83/JfZK7irNlFnE4RcYswDAOYJuTOunX0mLO/ZO9yQvHfPcnjm7Fo0vXByJbww/kW4w+C6MAiyj63fxDz5dbgb1WlKyCXGPABgnpA751o4u7opef1V2mtnT4a3x/sSqj/PbmCu1lqWvX2dpoRcYswDAOYJuQURcokxDwCYJ+QWRMglxjwAYJ6QWxAhlxjzAIB5Qm5BhFxizAMA5gm5BRFyiTEPAJgn5BZEyCXGPABgnpBbECGXGPMAgHlCbkGEXGLMAwDmCbkFEXKJMQ8AmCfkFkTIJcY8AGCekFsQIZcY8wCAeUJuQYRcYswDAOYJuQURcokxDwCYJ+QWRMglxjwAYJ6QWxAhlxjzAIB5Qm5BhFxizAMA5gm5BRFyiTEPAJgn5BZEyCXGPABgnpBbECGXGPMAgHlCbkGEXGLMAwDmCbkFEXKJMQ8AmCfkFkTIJcY8AGCekFsQIZcY8wCAeUJuQYRcYswDAOYJuQURcokxDwCYJ+QWRMglxjwAYJ6QWxAhlxjzAIB5Qm5BhFxizAMA5gm5BRFyiTEPAJgn5BZEyCXGPABgnpBbECGXGPMAgHlCbkGEXGLMAwDmCbkFEXKJMQ8AmCfkFkTIJcY8AGCekFsQIZcY8wCAeUJuQYRcYswDAOYJuQURcokxDwCYJ+QWRMglxjwAYJ6QWxAhlxjzAIB5Qu6c34Sfv/y18LWvVevNcGn81Q395ufh5dn7Dr82qTNYL/98UDmNkEuMeQDAPCF3xqU3nwqf/9L+YTDd/9nPhv1v3inmXgpvPvX58JmFg+Gd8VeGzj0fPvPZUR0hl61kHgAwT8hd51L4+89+Jnz+H0fB9tI/DsLrZ//+tldzf/PzlwcBdn/40iAMz4bcS38/+Nrz58a38hByiTEPAJgn5E77zQ/Clxa+FH4wueQ6e3vG5R/8TXjqa18LL//j82FpXcj9TfjBlz4T/vrtzV+7Xb3yG1lCLjHmAQDzqtwUy1OTtVXaGXIvH58Jq++EgwtL4fjl8c0Zv7l0abQFYe7vnQvPf2Yp/PWxSSNfDj+vmXdnBzC9hFxizAMA5gm50zYZclfN/r3hFeDpkPs34fmnav4Q2waEXGLMAwDmbVdu6njIrX6zwvTV26rO7bc91CXkEmMeADBPyJ22yT25q+bC8ayaYfkOhFxizAMA5gm562zutyusmg25l94M637HbhWWP/PX4W1XctkC5gEA84TcGZfe3B8+O/79trO/J/fSm18LL8d+giwScp/6/JfC/snm5qeeD3/j9+SyRcwDAOYJuXMuhTcn4XTm/2J225Ab+T+ejX6HbrxOU0IuMeYBAPOE3IIIucSYBwDME3ILIuQSYx4AME/ILYiQS4x5AMA8IbcgQi4x5gEA84Tcggi5xJgHAMwTcgsi5BJjHgAwT8gtiJBLjHkAwDwhtyBCLjHmAQDzhNyCCLnEmAcAzBNyCyLkEmMeADBPyC2IkEuMeQDAPCG3IEIuMeYBAPOE3IIIucSYBwDME3IL0uWQ+z9+vrbYnK2YBwCUTsgtSFdDbhVsp2sJupsz3bvJAoC+E3IL0tWQm7te3+gfAMwTcgsi5BKjfwAwT8gtiJBLjP4BwDwhtyBCLjH6BwDzhNyCCLnE6B8AzBNyCyLkEqN/ADBPyC2IkEuM/gHAPCG3IEIuMfoHt+d/NAP9JeQWRMglRv8gzv9oBvpNyC2IkEuM/kGc5wb0m5BbECGXGP1L4+Ps7vLcgH4Tcgsi5BKjf835OLvbpmc7WUB/CLkFEXKJ0b/m9K7bzBf6TcgtiJBLjP41p3fdZr7Qb0JuQYRcYvSvOb3rNvOFfhNyCyLkEqN/zeldt5kv9JuQWxAhlxj9a07vus18od+E3IIIucToX3N6123mC/0m5BZEyCVG/5rTu24zX+g3IbcgQi4x+tec3nWb+UK/CbkFEXKJ0b/m9K7bzBf6TcgtiJBLjP41p3fdZr7Qb0JuQYRcYvSvOb3rNvOFfhNy53wUfvn2yXDyZLXOhmvjr27oo1+Gt+fu26DOHQi5xOhfc3rXbeYL/Sbkzrh29mh44gt7w8rKSti7Zzk8c/ZO8fRaOHv0ibB74WB4Z/yVyubr3JmQS4z+Nad33Wa+0G9C7jrXwneW7w2L37gwvHXhG4vh3uXv3PYq7Ee/fDucPPlMeHzPnnDvupC7uTp1CbnE6F9zetdt5gv9JuRO++iV8PjCF8L3r49vX/9++MLC4+GVj8a3Z1z+/qHw2MpKeOEbz4al6ZC7yTp1CbnE6F9zetdt5gv9JuROu3x8fVgd/OngwlI4fnl8c8b1CxfCMMfO/r1N1pk22sMbX0IuMfrXnN51m/lCv1W5KZanJmurdCLkrsoYcqs9vLdbQi4x+tec3nWb+UK/Vbkplqcma6sIuQ0IucToX3N6123mC/22XbmpnSF3du/s7N7a25kNtU3r3IGQS4z+Nad33Wa+0G9C7joXwtf37A5PvD76PQjXXn8i7N7z9cFX72Duym3DOncg5BKjf83pXbeZL/SbkDvjwsm9Yc/yM8MNyc8s7wl7T65F02tnT4a3fxn5FQlzIXfjOk0JucToX3N6123mC/0m5M65EE6ubko+ue7q64WTK+GFdyN7Dq6/G16Yue9GdZoSconRv+b0rtvMF/pNyC2IkEuM/jWnd91mvtBvQm5BhFxi9K85ves284V+E3ILIuQSo3/N6V23mS/0m5BbECGXGP1rTu+6zXyh34Tcggi5xOhfc3rXbeYL/SbkFkTIJUb/mtO7bjNf6DchtyBCLjH615zedZv5Qr8JuQURconRv+b0rtvMF/pNyC2IkEuM/jWnd91mvtBvQm5BhFxi9K85ves284V+E3ILIuQSo3/N6V23mS/0m5BbECGXGP1rTu+6zXyh34Tcggi5xOhfc3rXbeYL/SbkFkTIJUb/mtO7bjNf6DchtyBCLjH615zedZv5Qr8JuQURconRv+b0rtvMF/pNyC2IkEuM/jWnd91mvtBvQm5BhFxi9K85ves284V+E3ILIuQSo3/N6V23mS/0m5BbECGXGP1rTu+6zXyh34Tcggi5xOhfc3rXbeYL/SbkFkTIJUb/mtO7bjNf6DchtyBCLjH615zedZv5Qr8JuQURconRv+b0rtvMF/pNyC2IkEuM/jWnd91mvtBvQm5BhFxi9K85ves284V+E3ILIuQSo3/N6V23mS/0m5BbECGXGP1rTu+6zXyh34Tcggi5xOhfc3rXbeYL/SbkFkTIJUb/mtO7bjNf6DchtyBCLjH615zedZv5Qr8JuQURconRv+b0rtvMF/pNyC2IkEuM/jWnd91mvtBvQm5BhFxi9K85ves284V+E3ILIuQSo3/N6V23mS/0m5BbECGXGP1rTu+6zXyh34Tcggi5xOhfc3rXbeYL/SbkFkTIJUb/mtO7bjNf6Dchd85vw69/+np4/fVqvReuj78at8F9f/vr8NPh18frp78e3DuNkEuM/jWnd91mvtBvQu6M6++dCAf+/E/DF7/4xfCn9+8L/+2928fcDe/73t+GP7l/9L3h+q9vhn8ff6spIZcY/WtO77rNfKHfhNx1rofv7ft0ePDYPw9v/fOxB8On933vNldzN77v9e/tC5/+zz8d38pDyCVG/5rTu24zX+g3IXfab0+Fv1j48/APk0uu//4P4c8X/iKciu0z2PC+vw2n/uLT4T+9knrtdj0hlxj9a07vus18od+E3GmXj4elhYPhnfHNMPjTwYWlcPzy+Oa0De/7XvjbP1kKz/6vyZ7cn4Zf19yQu7qHN7KEXGL0rzm96zbzbZfX//fagv8IVW6K5anJ2irdDrm/+1HYP/jzF/9qOSwvV+vL4e9+eDF8MLrjhkb3jy8hlxj9a07vus182+PM1fVzqG7DVqtyUyxPTdZW6XbIff/VcHj5cHj1/dF3Rt/bH370u/HNhoRcYvSvOb3rNvNtD7NgO2xXbmpnyH3/u+Fz02F0eEX2c+G7q2F1ymbuu1FY3gQhlxj9a07vus1828Ms2A5C7jrnwnP3PRCe/MloY8EHP3kyPHDfc4Ovxmxw3w8uhjNnprYnVAH4U18M/xQNwPUJucToX3N6123m2x5mwXYQcmece/HBcN+jRwch9Uw4+uh94cEX1yLuBxfPhPPX1vYc3Pa+514Mi7v3h6ODr1ffO/PDvwtfPvxqSMy4Qi5R+tec3nWb+baHWbAdhNw558KLq5uSX1x3Fffci8vh8NpG24Hb3/f9Vw+Pvz7/vaaEXGL0rzm96zbzbQ+zYDsIuQURconRv+b0rtvMtz3Mgu0g5BZEyCVG/5rTu24z3/YwC7aDkFsQIZcY/WtO77rNfNvDLNgOQm5BhFxi9K85ves2820Ps2A7CLkFEXKJ0b/m9K7bzLc9zILtIOQWRMglRv+a07tuM9/2MAu2g5BbECGXGP1rTu+6zXzbYytmcebq2oIYIbcgQi4x+tec3nWb+bZH7llUwXa6lqBLjJBbECGXGP1rTu+6zXzbI/csctejm4Tcggi5xOhfc3rXbebbHrlnkbse3STkFkTIJUb/mtO7bjPf9sg9i9z16CYhtyBCLjH615zedZv5tkfuWeSuRzcJuQURconRv+b0rtvMtz1yzyJ3PbpJyC2IkEuM/jWnd91mvu2Rexa569FNQm5BhFxi9K85ves2822P3LPIXY9uEnILIuQSo3/N6V23mW975J5F7np0k5BbECGXGP1rTu+6zXzbI/csctejm4Tcggi5xOhfc3rXbebbHrlnkbse3STkFkTIJUb/mtO7bjPf9sg9i9z16CYhtyBCLjH615zedZv5tkfuWeSuRzcJuQURcokpoX9nrq6tNimhdzRnvu2Rexa569FNQm5BhFxi2t6/9/7P+mOrbrfF9HFNFt1hvu2Rexa56/VR9Vo8WV0l5BZEyCWm7f1r8/G1+dhIZ77tkXsWuev1TZsvPuQk5BZEyCWm7f1r8/G1+dhIZ77tkXsWuev1TV/6J+QWRMglpu39a/PxtfnYSGe+7ZF7Frnr9U1f+ifkFkTIJabt/Wvz8bX52Ehnvu2Rexa56/VNX/on5BZEyO2OnBv+296/Nh9fm4+NdObbHrlnkbte3/Slf0JuQYTcbsi94X+61mS1SZuPr83HRjrzbY/cs8hdr2/60j8htyBCbjfkPt/c9XJr8/G1+dhIZ77tkXsWuev1TV/6J+QWRMjthtznm7tebm0+vjYfG+nMN02bt1Xlrtc3femfkFsQIbcbcp9v7nq5tfn42nxspDPf5tq+rSp3vb7pS/+E3IIIud2Q+3xz18utzcfX5mMjnfk2l7t3ba/XN33pn5BbECG3G3Kfb+56ubX5+Np8bKQz3+Zy967t9fqmL/0Tcgsi5HZD7vPNXS+3Nh9fm4+NdObbXO7etb1e3/Slf0JuQYTcbsh9vrnr5dbm42vzsZHOfJvL3bu21+ubvvRPyC2IkLt9/JRxc20+vjYfG+nMt7ncvWt7vb7pS/+E3IIIudvDTxmnafPxtfnYSGe+zeXuXdvr9U1f+ifkFkTI3R65j6/t9XJr8/G1+dhIZ77N5e5d2+v1TV/6J+QWRMitr0/bC3LXy63Nx9fmY5vI+Vjum62Yb1/mkbt3ba/XN33pn5A752b4v5feC++9V61/Cx+Nvxq30X03U6ceIbee6s1nulbqm9F0rclK0fZ6ubX5+Np8bJXcj+W+me7dZKXo0zymz3OyUrS9Xt/0pX9C7oyP/u2N8Oyf/XF46KGHwh//wWPhf/7b7ePpRvfdTJ26hNx61Bt/I0H15j1Zqdp8fG0+tkrbj6/S5nq5+5e7XiXn+easlftc216vkrN/lTbXK6F/OQi563wUXnns98IfPf+z4a2fPf9H4fcee+U2V2E3uu9m6tQn5Naj3vgbDVUvUNO1Ul+wpmtNVoqcxzddZ7JS9Kl3lbbXm641WSly18t5vn3rXe56ufvX9nrTtSYrRe7jy0XInXbztfCXC38Wvv2v49v/+u3wZwt/GV67Ob49baP7bqbOjNH2hvgScutRb/yNhvpUL2etinrjbzSk3vgbDeSsVVFv/I2G1Bt/Y5tVuSmWpyZrq7Qz5F4+HpYWDoZ3xjfD4E8HF5bC8cvjm9M2uu9m6syotjfcbgm59ag3/kZDfaqXs1ZFvfE3GlJv/I0GctaqqDf+RkPqjb+xzarcFMtTk7VVhNwG2hJyH/r22oO4WtXtFOqNv9GQeuNvNNDmY6uoN/5GQ32q1+Zjq6g3/kZDfauXy3blJiG3gbaE3Er1AJ6sHNRLo15zOWtV1EujXnM5a1XUS6Pe9hNyp83unZ3dWztto/tups4mtCnkAgC0mZC7zs/Cs3/wUHj27Ph3JJx9Njz0B88Ovhqz0X03U6c+IRcAoB4hd8aZr/5h+P0vnwxXr14NJ7/8++EPv3pm/J0Qbvy/q+HfP7o1vrXxfTf6XlNCLgBAPULunDPhq/ffH+4frq8Obq0589X7w2Pfuzq+Vbn9fTf+XjNCLgBAPUJuQYRcAIB6hNyCCLkAAPUIuQURcgEA6hFyCyLkAgDUI+QWRMgFAKhHyC2IkAsAUI+QWxAhFwCgHiG3IEIuAEA9Qm5BhFwAgHqE3IIIuQAA9Qi5BRFyAQDqEXILIuQCANQj5BakGtbVq1cty7Isy7KsOywhtyD3339/q1b14Il9velSL22p13zpXdpSL23lrKd3aUu9tJW7Xo61HYTcDqgezDmpl0a95vQujXppctbTuzTqpcldr1S60AGevGnUS5Oznt6lUS9Nznp6l0a9NLnrlUoXOsCTN416aXLW07s06qXJWU/v0qiXJne9UulCB3jyplEvTc56epdGvTQ56+ldGvXS5K5XKl3oAE/eNOqlyVlP79KolyZnPb1Lo16a3PVKpQsd4MmbRr00OevpXRr10uSsp3dp1EuTu16pdKEDcv9qDvXSqNec3qVRL03OenqXRr00ueuVSsgFAKBzhFwAADpHyAUAoHOEXAAAOkfIBQCgc4RcAAA6R8gFAKBzhFwAADpHyGULfBJufvxhuHFrfLP1boUbH34cbn4yvtkit258GD78cLA+vjnoakt8cjN8/OGNQdcyyl4z12Nwix7LW9FDANYRctkCl8PxpYVw8J3xzdZ7JxxcWArHL49vtsat8MbKjnDX3feEe/adCFfGX912l4+HpYWDg65ldOVE2HfP0+H0+Ga6K+HEvnvC08kFt+ixvBU9hDr8A4seEXLZAkJuFp+8FQ4sPBy+2Zp0O9argCbk0jEee/SIkMvIrRujj8UnK+nz2XEweGOt5sepewGGVx/Wji/54+Pp873xRoaQW215mBxfhqsk1fmePxIWF1bCqRznO92/GzfTPoKfvElO9TDP8bVxu8JMyB2fc/LjOTlojM/v5vRcBye7bs4NTn48h5s3P16dbd7nbuq2oOq8BzVuTj9/U4c89dxNfW5UqvP9+Ea4MaiT/Fqw7nU5x5aqwbmuvq4k1pt9zs7e3qy5v9/0OTzz98aPv9XbVU8bbP/6ZPicmOrZuG7T58dwK9rMyQ3/G00ffOseK2urabmuEHIZGLzwnVoJO3fdE+65Z7B27QwLK68lvACOgsHKgUPh7qrePbvCw0fOJzzZRi/MD0+O7+67woFTKW8e68/37kMHwkpSyK1eVE+Fg5N6dx0Ip1L30FYf3w/Oc8fCzrBrUDPtY/f1/bv70LFwZDHh6uQwoA3eJN84PJrH4PGykjSPgexXl3JdgZ2qU72JnDow3D6y70Ti5fXk8x0/x44dD3urGQyeYztXToUP/2V8u3rsNHkOj2d77Pje1dkuHvlF2nNt+rm76+Fw5HzKY6U678Vw5MjB4fNict7Ng/jouXvgrrtHx3f4pbTnRqXq4eJKOPhIdXwpW3Cq16nR4221d/+Sujf/dHh69XVlX0h6GM8+hlMf01e+FZZ3rIQ3Jg+OT34Vji3dFZ7adAOvhG8t7wgrk0IXXwpLO3aEA2+NOvfJWwfCjuVvbXr715UT+8KunYPH3i9GdW/94khYGjxumr4WnH6qeo6+MfVc+CT86thi2Hm44SPm9NOjx8l47dq5EBZ27sqwZatsQi4Dgxe+wZNi9clw+nDYmRT6Rm/AOx+Z7CM9HQ4PnnCrLzqbdeuNsLJj6sUudf/mTL0rJx5JO9/qxXhxZ5i8Ng3rLR4Lv0p7N0p/05iInm9qyN0R7poU/PGhwZtm4nHmOtdVmUPuWzfDx8PAkRgMJpLPd/Y59uNwaMfU7WFgWAwvXRx+s77xbJe/NT7J1NkOt9ysPTdGry0HwjhvNDA+712T5//p8NRdO8Lipk90bPzcfWQy1NNPhbsGfUwOuYMeHvrx+HZj1TaqqRlWISbH3vxcz7XZOsl114fTT351LCw1CKOVK99aDjsOvDX8B8GtNw6E5UeWw9KwkaMg+XDDPWCnn7473HXgVLhx40Y4deCusDflxSAW6qfeR1JUV4mr47u77wl3QMhlZPzRy+gjjlOJVzbnA8aPD+0ICw3fOap/eS8sHR9UzWO+XuKe3OGL+2hbQZ7+jWV6M5o/31EgSgu5U3uFcxxnpnNdkzfkVldMH7lrafUqTrLk8509vzvdrin3bC++FBZ3HBo84iaqx16D8L1q/ryufPPhsDAONJs2d34N+zZttoeNVRcfdoWDpyavK5k+ek5+7I3N1slQdy2cVmF0ae0fW5t15Zvh4eGFhk/CWwcGszg9uD28anoxvJQUJK+EE4/sDCsrK1P/wGwqEurveqr5xZuxasvDMOC26YeVt5GQS/WsCB+fPxaWJx+LVR8BZg65F19aDDsaXtoYvollDLnz9XKE3NG2grWPizJc8cv0ZjR/vtULfcIb+Ra8ueU61zUZwsrQqE71hna6ugKetI1nSvL5zp7fnW7XlHu21ZXgxZcGj7iJ6rGXcpVz/ryG/4h7+JvN3tDnzq9h36ZlfSyPPmUbvqbk2BZUyXV8uR8rlSsnwiMPD8LprWqrwnJomnGrvh3eOfjH1K+qOtU/sqrbB8JbN98IKzsPJwTJ8RaSXalb5kaGn6oNw3diqJ+4dSOcP/Jw2CXgrhJyGV1tmbrycOtGniu5K6+N948NQvRrKwuNPyIafsS5eCSsXkQbXnVO+KGJmXqf3Hwt7XznPnaqjq9Fb0bR8014I9+KN7dc57oqQ1gZmq4zCBxZ9kUOJJ/v7Pnd6XZNuWdbXVFbmHpuVFtnkq5yjs5r9bVl8Cz7xZGEfYzj5+5rkxeTW7/Isyc3x2N59nXunYNhIUfd4fGlbBkZm5ltdSVyMcPxnT48eI6dOtJ4q8LE6cM7w4Fja1sefnxoKRw7dqDxxZbBGY73b+8NJ06fCHtz/OzFMHwPengzNdQPrP7MQM5fxVg+IZfB86zah7b2cftrh3YNbqd/pLjz4ZfC+arm+dEG/ebbg0Y/LHFg8rHd8AdZUq6Urq/3L8eXE69cV7+TdepjxeFV8QwvNLneLGfO9/xLDw/ON+FqWu4gVMl2rhMNQ96cmTrVc2XpSDif+rlx8vnOnt+dbteUfbYzz93kN+HRea2+tnw4+qGx5q8to+du9YOxw+N77WDYmWVPbobHcvWzB8Mf1MvVu7Hxfu2qbtrDeLQfemXd62iG8x7u257aJ93Ujw+FpcW1/bfVJ1qLi82vlt66cT4cWVrbhzv62Yv014IqjK8cGbynJW1/GATw11YG/wgazXX4eBmuHL+Ro2xCLgOjX5w/+ah934nTib9If/yL+J9e+2nP5J9GH/6w2doxJu+nn6q378SJ8HTy9oLBm/nq8WX64aTUH7CbNt2/pw+nbc+YPa4cx5nzXIcahrw548fy2smOniupD8Dk840f1+1v17Rls8313BjP9XDG15bB2a0+d/c9FQ6lPm5yPpbX/cR8pteVyWN4UDP9Ybxv9fhGr6M5zruaR4Y648fd6jkOe9m8h6efrh4f00F0/LhJbeLwhztTf+BsbabrV67HTLmEXOi62Y89kz8yLkHq3k/aKdc/Xm5nq+vDesNtHkn7hNmIkFuaYWCZ/jhievlogogr1f6xpfwfe7bU6Je2nworOxL3uNFCQi4dMX4vH/6gWOrVYG5LyC3Nuo/+ZpePJoib/lix64+T1XP1E8Yd1HAbRm1bXR/GVt/Lu3vBoQ2EXAAAOkfIBQCgc4RcAAA6R8gFAKBzhFwAADpHyAUAoHOEXAAAOkfIBQCgc4RcAAA6R8gFAKBzhFwAADpHyAUAoHOEXAAAOiaE/w9MMebRkAc3NAAAAABJRU5ErkJggg=="
 }
 },
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "![Rresult1.png](attachment:Rresult1.png)"
]
 },
 {
 "attachments": {
 "Rresult2.png": {
 "image/png": "iVBORw0KGgoAAAANSUhEUgAAAq8AAAGaCAYAAAAhPqoeAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACknSURBVHhe7d1hiF3neSfwAYHAdR1/KCmEUhSKyZe0+ENApINBuDjaElJMDYVtTJllBUKgBnVZsiEpwWHTotTEtZqNlRa6TShbHJxgYZt4U0FRQwjxhwg3BGdDHCNah6zJphg7KAhhePeeO+fOXM2MpFfnfeR57jm/HxzI1R3/+57nnHvuX/eeUdcKAACsCOUVAICVobwCALAylFcAAFaG8goAwMpQXgEAWBnKKwAAK0N5BQBgZSivAACsDOUVAICVobwCALAylFcAAFaG8goAwMpQXgEAWBnKKwAAK0N5BQBgZSivAACsDOUVAICVobwCALAylFcAAFaG8goAwMpQXgEAWBnKKwAAK0N5BQBgZSivyRw6dKj/XzHktZE3nNm1kdcmMs/s2shrE503BsprMmtrsYdEXht5w5ldG3ltIvPMro28NtF5Y2AiyXhRtpHXJjLP7NrIaxOZZ3Zt5LWJzhsDE0nGi7KNvDaReWbXRl6byDyzayOvTXTeGJhIMl6UbeS1icwzuzby2kTmmV0beW2i88bARJLxomwjr01kntm1kdcmMs/s2shrE503BiaSjBdlG3ltIvPMro28NpF5ZtdGXpvovDGY/ES6f4Ii09adpHv9+dBNXtsmb/hmdm2bvLYtMs/s2jZ5bVt0XsS23yZfXruT4tKlSzabzWaz2Wy2m2xdb9pvymuCgwAAsAqU1wSUVwCAOsprAsorAEAd5TUB5RUAoI7ymoDyCgBQR3lNQHkFAKijvCagvAIA1FFeE1BeAQDqKK8JKK8AAHWU1wSUVwCAOsprAsorAEAd5TUB5RUAoI7ymoDyCgBQR3lNQHkFAKijvCagvAIA1FFeE1BeAQDqKK8JZCqv935hewMAyEZ5TSBLee0K69qntjcFFgDIRnlNIEt5XS6uiw0AIBPlNQHlFQCgjvKagPIKAFBHeU1AeQUAqKO8JqC8AgDUUV4TUF4BAOoorwkorwAAdZTXBJRXAIA6ymsCyisAQB3lNQHlFQCgjvKagPIKAFBHeU1AeQUAqKO8JqC8AgDUUV4TUF4BAOoorwkorwAAdZTXBJRXAIA6ymsCyisAQB3lNQHlFQCgjvKagPIKAFBHeU1AeQUAqKO8JqC8AgDUUV4TUF4BAOoorwkorwAAdZTXBJRXAIA6ymsCyisAQB3lNQHlFQCgjvKagPIKAFBHeU1AeQUAqKO8JqC8AgDUUV4TUF4BAOoorwkorwAAdZTXBJRXAIA6ymsCyisAQJ0Jldcfl6+cPFKOHOm2z5YX+j+9oR9/pZzc+bPzP1vkzLaTX5klt1FeAQDqTKa8vvDZw+Wehz9TLly4UD7zoXeV3/rszerrC+Wzh+8p71g7Xp7v/2Tuwp+Ud3xoM2e+XXy1/KJ/aijlFQCgzkTK6wvlE+96b/njf/rZ/NHP/umPy3vf9Ynrfvr646+cLEeO/Fb5wIc+VN67o7y+8Il3lff++Xf7RzGUVwCAOtMorz/+m/KBtYfLVxcfkf7iq+XhtQ+Uv7nO9/0vf/UL5X9duFAu/tOfl/VryuuPy9984L3lEy+0ftZ6LeUVAKDONMrry2d2lNDny/G19XLm5f7hDr/42c82bwXY9d9dKH/yjvXy4H9e3PN6snyl8obXrXtk99iUVwCAOl1v2qtPLba3Q7ryumXnfzf/BHe9fOLZ/n7XC18of3K47pe/tu6R3WNTXgEA6nS9aa8+tdjeDqtTXn/xarl44WJ5deuugS7n+rcf1FJeAQDqZOhNt38FO+9x3XkP7PXsKr07VZbgm1BeAQDqTKO8lp+Vv//QO8o9n978gv+FT99T3vGhv5/96U3sLK8vfLZc82/EdiX4vZ8orb+/pbwCANSZSHkt5bUXP1mOHnp/efDBB8v7Dx0tn3zxtf6ZUr7zxIPlY8/+pH+0ZGd5fe3FcvbYfyjvn2V0OQ8+8F/L49/4Ufl5//RQyisAQJ3JlNdZ8ywvnjtXzs23F2ePtr324rnyjR/tUUF//qPyjR0/+/MffaPP2J0zlPIKAFBnQuU1L+UVAKCO8pqA8goAUEd5TUB5BQCoo7wmoLwCANRRXhNQXgEA6iivCSivAAB1lNcElFcAgDrKawLKKwBAHeU1AeUVAKCO8pqA8goAUEd5TUB5BQCoo7wmoLwCANRRXhNQXgEA6iivCSivAAB1lNcElFcAgDrKawLKKwBAHeU1AeUVAKCO8pqA8goAUEd5TUB5BQCoo7wmoLwCANRRXhNQXgEA6iivCSivAAB1lNcElFcAgDrKawLKKwBAHeU1AeUVAKCO8pqA8goAUEd5TUB5BQCoo7wmoLwCANRRXhNQXgEA6iivCSivAAB1lNcElFcAgDrKawLKKwBAHeU1AeUVAKCO8pqA8goAUEd5TUB5BQCoo7wmoLwCANRRXhNQXgEA6iivCSivAAB1lNcElFcAgDrKawLKKwBAHeU1AeUVAKCO8pqA8goAUEd5TUB5BQCoo7wmoLwCANRRXhNQXgEA6iivCSivAAB1lNcElFcAgDrKawLKKwBAHeU1AeUVAKCO8pqA8goAUEd5TUB5BcZu49z2BtBCeU1AeQXGrCusy9cVBRZoobwmoLwCY+baAkRSXhNQXoExc20BIimvCSivwJi5tgCRlNcElFdgzFxbgEjKawLKKzBmri1AJOU1AeUVGDPXFiCS8pqA8gqMmWsLEEl5TUB5BcbMtQWIpLwmoLwCY+baAkRSXhNQXoExc20BIimvCSivwJi5tgCRlNcElFdgzFxbgEjKawLKKzBmri1AJOU1AeUVGDPXFiCS8pqA8gqMmWsLEEl5TUB5BcbMtQWIpLwmoLwCY+baAkRSXhNQXoExc20BIimvCSivwJi5tgCRJlRef1r++cypcupUt325vNT/6Q399J/LmV0/OyDnJpRXYMxcW4BIkymvL315oxx56Hh5/PHHy/Hf/s3y4JdvVjtfKl/eOFLetXa8PN//SefWc25OeQXGzLUFiDSR8vpS+YvffHf5/ScvzR9devL3y7t/8y+u+6npT//5TDl16sHye7/92+Xd15TXW8uppbwCY+baAkSaRnn96ZfK7609VP7h9f7x6/9QHlr7vfKln/aPd3j5Hx4pf/r44+XLT36yrC+X11vMWbZ5m8Hem/IKjJlrCxCp60179anF9na4/c3t5TPXltDZ/zq+tl7OvNw/3OH1S5fKvJ/u/O9uMWdZd5vB9TblFRgz1xYgUteb9upTi+3tkK68bgksrzeivAJj5toCRMrQm5RX5RUYMdeWNqf+9/YGzK4hkyivO+9N3Xnv6vXsLKtDc25CeQXGzLVluK6wLs9NgYXZa2ES5bX8sPzl+369/O6Xfrj56Eu/W379fX85+9Ob2PVJ68Ccm1BegTFzbRnO7GC3iZTXWdF89uHyvvc9XB555JHy8PveVx5+drty/vDZR8rffvvf+0dLdpXXG+cMpbwCY+baMpzZwW6TKa/dp6bPzgpnVzofeeTZaz4tvW55/fdvl7/d8bM3yhlKeQXGzLVlOLOD3SZUXvNSXoExc20ZzuxgN+U1AeUVGDPXluHMDnZTXhNQXoExc20ZzuxgN+U1AeUVGDPXluHMDnZTXhNQXoExc20ZzuxgN+U1AeUVGDPXluHMDnZTXhNQXoExc20ZzuxgN+U1AeUVGDPXluHMDnZTXhNQXoExc20ZzuxgN+U1AeUVNj1yYXtjPFxbhjM72E15TUB5hc3CunzuKbDjsXxcFxt1zA52U14TUF7B+Tdmju1wZge7Ka8JKK/g/Bszx3Y4s4PdlNcElFdw/o2ZYzuc2cFuymsCyis4/8bMsR3O7GA35TUB5RWcf2Pm2A5ndrCb8pqA8grOvzFzbIczO9hNeU1AeQXn35g5tsOZHeymvCagvILzb8wc2+HMDnZTXhNQXsH5N2aO7XBmB7sprwkor+D8GzPHdjizg92U1wSUV3D+jZljO5zZwW7KawLKKzj/xsyxHW4VZvfIhe0N3g7KawLKKzj/xsyxHS777LrCurw2BZa3g/KagPIKzr8xc2yHyz677OtjnJTXBJRXcP6NmWM7XPbZZV8f46S8JqC8gvNvzBzb4W7H7B7/9vbW6nasD25GeU1AeQXn35g5tsNFz64rrMtZrQV2OWuxwe2mvCagvILzb8wc2+GiZ5c9D2oorwkor+D8GzPHdrjo2WXPgxrKawLKKzj/xsyxHS56dtnzoIbymoDyCs6/MXNsh4ueXfY8qKG8JqC8gvNvzBzb4aJnlz0PaiivCSiv4PwbM8d2uOjZZc+DGsprAsorOP/GzLEdLnp22fOghvKagPIKzr8xc2yHi55d9jyoobwmoLyC82/MHNvhomeXPQ9qKK8JKK/g/Bszx3a46Nllz4MaymsCyis4/8bMsR0uenbZ86CG8pqA8grOvzFzbIeLnl32PKihvCagvILzb8wc2+GiZ5c9D2oorwkor+D8GzPHdrjo2WXPgxrKawLKKzj/xsyxHS56dtnzoIbymoDyCs6/MXNsh4ueXfY8qKG8JqC8gvNvzBzb4aJnlz0PaiivCSiv4PwbM8d2uOjZZc+DGsprAsorOP/GzLEdLnp22fOghvKagPIKzr8xc2yHi55d9jyoobwmoLyC82/MHNvhomeXPQ9qKK8JKK/g/Bszx3a46Nllz4MaymsCyut4PP7t7Y1b4/wbL8d2uOjZZc+DGsprAsrrOHSFdXl2CuytWZ7dYmMcHNvhomeXPQ9qKK8JKK/jYH5tzG+8HNvhomeXPQ9qKK8JKK/jYH5tzG+8HNvhomeXPQ9qKK8JKK/jYH5tzG+8HNvhomeXPQ9qKK8JKK/jYH5tzG+8HNvhomeXPQ9qKK8JKK/jYH5tzG+8HNvhomeXPQ9qKK8JKK/jYH5tzG+8HNvhomeXPQ9qKK8JKK/jYH5tzK/NF1/c3rJxbIeLnl32PKihvCagvI6D+bUxv+G6wro8t2wFdnlti4060bPLngc1lNcElNdxML825jdc9tllX19m0bPLngc1lNcElNdxML825jdc9tllX19m0bPLngc1lNcElNdxML825jdc9tllX19m0bPLngc1lNcElNdxML825jdc9tllX19m0bPLngc1lNcElNdxML825jdc9tllX19m0bPLngc1lNcElNdxML825jdc9tllX19m0bPLngc1lNcElNdxML825jdc9tllX19m0bPLngc1lNcElNdxML825jdc9tllX19m0bPLngc1lNcElNdxML825jdc9tllX19m0bPLngc1lNcElNdxML825jdc9tllX19m0bPLngc1JlRe3ygvfe2L5Ytf7LZvlVf7P93bDX72jZfK1+Z/3m9fe2n2022U13EwvzbmN1z22WVfX2bRs8ueBzUmU15f/dZnyoc/+EDZ2NgoD7znSPkv37p+fb3hz178VLnnPZvPzbdP/2N5rX9qKOV1HMyvjfkNl3122deXWfTssudBjYmU11fLXx95Zzn8V9+dP/ruXx0u7zzy19f59PXGP/vqXx8p7/zoN/tHMZTXcTC/NuY3XPbZZV9fZtGzy54HNaZRXt94svzB2gfL3y0+In3t78oH1/6gPLnX9/03/Nk3ypN/8M7y4a/e+metW7cZ7LEpr+Ngfm3Mb7jss8u+vsyiZ5c9D2p0vWmvPrXY3g63v7m9fKasrx0vz/cPy+x/HV9bL2de7h8uu+HPXiyfume9nPq7xYC+Vl6qvOF16zaDPTbldRzMr435DZd9dtnXl1n07LLnQY2uN+3Vpxbb22F1yuv8U9n18uH/thjQifKpz9zsl79uTnkdB/NrY37DZZ9d9vVlFj277HlQI0NvWp3y+to/lk9vfLr849ZdA91z17n94BYor+Ngfm3Mb7jss8u+vsyiZ5c9D2pMo7zuvMd1532ty27lZ29Ugm+B8joO5tfG/IbLPrvs68ssenbZ86DGNMpr+W75s/fcUz58bvML/lfPfbjc854/m/3pXm7ws69+q1zz7752xfadHy4Dfn/rGsrrOJhfG/MbLvvssq8vs+jZZc+DGhMpr6V854n3l0NHP1nOnTtXPnn0UHn/E9/pnynltRfPlW/86Of9oxv87HeeKA/81n8sn5z9effcubP/vfynjz1bfrL57GDK6ziYXxvzGy777LKvL7Po2WXPgxqTKa+z5lmeePDB8uB8e2L2aNt3nniwfOzZ5Qp6/Z/9ybMf6/9893NDKa/jYH5tzG+47LPLvr7MomeXPQ9qTKi85qW8joP5tTG/4bLPLvv6MoueXfY8qKG8JqC8joP5tTG/4bLPLvv6MoueXfY8qKG8JqC8joP5tTG/4bLPLvv6MoueXfY8qKG8JqC8joP5tTG/4bLPLvv6MoueXfY8qKG8JqC8joP5tTG/4bLPLvv6MoueXfY8qKG8JqC8joP5tTG/4bLPLvv6MoueXfY8qKG8JqC8joP5tTG/4bLPLvv6MoueXfY8qKG8JqC8joP5tTG/4W7H7M79n+2t1e1Y31REzy57HtRQXhNQXsfB/NqY33DRs+sK63JWa4Fdzlps1ImeXfY8qKG8JqC8joP5tTG/4aJnlz1vSqJnlz0PaiivCSiv42B+bcxvuOjZZc+bkujZZc+DGsprAsrrOJhfG/MbLnp22fOmJHp22fOghvKagPI6DubXxvyGi55d9rwpiZ5d9jyoobwmoLyOg/m1Mb/homeXPW9KomeXPQ9qKK8JKK/jYH5tzG+46Nllz5uS6Nllz4MaymsCyus4mF8b8xsuenbZ86YkenbZ81ZB5L+BzDDKawLK6ziYXxvzGy56dtnzpiR6dtnzsov+N5AZRnlNQHndP5F/g57i/CKZ33DRs8ueNyXRs8uel93U9jcr5TUB5XV/RP8NejlrsVHP/IaLnl32vCmJnl32vOymtr9ZKa8JKK/7I3p/o/Nuh8hPmqOtwvyyip5d9rwpiZ5d9rzspra/WSmvCSiv+yN6f6PzokV/0hxteW2LjTrRs8ueNyXRs8uel93U9jcr5TUB5XV/RO9vdF406xuv6Nllz5uS6Nllz8tuavublfKagPK6P6L3NzovmvWNV/TssudNSfTssudlN7X9zUp5TUB53R/R+xudF836xit6dtnzpiR6dtnzspva/malvCagvO6P6P2NzotmfeMVPbvseVMSPbvsedlNbX+zUl4TUF73R/T+RudFs77xip5d9rwpiZ5d9rzspra/WSmvCSiv+yN6f6PzolnfeEXPLnvelETPLntedlPb36yU1wSU1/0Rvb/RedGsb7yiZ5c9b0qiZ5c9L7up7W9WymsCyuv+iN7f6Lxo1jde0bPLnjcl0bPLnpfd1PY3K+U1AeV1f0Tvb3ReNOsbr+jZZc+bkujZZc/Lbmr7m5XymoDyuj+i9zc6L5r1jVf07LLnTUn07LLnZTe1/c1KeU1Aed0f0fsbnRfN+sYrenbZ86YkenbZ87Kb2v5mpbwmoLzuj+j9jc6LZn3jFT277HlTEj277HnZTW1/s1JeE1Be6124tL21it7f6Lxo1jde0bPLnjcl0bPLnpfd1PY3K+U1AeW1TldYl9fWWmCXsxZbi+i8aNY3XtGzy543JdGzy56X3dT2NyvlNQHltU70+rLnRbO+8YqeXfa8KYmeXfa87Ka2v1kprwkor3Wi15c9L5r1jVf07LLnTUn07LLnZTe1/c1KeU1Aea0Tvb7sedGsb7yiZ5c973aIvJ8+UvTssudlN7X9zUp5TUB5rRO9vux50axvvKJnlz0vWvT99JGW17XYWmTPy25q+5uV8pqA8lonen3Z86JZ33hFzy57XrTM64teW/a87Ka2v1kprwkor3Wi15c9L5r1jVf07LLnRcu8vui1Zc/Lbmr7m5XymoDyWid6fdnzolnfeEXPLntetMzri15b9rzspra/WSmvCSivdaLXlz0vmvWNV/TssudFy7y+6LVlz8tuavublfKagPJaJ3p92fOiWd94Rc8ue160zOuLXlv2vOymtr9ZKa8JKK91oteXPS+a9Y1X9Oyy50XLvL7otWXPy25q+5uV8pqA8lonen3Z86JZ33hFzy57XrTM64teW/a87Ka2v1kprwkor3Wi15c9L5r1jVf07LLnRcu8vui1Zc/Lbmr7m5XymoDyWid6fdnzolnfeEXPLntetMzri15b9rzspra/WSmvCSivdaLXlz0vmvWNV/TssudFy7y+6LVlz8tuavublfKagPJaJ3p92fOiWd94Rc8ue160zOuLXlv2vOymtr9ZKa8JKK91oteXPS+a9eXS/f/PX2ytomeXPS9a5vVFry173u2Q+bXGMMprAsprnej1Zc+LZn15dG+iy/vZ+qa6nLXYWmTPi5Z5fdFry54XLftrjWGU1wSU1zrR68ueF8368oje16nlRcu8vui1Zc+LFr2+6DyGUV4TUF7rRK8ve16027G+F//v9tbqdqwvq+h9nVpetMzri15b9rxo0euLzmMY5TUB5bVO9Pqy50WLXl9XWJezWgvsctZiG6vofZ1aXrTM64teW/a8aNHri867HSI/VMhKeU1Aea0Tvb7sedGi15c9L7PofZ1aXrTM64teW/a8aNHri86LFv2hQlbKawLKa53o9WXPixa9vux5mUXv69TyomVeX/TasudFi15fdF607OuLorwmoLzWiV5f9rxo0evLnpdZ9L5OLS9a5vVFry17XrTo9UXnRcu+vijKawLKa53o9WXPixa9vux5mUXv69TyomVeX/TasudFi15fdF607OuLorwmoLzWiV5f9rxo0evLnpdZ9L5OLS9a5vVFry17XifyF46i1xedFy37+qIorwkor3Wi15c9L1r0+rLnZRa9r1PLi5Z5fdFry54X/QtHy1mLrUV0XrTs64uivCagvNaJXl/2vGjR68uel1n0vk4tL1rm9UWvTV7/xEDRedGyry+K8pqA8lonen3Z86JFry97XmbR+zq1vGiZ1xe9Nnn9EwNF50XLvr4oymsCymud6PVlz4sWvb7seZlF7+vU8qJlXl/02uR1UxhukbG8ZZJ9fVGU1wSU1zrR68ueFy16fdnzMove16nlRcu8vui1yeufGCg6L1r29UVRXhNQXutEry97XrTo9WXPizal34DOnhct8/qi1yavf2Kg6Lxo2dcXRXlNQHmtE72+7HnRoteXPS/S1H4DOntetMzri16bvP6JgaLzomVfXxTlNQHltU70+rLnRYteX/a8SNFrk9c/kUTm9UWvTV7/xEDRedGyry+K8pqA8lonen3Z86JFry97XqTotcnrn0jidqwv6jaT6LXJ658YKDov2u1YX9S5HEl5TUB5rRO9vux50aLXlz0vUvTa5PVPJBG9vu5Nfjmr5U1/OWextZDXPzFQdF4nshxGry/yXI40ofJ6pfz0hy+WF1/stn8rb/R/urcb/eyt5NRRXutEry97XrTo9WXPixS9Nnn9E0lEry8yLzKrI69/YqDovOhyuJy12FpE50WZTHl949+eKR/9nd8o9957b/mNX3mo/I9/u37tvNHP3kpOrTGX1+6FuNhaRa8ve17H/IYzu+Gy53Wmcnwjszry+icGktc/sc8mUl7fKE8+9Evl1/70m/NH3/zTXyu/9NCT1/nU9EY/eys59cZaXrs3leWs1jeZ5azF1iJ7nvn1Twxgdv0TA2XPm9LxjczqyOufGEhe/8Q+m0Z5vfJ0+aO13ylf+Nf+8b9+ofzO2h+Vp6/0j5fd6GdvJWeHzdsM9t7GWl7l9U8MJK9/YoDIrI68/omB5PVPDBCZ1ZHXPzGQvP6Jfdb1pr361GJ7O9z+5vbymbK+drw83z8ss/91fG29nHm5f7jsRj97Kzk7dLcZXG9TXuvI658YaEp5kVkdef0TA8nrnxggMqsjr39iIHn9E/us60179anF9naYRHm9kSzl9d4vbJ+c3dY9biGvf2Igef0TA2ReW0de/8RAU8rLvLaOvG4Kw00tL0qG3qS8Jimvne7EXGwR5LWRN1xkVkdeG3nDRWZ15LWRt/+mUV533pu6897VZTf62VvJuQWZyisAQGbTKK/lm+Wjv3Jv+ei3+n8z4FsfLff+ykdnf7qXG/3sreTUU14BAOpMpLyWcuHjv1p++Q+/WC5dulS++Ie/XH714xf6Z0q5/P8ulZ+8cbV/dOOfvdFzQymvAAB1JlNeZ7WzfPzQoXJovn189mjbhY8fKg/9z0v9o871f/bGzw2jvAIA1JlQec1LeQUAqKO8JqC8AgDUUV4TUF4BAOoorwkorwAAdZTXBJRXAIA6ymsCyisAQB3lNQHlFQCgjvKagPIKAFBHeU1AeQUAqKO8JqC8AgDUUV4TUF4BAOoorwkorwAAdZTXBLqDcOnSJZvNZrPZbDbbTTblNYFDhw6l2rqTYq8/H7rJa9vkDd/Mrm2T17ZF5pld2yavbYvOi9j2m+/Mk+lO0kjy2sgbzuzayGsTmWd2beS1ic4bAxNJxouyjbw2kXlm10Zem8g8s2sjr0103hiYSDJelG3ktYnMM7s28tpE5pldG3ltovPGwESS8aJsI69NZJ7ZtZHXJjLP7NrIaxOdNwYmkowXZRt5bSLzzK6NvDaReWbXRl6b6LwxMJFkvCjbyGsTmWd2beS1icwzuzby2kTnjYGJJBP9T1DIayNvOLNrI69NZJ7ZtZHXJjpvDJRXAABWhvIKAMDKUF4BAFgZyisAACtDeQUAYGUorwAArAzlFQCAlaG8AgCwMpRXbuKtcuXN18vlq/3D9K6Wy6+/Wa681T9M5Orl18vrr8+2N6/MpprEW1fKm69fnk0tUHhm1Dl4m87l2zFDAK5LeeUmXi5n1tfK8ef7h+k9X46vrZczL/cP07hantk4UO646+5y99Gz5ZX+T/fdy2fK+trx2dQCvXK2HL37VDnfP2z3Sjl79O5yqjnwNp3Lt2OGUMNfnJgo5ZWbUF5DvPVcObZ2X/lcmtbam1TxUl4ZGeceE6W8jtHVy5tfTy+2pu9J+zf8Z7Yz32z9Tn7+acH2+pq/xl3e38vPBJTX7taDxfoCPtXo9vfi6XJ4baM8FbG/y/O7fKXtq/DFm9/SDGPWl/G2gR3ltd/n5vO5uUD0+3dl+bjOdvaa4zxg5/vjcOXKm1vHNva123p7Trffs4wry6/f1oO89NptfW10uv1983K5PMtpvhZcc12OuLVptq9b15XGvJ2v2Z2Pb9Wu/37oa3jHf9eff1uPu5kOuA3rrflrYmlmfe7Q18f8lrAdOzf/vzH05LvmXNnehsaNkfI6OrML2lMb5eCdd5e7755tdx4saxtPN1zYNt/wN46dKHd1eXffWe47fbHhRbR5wb1vsb677ijHnmp5U7h2f+86caxsNJXX7mL5VDm+yLvjWHmq9R7V7mv02X4eWDtY7pxltn39fe387jrxaDl9uOHTxHnxmr35PXNy83jMzpeNpuMxE/5pUNQnpks53ZvDU8fmt3EcPdv4cXjz/vavsUfPlAe6YzB7jR3ceKq8/i/94+7cGfIa7o/to2ce2Dq2h09/r+21tvzavfO+cvpiy7nS7ffhcvr08fnrYrHfwwv25mv32B13ba7v5GNtr41ON8PDG+X4/d36Wm6F6a5Tm+fb1uz+pfXe9/Pl1NZ15WhpOo13nsOt5/Qrny9HDmyUZxYnx1vfL4+u31E+cssDfKV8/siBsrEI+sFjZf3AgXLsuc3JvfXcsXLgyOdv+TasV84eLXcenJ1739vMvfq902V9dt4MvRac/0j3Gn1m6bXwVvn+o4fLwZMDz5jzpzbPk3678+BaWTt4Z8CtU+OhvI7O7II2O9m3TvLzJ8vBpjK3+cZ68P7FfZrny8nZC2nrYnKrrj5TNg4sXcRa74/ckffK2fvb9re7yB4+WBbXnHne4UfL99veZdrfDBb23N/W8nqg3LEI/PqJ2Zth4zqj9nVLcHl97kp5c14kGt/wF5r3d+dr7OvlxIGlx/MicLg89oP5k/X6Y3vk8/1Oth7b+a0v26+NzWvLsdL3iAH6/b5z8fo/Xz5yx4Fy+JZ3tNe/du9fHNTzHyl3zObYXF5nMzzx9f7xYN3tTEvHsCsnEfe+R73WduY0515bOt/6/qNlfUDJ7Lzy+SPlwLHn5kX/6jPHypH7j5T1+SA3C+J9A+/FOn/qrnLHsafK5cuXy1PH7igPtFwM9irrS+8jLbpPdbv13aW5XkN5HaP+K5DNrxqeavwkcndx+PqJA2Vt4DtC9zfltfUzs9QYu/Ma73mdX7Q3v96PmV8v6E1m9/5uFp228rp0L27EOoP2dVtsee0+4bz/jvWtT12aNe/vzv272eNK0cf2B4+VwwdOzM64he7cG1Cqt+zer1c+d19Z64vKLdu1fwPntmznDAfrPlS4sxx/anFdCfoKuPnc6+3MCcjdLp1dyVzf/kvUrXrlc+W++QcIb5Xnjs2OxfnZ4/mnnD8ojzUVxFfK2fsPlo2NjaW/OA61R1m/4yPDP5TpdbcezItrpl/yTUJ5HZuuuF58tBxZfD3VfRUXXF5/8NjhcmDgRxHzN6fA8ro7L6K8bn69v/21TcAndEFvMrv3t7uAN7xB34Y3rah93RZQQuY2c7o3qvPdJ9ZNt9Msad7fnft3s8eVoo9t98nt4cdmZ9xCd+61fCq5e7/mfzm773PD3qh37d/AuS0LPZc3vxWbX1Mibs/pRK0v+lzpvHK23H/frHRe7W4ZOFKGdtdubicPzv6S9P0up/vLU/f4WHnuyjNl4+DJhoLY38pxZ+uta5vm34LNS3VjWV+4erlcPH1fuVNx3ZPyOjbdpyNLnxRcvRzzyevG0/39WbNy/PTG2uCvauZfNR4+XbY+9Jp/StzwywY78t668nTb/u76+qdbX6I3mT33t+EN+na8aUXt65aAEjK3nDMrEiH3Hc407+/O/bvZ40rRx7b7BGxt6bXR3cLS9Knk5n5tXVtmr7LvnW64T7B/7T69uJhc/V7MPa8R5/LO69zzx8taRO58fS23bvR2HNvuk8PDAes7f3L2Gnvq9OBbBhbOnzxYjj26fevB10+sl0cfPTb4Q5TZHvb3Rz9Qzp4/Wx6I+N2GeamezfBKa1mf2bonP/KfHBwX5XVs5vd5bX/t/fSJO2eP27/aO3jfY+Vil3lx88b24bffbP6SwbHF12fzXwBp+WTz2rx/OXOk8ZPm7t8UXfp6b/4pdsAFJOpNcMf+Xnzsvtn+Nnz6FV1wOmH7ujCwvO2yI6d7rayfLhdbv79t3t+d+3ezx5XCj+2O127zm+vmfm1dW17f/GWr4deWzddu9wul8/U9fbwcDLnnNeBc7u7tn/+CW9Tsev390F1u22m8eb/xxjXX0YD9nt8XvXQf8lBfP1HWD2/f39p9A3X48PBPN69evlhOr2/f57r5uw3t14KuZG+cnr2nNd2GMCvWT2/M/nKzeVzn58t8i/gXKsZDeR2dzX/QffGV99Gz5xv/gff+H4g/tf3bj82/nT3/Ja3tNTbfh76Ud/Ts2XKq+Wv+2Zv01vqCfqmn9RfTli3P79TJttskdq4rYp2R+zo3sLzt0p/L2zu7+VppPQGb93fvdV3/caXbdmyjXhv9cT0ZeG2Z7d3Wa/foR8qJ1vMm8ly+5jfIg64ri3N4ltl+Gh/dWt/mdTRiv7vjEZDTn3db+zif5fAZnj/VnR/LBbM/b1qHOP+lyNZf1No+ptduUefMOCivsEp2fv3Y/NXtKmi9t5Kcov5Scj23Ox+uNb/douk+XGopr/tpXkSWvxZY3nxFwB5e6e7PWo//+jGpzX9M/KmycaDxHjISUl4Zif69fP4LVq2f3lJFed1P13wFt3PzFQF7W/56b+znyda++o3bERp4O0S1250Pva338vF+kJCN8goAwMpQXgEAWBnKKwAAK0N5BQBgZSivAACsDOUVAICVobwCALAylFcAAFaG8goAwMpQXgEAWBnKKwAAK0N5BQBgZSivAACsDOUVAICVobwCALAylFcAAFaG8goAwMpQXgEAWBnKKwAAK0N5BQBgZSivAACsDOUVAICVobwCALAylFcAAFaG8goAwMpQXgEAWBnKKwAAK0N5BQBgRZTy/wHK10EOmswR0QAAAABJRU5ErkJggg=="
 }
 },
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "![Rresult2.png](attachment:Rresult2.png)"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "#### Frequency analysis"
]
 },
 {
 "cell_type": "code",
 "execution_count": 105,
 "metadata": {
 "scrolled": true
 },
 "outputs": [
 {
 "data": {
 "text/plain": [
 "<AxesSubplot:>"
]
 },
 "execution_count": 105,
 "metadata": {},
 "output_type": "execute_result"
 },
 {
 "data": {
 "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3cAAAFlCAYAAABIshGvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAe20lEQVR4nO3df/TldV0n8OfLIWo1XVEH5fDDQXdW4pQSTWAna0vT5Uc1ejYLt5B1LaScVXazdk61ZZ46oQfyLLscJkw2tIxVk3X2MCtyyD1maWcGIhCI40goAwiTFrBpAvLaP+5n9Prly3zvd+b7Az7fx+Oc77n38/583p/X+/OdO997n/fzvvdT3R0AAACe2J602gMAAADg4Al3AAAAIyDcAQAAjIBwBwAAMALCHQAAwAgIdwAAACNwyGoPYDGe9axn9YYNG1Z7GAAAAKvi2muv/bvuXj/fuidUuNuwYUN27dq12sMAAABYFVX1ucdaZ1omAADACAh3AAAAIyDcAQAAjIBwBwAAMALCHQAAwAgIdwAAACMg3AEAAIyAcAcAADACwh0AAMAICHcAAAAjINwBAACMgHAHAAAwAsIdAADACAh3AAAAI3DIag9gKW3YeuUB9739vNOXcCQAAAAry5k7AACAERDuAAAARkC4AwAAGAHhDgAAYASEOwAAgBEQ7gAAAEZAuAMAABiBmcJdVZ1SVbdW1e6q2jrP+uOq6pNV9dWqestU+wuq6vqpn/ur6txh3Vur6s6pdact2VEBAACsMQtexLyq1iW5KMnLk+xJsrOqtnf3zVObfSnJm5K8crpvd9+a5ISp/dyZ5IqpTd7Z3ecfxPgBAADIbGfuTkqyu7tv6+4Hk1yeZPP0Bt19b3fvTPLQfvbzsiSf7e7PHfBoAQAAmNcs4e7IJHdMLe8Z2hbrjCR/PKdtS1XdUFWXVtVhB7BPAAAAMlu4q3naejFFqurQJD+e5ANTzRcneX4m0zbvTnLBY/Q9u6p2VdWuvXv3LqYsAADAmjFLuNuT5Oip5aOS3LXIOqcmua6779nX0N33dPfXuvuRJO/KZPrno3T3Jd29qbs3rV+/fpFlAQAA1oZZwt3OJBur6tjhDNwZSbYvss5rMmdKZlUdMbX4qiSfXuQ+AQAAGCz4bZnd/XBVbUlyVZJ1SS7t7puq6pxh/baqek6SXUmeluSR4XIHx3f3/VX15Ey+afMNc3b9jqo6IZMpnrfPsx4AAIAZLRjukqS7dyTZMadt29T9L2QyXXO+vl9O8sx52s9c1EgBAAB4TDNdxBwAAIDHN+EOAABgBIQ7AACAERDuAAAARkC4AwAAGAHhDgAAYASEOwAAgBEQ7gAAAEZAuAMAABgB4Q4AAGAEhDsAAIAREO4AAABGQLgDAAAYAeEOAABgBIQ7AACAERDuAAAARkC4AwAAGAHhDgAAYASEOwAAgBEQ7gAAAEZAuAMAABgB4Q4AAGAEhDsAAIAREO4AAABGQLgDAAAYAeEOAABgBIQ7AACAERDuAAAARkC4AwAAGAHhDgAAYASEOwAAgBEQ7gAAAEZAuAMAABgB4Q4AAGAEZgp3VXVKVd1aVburaus864+rqk9W1Ver6i1z1t1eVTdW1fVVtWuq/RlVdXVVfWa4PezgDwcAAGBtWjDcVdW6JBclOTXJ8UleU1XHz9nsS0nelOT8x9jND3f3Cd29aapta5JruntjkmuGZQAAAA7ALGfuTkqyu7tv6+4Hk1yeZPP0Bt19b3fvTPLQImpvTnLZcP+yJK9cRF8AAACmzBLujkxyx9TynqFtVp3ko1V1bVWdPdX+7O6+O0mG28MXsU8AAACmHDLDNjVPWy+ixvd3911VdXiSq6vqb7r747N2HgLh2UlyzDHHLKIsAADA2jHLmbs9SY6eWj4qyV2zFujuu4bbe5Nckck0zyS5p6qOSJLh9t7H6H9Jd2/q7k3r16+ftSwAAMCaMku425lkY1UdW1WHJjkjyfZZdl5VT6mqp+67n+QVST49rN6e5Kzh/llJPryYgQMAAPANC07L7O6Hq2pLkquSrEtyaXffVFXnDOu3VdVzkuxK8rQkj1TVuZl8s+azklxRVftqva+7PzLs+rwk76+q1yf5fJJXL+mRAQAArCGzfOYu3b0jyY45bdum7n8hk+mac92f5EWPsc8vJnnZzCMFAADgMc10EXMAAAAe34Q7AACAERDuAAAARkC4AwAAGAHhDgAAYASEOwAAgBEQ7gAAAEZAuAMAABgB4Q4AAGAEhDsAAIAREO4AAABGQLgDAAAYAeEOAABgBIQ7AACAERDuAAAARkC4AwAAGAHhDgAAYASEOwAAgBEQ7gAAAEZAuAMAABgB4Q4AAGAEhDsAAIAREO4AAABGQLgDAAAYAeEOAABgBIQ7AACAERDuAAAARkC4AwAAGAHhDgAAYASEOwAAgBEQ7gAAAEZAuAMAABgB4Q4AAGAEhDsAAIARmCncVdUpVXVrVe2uqq3zrD+uqj5ZVV+tqrdMtR9dVR+rqluq6qaqevPUurdW1Z1Vdf3wc9rSHBIAAMDac8hCG1TVuiQXJXl5kj1JdlbV9u6+eWqzLyV5U5JXzun+cJJf7O7rquqpSa6tqqun+r6zu88/2IMAAABY62Y5c3dSkt3dfVt3P5jk8iSbpzfo7nu7e2eSh+a0393d1w33H0hyS5Ijl2TkAAAAfN0s4e7IJHdMLe/JAQS0qtqQ5LuT/OVU85aquqGqLq2qwx6j39lVtauqdu3du3exZQEAANaEWcJdzdPWiylSVd+e5E+SnNvd9w/NFyd5fpITktyd5IL5+nb3Jd29qbs3rV+/fjFlAQAA1oxZwt2eJEdPLR+V5K5ZC1TVt2QS7P6ouz+0r7277+nur3X3I0nelcn0TwAAAA7ALOFuZ5KNVXVsVR2a5Iwk22fZeVVVkncnuaW7f3fOuiOmFl+V5NOzDRkAAIC5Fvy2zO5+uKq2JLkqybokl3b3TVV1zrB+W1U9J8muJE9L8khVnZvk+CQvTHJmkhur6vphl7/S3TuSvKOqTshkiuftSd6whMcFAACwpiwY7pJkCGM75rRtm7r/hUyma871icz/mb1095mzDxMAAID9meki5gAAADy+CXcAAAAjINwBAACMgHAHAAAwAsIdAADACAh3AAAAIyDcAQAAjIBwBwAAMALCHQAAwAgIdwAAACMg3AEAAIyAcAcAADACwh0AAMAICHcAAAAjINwBAACMgHAHAAAwAsIdAADACAh3AAAAIyDcAQAAjIBwBwAAMALCHQAAwAgIdwAAACMg3AEAAIyAcAcAADACwh0AAMAICHcAAAAjINwBAACMgHAHAAAwAsIdAADACAh3AAAAIyDcAQAAjIBwBwAAMAKHrPYA4Ilow9YrD7jv7eedvoQjAQCAiZnO3FXVKVV1a1Xtrqqt86w/rqo+WVVfraq3zNK3qp5RVVdX1WeG28MO/nAAAADWpgXDXVWtS3JRklOTHJ/kNVV1/JzNvpTkTUnOX0TfrUmu6e6NSa4ZlgEAADgAs5y5OynJ7u6+rbsfTHJ5ks3TG3T3vd29M8lDi+i7Ocllw/3LkrzywA4BAACAWcLdkUnumFreM7TNYn99n93ddyfJcHv4jPsEAABgjlnCXc3T1jPu/2D6TnZQdXZV7aqqXXv37l1MVwAAgDVjlnC3J8nRU8tHJblrxv3vr+89VXVEkgy39863g+6+pLs3dfem9evXz1gWAABgbZkl3O1MsrGqjq2qQ5OckWT7jPvfX9/tSc4a7p+V5MOzDxsAAIBpC17nrrsfrqotSa5Ksi7Jpd19U1WdM6zfVlXPSbIrydOSPFJV5yY5vrvvn6/vsOvzkry/ql6f5PNJXr3ExwYAALBmzHQR8+7ekWTHnLZtU/e/kMmUy5n6Du1fTPKyxQwWAACA+c10EXMAAAAe34Q7AACAERDuAAAARkC4AwAAGAHhDgAAYASEOwAAgBEQ7gAAAEZAuAMAABgB4Q4AAGAEhDsAAIAREO4AAABGQLgDAAAYAeEOAABgBIQ7AACAERDuAAAARkC4AwAAGAHhDgAAYASEOwAAgBEQ7gAAAEZAuAMAABgB4Q4AAGAEhDsAAIAREO4AAABGQLgDAAAYAeEOAABgBIQ7AACAERDuAAAARkC4AwAAGAHhDgAAYASEOwAAgBEQ7gAAAEZAuAMAABgB4Q4AAGAEhDsAAIARmCncVdUpVXVrVe2uqq3zrK+qunBYf0NVnTi0v6Cqrp/6ub+qzh3WvbWq7pxad9qSHhkAAMAacshCG1TVuiQXJXl5kj1JdlbV9u6+eWqzU5NsHH5OTnJxkpO7+9YkJ0zt584kV0z1e2d3n78ExwEAALCmzXLm7qQku7v7tu5+MMnlSTbP2WZzkvf0xKeSPL2qjpizzcuSfLa7P3fQowYAAOCbzBLujkxyx9TynqFtsduckeSP57RtGaZxXlpVh81XvKrOrqpdVbVr7969MwwXAABg7Zkl3NU8bb2Ybarq0CQ/nuQDU+svTvL8TKZt3p3kgvmKd/cl3b2puzetX79+huECAACsPbOEuz1Jjp5aPirJXYvc5tQk13X3Pfsauvue7v5adz+S5F2ZTP8EAADgAMwS7nYm2VhVxw5n4M5Isn3ONtuTvHb41swXJ7mvu++eWv+azJmSOeczea9K8ulFjx4AAIAkM3xbZnc/XFVbklyVZF2SS7v7pqo6Z1i/LcmOJKcl2Z3ky0let69/VT05k2/afMOcXb+jqk7IZPrm7fOsBwAAYEYLhrsk6e4dmQS46bZtU/c7yRsfo++XkzxznvYzFzVSAAAAHtNMFzEHAADg8U24AwAAGAHhDgAAYASEOwAAgBEQ7gAAAEZAuAMAABgB4Q4AAGAEZrrOHQvbsPXKA+57+3mnL+FIAACAtUi4AwBgxXhDHJaPaZkAAAAjINwBAACMgHAHAAAwAsIdAADACAh3AAAAIyDcAQAAjIBwBwAAMALCHQAAwAgIdwAAACMg3AEAAIzAIas9AABg9W3YeuUB9739vNOXcCQAHChn7gAAAEbAmTuABTijwUrxWAPgYDhzBwAAMALCHQAAwAgIdwAAACMg3AEAAIyAcAcAADACwh0AAMAICHcAAAAjINwBAACMgHAHAAAwAsIdAADACByy2gMAAFiLNmy98oD73n7e6Us4EmAsZjpzV1WnVNWtVbW7qrbOs76q6sJh/Q1VdeLUutur6saqur6qdk21P6Oqrq6qzwy3hy3NIQEAAKw9C4a7qlqX5KIkpyY5Pslrqur4OZudmmTj8HN2kovnrP/h7j6huzdNtW1Nck13b0xyzbAMAADAAZjlzN1JSXZ3923d/WCSy5NsnrPN5iTv6YlPJXl6VR2xwH43J7lsuH9ZklfOPmwAAACmzRLujkxyx9TynqFt1m06yUer6tqqOntqm2d3991JMtwevpiBAwAA8A2zfKFKzdPWi9jm+7v7rqo6PMnVVfU33f3xWQc4BMKzk+SYY46ZtRsAAMCaMsuZuz1Jjp5aPirJXbNu0937bu9NckUm0zyT5J59UzeH23vnK97dl3T3pu7etH79+hmGCwAAsPbMcuZuZ5KNVXVskjuTnJHk387ZZnuSLVV1eZKTk9zX3XdX1VOSPKm7HxjuvyLJ26b6nJXkvOH2wwd9NAAALMhlGGCcFgx33f1wVW1JclWSdUku7e6bquqcYf22JDuSnJZkd5IvJ3nd0P3ZSa6oqn213tfdHxnWnZfk/VX1+iSfT/LqJTsqAACANWami5h3945MAtx027ap+53kjfP0uy3Jix5jn19M8rLFDBYAAID5zXQRcwAAAB7fZjpzB7DafD4EAGD/nLkDAAAYAeEOAABgBIQ7AACAERDuAAAARkC4AwAAGAHhDgAAYARcCoEnLF+NDwAA3+DMHQAAwAgIdwAAACMg3AEAAIyAcAcAADACwh0AAMAICHcAAAAjINwBAACMgHAHAAAwAsIdAADACAh3AAAAIyDcAQAAjIBwBwAAMALCHQAAwAgIdwAAACMg3AEAAIyAcAcAADACwh0AAMAICHcAAAAjcMhqDwAA5tqw9coD7nv7eacv4UgA4InDmTsAAIAREO4AAABGQLgDAAAYAeEOAABgBIQ7AACAERDuAAAARmCmcFdVp1TVrVW1u6q2zrO+qurCYf0NVXXi0H50VX2sqm6pqpuq6s1Tfd5aVXdW1fXDz2lLd1gAAABry4LXuauqdUkuSvLyJHuS7Kyq7d1989RmpybZOPycnOTi4fbhJL/Y3ddV1VOTXFtVV0/1fWd3n790hwMAALA2zXLm7qQku7v7tu5+MMnlSTbP2WZzkvf0xKeSPL2qjujuu7v7uiTp7geS3JLkyCUcPwAAAJkt3B2Z5I6p5T15dEBbcJuq2pDku5P85VTzlmEa56VVddisgwYAAOCbzRLuap62Xsw2VfXtSf4kybndff/QfHGS5yc5IcndSS6Yt3jV2VW1q6p27d27d4bhAgAArD2zhLs9SY6eWj4qyV2zblNV35JJsPuj7v7Qvg26+57u/lp3P5LkXZlM/3yU7r6kuzd196b169fPMFwAAIC1Z5ZwtzPJxqo6tqoOTXJGku1zttme5LXDt2a+OMl93X13VVWSdye5pbt/d7pDVR0xtfiqJJ8+4KMAAABY4xb8tszufriqtiS5Ksm6JJd2901Vdc6wfluSHUlOS7I7yZeTvG7o/v1JzkxyY1VdP7T9SnfvSPKOqjohk+mbtyd5wxIdEwAAwJqzYLhLkiGM7ZjTtm3qfid54zz9PpH5P4+X7j5zUSMFAICDsGHrlQfc9/bzTl/CkcDymCncAcBa4cUfAE9Us3zmDgAAgMc54Q4AAGAETMsEAIARM9187RDuOCj+WAAAwOODaZkAAAAjINwBAACMgHAHAAAwAj5zB08wPucIAMB8hDtgZoIlAPBEsRZft5iWCQAAMALCHQAAwAgIdwAAACMg3AEAAIyAL1QZgbX4YVEAAOCbOXMHAAAwAs7cAQCrygwUgKXhzB0AAMAICHcAAAAjINwBAACMgHAHAAAwAsIdAADACAh3AAAAIyDcAQAAjIDr3AEwL9ceA4AnFmfuAAAARsCZOwAAWGZmQ7ASnLkDAAAYAeEOAABgBIQ7AACAERDuAAAARkC4AwAAGAHhDgAAYARmCndVdUpV3VpVu6tq6zzrq6ouHNbfUFUnLtS3qp5RVVdX1WeG28OW5pAAAADWngWvc1dV65JclOTlSfYk2VlV27v75qnNTk2ycfg5OcnFSU5eoO/WJNd093lD6Nua5D8v3aEBPPG5LhIAMKtZLmJ+UpLd3X1bklTV5Uk2J5kOd5uTvKe7O8mnqurpVXVEkg376bs5yQ8N/S9L8n8j3AEAAE9wq/Xm7Czh7sgkd0wt78nk7NxC2xy5QN9nd/fdSdLdd1fV4YsYNwDAQXN2HJaX/2MrqyYn2/azQdWrk/zr7v7ZYfnMJCd193+Y2ubKJL/T3Z8Ylq9J8stJnvdYfavqH7r76VP7+PvuftTn7qrq7CRnD4svSHLrAR7rs5L83QH2PVhqq6222mqrrbbaaqutttpLUfu53b1+vhWznLnbk+ToqeWjktw14zaH7qfvPVV1xHDW7ogk985XvLsvSXLJDOPcr6ra1d2bDnY/aqutttpqq6222mqrrbbaj8fas3xb5s4kG6vq2Ko6NMkZSbbP2WZ7ktcO35r54iT3DVMu99d3e5KzhvtnJfnwQR4LAADAmrXgmbvufriqtiS5Ksm6JJd2901Vdc6wfluSHUlOS7I7yZeTvG5/fYddn5fk/VX1+iSfT/LqJT0yAACANWSWaZnp7h2ZBLjptm1T9zvJG2ftO7R/McnLFjPYg3TQUzvVVltttdVWW2211VZbbbUfr7UX/EIVAAAAHv9m+czd6FTVo76VEwAA4IlsTYa7JNes9gAAAPYZvpTu6IW3BHhsazXc1YoUqTqsqk6qqh/c97MSdVl5w5Pyz1TVrw/Lx1TVSctc873D7ZuXsw6rr6r2XUP0gaq6f87PfVX1t1X1Cyswju+Zp+3Hlrsuq6eqXlRVW4afF632eMZs+P6C/7Xa41gNVfX2WdrGpqr+Y1UdtUq131tVP1dVx61C7ePnafuhFaq9ZbVm8FXVNVV12py2Jf/s3Zr8zF1VXdfdJy5zjZ9N8uZMru13fZIXJ/lkd790OesOtb8tyS8keUmSTvKJJBd39z+tQO3Lkry5u/9hWD4syQXd/e+XseZ/2t/67v7d5ao9NYaLkzyS5KXd/R3DcX+0u793GWvenOTUTC4r8kOZ86ZFd39puWpPjWG+3/19Sa7t7uuXufa3Jvk3STZk6suhuvtty1n38aiqnpnkL7r7Bctc57okZ3X3jcPya5Kc290nL2fd1VZVm5L8apLnZvJYq0xei79wBWqv2uN8eOPo55J8aGh6VZJLuvu/rUDt1XweW7XnlKq6KMkfdPfO5aqxn9qvTvKR7n6gqn4tyYlJfqu7r1uB2o96XVZVN6zQ/7Ffn699hf6P/UaSn0zypSSXJ/lgd9+z3HWH2i/N5P/XDyR5XiavVT/e3f91BWp/Osl7k7wjybcNt5u6+/tWoPZvZXJptuuSXJrkql6hMFRVtyW5I8mfdvdvDm1LnkmEu+WrcWOS703yqe4+YXhn5De7+6eWs+5Q+/1JHkjyh0PTa5Ic1t3LfrmJqvqr7v7uhdqWuOZvDHdfkMnvfN+1FH8skz9UP7tctafGcF13nzh9rFX11929bO90V9Wbkvx8Jn+U78w3h7vu7uctV+2pMbwvyaYk/3toOj2T61sel+QD3f2OZaz9kQxBMsnX9rV39wXLWPMT3f2SqnogkxecX181Kd1PW67aC6mqI4briy5njecl+WCSn87kRcFrk/xod9+3jDXn/q6/vior9DuvqluT/FKSGzN5EyeZFP/cCtRe8cf5VO0bknxfd//jsPyUTN6kXIkX3Kv5PPa+zPNcksmLsux7UbZMtW9O8i+TfC7JP2Zl30i4obtfWFUvSfI7Sc5P8ivL+eZNVf18JiH+eUk+O7XqqUn+vLt/ZrlqT43hF6cWvy3Jjya5ZTnflJ5nDC9M8lOZvJGzp7t/ZIXqrsvksf7DSc5J8pXuXvYzecPfkrcn+Z5M/q3/KMnbu/uR/XZcuvqV5BWZXLptU5L3J3l3d392vx0Pvu51SU5KcmGSo5P8TJKPLXUmmelSCCO0EtMy/6m7/6mqUlXf2t1/U1XL+q76lBfMCRUfq6q/XqHaT6qqw7r775Okqp6RZX6cTb378dEkJ3b3A8PyW5N8YDlrT3lo+CPZQ+31mXoRuBy6+8IkF1bVxd3988tZaz+emcnv/P8lXw/aH0zyg5m8GF22cJfkqO4+ZRn3/yjd/ZLh9qkrWXcWyx3shhq3VdUZmUwduyPJK7r7K8tc8/Hwu97b3dsX3mxZrPjjfEplKlAO91fkYw1Z3eexZ2We55KVeKMwk9kYq2Xfv/XpmZwl/fBw7MvpfUn+TyZhcutU+wMrMfskefQbJVV1fr4R7FfKvUm+kOSLSQ5fiYJVdU2SpyT5ZJI/S/K93X3vStRO8lCSryT5Z5kE6r9dqWCXTN4tqaovZPI7fzjJYUk+WFVXd/cvL2Pp6u6Hk/xCVf27TGYkLPkU0bUa7lbi+np7qurpmbwIurqq/j7JXStQN0n+qqpe3N2fSpKqOjnJn69Q7QuS/EVVfTCToPOTSX57hWofk+TBqeUHM5nKtBIuTHJFksOr6reT/ESSX1uJwqsY7JJH/84fSvLc7v5KVX11mWv/RVV9174pgiyfYSbC9NmzZyRZl+QvqyorcVZhlf1GVf1+Jl/G9fXHdXd/6LG7LJnVfJz/j0z+ja8Yll+Z5N0rVHs1n8dW7blkJc4G78edVfV7SX4kyduHKcHL+t0Mw1n/+zI5M/t48eRMziQuu+HM5U8lWZ/JG6M/1903r0TtJDdkcubsOzP5N/iHqvrkcr9hN9iZ5MOZnDV8ZpLfq6qf6O6fWO7Cw6yns5L8XZLfT/JL3f1QVT0pyWeSLGe4m75G+B8Mz63zXif8YKzJaZkrrar+VZJ/nslc9gcX2v4g6ux7AfYtmUxR/Pyw/NwkN3f3dy5X7TnjOD7JSzN5h/ealfpDVVW/mkmYvCKT435Vkv/Z3b+zQvWPy+SNg33HfctK1F1NVfVfMvk9f3ho+rFM3vG8IJPP5vz0MtTc9zg/JMnGJLdl8oJ7xaYvrTVV9dz9rV/lF6TLrqr+MJOpxjflG2fkeyWmbQ3T9P5Fkr/NKjzOq+rETKbgVibT3P9qherekm88jyWTwHVLJr//ZT3+1X4uWS1V9eQkpyS5sbs/U1VHJPmu7v7oKg9tWc1582pdJkHrbd3931eg9nlJLu9l/oz6AmP49kymJ74lyXO6+1tXoOam7t41p+3M7n7vCtR+WyZTMB/1vFVV3zGG127C3Yis9RdgyddfiPzAsLhiL0TWspp8g+K+F3+fmPsHexnqrfnHOSurqm7s7u9apdrzPt7H/jhf7f/nnkvWjjmPtYeT3DNMnRu1qtqSyWP8ezL5jOfHk/xZd//pqg6MgybcAcB+VNW7krxzBadLASyrqvqlTALdtWshzK4lwh0A7McwRfD5WaWpkQAwK+EOAPZjrU6NBOCJR7gDAAAYgWX9ilsAAABWhnAHAAAwAsIdAADACAh3AAAAIyDcAQAAjMD/B2S2Ocd2sVBOAAAAAElFTkSuQmCC\n",
 "text/plain": [
 "<Figure size 1080x432 with 1 Axes>"
]
 },
 "metadata": {
 "needs_background": "light"
 },
 "output_type": "display_data"
 }
],
 "source": [
 "frequency = pd.Series(clean_text).value_counts().sort_index() / len(clean_text)\n",
 "\n",
 "frequency.plot.bar(figsize=(15, 6))"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "#### Compare Python and R results\n",
 "\n",
 "**Simillarity**\n",
 "\n",
 "The results cumputed by Python package HMMLearn and R package HMM are simillar with each other.\n",
 "\n",
 "we can infer that the vowels {a, e,i,u,o} are more frequently associated to the state 1 of the hidden chain in both models. Other characters are more frequently connected to state 0. Therefore, the characters are classifiled into two groups correctly.\n",
 "\n",
 "**Difference**\n",
 "\n",
 "From the result of R package HMM state 1, we could see there are more other characters included, like 's', 't', 'g' and 'y'. While in the result of Python package HMMLearn, the results are more concentrated on the vowels {a, e,i,u,o}. In my example, the classification accuracy of Python pakcage HMMLearn is better."
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": []
 }
],
 "metadata": {
 "kernelspec": {
 "display_name": "Python 3",
 "language": "python",
 "name": "python3"
 },
 "language_info": {
 "codemirror_mode": {
 "name": "ipython",
 "version": 3
 },
 "file_extension": ".py",
 "mimetype": "text/x-python",
 "name": "python",
 "nbconvert_exporter": "python",
 "pygments_lexer": "ipython3",
 "version": "3.10.6"
 }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}

library (lattice)
library (HMM)

text = readChar("my_own_text_file.txt",nchars=10000, useBytes = TRUE)
data <- unlist(strsplit(tolower(gsub("[^a-zA-Z]", "_", text)), ""))

pi=c(0.4,0.6)

P=t(matrix(c(c(0.6177499,0.3822501),c(0.8826096,0.1173904)),nrow=2,ncol=2))

M=t(matrix(c(c(0.037192964,0.009902360,0.032833978,0.044882670,0.057331132,
0.052143890,0.013665015,0.036187536,0.072293323,0.044793972,0.060008388,
0.004256270,0.024770706,0.053520546,0.014232306,0.046981769,0.053733382,
0.066355203,0.046817817,0.006912535,0.016201697,0.013425499,0.024694447,
0.064902148,0.046170421,0.033586536,0.022203489),
c(0.0389931197,0.0697183142,0.0239154174,0.0512772632,0.0404732634,0.0059687348,
0.0211687193,0.0625229746,0.0039632091,0.0567828864,0.0468108656,0.0168355418,
0.0627882213,0.0286478204,0.0389215263,0.0064318198,0.0001698078,0.0493758725,
0.0652709152,0.0069580806,0.0093043072,0.0028807932,0.0521827110,0.0608822385,
0.0645417465,0.0555249876,0.0576888424)),nrow=27,ncol=2))

model <- initHMM(c("0", "1"), c("_", letters), pi, P, M)

system.time(estimate <- baumWelch(model, data, 100)) # 100 iterations

xyplot(estimatehmmemissionProbs[1,] ~ c(1:27), scales=list(x=list(at=1:27,
labels=c("_", letters))),type="h", lwd=5, xlab="", ylab="")

xyplot(estimatehmmemissionProbs[2,] ~ c(1:27), scales=list(x=list(at=1:27,
labels=c("_", letters))),type="h", lwd=5, xlab="", ylab="")

https://en.wikipedia.org/wiki/Baum%E2%80%93Welch_algorithm
https://en.wikipedia.org/wiki/Baum%E2%80%93Welch_algorithm
https://jupyter.org/try
https://research.google.com/colaboratory/
https://cran.r-project.org/web/packages/HMM/index.html
https://cran.r-project.org/web/packages/HMM/index.html
https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

Imagine an alien trying to analyse an English manuscript without any prior
knowledge of English. Using a simple two-state hidden chain (Xn)n⩾0 he will
try to uncover some features of the language, starting with a binary classifica-
tion of the English alphabet.

 install.packages("HMM"); library (HMM); library (lattice)
text = readChar("my_own_text_file.txt",nchars=10000)

 data <- unlist (strsplit (gsub ("[^a-z]", "_", tolower (text)), "")); pi=c(0.4,0.6)
P=t(matrix(c(c(0.6177499,0.3822501),c(0.8826096,0.1173904)),nrow=2,ncol=2))

 M=t(matrix(c(c(0.037192964,0.009902360,0.032833978,0.044882670,0.057331132,
0.052143890,0.013665015,0.036187536,0.072293323,0.044793972,0.060008388,

 0.004256270,0.024770706,0.053520546,0.014232306,0.046981769,0.053733382,
0.066355203,0.046817817,0.006912535,0.016201697,0.013425499,0.024694447,

 0.064902148,0.046170421,0.033586536,0.022203489),
c(0.0389931197,0.0697183142,0.0239154174,0.0512772632,0.0404732634,0.0059687348,

 0.0211687193,0.0625229746,0.0039632091,0.0567828864,0.0468108656,0.0168355418,
0.0627882213,0.0286478204,0.0389215263,0.0064318198,0.0001698078,0.0493758725,

 0.0652709152,0.0069580806,0.0093043072,0.0028807932,0.0521827110,0.0608822385,
0.0645417465,0.0555249876,0.0576888424)),nrow=27,ncol=2))

 model <- initHMM (c("0", "1"),c("_", letters), pi, P, M)
system.time (estimate <- baumWelch (model, data, 100)) # 100 iterations

 xyplot(estimatehmmemissionProbs[1,] ~ c(1:27), scales=list(x=list(at=1:27,
labels=c("_", letters))),type="h", lwd=5, xlab="", ylab="")

A text length of N ≃ 10, 000 characters can be a minimum. The initial values
of π, P and M have to be set according to random values.

As possible variations, one can try a language different from English, or increase
the state space of (Xn)n⩾0 in order to uncover more features of the chosen
language. The estimates of the matrix M obtained from the code are plotted
in Figure 9.5.

0

0.2

0.4

0.6

0.8

1

_ a b c d e f g h i j k l m n o p q r s t u v w x y z

(a) estimatehmmemissionProbs[1,].

0

0.2

0.4

0.6

0.8

1

_ a b c d e f g h i j k l m n o p q r s t u v w x y z

(b) estimatehmmemissionProbs[2,].

Fig. 9.5: Plots of emission probabilities.

From Figures 9.5a and 9.5b we can infer that the vowels {a, e, i,u, o} are more
frequently associated to the state 0 of the hidden chain (Xn)n⩾0. The vowels
{a, e, i, o,u}, together with the spacing character “_” amount to 93% of emis-
sion probabilities from state 0 , and the combined probabilities of vowels from
state 1 is only 6.2× 10−9 %.

" 235

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

Human intervention can be nevertheless required in order to set a probability
threshold that can distinguish vowels from consonants, e.g. to separate “u” from
“t”. The classification effect is enhanced in the following Figure 9.6 that plots
η 7→ (M0,η/M0,”_”)((M1,”_” −M1,η)/M1,”_”)

2 by combining the information
available in the two rows of the emission matrix M , showing that “y” recovers
its “semi-vowel” status.

0

0.2

0.4

0.6

0.8

1

_ a b c d e f g h i j k l m n o p q r s t u v w x y zFig. 9.7: Enhanced classification.

Frequency analysis

Note that the graphs of Figures 9.5a and 9.5b do not represent a frequency
analysis. A frequency analysis of letters can be represented as the histogram of
Figure 9.8 using the commands

 data <- unlist (strsplit (gsub ("[^a-z]", "_", tolower (text)), ""))
 barplot(col = rainbow(30), table(data), cex.names=0.7)

with the following output:

_ a b c d e f g h i j k l m n o p q r s t u v w x y z

0
500

1000
1500

2000

Fig. 9.8: Frequency analysis of alphabet letters.

236 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

The command

 estimatehmmtransProbs

yields the estimate of transition probabilities

P̂ =

[
0 1

0.1906356 0.8093644

]
for the hidden chain (Xn)n⩾0. Note that P̂ is not the transition matrix of
vowels vs. consonants. For example of the word “universities” contains eleven
letter transitions {un,ni, iv, ve, er, rs, si, it, ti, ie, es}, including:

• five vowel-to-consonant transitions {un, iv, er, it, es},
• one vowel-to-vowel transition {ie},
• four consonant-to-vowel transitions {ni, ve, si, ti},
• one consonant-to-consonant transition {rs},

which would yield the transition probability estimate[
5/6 1/6
4/5 1/5

]
,

assuming the alphabet has already been partitioned between vowels and con-
sonants. Such a matrix can be estimated on the whole text, from the following

code:

 x <- unlist (strsplit (gsub ("[^a-z]", "", tolower (text)), ""))
y <- unlist (strsplit (gsub ("[^a,e,i,o,u]", "2", tolower (x)), ""))

 z <- as.numeric(noquote(unlist (strsplit (gsub ("[a,e,i,o,u]", "1",y), ""))))
p <- matrix(nrow = 2, ncol = 2, 0)

 for (t in 1:(length(z) - 1)) p[z[t], z[t + 1]] <- p[z[t], z[t + 1]] + 1
for (i in 1:2) p[i,] <- p[i,] / sum(p[i,])

This yields [
0.1424749 0.8575251
0.5360502 0.4639498

]
,

which means that inside the text, a vowel is followed by a consonant for 85.7%
of the time, while a consonant is followed by a vowel for 53% of the time.

The Baum-Welch algorithm does more than a simple frequency/transition
analysis, as it can estimate the emission probability matrix M , which can be
used to partition the alphabet. However, the algorithm is not making a one-to-
one association between the states {0, 1} of (Xn)n⩾0 to letters; the association
is only probabilistic and expressed through the estimate M̂ of the emission
matrix.

" 237

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

Using a three-state model shows a more definite identification of vowels from
state 3 in Figure 9.9a, and a special weight given to the letters h and t from
state 1 in Figure 9.9b.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

_ a b c d e f g h i j k l m n o p q r s t u v w x y z

(a) estimatehmmemissionProbs[3,].

0.00

0.05

0.10

0.15

0.20

_ a b c d e f g h i j k l m n o p q r s t u v w x y z

(b) estimatehmmemissionProbs[1,].

Fig. 9.9: Plots of emission probabilities.

Notes

See e.g. Stamp (2015), Zucchini et al. (2016) for further reading, Celeux and
Durand (2008) for an estimation procedure of the number of hidden states in a
hidden Markov model, and Yang et al. (2017) for statistical guarantees for the
Baum-Welch algorithm.

Exercises

Exercise 9.1 Consider the graphical hidden Markov model

238 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

X0 = x0 X1 = x1 X2 = x2 X3 = x3 Xt = xt

O1 = o1 O2 = o2 O3 = o3 Ot = ot

with the relation

P(Xt = it, . . . ,X0 = i0, Ot = ot, . . . ,O1 = o1)

= P(Ot = ot | Xt = it) · · ·P(O1 = o1 | X1 = i1)

×P(Xt = it | Xt−1 = it−1) · · ·P(X1 = i1 | X0 = i0)P(X0 = i0), t ⩾ 0.

a) Show that

P(Xt = it | Xt−1 = it−1, . . . ,X0 = i0) = P(Xt = it | Xt−1 = it−1),

t ⩾ 1.
b) Show that

P(Xt = it | Xt−1 = it−1, Ot−1 = ot−1, . . . ,O1 = o1)

= P(Xt = it | Xt−1 = it−1), t ⩾ 1.

Exercise 9.2 We consider a two-state hidden Markov chain (Xn)n⩾0 with
transition probability matrix P = (Pi,j)i,j∈S on S = {0, 1}, in its stationary
distribution π = (πi)i∈S. At time t ⩾ 0, the state Ok of an observed process
(Ok)k∈N taking values in a set O of observations is distributed given Xk ∈
{0, 1} according to the emission matrix M = (Mx,o)(x,o)∈S×O, i.e.

P(Ot = o | Xt = x) =Mx,o, x ∈ S, o ∈ O.

a) Using the identity

P(Ot+1 = v, Ot = u, Xt = x) = P(Ot+1 = v,Xt = x)P(Ot = u | Xt = x),

x = 0, 1, and the law of total probability, find an expression for the proba-
bility

P(Ot+1 = v, Ot = u), u, v ∈ O, t = 0, 1, . . . ,N − 1,

using a summation of πx, Px,y, Mx,u, My,v over x, y ∈ {0, 1}.
b) From the result of part (a), find an expression for

P(Ot+1 ∈ B, Ot ∈ A), t = 0, 1, . . . ,N − 1.

" 239

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

where A,B are any two subsets of O.
c) Find expressions for P(Ot ∈ A) and

P(Ot+1 ∈ B | Ot ∈ A), t = 0, 1, . . . ,N − 1,

where A,B are any two subsets of O.

In what follows, we assume that A and B form a partition of O, i.e. O =
A∪B and A∩B = ∅.

d) Find out and explain how the matrix[
P(Ot+1 ∈ A | Ot ∈ A) P(Ot+1 ∈ A | Ot ∈ B)

P(Ot+1 ∈ B | Ot ∈ A) P(Ot+1 ∈ B | Ot ∈ B)

]

compares to

P =

[
P0,0 P0,1

P1,0 P1,1

]
when [∑

u∈A M0,u
∑

v∈B M0,v∑
u∈A M1,u

∑
v∈B M1,v

]
=

[
1 0

0 1

]
.

e) A numerical experiment classifies O into a partition O = A∪B and provides
the estimate

P̂ =

[
P0,0 P0,1

P1,0 P1,1

]
=

[
0.1435747 0.8564253

0.6842348 0.3157652

]

of P . Find the stationary distribution π = [π0,π1] of P̂ .
f) The experiment also provides the estimate[∑

u∈A M̂0,u
∑

v∈B M̂0,v∑
u∈A M̂1,u

∑
v∈B M̂1,v

]
=

[
0.53605372 0.4639463

0.02345197 0.9765480

]
.

By applying the result of part (b), find a numerical estimate for the condi-
tional probability matrix[

P̂(Ot+1 ∈ A | Ot ∈ A) P̂(Ot+1 ∈ A | Ot ∈ B)

P̂(Ot+1 ∈ B | Ot ∈ A) P̂(Ot+1 ∈ B | Ot ∈ B)

]
.

g) Compare your numerical answer to part (f) to the actual empirical transition
probabilities [

0.1127041 0.8872959

0.2975427 0.7024573

]
(9.20)

240 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

observed within the data set O between the subsets A and B.

Problem 9.3 (Wolfer and Kontorovich (2021)) Consider an irreducible, re-
versible∗, Markov chain (Xn)n⩾0 admitting a stationary distribution π on the
finite state space S = {1, 2, . . . , d}, d ⩾ 2, and started in initial distribution π.

Our goal is to estimate the entries in transition matrix P = (Pi,j)1⩽i,j⩽d of
(Xn)n⩾0 using the estimator

P̂i,j(m) :=
1

Ni(m)

m−1∑
k=1

1{Xk=i,Xk+1=j}, i, j = 1, . . . , d,

where

Ni(m) :=
m−1∑
k=1

1{Xk=i}

denotes the number of returns to state i until time m− 1, i = 1, . . . , d.

a) For any i = 1, . . . , d, we let

(Zi(k))k⩾1 = (Zi(1),Zi(2),Zi(3), . . .)

denote a sequence of independent identically distributed random variables
with distribution Pi,· on {1, . . . , d}, i.e.

P(Zi(k) = j) = Pi,j , j = 1, . . . , d, k ⩾ 1.

Show that for all i = 1, . . . , d we have

E

 d∑
j=1

∣∣∣∣∣ 1n
n∑
k=1

1{Zi(k)=j} − Pi,j

∣∣∣∣∣
 ⩽√ d

n
, n ⩾ 1.

Hint. Use Jensen’s inequality and the variance of the binomial distribution.
b) Show that for any n ⩾ 1, the function defined on Rn by

(z(1), . . . , z(n)) 7→
d∑
j=1

∣∣∣∣∣ 1n
n∑
k=1

1{z(k)=j} − Pi,j

∣∣∣∣∣
satisfies the bounded differences property with constant ci = 2/n, i =
1, . . . ,n.

c) Show that for all i = 1, . . . , d we have
∗ i.e. πiPi,j = πjPj,i, i, j = 1, . . . , d.

" 241

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://en.wikipedia.org/wiki/McDiarmid%27s_inequality
https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

P

 d∑
j=1

∣∣∣∣∣ 1n
n∑
k=1

1{Zi(k)=j} − Pi,j

∣∣∣∣∣ > ε

 ⩽ exp

−n2 Max
(

0, ε−
√
d

n

)2
 .

Hint. Use McDiarmid’s inequality.

In what follows, starting from X̃1 in the distribution π we let X̃2 := Z
X̃1

(1),
and

X̃k+1 := Z
X̃k

(
1 + Ñ

X̃k
(k)
)
, k ⩾ 1,

where

Ñi(k) :=
k−1∑
l=1

1{X̃l=i}
, k ⩾ 1.

We also let

P̃i,j(m) :=
1

Ñi(m)

m−1∑
k=1

1{X̃k=i,X̃k+1=j}
, i, j = 1, . . . , d.

d) Show that when Ñi(m) = n ⩾ 1 we have

P̃i,j(m) =
1
n

n∑
k=1

1{Zi(k)=j}, i, j = 1, . . . , d.

e) Show that for i = 1, . . . , d, the distribution of (P̂i,1(m), . . . , P̂i,d(m)) on
{Ni(m) = n} is the same as the distribution of (P̃i,1(m), . . . , P̃i,d(m)) on
{Ñi(m) = n}.

f) Show that letting ni := ⌈mπi/2⌉, i = 1, . . . , d, for some constant c1 > 0 we
have

3ni∑
n=ni

P

 d∑
j=1

∣∣P̂i,j(m)− Pi,j
∣∣ > ε and Ni(m) = n

 ⩽ (2ni + 1)e−c1mπiε
2 ,

provided that m ⩾ 4d/(ε2πi).
g) Show that

d∑
i=1

3ni∑
n=ni

P

 d∑
j=1

∣∣P̂i,j(m)− Pi,j
∣∣ > ε and Ni(m) = n

 ⩽ 2d
c1ε2 e

−c1mπ∗ε2/2,

provided that m ⩾ 4d/(ε2π∗) and ε ∈ (0, 1), where π∗ := min1⩽j⩽d πj .
Hint. Use the inequality xe−x ⩽ e−x/2, x > 0.

h) Show that for all ε > 0 we have

242 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://en.wikipedia.org/wiki/McDiarmid%27s_inequality
https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

P

 Max
i=1,...,d

d∑
j=1

∣∣P̂i,j(m)− Pi,j
∣∣ > ε


⩽

d∑
i=1

3ni∑
n=ni

P

 d∑
j=1

∣∣P̂i,j(m)− Pi,j
∣∣ > ε and Ni(m) = n


+ P(∃i ∈ {1, . . . , d} : Ni(m) /∈ [ni, 3ni]).

i) Using the bound in Question (l) of Problem 6.14, show that there exist two
constants c2, c3 > 0 such that

P(∃i ∈ {1, . . . , d} : Ni(m) /∈ [ni, 3ni]) ⩽ c2de
−c3(1−λ1)mπ2

∗ , m > 4/π∗.

j) Show that there is a constant c > 0 such that for any ε, δ ∈ (0, 1), if

m ⩾ cMax
(

1
ε2π∗

Max
(
d, log d

δε

)
, 1
(1− λ1)π2

∗
log d

δ

)
,

then we have

P

 Max
i=1,...,d

d∑
j=1

∣∣P̂i,j(m)− Pi,j
∣∣ ⩽ ε

 ⩾ 1− δ.

" 243

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

244 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Chapter 10
Markov Decision Processes

Markov Decision Processes (MDPs) are constructed via the addition of an ad-
ditional layer of “actions” to a standard Markov model. They are useful to the
development of Q-learning algorithms for reinforcement learning. Applications
include game theory, recommender systems, robotics, automated control, op-
erations research, information theory, multi-agent systems, swarm intelligence,
and genetic algorithms.

10.1 Construction . 245
10.2 Reinforcement learning . 248
10.3 Example - deterministic MDP . 252
10.4 Example - stochastic MDP . 256
Exercises . 262

10.1 Construction

This section provides the basic construction of Markov decision processes, with
some examples, see also here for a GridWorld-based algorithmic simulation.

Definition 10.1. A Markov Decision Process (MDP) consists of:

• a state space S,
• a finite set A of possible actions,
• a family (P (a))a∈A of transition probability matrices (P

(a)
i,j)i,j∈S,

• a state-dependent reward function R : S→ R, and
• a state-dependent policy π : S→ A which recommends an action π(k) ∈ A

to be taken at any given state in k ∈ S.

When a MDP is in state Xn = k at time n, one looks up the action a =
π(k) ∈ A given by the policy π, and we generate the new value Xn+1 using
the transition probabilities P (π(k))

k,· = (P
(π(k))
k,l)l∈S.

" 245

This version: March 5, 2024 https://personal.ntu.edu.sg/nprivault/indext.html

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html
https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

In terms of gaming, Markov decision processes represent an evolution from the
standard Markov chains that can be used to model board games such as the
Snakes and Ladders game. As an example, Markov Decision Processes find a
natural application to the Pacman game, see here.

The Tetris game can also be modeled as a Markov decision process.

. . . .

. .

. .

.

.

Here, a state consists of a couple

 .

.

. . .

.


246 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html
https://andyzeng.github.io/pacmanRL
https://andyzeng.github.io/pacmanRL
https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

made of one of seven tile shapes and a board configuration. The set of actions
consists of the 40 placement choices for the falling tile, and the next state is
selected using a new tile shape chosen with uniform probability 1/7 at each
time step.

Example - deterministic MDP

We consider the deterministic MDP on the state space S = {1, 2, 3, 4, 5, 6, 7}
with actions A = {↓,→} and transition probability matrices

P (↓) :=



0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 1


, P (→) :=



0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 1


,

and the reward function R : S→ R given by

R(1) = 0, R(2) = −2, R(3) = −1, R(4) = −1, R(5) = −3, R(6) = 5,
(10.1)

and R(7) = 0.

1 R(1) = 0 2 R(2) = −2 3 R(3) = −1

4 R(4) = −1 5 R(5) = −3 6 R(6) = +5

This MDP can be represented by the following graph with state 7 as a sink
state, where the “⇝” arrows represent the policy choices, while the straight
arrows denote Markov transitions.

R(1) = 0

↓

R(4) = −1

↓

→

→ R(2) = −2

↓

→ R(3) = −1

↓

→

R(5) = −3 →

↓

R(6) = 5

↓

→

R(7) = 0

↓

→

1

1

1

1

1

1
1

1

1

1

1
1

1

1

" 247

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

A first look at the above MDP starting from state 1 seems to yield

π(1) =↓, π(2) =→, π(3) =↓, π(4) =→, π(5) =→

as optimal policy, which would ultimately yield a reward +1 after starting from
state 1 . However, a closer look starting from state 6 shows that the actual
optimal policy is

π∗(1) =→, π∗(2) =→, π∗(3) =↓, π∗(4) =→, π∗(5) =→,

which ultimately yields a reward +2 after starting from state 1 .

10.2 Reinforcement learning

The purpose of reinforcement learning is to determine an optimal policy π that
maximizes the expected reward function

V π(k) := Eπ

∑
n⩾0

R(Xn)
∣∣∣ X0 = k

 , k ∈ S,

where Eπ denotes the expectation under a given policy π : S→A. Using first
step analysis, we check that the value function V π(k) for a given policy satisfies
the equation

V π(k) = R(k) +
∑
l∈S

P
(π(k))
k,l V π(l), k ∈ S. (10.2)

We also define the action-value functional∗

Qπ(k, a) := Eπ,a

∑
n⩾0

R(Xn)
∣∣∣ X0 = k

 , k ∈ S, a ∈ A, (10.3)

by setting the first action at state k to a for a given policy π.

In Proposition 10.2 we show that, similarly to (10.2), the optimal action-
value function Q∗(k, a), k ∈ S, a ∈ A, can be written using the transition
probability matrix P (a) and the optimal value function V ∗(·).†

Proposition 10.2. The action-value functional Qπ(k, a) satisfies the equation
∗ In the maxima (10.6) the action is taken equal to a at the first step only. After moving
to a new state we maximize the future reward according to the best policy choice.
† We always assume that R(·) and (Xn)n⩾0 are such that the series in (10.6) converges.

248 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

Qπ(k, a) = R(k) +
∑
l∈S

P
(a)
k,l V

π(l), k ∈ S, a ∈A. (10.4)

Proof. We have

Qπ(k, a) := Eπ,a

∑
n⩾0

R(Xn)
∣∣∣ X0 = k


= Eπ,a

R(X0) +
∑
n⩾1

R(Xn)
∣∣∣ X0 = k


= Eπ,a

R(k) +∑
n⩾1

R(Xn)
∣∣∣ X0 = k


= R(k) + Eπ,a

∑
n⩾1

R(Xn)
∣∣∣ X0 = k


= R(k) +

∑
l∈S

P
(a)
k,l Eπ

∑
n⩾1

R(Xn)
∣∣∣ X1 = l


= R(k) +

∑
l∈S

P
(a)
k,l Eπ

∑
n⩾0

R(Xn)
∣∣∣ X0 = l


= R(k) +

∑
l∈S

P
(a)
k,l V

π(l), k ∈ S.

□

Next, we define the optimal value functional V ∗(k) as

V ∗(k) := Max
π

Eπ

∑
n⩾0

R(Xn)
∣∣∣ X0 = k

 , k ∈ S. (10.5)

Similarly, the optimal action-value functional Q∗ : S×A −→ R is defined as

Q∗(k, a) := Max
π

Eπ,a

∑
n⩾0

R(Xn)
∣∣∣ X0 = k

 , k ∈ S, a ∈ A. (10.6)

Using first step analysis, we show that the optimal action-value functional
Q∗(k, a), k ∈ S, a ∈A, can be written using the transition probability matrix

" 249

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

P (a) and the optimal value functional V ∗(·).∗ By an argument similar to that
of Proposition 10.3, we have the following result.

Proposition 10.3. The optimal action-value functional Q∗(k, a) satisfies the
inequality

Q∗(k, a) ⩽ R(k) +
∑
l∈S

P
(a)
k,l V

∗(l), k ∈ S, a ∈A.

Proof. We have

Q∗(k, a) := Max
π

Eπ,a

∑
n⩾0

R(Xn)
∣∣∣ X0 = k


= Max

π
Eπ,a

R(X0) +
∑
n⩾1

R(Xn)
∣∣∣ X0 = k


= Max

π
Eπ,a

R(k) +∑
n⩾1

R(Xn)
∣∣∣ X0 = k


= R(k) + Max

π
Eπ,a

∑
n⩾1

R(Xn)
∣∣∣ X0 = k


= R(k) + Max

π

∑
l∈S

P
(a)
k,l Eπ

∑
n⩾1

R(Xn)
∣∣∣ X1 = l


⩽ R(k) +

∑
l∈S

P
(a)
k,l Max

π
Eπ

∑
n⩾1

R(Xn)
∣∣∣ X1 = l


= R(k) +

∑
l∈S

P
(a)
k,l Max

π
Eπ

∑
n⩾0

R(Xn)
∣∣∣ X0 = l


= R(k) +

∑
l∈S

P
(a)
k,l V

∗(l), k ∈ S.

□

In Proposition 10.4, by applying first step analysis we derive the Bellman equa-
tion satisfied by the optimal value function V ∗(k).

Proposition 10.4. The optimal value functional V ∗ satisfies the inequality
∗ We always assume that R(·) and (Xn)n⩾0 are such that the series in (10.6) is convergent.

250 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

V ∗(k) ⩽ R(k) + Max
a∈A

∑
l∈S

P
(a)
k,l V

∗(l), k ∈ S.

Proof. For any policy π′ : S→A and k ∈ S, we have

Eπ′

∑
n⩾0

R(Xn)
∣∣∣ X0 = k

 ⩽ Max
a∈A

Max
π

Eπ,a

∑
n⩾0

R(Xn)
∣∣∣ X0 = k

 .

Hence, from (10.5) and Proposition 10.3 we obtain

V ∗(k) = Max
π

Eπ

∑
n⩾0

R(Xn)
∣∣∣ X0 = k


⩽ Max

a∈A
Max
π

Eπ,a

∑
n⩾0

R(Xn)
∣∣∣ X0 = k


= Max

a∈A
Q∗(k, a)

= Max
a∈A

(
R(k) +

∑
l∈S

P
(a)
k,l V

∗(l)

)
= R(k) + Max

a∈A

∑
l∈S

P
(a)
k,l V

∗(l), k ∈ S.

□

The equalities

V ∗(k) = R(k) + Max
a∈A

∑
l∈S

P
(a)
k,l V

∗(l), k ∈ S,

and
Q∗(k, a) = R(k) +

∑
l∈S

P
(a)
k,l V

∗(l), k ∈ S,

are called the Bellman optimal equations.

Policy optimization

An optimal policy π∗ : S→A can now be computed from the optimal action-
value functional Q∗(k, a), as

π∗(k) = argmaxa∈AQ
∗(k, a), k ∈ S. (10.7)

" 251

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

Q-Learning

The above optimization problem is solved by a recursive algorithm, starting
from an arbitrary initial policy choice π(0), and initial data V (0)(k) = R(k),
k ∈ S, a ∈ A. Next, we apply the following steps (i)− (iii) iteratively for n ⩾ 0.

i) Action-value functional. Compute Q(n)(k, a) from V (n) using (10.4), for
every state k ∈ S and action a ∈ A.

ii) Policy iteration. Based on (10.7), apply the policy update

π(n+1)(k) := argmaxa∈AQ
(n)(k, a), k ∈ S.

If π(n+1)(k) = π(n)(k) for all k ∈ S, then stop.

iii) Value iteration. Update the value function using

V (n+1)(k) := Max
a∈A

Q(n)(k, a), k ∈ S.

10.3 Example - deterministic MDP

In the example of Section 10.1 we will compute

Q∗(k, ↓) := Max
π

Eπ,↓

∑
n⩾0

R(Xn)
∣∣∣ X0 = k

 (10.8)

and

Q∗(k,→) := Max
π

Eπ,→

∑
n⩾0

R(Xn)
∣∣∣ X0 = k

 , (10.9)

starting from state X0 = k ∈ S, in the following order: Q∗(7, ↓), Q∗(7,→
), Q∗(6, ↓), Q∗(6,→), Q∗(3, ↓), Q∗(3,→), Q∗(5,→), Q∗(5, ↓), Q∗(2, ↓),
Q∗(2,→), Q∗(4,→), Q∗(4, ↓), Q∗(1, ↓), Q∗(1,→).

The optimal action-value functional Q∗(k, a) can be summarized in the graph
of Figure 10.1.

252 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

V ∗(1) = 2

Q∗(1, ↓) = 1

V ∗(4) = 1

Q∗(4, ↓) = 0

Q∗(4, →) = 1

Q∗(1, →) = 2 V ∗(2) = 2

Q∗(2, ↓) = 0

Q∗(2, →) = 2 V ∗(3) = 4

Q∗(3, ↓) = 4

Q∗(3, →) = 3

V ∗(5) = 2 Q∗(5, →) = 2

Q∗(5, ↓) = −1

V ∗(6) = 5

Q∗(6, ↓) = 5

Q∗(6, →) = 5

V ∗(7) = 0

1

1

1

1

1
1

1

1 1 1

1

1

1

Fig. 10.1: Action-value functional.

We have

Q∗(7, ↓) = 0, Q∗(7,→) = 0, Q∗(6, ↓) = 5, Q∗(6,→) = 5,

and Q∗(3, ↓) = 4. Regarding Q∗(3,→), we have

Q∗(3,→) = −1 + Max
(
Q∗(3, ↓),Q∗(3,→)

)
,

which implies
Q∗(3,→) < Q∗(3, ↓),

hence
Q∗(3,→) = −1 +Q∗(3, ↓) = 3.

Similarly, we find 
Q∗(5, ↓) = −1, Q∗(5,→) = 2,
Q∗(2, ↓) = 0, Q∗(2,→) = 2,
Q∗(4, ↓) = 0, Q∗(4,→) = 1,
Q∗(1, ↓) = 1, Q∗(1,→) = 2.

We can also solve this system by backward optimization (or dynamic program-
ming), as in the following tree in which optimal policies at each node denoted
in green.

V ∗(6) = 5

Q∗(3, ↓) = 4

Q∗(3, →) = 3

→

Q∗(2, →) = 2

Q∗(1, →) = 2

→

→

↓

Q∗(5, →) = 2

Q∗(5, ↓) = −1

↓

Q∗(2, ↓) = 0

↓

Q∗(4, →) = 1

Q∗(4, ↓) = 0

↓

Q∗(1, ↓) = 1

→

→

→

Fig. 10.2: Nodes with optimal and non-optimal policies.

" 253

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

Optimal value function

Next, we compute the optimal value function

V ∗(k) := Max
π

Eπ

∑
n⩾0

R(Xn)
∣∣∣ X0 = k

 ,

at all states k = 1, 2, . . . , 7. At every state k , we have

V ∗(k) = Max
(
Q∗(k, ↓),Q∗(k,→)

)
,

hence 

V ∗(7) = 0,
V ∗(6) = 5,
V ∗(3) = 4,
V ∗(5) = 2,
V ∗(2) = 2,
V ∗(4) = 1,
V ∗(1) = 2.

The optimal value functional V ∗(k), k = 1, 2, . . . , 6, can be summarized in the
next table.

1 V ∗(1) = 2 2 V ∗(2) = 2 3 V ∗(3) = 4

4 V ∗(4) = 1 5 V ∗(5) = 2 6 V ∗(6) = 5

The following backward optimization tree is obtained as a subset of the above
tree:

V ∗(6) = 5

V ∗(3) = 4, π∗(3) =“↓”

V ∗(2) = 2, π∗(2) =“→”

V ∗(1) = 2, π∗(1) =“→”

→

→

↓

V ∗(5) = 2, π∗(5) =“→”

V ∗(4) = 1, π∗(4) =“→”

→

→

Fig. 10.3: Optimal policies.

254 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

Optimal policy

We now determine the optimal policy π∗ = (π∗(1),π∗(2),π∗(3),π∗(4),π∗(5))
of actions leading to the optimal gain starting from any state.∗ We find

π∗ = (π∗(1),π∗(2),π∗(3),π∗(4),π∗(5),π∗(6),π∗(7)) = (→,→, ↓,→,→, ↓↱, ↓↱),

which is consistent with the following MDPtoolbox output in:

 install.packages("MDPtoolbox")
 library(MDPtoolbox)

P <- array(0, c(7, 7, 2))
 P[,,1] <- matrix(c(0,0,0,1,0,0,0,

0,0,0,0,1,0,0,
 0,0,0,0,0,1,0,

0,0,0,1,0,0,0,
 0,0,0,0,1,0,0,

0,0,0,0,0,0,1,
 0,0,0,0,0,0,1), nrow=7, ncol=7, byrow=TRUE)

P[,,2] <- matrix(c(0,1,0,0,0,0,0,
 0,0,1,0,0,0,0,

0,0,1,0,0,0,0,
 0,0,0,0,1,0,0,

0,0,0,0,0,1,0,
 0,0,0,0,0,0,1,

0,0,0,0,0,0,1), nrow=7, ncol=7, byrow=TRUE)
 R <- array(0, c(7, 2))

R[,1] <- matrix(c(0, -2, -1, -1, -3, 5, 0), nrow=1, ncol=7, byrow=TRUE)
 R[,2] <- R[,1]

mdp_check(P, R)
 mdp_value_iteration(P,R,discount=1,epsilon=0.01)

$V
 [1] 2 2 4 1 2 5 0

$policy
 [1] 2 2 1 2 2 1 1

The optimal policy π∗(k) ∈ {→, ↓}, k = 1, 2, . . . , 6, can be summarized in the
next table.

∗ The values of π∗(6) and π∗(7) are not considered because they do not affect the total
reward.

" 255

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

1 π∗(1) = “→ ” 2 π∗(2) = “→ ” 3 π∗(3) = “ ↓ ”

4 π∗(4) = “→ ” 5 π∗(5) = “→ ” 6 π∗(6) = “↓↱ ”

10.4 Example - stochastic MDP

Let p ∈ [0, 1] and consider the stochastic MDP on the state space S =
{1, 2, 3, 4, 5, 6, 7}, with actions A = {↓,→} and transition probability matrices

P (↓) :=



0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 1


P (→) :=



0 1 0 0 0 0 0
0 0 p 0 q 0 0
0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 1


,

and the reward function (10.1). This MDP can be represented by the following
graph with state 7 as a sink state, where the ⇝ arrows represent policy
choices, while the straight arrows denote Markov transitions.

R(1) = 0

↓

R(4) = −1

↓

→

→ R(2) = −2

↓

→ R(3) = −1

↓

→

R(5) = −3 →

↓

R(6) = 5

↓

→

R(7) = 0

↓

→

1

1

p

q

1

1

1
1

1

1

1

1

1

1

1

Fig. 10.4: Stochastic MDP.

Using the arguments of Section 10.2, we compute the optimal action-value
function∗

Q∗(k, ↓) := Max
π

Eπ,↓

∑
n⩾0

R(Xn)
∣∣∣ X0 = k

 (10.10)

and
∗ In the maxima (10.10) the action is taken equal to “↓”, resp. “→” at the first step only.

256 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

Q∗(k,→) := Max
π

Eπ,→

∑
n⩾0

R(Xn)
∣∣∣ X0 = k

 , (10.11)

starting from state X0 = k ∈ S, in the following order: Q∗(7, ↓), Q∗(7,→
), Q∗(6, ↓), Q∗(6,→), Q∗(3, ↓), Q∗(3,→), Q∗(5,→), Q∗(5, ↓), Q∗(2, ↓),
Q∗(2,→), Q∗(4,→), Q∗(4, ↓), Q∗(1, ↓), Q∗(1,→).

Remark: Some values of Q∗(k, ↓), Q∗(k,→) may now depend on p.

Similarly to the above, we have
Q∗(7, ↓) = 0, Q∗(7,→) = 0,
Q∗(6, ↓) = 5, Q∗(6,→) = 5,
Q∗(3, ↓) = 4, Q∗(3,→) = 3,
Q∗(5, ↓) = −1, Q∗(5,→) = 2.

We also have Q∗(2, ↓) = 0 and Proposition 10.3 shows that

Q∗(2,→) = −2 + pMax
(
Q∗(3, ↓),Q∗(3,→)

)
+ qMax

(
Q∗(5,→),Q∗(5,→)

)
= −2 + pQ∗(3, ↓) + qQ∗(5,→)

= −2 + 4p+ 2q = 2p,

and

Q∗(4, ↓) = 0, Q∗(4,→) = 1, Q∗(1, ↓) = 1, Q∗(1,→) = Q∗(2,→) = 2p.

In other words, we have the following backward optimization (or dynamic
programming) tree, in which the choice of colors depends on the position of
p ∈ (0, 1) with respect to the threshold 1/2.

V ∗(6) = 5

Q∗(3, ↓) = 4

Q∗(3, →) = 3

→

Q∗(2, →) = 2p

Q∗(1, →) = 2p

→

→

↓

Q∗(5, →) = 2

Q∗(5, ↓) = −1

↓

Q∗(2, ↓) = 0

↓

Q∗(4, →) = 1

Q∗(4, ↓) = 0

↓

Q∗(1, ↓) = 1

→

→

→

Fig. 10.5: Nodes with optimal and non-optimal policies.

Next, using Proposition 10.4 we compute the optimal value function

" 257

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

V ∗(k) := Max
π

Eπ

∑
n⩾0

R(Xn)
∣∣∣ X0 = k

 ,

at all states k = 1, 2, . . . , 7, depending on the value of p ∈ [0, 1]. At every state
k we have

V ∗(k) = Max
(
Q∗(k, ↓),Q∗(k,→)

)
,

hence 

V ∗(7) = 0,
V ∗(6) = 5,
V ∗(5) = 2,
V ∗(4) = 1,
V ∗(3) = 4,
V ∗(2) = 2p,
V ∗(1) = Max(2p, 1).

Next, we find the optimal policy π∗ = (π∗(1),π∗(2),π∗(3),π∗(4),π∗(5)) of
actions leading to the optimal gain starting from any state, depending on the
value of p ∈ [0, 1].∗

When p = 0, we find

π∗ = (π∗(1),π∗(2),π∗(3),π∗(4),π∗(5),π∗(6),π∗(7)) = (↓, ↓↱, ↓,→,→, ↓↱, ↓↱).

The package MDPtoolbox can be used to check our results using the follow-
ing code.
∗ The values of π∗(6) and π∗(7) are not considered here, because they do not affect the
total reward.

258 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

 install.packages("MDPtoolbox")
 library(MDPtoolbox);p=1.0;

P <- array(0, c(7, 7, 2));q=1-p
 P[,,1] <- matrix(c(0,0,0,1,0,0,0,

0,0,0,0,1,0,0,
 0,0,0,0,0,1,0,

0,0,0,1,0,0,0,
 0,0,0,0,1,0,0,

0,0,0,0,0,0,1,
 0,0,0,0,0,0,1), nrow=7, ncol=7, byrow=TRUE)

P[,,2] <- matrix(c(0,1,0,0,0,0,0,
 0,0,p,0,q,0,0,

0,0,1,0,0,0,0,
 0,0,0,0,1,0,0,

0,0,0,0,0,1,0,
 0,0,0,0,0,0,1,

0,0,0,0,0,0,1), nrow=7, ncol=7, byrow=TRUE)
 R <- array(0, c(7, 2))

R[,1] <- matrix(c(0, -2, -1, -1, -3, 5, 0), nrow=1, ncol=7, byrow=TRUE);R[,2] <- R[,1]
 mdp_check(P, R);mdp_value_iteration(P,R,discount=1)

$V
 [1] 1 0 4 1 2 5 0

$policy
 [1] 1 1 1 2 2 1 1

V ∗(6) = 5

V ∗(3) = 4, π∗(3) =“↓”

↓

V ∗(5) = 2, π∗(5) =“→”

V ∗(2) = 0, π∗(2) =“↓↱”

↓↱

V ∗(4) = 1, π∗(4) =“→”

V ∗(1) = 1, π∗(1) =“↓”

↓

→

→

Fig. 10.6: Optimal value function with p = 0.

When 0 < p < 1/2, we obtain

π∗ = (π∗(1),π∗(2),π∗(3),π∗(4),π∗(5),π∗(6),π∗(7)) = (↓,→, ↓,→,→, ↓↱, ↓↱)

which is consistent with the following MDPtoolbox output, here with p =
0.25:

 $V
 [1] 1.0 0.5 4.0 1.0 2.0 5.0 0.0

$policy
 [1] 1 2 1 2 2 1 1

" 259

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

V ∗(6) = 5

V ∗(3) = 4, π∗(3) =“↓”

↓

V ∗(5) = 2, π∗(5) =“→”

V ∗(2) = 2p, π∗(2) =“→”

→

V ∗(4) = 1, π∗(4) =“→”

V ∗(1) = 1, π∗(1) =“↓”

↓

→

→

Fig. 10.7: Optimal value function with 0 < p < 1/2.

When p = 1/2, we find

π∗ = (π∗(1),π∗(2),π∗(3),π∗(4),π∗(5),π∗(6),π∗(7)) = (↓↱,→, ↓,→,→, ↓↱, ↓↱)

V ∗(6) = 5

V ∗(3) = 4, π∗(3) =“↓”

V ∗(2) = 1, π∗(2) =“→”

V ∗(1) = 1, π∗(1) =“→”

→

→

↓

V ∗(5) = 2, π∗(5) =“→”

V ∗(4) = 1, π∗(4) =“→”

V ∗(1) = 1, π∗(1) =“↓”

↓

→

→

Fig. 10.8: Optimal value function with p = 1/2.

which is consistent with the following MDPtoolbox output, with p = 0.5:

 $V
 [1] 1 1 4 1 2 5 0

$policy
 [1] 1 2 1 2 2 1 1

When 1/2 < p ⩽ 1, we obtain

π∗ = (π∗(1),π∗(2),π∗(3),π∗(4),π∗(5),π∗(6),π∗(7)) = (→,→, ↓,→,→, ↓↱, ↓↱).

260 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

V ∗(6) = 5

V ∗(3) = 4, π∗(3) =“↓”

V ∗(2) = 2p, π∗(2) =“→”

V ∗(1) = 2p, π∗(1) =“→”

→

→

↓

V ∗(5) = 2, π∗(5) =“→”

V ∗(4) = 1, π∗(4) =“→”

→

→

Fig. 10.9: Optimal value function with 1/2 < p ⩽ 1.

which is also consistent with the following MDPtoolbox output, here with
p = 0.75:

 library(MDPtoolbox);p=0.75;
 P <- array(0, c(7, 7, 2));q=1-p

P[,,1] <- matrix(c(0,0,0,1,0,0,0,
 0,0,0,0,1,0,0,

0,0,0,0,0,1,0,
 0,0,0,1,0,0,0,

0,0,0,0,1,0,0,
 0,0,0,0,0,0,1,

0,0,0,0,0,0,1), nrow=7, ncol=7, byrow=TRUE)
 P[,,2] <- matrix(c(0,1,0,0,0,0,0,

0,0,p,0,q,0,0,
 0,0,1,0,0,0,0,

0,0,0,0,1,0,0,
 0,0,0,0,0,1,0,

0,0,0,0,0,0,1,
 0,0,0,0,0,0,1), nrow=7, ncol=7, byrow=TRUE)

R <- array(0, c(7, 2))
 R[,1] <- matrix(c(0, -2, -1, -1, -3, 5, 0), nrow=1, ncol=7, byrow=TRUE);R[,2] <- R[,1]

mdp_check(P, R);mdp_value_iteration(P,R,discount=1)
 $V

[1] 1.5 1.5 4.0 1.0 2.0 5.0 0.0
 $policy

[1] 2 2 1 2 2 1 1

Notes

See e.g. Russell and Norvig (1995) for further reading.

" 261

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

Exercises

Exercise 10.1 Consider the Markov chain (Xn)n⩾0 on the state space S =
{a, b, c} whose transition probability matrix P is given by

P =


a b c

a 1 0 0
b 2/3 0 1/3
c 0 1 0

,

with the following graph:

R(a) = 0 R(b) = −1 R(c) = 21

2/3

1/3

1

Given the following reward function:

R(a) = 0, R(b) = −1, R(c) = 2,

determine the average accumulated reward Va(k) = E

[∞∑
n=0

R(Xn)
∣∣∣X0 = k

]
until the chain is absorbed into state a after starting from k = a, b, c, assuming
a discount factor γ = 1.

Exercise 10.2 Let (Xn)n⩾0 be a three-state Markov chain with the following
transition probability graph.

1 2 31 − p
p

1 − q

q
1

By first step analysis, compute the value function

V (k) = E

[∑
n⩾0

γnR(Xn)

∣∣∣∣ X0 = k

]
, k = 1, 2, 3,

where γ ∈ (0, 1) is a discount factor and R : S → R is the reward function
given by

R(1) := −$2, R(2) := $3, R(3) := $1.

Exercise 10.3 Let (Xn)n⩾0 be a Markov chain with state space S and transition
probability matrix (Pij)i,j∈S. Our goal is to compute the expected value of the

262 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

infinite discounted series

h(i) := E

[∑
n⩾0

βnc(Xn)

∣∣∣∣ X0 = i

]
, i ∈ S,

where β ∈ (0, 1) is the discount coefficient and c(·) is a utility function, starting
from state i .

a) Show, by a first step analysis argument, that h(i) satisfies the equation

h(i) = c(i) + β
∑
j∈S

Pijh(j)

for every state i ∈ S.
b) Consider the Markov chain on the state space S = {0, 1, 2} with transition

matrix

P =


0 1 2

0 0 0.5 0.5
1 0.5 0.5 0
2 0 0 1

,

and the utility function c : S→ Z defined by

c(0) = $5, c(1) = −$2, c(2) = 0.

Compute the accumulated utility h(k) after starting from states k = 0, 1, 2,
by taking β := 1.

Exercise 10.4 We consider the deterministic Markov Decision Process (MDP)
on the state space S = {1, 2, . . . , 10} with actions A = {↓,→} and reward
function R : S→ R represented in the following graph.

R(1) = 0

↓

R(4) = −1

↓

→

→

R(7) = −2

↓

→

→

R(2) = −2

↓

→ R(3) = −4

↓

→

R(5) = −3 →

↓

R(8) = −4 →

↓

R(6) = −2

↓

→

R(9) = 5

↓

→

R(10) = 0

↓

→

1

1

1 1 1

1

1

1

1

1 1

1

1

1

11

1
1

1

1

" 263

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

a) Compute the optimal action-value functional Q∗(k, a), k = 1, 2, . . . , 9, a ∈
{→, ↓}.

b) Compute the optimal value function V ∗(k) for k = 1, 2, . . . , 9.
c) Compute the optimal policy π∗(k) ∈ {→, ↓} for k = 1, 2, . . . , 9.

264 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Chapter 11
Poisson Point Processes

Spatial Poisson processes are typically used to model the random scattering
of configuration points within a plane or a three-dimensional space. They find
applications to e.g. wireless networks in telecommunications, the modeling dis-
ease outbreaks in epidemiology, segmentation and detection in image analysis,
multitarget tracking and filtering, etc. This chapter introduces the preliminary
material needed for the study of the Boolean model in Chapter 12, and is
more technical than previous chapters, due to a higher degree of generality and
abstractness.

11.1 Spatial Poisson processes . 265
11.2 Functionals of Poisson point processes 268
11.3 Transformations of Poisson point processes 277
11.4 The Poisson Process . 283
Exercises . 290

11.1 Spatial Poisson processes

In this section, we present the construction of spatial
Poisson processes on the space

ΩX :=
{
ω := (xi)

N
i=1 ⊂ X, N ∈N∪ {∞}

}
of subsets of X ⊂ Rd called configurations, d ⩾ 1.

The next figure illustrates a given configuration ω ∈ ΩX.

" 265

This version: March 5, 2024 https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

A

B
C

X

x1
x2 x3

0

1

2

3

4

0

1

2

2

3

4

3

4

1

2

0

1

2

3

4

Fig. 11.1: Poisson random samples with ω(A) = 2, ω(B) = 4, ω(C) = 3.

On the real half-line with X = R+, the random Poisson points will be identified
to the sequence (Tk)k⩾1 of jump times of the standard Poisson process, see
Section 11.4.

Definition 11.1. Given a (measurable) subset A of X, we let

ω(A) = #{x ∈ ω : x ∈ A} =
∑
x∈ω

1A(x)

denote the number of configuration points in ω that are contained in the set A.

We consider an intensity measure σ(dx) on X, possibly given from a nonnega-
tive density function ρ : X −→ R+ as σ(dx) = ρ(x)dx, i.e. for any (measurable)
subset A of X we have

σ(A) =
w

A
σ(dx)

=
w

A
ρ(x)dx

=
w

X
1A(x)ρ(x)dx.

When σ(X) < ∞, the Poisson point process with intensity σ(dx) can be con-
structed in three steps:

1. First, choose the number ω(X) of points in X according to a standard Pois-
son distribution with mean σ(X):

PX
σ (ω(X) = n) = e−σ(X) (σ(X))n

n!
, n ⩾ 0.

2. Second, scatter n = ω(X) points (X1 . . . ,Xn) over X independently, each
of them with the probability distribution σ(dx)/σ(X), i.e.

PX
σ ((X1, . . . ,Xn) ∈ A1×· · ·×An | ω(X) = n) =

σ(A1)

σ(X)
· · · σ(An)

σ(X)
, (11.1)

for A1, . . . ,An measurable subsets of X with finite σ-measure.

266 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

In some applications, the intensity function ρ(x) can be constant, i.e. ρ(x) =
λ > 0, x ∈ X, where λ > 0 is called the intensity parameter, and

σ(A) = λ
w

A
dx = λ

w

X
1A(x)dx

represents the surface area or the volume of A in Rd. In this case, (11.1) shows
that the random points {x1, . . . ,xn} are uniformly distributed on An given that
{ω(A) = n}.

 library(spatstat)
lambda = 10000

 bellcurve <- function(x,y,s){return(exp(-s*((x-0.5)**2+(y-0.5)**2)))}
rho <-

function(x,y){lambda*bellcurve(x+0.2,y+0.2,70)+lambda*bellcurve(x-0.2,y-0.1,40)}
 X <- rpoispp(rho)

plot(X, cols="blue", pch=16, cex=0.7, main = '')

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

● ●

●

●

●

●●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

● ● ●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Fig. 11.2: Two Poisson point process samples.

Figure 11.3 presents another Poisson point process sample together with the
density of its intensity measure.

-3
-2

-1
 0

 1
 2

 3
-4

-2

 0

 2

 4

 0

 0.02

 0.04

 0.06

 0.08

x

y

(a) Sample points vs. intensity ρ(x).

-3 -2 -1 0 1 2 3

-4

-2

 0

 2

 4

(b) View from above (heat map).

Fig. 11.3: Poisson point process sample on the plane.

" 267

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

The Poisson probability measure PX
σ with intensity σ(dx) = ρ(x)dx on X

satisfying the above points 1 and 2 can be characterized in the next theorem,
see Proposition I.6 in Neveu (1977).
Theorem 11.2. Given ρ : X −→ R+ a nonnegative function, the Poisson
probability measure PX

σ with intensity σ(dx) = ρ(x)dx on X is the only proba-
bility measure on ΩX satisfying the following two properties:

i) For any (measurable) subset A of X such that σ(A) < ∞, the number
ω(A) of configuration points contained in A is a Poisson random variable
with intensity σ(A), i.e.

PX
σ (ω ∈ ΩX : ω(A) = n) = e−σ(A) (σ(A))

n

n!
, n ⩾ 0.

ii) For any sequence A1,A2, . . . ,An are disjoint measurable subsets of X with
σ(Ak) <∞, k = 1, 2, . . . ,n, the Nn-valued random vector

ω 7−→ (ω(A1), . . . ,ω(An)), ω ∈ ΩX,

is made of independent random variables for all n ⩾ 1.
In the remaining of this chapter, we will assume for simplicity that σ(X) <∞.

11.2 Functionals of Poisson point processes

In what follows, we will consider Poisson random functionals F written as

F (ω) = f01{ω(X)=0} +
∑
n⩾1

1{ω(X)=n}fn(x1,x2, . . . ,xn) (11.2)

where fn is a symmetric integrable function of ω = {x1,x2, . . . ,xn} when
ω(X) = n, n ⩾ 1.

a) The Poisson stochastic integral

F :=
∑
x∈ω

f(x)

can be written as in (11.2) with f0 = 0 and

fn(x1, . . . ,xn) = f(x1) + · · ·+ f(xn), n ⩾ 1. (11.3)

b) The product functional
F :=

∏
x∈ω

f(x)

can be written as in (11.2) with f0 = 1 and

268 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

fn(x1, . . . ,xn) = f(x1) · · · f(xn), n ⩾ 1.

c) The exponential functional

F := exp
(∑
x∈ω

f(x)

)
=
∏
x∈η

ef (x)

can be written as in (11.2) with f0 = 1 and

fn(x1, . . . ,xn) = ef (x1)+···+f (xn), n ⩾ 1.

d) In wireless communication, the Signal to Noise Ratio (SINR) at y ∈ Rd

takes the form
SINR :=

h

1 + p
∑

x∈ω ∥x− y∥−α
,

where p is the transmit power, α is the path loss exponent, and h is the
fading gain, can be written as in (11.2) with f0 = h and

fn(x1, . . . ,xn) =
h

1 + p
∑n

k=1 ∥xk − y∥−α
, n ⩾ 1.

Proposition 11.3. The expected value of F of the form (11.2) under the Pois-
son measure PX

σ is given by

Eσ [F] = f0e−σ(X) + e−σ(X)
∑
n⩾1

1
n!

w

Xn
fn(x1,x2, . . . ,xn)σ(dx1) · · ·σ(dxn),

(11.4)
provided that the above integrals and series converge absolutely.

Proof. We have

Eσ [F] = f0PX
σ (ω(X) = 0)

+
∑
n⩾1

PX
σ (ω(X) = n)E[fn(X1,X2, . . . ,Xn) | ω(X) = n]

= f0PX
σ (ω(X) = 0)

+
∑
n⩾1

PX
σ (ω(X) = n)

w

Xn
fn(x1,x2, . . . ,xn)

σ(dx1)

σ(X)
· · · σ(dxn)

σ(X)

= f0e−σ(X) + e−σ(X)
∑
n⩾1

1
n!

w

Xn
fn(x1,x2, . . . ,xn)σ(dx1) · · ·σ(dxn).

□

" 269

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

Poisson stochastic integrals

In what follows, we let Lp(X,σ) denote the class of (measurable) functions
f : X→ R such that w

X
|f(x)|pσ(dx) <∞.

We also identify the configuration ω = (xi)Ni=1 in ΩX to the point measure

ω(dx) =
N∑
i=1

δxi(dx),

where δy(dx) denotes the Dirac measure at the point y ∈ X, such that

δy(A) = 1A(y), A ⊂ X,

with the relation w

X
f(x)δy(dx) = f(y),

for any measurable function f on X.
Definition 11.4. The Poisson stochastic integral of an integrable function
f ∈ L1(X,σ) is defined as

w

X
f(x)ω(dx) :=

∑
x∈ω

f(x). (11.5)

In Proposition 11.3 we compute the first and second moments of the Poisson
stochastic integral

∑
x∈ω

f(x).

Proposition 11.5. Let f ∈ L1(X,σ) ∩L2(X,σ). We have

Eσ

[∑
x∈ω

f(x)

]
=

w

X
f(x)σ(dx) and Var

[∑
x∈ω

f(x)

]
=

w

X
f2(x)σ(dx).

(11.6)

Proof. After writing
∑
x∈ω

f(x) as in (11.2) from (11.3), Proposition 11.3 yields

Eσ

[∑
x∈ω

f(x)

]
= e−σ(X)

∑
n⩾0

1
n!

w

Xn

(
f(x1) + · · ·+ f(xn)

)
σ(dx1) · · ·σ(dxn)

= e−σ(X)
∑
n⩾0

1
(n− 1)!

w

Xn
f(x1)σ(dx1) · · ·σ(dxn)

= e−σ(X)
∑
n⩾0

(σ(X))n−1

(n− 1)!
w

X
f(x1)σ(dx1)

270 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

=
w

X
f(x)σ(dx).

As for the second moment of
∑
x∈ω

f(x), we have

Eσ

(∑
x∈ω

f(x)

)2


= e−σ(X)
∑
n⩾0

1
n!

w

Xn

(
f(x1) + · · ·+ f(xn)

)2
σ(dx1) · · ·σ(dxn)

= e−σ(X)
∑
n⩾0

1
n!

w

Xn

(
n∑
i=1

f2(xi) +
∑

1⩽i ̸=j⩽n
f(xi)f(xj)

)
σ(dx1) · · ·σ(dxn)

= e−σ(X)
∑
n⩾1

n
(σ(X))n−1

n!

w

X
f2(x1)σ(dx1)

+e−σ(X)
∑
n⩾2

n(n− 1) (σ(X))n−2

n!

w

X
f(x1)σ(dx1)

w

X
f(x2)σ(dx2)

=
w

X
f2(x)σ(dx) +

(w
X
f(x)σ(dx)

)2
.

□

The following code recovers the mean of the Poisson stochastic integral
w

[0,1]×[0,1]
ex1+x2ω(dx) :=

∑
x=(x1,x2)∈ω

ex1+x2

with respect to the Poisson point process with intensity

σ(dx1, dx2) = λdx1dx2

on [0, 1]2, which is

w 1

0

w 1

0
ex1+x2σ(dx1, dx2) = λ

(w 1

0
exdx

)2

= λ(e− 1)2.

 library(spatstat)
 stochint <- function(lambda,N){Z=c();

for (i in 1:N){X <- rpoispp(lambda=lambda,win=owin(c(0,1),c(0,1)))
 Z=c(Z,sum(exp(X$x+X$y)))}

return(Z)}
 mean(stochint(100,100))

" 271

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

Next, we recover the first and second order moments of Poisson stochastic
integrals via their characteristic functions.

Proposition 11.6. Let f ∈ L1(X,σ) be an integrable function on (X,σ). We
have

Eσ

[
exp

(
i
∑
x∈ω

f(x)

)]
= exp

(w
X
(eif (x) − 1)σ(dx)

)
. (11.7)

Proof. We assume that σ(X) < ∞. By Proposition 11.3 and the definition
(11.5) of the Poisson stochastic integral, we have

Eσ

[
exp

(
i
∑
x∈ω

f(x)

)]

= e−σ(X)
∑
n⩾0

1
n!

w

X
· · ·

w

X
ei(f (x1)+···+f (xn))σ(dx1) · · ·σ(dxn).

= e−σ(X)
∑
n⩾0

1
n!

w

X
· · ·

w

X
eif (x1) · · · eif (xn)σ(dx1) · · ·σ(dxn).

= e−σ(X)
∑
n⩾0

1
n!

(w
X

eif (x)σ(dx)
)n

= exp
(w

X
(eif (x) − 1)σ(dx)

)
.

□

The characteristic function also allows us to compute the expectation of∑
x∈ω f(x) using the relation i2 = −1, as

Eσ

[∑
x∈ω

f(x)

]
= −i d

dε
Eσ

[
exp

(
iε
∑
x∈ω

f(x)

)]
|ε=0

= −i d
dε

exp
(w

X
(eiεf (x) − 1)σ(dx)

)
|ε=0

=
w

X
f(x)σ(dx),

for f ∈ L1(X,σ) an integrable function on (X,σ), which recovers the first part
of (11.6). As a consequence, the compensated Poisson stochastic integral∑

x∈ω
f(x)−

w

X
f(x)σ(dx)

is a centered random variable, i.e. we have

272 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

Eσ

[∑
x∈ω

f(x)−
w

X
f(x)σ(dx)

]
= 0.

The variance can be similarly computed as

Eσ

[(w
X
f(x)(ω(dx)− σ(dx))

)2]
=

w

X
|f(x)|2σ(dx),

for all f in the space L2(X,σ) of functions which are square-integrable on X

with respect to σ(dx). We note that from Proposition 11.6, the logarithmic
moment generating function of

∑
x∈ω

f(x) satisfies the relation

log Eσ

[
exp

(
t
∑
x∈ω

f(x)

)]
=

w

X
(etf (x) − 1)σ(dx)

=
∑
n⩾1

tn

n!

w

X
fn(x)σ(dx), t ∈ R,

and we proceed by identifying the coefficients of the powers tn, n ⩾ 1, in the
above power series. As a consequence, we have the following result.

Proposition 11.7. Let f ∈ ∩n⩾1Ln(X,σ). The cumulants of the Poisson
stochastic integral

∑
x∈ω

f(x) are given by

κn =
w

X
fn(x)σ(dx), n ⩾ 1. (11.8)

The Poisson stochastic integrals
∑
x∈ω

f(x) give rise to a large family of probabil-

ity distributions, called infinitely divisible distributions, parameterized by the
intensity measure σ(dx) and the function f . An example of such a distribution
follows.

Example - gamma distribution

When X = R+ and ρ(x) = λe−xt/x, λ, t > 0, i.e. σ is given by σ(dx) =

ρ(x)dx = λe−xtdx/x, the Poisson stochastic integral
w ∞

0
xω(dx) =

∑
x∈ω

x has

the Laplace transform

Eσ

[
exp

(
−s

w

X
xω(dx)

)]
= exp

(w
X
(e−sx − 1)σ(dx)

)
= exp

(
λ
w

X
(e−sx − 1)e−xt dx

x

)

" 273

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

= exp
(
−λ log

(
1 + s

t

))
=
(

1 + s

t

)−λ

=
tλ

Γ(λ)

w ∞

0
e−syyλ−1e−ytdy, s > −t,

where we used Frullani’s identity

log
(

1 + s

t

)
=

w ∞

0
(1− e−sx)e−xt dx

x
, s, t > 0.

This shows that the random variable
r ∞
0 xω(dx) =

∑
x∈ω x has the gamma

distribution with probability density function

y 7→ tλ

Γ(λ)
yλ−1e−yt, y > 0,

shape parameter λ, scaling parameter 1/t, and mean λ/t.

0 1 2 3 4

1

2

3

4

x

e−x/x

Fig. 11.4: Gamma Lévy density ρ(x) = λe−x/x.

 library(spatstat); scaling=2;lambd=0.5;
 rho <- function(x,y){return(lambd*exp(-x*scaling)/x)}

gammadensity <-
function(x){return(scaling**lambd*x**(lambd-1)*exp(-x*scaling)/gamma(lambd))}

 stochint <- function(N){Z=c(); for (i in 1:N){
X <- rpoispp(function(x,y){rho(x,y)})

 Z=c(Z,sum(X$x))}; return(Z)}
plot(density(stochint(10000),width=0.1),col="blue",lwd=2)

 x<-seq(0,4,0.01); lines(x,gammadensity(x),col="purple",lwd=2)

Probability generating functionals

Definition 11.8. The probability generating functional (PGFl) of the Poisson
point process with intensity σ on X is defined as

274 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

Gσ(f) := Eσ

[∏
x∈ω

f(x)

]
, f ∈ L1(X,σ).

Proposition 11.9. The probability generating functional (PGFl) of the Pois-
son point process with intensity σ on X satisfies

Gσ(f) = exp
(w

X
(f(x)− 1)σ(dx)

)
, f ∈ L1(X,σ). (11.9)

Proof. By (11.4), we note that as in the proof of Proposition 11.6, we have

Gσ(f) = e−σ(X)
∞∑
n=0

1
n!

w

Xn
f(x1) · · · f(xn)σ(dx1) · · ·σ(dxn)

= e−σ(X)
∞∑
n=0

1
n!

(w
X
f(x1)σ(dx1)

)n
= exp

(w
X
f(x)σ(dx)− σ(X)

)
= exp

(w
X
(f(x)− 1)σ(dx)

)
, f ∈ L1(X,σ).

□

We note that the probability generating function of the Poisson integer-valued
random variable ω(A) can be written as

E[sω(A)] = E

[∏
x∈A

(s1A(x) + 1Ac(x))

]
= Gσ(s1A + 1Ac)

= e(s−1)σ(A),

and when f := 1Ac with A ∈ B(X), we have

Gσ(1Ac) = exp
(w

X
(1Ac(x)− 1)σ(dx)

)
(11.10)

= exp
(
−
w

X
1A(x)σ(dx)

)
= e−σ(A)

= PX
σ (ω(A) = ∅).

In addition, given F a functional on L∞(X), the functional derivative ∂g/∂h
of F(h) in the direction of g ∈ L∞(X) is defined as

∂g
∂h
F(h) := lim

ε→0

F(h+ εg)−F(h)
ε

.

" 275

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

We note that by differentiating the PGFl Gσ(f) in the direction h yields

∂h
∂f
Gσ(f) = lim

ε→0

Gσ(f + εh)−Gσ(f)
ε

= Eσ

[
lim
ε→0

∏
x∈ω(f(x) + εh(x))−

∏
x∈ω f(x)

ε

]

= Eσ

∑
x∈ω

h(x)
∏
y∈ω
y ̸=x

f(y)

 ,

which, by taking f := 1, allows us to express the expected value of
∑
x∈ω

h(x) as

∂h
∂f
Gσ(f)|f=1 = Eσ

[∑
x∈ω

h(x)

]

and recovers the first part of (11.6). Similar computations can be carried out
for higher order moments.

Slivnyak-Mecke identity

The following version of the Slivnyak-Mecke identity Slivnyak (1962), Mecke
(1967) allows us to compute the first moment of the first order stochastic inte-
gral of a random integrand.

Proposition 11.10. For u : X×ΩX −→ R a measurable process, we have

Eσ

[∑
x∈ω

u(x,ω)
]
= Eσ

[w
X
u(x,ω ∪ {x})σ(dx)

]
, (11.11)

provided that
Eσ

[w
X
|u(x,ω ∪ {x})|σ(dx)

]
<∞.

Proof. The proof is done when σ(X) <∞. We write u(x,ω) as in (11.2), i.e.

u(x,ω) =
∑
n⩾0

1{ω(X)=n}fn(x;X1, . . . ,Xn),

where for every x ∈ X, (x1, . . . ,xn) 7−→ fn(x;x1, . . . ,xn) is a symmetric in-
tegrable function of ω = {X1, . . . ,Xn} when ω(X) = n, for each n ⩾ 1. By
Proposition 11.3, we have

276 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

Eσ

[∑
x∈ω

u(x,ω)
]

= e−σ(X)
∑
n⩾1

1
n!

n∑
k=1

w

Xn
fn(xk;x1, . . . ,xn)σ(dx1) · · ·σ(dxn)

= e−σ(X)
∑
n⩾0

1
(n+ 1)!

n+1∑
k=1

w

Xn+1
fn+1(x;x1, . . . ,xn+1)σ(dx)σ(dx1) · · ·σ(dxn)

= e−σ(X)
∑
n⩾0

1
n!

w

Xn

w

X
fn+1(x;x,x1, . . . ,xn)σ(dx)σ(dx1) · · ·σ(dxn)

= Eσ

[w
X
u(x,ω ∪ {x})σ(dx)

]
.

□

11.3 Transformations of Poisson point processes

Consider a mapping τ : (X,σ) −→ (Y,µ), and let

τ∗ : ΩX −→ ΩY

be the transformed configuration defined by

τ∗ω = {τ (x1), τ (x2), τ (x3), . . .} := {τ (x) : x ∈ ω}, ω = {x1,x2,x3, . . .} ∈ ΩX,

as illustrated in Figure 11.5.

" 277

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

τ(X, σ)
(Y, µ)

Aτ−1(A)

0

1

2

3

4

0a

1a

2a

3a

4a

Fig. 11.5: Transformation of a Poisson point process.

We let τ∗σ denote the pushforward (or image) of the measure σ by τ , which is
the measure on Y defined by

τ∗σ(A) :=
w

X
1A(τ (x))σ(dx) =

w

X
1τ−1(A)(x)σ(dx) = σ(τ−1(A)),

for a (measurable) subset A of Y, where

τ−1(A) = {x ∈ X : τ (x) ∈ A}.

In particular, when ω is identified to the random measure

ω(dy) =
∑
x∈ω

δx(dy),

we have
τ∗ω(dx) =

∑
x∈ω

δτ (x)(dy).

Proposition 11.11. Assume that τ : X → Y is a one-to-one mapping. The
random configuration

ΩX : −→ ΩY

ω 7−→ τ∗(ω)

has the Poisson distribution with intensity τ∗σ, which is the pushforward of the
measure σ by τ on Y.

Proof. For any set A ⊂ Y of finite µ-measure, we have

278 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

PX
σ ({ω ∈ X : τ∗ω(A) = n}) = PX

σ ({ω ∈ X : ω(τ−1(A)) = n})

= e−σ(τ−1(A)) (σ(τ
−1(A)))n

n!

= e−τ∗σ(A) (τ∗σ(A))n

n!

= e−µ(A) (µ(A))
n

n!
.

More generally, we can check that for all families A1,A2, . . . ,An of disjoint
subsets of Y and k1, k2, . . . , kn ∈N, we have

PX
σ

({
ω ∈ ΩX : τ∗ω(A1) = k1, . . . , τ∗ω(An) = kn

})
= PX

σ

({
ω ∈ ΩX : ω(τ−1(A1)) = k1, . . . , τ∗ω(τ

−1(An)) = kn
})

=
n∏
i=1

PX
σ (
{
ω ∈ ΩX : ω(τ−1(Ai)) = ki

}
)

=
n∏
i=1

PX
σ

({
ω ∈ ΩX : τ∗ω(Ai) = ki

})
.

□

Examples

• Figure 11.6 illustrates the transport of measure in the case of Gaussian
intensities on X = R.

X

Y

2 3 1 0 4

2a 3a 1a 0a 4a

Fig. 11.6: Transport of measure with Gaussian density.

• In the case of a flat intensity ρ(x) = λ on X = R+ the intensity σ(dx) = λdx
of the original Poisson point process becomes doubled under the mapping

" 279

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

τ (x) = x/2, since

PX
σ (τ∗ω([0, t]) = n) = PX

σ (ω(τ
−1([0, t])) = n)

= e−σ(τ−1([0,t])) (σ(τ
−1([0, t])))n
n!

= e−σ([0,2t]) (σ([0, 2t]))n
n!

= e−2λt (2λt)n
n!

= e−µ([0,t]) (µ([0, t]))n
n!

,

with
τ∗ω([0, t]) = σ(τ−1([0, t])) = σ([0, 2t]) = 2λt, t > 0.

X = R+0

0 Y = R+

2 3 1 0 4

2a 3a 1a 0a 4a

Fig. 11.7: Transport of measure with constant density.

Thinning of Poisson random variables

The thinning Xp with parameter p ∈ [0, 1] of an integer-valued random variable
X is defined by independently keeping (resp. removing) each of the n “1’s” in
n = X with probability p ∈ [0, 1] (resp. q = 1− p ∈ [0, 1]).
Proposition 11.12. The thinning Xp with parameter p ∈ [0, 1] of an integer-
valued Poisson random variable X with mean λ > 0 has a Poisson distribution
with parameter λp.

Proof. Letting q := 1− p, we have

P(Xp = n) =
∑
k⩾0

P(X = n+ k)

(
n+ k

k

)
pnqk

280 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

= e−λ
∑
k⩾0

λn+k

(n+ k)!

(
n+ k

k

)
pnqk

= e−λ (pλ)
n

n!

∑
k⩾0

(qλ)k

k!

= e−λ (pλ)
n

n!
eqλ

= e−pλ (pλ)
n

n!
, n ⩾ 0.

□

The concept of thinning extends from integer-valued Poisson random variables
to point processes.

Thinning of Poisson point processes

The thinned Poisson point processes is constructed by keeping, resp. removing,
independently each configuration point at the location x ∈ X with probability
p(x), resp. 1− p(x), x ∈ X.

Definition 11.13. The thinning of order p(x) ∈ (0, 1), x ∈ X, of the Poisson
point process with intensity σ(dx) can be constructed in three steps:

1) First, choose the number n of points in X according to a standard Poisson
distribution with mean σ(X).

2) Second, generate x1, . . . ,xn independent samples with the probability distri-
bution σ(dx)/σ(X).

3) For each of the n points xi, i = 1, . . . ,n, decide to retain xi with the prob-
ability p(xi), or equivalently to reject xi with the probability 1− p(xi).

The next proposition is a classical result on the thinning of Poisson point
processes.

Proposition 11.14. Let p(x) ∈ [0, 1]. The probability distribution PX
σ,p of the

thinned Poisson point process on ΩX is the Poisson measure with intensity
p(x)σ(dx) on ΩX , i.e. we have PX

σ,p = PX
pσ.

Proof. By Definition 11.13, for any functional F of the form (11.2) we have

Eσ,p[F (ω)] = e−σ(X)
∑
k⩾0

∑
n⩾0

(σ(X))n+k

(n+ k)!

(
n+ k

k

)

×
w

Xn+k
fn(x1, . . . ,xn)

n∏
i=1

p(xi)
n+k∏
j=n+1

(1− p(xj))
σ(dx1)

σ(X)
· · · σ(dxn+k)

σ(X)

" 281

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

= e−σ(X)
∑
k⩾0

1
k!

(w
X
(1− p(x))σ(dx)

)k
×
∑
n⩾0

1
n!

w

Xn
fn(x1, . . . ,xn)

n∏
i=1

p(xi)σ(dx1) · · ·σ(dxn)

= exp
(
−
w

X
p(y)σ(dy)

)∑
n⩾0

1
n!

w

Xn
fn(x1, . . . ,xn)

n∏
i=1

p(xi)σ(dx1) · · ·σ(dxn)

= Epσ [F (ω)].

□

We also note that

Eσ,p[F (ω)] = e−σ(X)
∑
m⩾0

(σ(X))m

m!

×
w

Xm

m∑
k=0

(
m

k

)
fm−k(xk+1, . . . ,xm)

k∏
i=1

p(xi)
m∏

j=k+1
(1− p(xj))

σ(dx1)

σ(X)
· · · σ(dxm)

σ(X)
,

where the measure
m∑
k=0

(
m

k

) k∏
i=1

p(xi)
m∏

j=k+1
(1− p(xj))

σ(dx1)

σ(X)
· · · σ(dxm)

σ(X)

is a probability measure on Xm, as its total mass

1
(σ(X))m

m∑
k=0

(
m

k

)(w
X
p(xi)σ(dx)

)k (
σ(X)−

w

X
p(xi)σ(dx)

)m−k
= 1

is one, for all m ⩾ 1.

Remark 11.15. The construction of Definition 11.13 can be equivalently de-
scribed as follows.

1) First, choose the number n of points in X according to a standard Poisson
distribution with mean σ(X).

2) Second, generate x1, . . . ,xn independent samples with the probability distri-
bution σ(dx)/σ(X).

3) For each of the n points xi, i = 1, . . . ,n,

i) Decide to keep xi with the probability
r

X
p(y)σ(dy)/σ(X), i.e. reject xi

with the probability 1−
r

X
p(y)σ(dy)/σ(X).

ii) If a point xi is kept, distribute it independently and randomly on X

with the probability distribution

282 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

p(x)w

X
p(y)σ(dy)

σ(dx).

Proof. According to the above definition, the number of points removed by thin-
ning at has a binomial distribution with parameters

(
n,

r
X
p(y)σ(dy)/σ(X)

)
,

hence for F of the form (11.2) we have

E[F (ω)] = e−σ(X)
∑
n⩾0

(σ(X))n

n!

n∑
k=0

(
n

k

)(
1−

r
X
p(y)σ(dy)

σ(X)

)n−k

×
w

Xk
fk(x1, . . . ,xk)

k∏
i=1

p(xi)
σ(dx1)

σ(X)
· · · σ(dxk)

σ(X)

= e−σ(X)
∑
n⩾0

n∑
k=0

1
k!(n− k)!

(
σ(X)−

w

X
p(y)σ(dy)

)n−k

×
w

Xk
fk(x1, . . . ,xk)

k∏
i=1

p(xi)σ(dx1) · · ·σ(dxk)

= e−σ(X)
∑
m⩾0

1
m!

(w
X
(1− p(y))σ(dy)

)m
×
∑
k⩾0

1
k!

w

Xk
fk(x1, . . . ,xk)

k∏
i=1

p(xi)σ(dx1) · · ·σ(dxk)

= exp
(
−
w

X
p(y)σ(dy)

)∑
k⩾0

1
k!

w

Xk
fk(x1, . . . ,xk)

k∏
i=1

p(xi)σ(dx1) · · ·σ(dxk)

= Eσ,p[F (ω)].

□

11.4 The Poisson Process

The most elementary and useful jump process is the
standard Poisson process (Nt)t∈R+ which is a count-
ing process, i.e. (Nt)t∈R+ has jumps of size +1 only,
and its paths are constant in between two jumps.
In addition, the standard Poisson process starts at
N0 = 0.
The Poisson process can be used to model discrete arrival times such as claim
dates in insurance, or connection logs.

" 283

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

t

Nt

0
1
2
3
4
5
6

T1 T2 T3 T4 T5 T6

Fig. 11.8: Sample path of the Poisson process (Nt)t∈R+ .

Letting

1[Tk,∞)(t) =

{
1 if t ⩾ Tk,

0 if 0 ⩽ t < Tk, k ⩾ 1,
the value of Nt at time t can be written as

Nt =
∑
k⩾1

1[Tk,∞)(t), t ⩾ 0, (11.12)

where and (Tk)k⩾1 is the increasing family of jump times of (Nt)t∈R+ such
that

lim
k→∞

Tk = +∞.

The operation defined in (11.12) can be implemented in using the following
code.

 T=10; Tn=c(1,3,4,7,9); dev.new(width=T, height=5)
 plot(stepfun(Tn,c(0,1,2,3,4,5)),xlim =c(0,T),xlab="t",ylab=expression('N'[t]),pch=1,

cex=0.8, col='blue', lwd=2, main="", cex.axis=1.2, cex.lab=1.4,xaxs='i'); grid()

In order for the counting process (Nt)t∈R+ to be a Poisson process, it has to
satisfy the following conditions:

1. Independence of increments: for all 0 ⩽ t0 < t1 < · · · < tn and n ⩾ 1 the
increments

Nt1 −Nt0 , . . . , Ntn −Ntn−1 ,

are mutually independent random variables.

2. Stationarity of increments: Nt+h−Ns+h has the same distribution as Nt−
Ns for all h > 0 and 0 ⩽ s ⩽ t, with

P(Nt −Ns = k) = e−(t−s)λ ((t− s)λ)k

k!
, k ⩾ 0, (11.13)

i.e. the Poisson increment Nt −Ns has the Poisson distribution with pa-
rameter (t− s)λ.

284 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://en.wikipedia.org/wiki/Simeon_Denis_Poisson
https://en.wikipedia.org/wiki/Poisson_distribution
https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

The meaning of the above stationarity condition is that for all fixed k ⩾ 0 we
have

P(Nt+h −Ns+h = k) = P(Nt −Ns = k),

for all h > 0, i.e., the value of the probability

P(Nt+h −Ns+h = k)

does not depend on h > 0, for all fixed 0 ⩽ s ⩽ t and k ⩾ 0.

In other words, for all 0 ⩽ t0 ⩽ t1 < · · · < tn,

(Nt1 −Nt0 , . . . ,Ntn −Ntn−1)

is a vector of independent Poisson random variables with respective parameters

((t1 − t0)λ, . . . , (tn − tn−1)λ).

The parameter λ > 0 is called the intensity of the Poisson process (Nt)t∈R+

and it is given by
λ := lim

h→0

1
h

P(Nh = 1). (11.14)

In particular, Nt has the Poisson distribution with parameter λt, i.e.,

P(Nt = k) =
(λt)k

k!
e−λt, t > 0.

The expected value E[Nt] and the variance of Nt can be computed as

E[Nt] = Var[Nt] = λt. (11.15)

As a consequence, the dispersion index of the Poisson process is given by

Var[Nt]
E[Nt]

= 1, t ⩾ 0. (11.16)

Short time behaviour

From (11.14) above we deduce the short time asymptotics∗P(Nh = 0) = e−λh = 1− λh+ o(h), h→ 0,

P(Nh = 1) = λhe−λh ≃ λh, h→ 0.

∗ The notation f(h) = o(hk) means limh→0 f(h)/hk = 0, and f(h) ≃ hk means
limh→0 f(h)/hk = 1.

" 285

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

By stationarity of the Poisson process we also find more generally that

P(Nt+h −Nt = 0) = e−λh = 1− λh+ o(h), h→ 0,

P(Nt+h −Nt = 1) = λhe−λh ≃ λh, h→ 0,

P(Nt+h −Nt = 2) ≃ h2λ
2

2 = o(h), h→ 0, t > 0,

(11.17)

for all t > 0. This means that within a “short” interval [t, t+ h] of length h, the
increment Nt+h−Nt behaves like a Bernoulli random variable with parameter
λh. This fact can be used for the random simulation of Poisson process paths.

More generally, for k ⩾ 1 we have

P(Nt+h −Nt = k) ≃ hk λ
k

k!
, h→ 0, t > 0.

Time-dependent intensity

The intensity of the Poisson process can in fact be made time-dependent (e.g.
by a time change), in which case we have

P(Nt −Ns = k) = exp
(
−
w t
s
λ(u)du

) (r t
s λ(u)du

)k
k!

, k = 0, 1, 2,

Assuming that λ(t) is a continuous function of time t we have in particular, as
h tends to zero,

P(Nt+h −Nt = k)

=



exp
(
−
r t+h
t λ(u)du

)
= 1− λ(t)h+ o(h), k = 0,

exp
(
−
r t+h
t λ(u)du

) r t+h
t λ(u)du = λ(t)h+ o(h), k = 1,

o(h), k ⩾ 2.

The next code and Figure 11.9 present a simulation of the standard Poisson
process (Nt)t∈R+ according to its short time behavior (11.17).

286 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

 lambda = 0.6;T=10;N=1000*lambda;dt=T*1.0/N
 t=0;s=c();for (k in 1:N) {if (runif(1)<lambda*dt) {s=c(s,t)};t=t+dt}

dev.new(width=T, height=5)
 plot(stepfun(s,cumsum(c(0,rep(1,length(s))))),xlim

=c(0,T),xlab="t",ylab=expression('N'[t]),pch=1, cex=0.8, col='blue', lwd=2,
main="", cex.axis=1.2, cex.lab=1.4,xaxs='i'); grid()

0 2 4 6 8 10

0
1

2
3

4
5

t

N
t

Fig. 11.9: Sample path of the Poisson process (Nt)t∈R+ .

The intensity process (λ(t))t∈R+ can also be made random, as in the case of
Cox processes.

Poisson process jump times

In order to determine the distribution of the first jump time T1 we note that
we have the equivalence

{T1 > t} ⇐⇒ {Nt = 0},

which implies

P(T1 > t) = P(Nt = 0) = e−λt, t ⩾ 0,

i.e., T1 has an exponential distribution with parameter λ > 0.

In order to prove the next proposition we note that more generally, we have
the equivalence

{Tn > t} ⇐⇒ {Nt ⩽ n− 1},

for all n ⩾ 1. This allows us to compute the distribution of the random jump
time Tn with its probability density function. It coincides with the gamma dis-
tribution with integer parameter n ⩾ 1, also known as the Erlang distribution
in queueing theory.

" 287

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

Proposition 11.16. For all n ⩾ 1, the probability distribution of Tn has the
gamma probability density function

t 7−→ λne−λt tn−1

(n− 1)!

with shape parameter n and scaling parameter λ on R+, i.e., for all t > 0 the
probability P(Tn ⩾ t) is given by

P(Tn ⩾ t) = λn
w ∞

t
e−λs sn−1

(n− 1)!ds.

Proof. We have

P(T1 > t) = P(Nt = 0) = e−λt, t ⩾ 0,

and by induction, assuming that

P(Tn−1 > t) = λ
w ∞

t
e−λs (λs)

n−2

(n− 2)! ds, n ⩾ 2,

we obtain

P(Tn > t) = P(Tn > t ⩾ Tn−1) + P(Tn−1 > t)

= P(Nt = n− 1) + P(Tn−1 > t)

= e−λt (λt)
n−1

(n− 1)! + λ
w ∞

t
e−λs (λs)

n−2

(n− 2)! ds

= λ
w ∞

t
e−λs (λs)

n−1

(n− 1)! ds, t ⩾ 0,

where we applied an integration by parts to derive the last line. □

In particular, for all n ∈ Z and t ∈ R+, we have

P(Nt = n) = pn(t) = e−λt (λt)
n

n!
,

i.e., pn−1 : R+ → R+, n ⩾ 1, is the probability density function of the random
jump time Tn.
In addition to Proposition 11.16 we could show the following proposition which
relies on the strong Markov property, see e.g. Theorem 6.5.4 of Norris (1998).

Proposition 11.17. The (random) interjump times

288 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

τk := Tk+1 − Tk

spent at state k ⩾ 0, with T0 = 0, form a sequence of independent identically
distributed random variables having the exponential distribution with parameter
λ > 0, i.e.,

P(τ0 > t0, . . . , τn > tn) = e−(t0+t1+···+tn)λ, t0, t1, . . . , tn ⩾ 0.

As the expectation of the exponentially distributed random variable τk with
parameter λ > 0 is given by

E[τk] = λ
w ∞

0
xe−λxdx =

1
λ

,

we can check that the nth jump time Tn = τ0 + · · ·+ τn−1 has the mean

E[Tn] =
n

λ
, n ⩾ 1.

Consequently, the higher the intensity λ > 0 is (i.e., the higher the probability
of having a jump within a small interval), the smaller the time spent in each
state k ⩾ 0 is on average.

As a consequence of Proposition 11.16, random samples of Poisson process
jump times can be generated from Poisson jump times using the following

code according to Proposition 11.17.

 lambda = 0.6;T=10;Tn=c();S=0;n=0;
 while (S<T) {S=S+rexp(1,rate=lambda); Tn=c(Tn,S); n=n+1}

Z<-cumsum(c(0,rep(1,n)));
 dev.new(width=T, height=5)

plot(stepfun(Tn,Z),xlim =c(0,T),ylim=c(0,8),xlab="t",ylab=expression('N'[t]),pch=1,
cex=1, col="blue", lwd=2, main="", las = 1, cex.axis=1.2,
cex.lab=1.4,xaxs='i',yaxs='i'); grid()

0 2 4 6 8 10

0

2

4

6

8

t

N
t

Fig. 11.10: Sample path of the Poisson process (Nt)t∈R+ .

" 289

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

In addition, conditionally to {NT = n}, the n jump times on [0,T] of the Pois-
son process (Nt)t∈R+ are independent uniformly distributed random variables
on [0,T]n, cf. e.g. § 11.1 in Privault (2018). This fact can also be useful for the
random simulation of Poisson process paths.

 lambda = 0.6;T=10;n = rpois(1,lambda*T);Tn <- sort(runif(n,0,T));
Z<-cumsum(c(0,rep(1,n))); dev.new(width=T, height=5)

plot(stepfun(Tn,Z),xlim =c(0,T),ylim=c(0,8),xlab="t",ylab=expression('N'[t]),pch=1,
cex=1, col="blue", lwd=2, main="", las = 1, cex.axis=1.2, cex.lab=1.4); grid()

The Poisson process belongs to the family of renewal processes, which are count-
ing processes of the form

Nt =
∑
n⩾1

1[Tn,∞)(t), t ⩾ 0,

for which τk := Tk+1 − Tk, k ⩾ 0, is a sequence of independent identically
distributed random variables.

Notes

See Applebaum (2009) for infinite divisible distributions and the Lévy-Khintchine
formula that arise from the characteristic function (11.7). See also Corol-
lary 3.2.3 in Schneider and Weil (2008), § 2.3.4 of Chiu et al. (2013), Relation (7)
in Last (2016), and Corollary 3.1.14 of Baccelli et al. (2020), for different ver-
sions of the Slivnyak-Mecke identity (11.11), and Streit (2010) for applications
of Poisson point processes to multitarget tracking.

Exercises

Exercise 11.1 Suppose that X(A) is a spatial Poisson point process of discrete
items scattered on the plane R2 with intensity λ = 0.5 per square meter. We
let

D((x, y), r) = {(u, v) ∈ R2 : (x− u)2 + (y− v)2 ⩽ r2}

denote the disc with radius r centered at (x, y) in R2. No evaluation of numer-
ical expressions is required in this exercise.

a) What is the probability that 10 items are found within the disk D((0, 0), 3)
with radius 3 meters centered at the origin?

b) What is the probability that 5 items are found within the disk D((0, 0), 3)
and 3 items are found within the disk D((x, y), 3) with (x, y) = (7, 0)?

c) What is the probability that 8 items are found anywhere within

D((0, 0), 3)
⋃
D((x, y), 3) with (x, y) = (7, 0)?

290 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

d) Given that 5 items are found within the disk D((0, 0), 1), what is the prob-
ability that 3 of them are located within the disk D((1/2, 0), 1/2) centered
at (1/2, 0) with radius 1/2?

Exercise 11.2 Let Sn be a Poisson random variable with parameter λn for all
n ⩾ 1, with λ > 0. Show that the moments of order p of (Sn− λn)/

√
n satisfy

the bound
Sup
n⩾1

E

[∣∣∣∣Sn − λn√
n

∣∣∣∣p] < Cp

where Cp > 0 is a finite constant for all p ⩾ 1. Hint: Use Relation (11.4.2) in
Privault (2013).

Exercise 11.3 Let (Nt)t∈R+ denote a standard Poisson process on X = R+.
Given a bounded function f ∈ L1(R+) we let

w ∞

0
f(y)(dNy − dy)

denote the compensated Poisson stochastic integral of f , and let

M(s) := E
[
exp

(
s
w ∞

0
f(y)(dNy − dy)

)]
= exp

(w ∞

0
(esf (y) − sf(y)− 1)dy

)
,

s ⩾ 0, denote the moment generating function of
r ∞
0 f(y)(dNy − dy).

a) Show that we have

M ′(s)

M (s)
⩽ h(s) := α2 e

sK − 1
K

, s ⩾ 0,

provided that f(t) ⩽ K, dt-a.e., for some K > 0 and provided in addition
that

w ∞

0
|f(y)|2dy ⩽ α2, for some α > 0.

b) Show that

M (t) ⩽ exp
(w t

0
h(s)ds

)
= exp

(
α2

w t
0
esK − 1
K

ds

)
, t ⩾ 0.

c) Show, using Markov’s inequality, that

P
(w ∞

0
f(y)(dNy − dy) ⩾ x

)
⩽ e−txE

[
exp

(
t
w ∞

0
f(y)dNy

)]
,

and that

P
(w ∞

0
f(y)(dNy − dy) ⩾ x

)
⩽ exp

(
−tx+ α2

w t
0
esK − 1
K

ds

)
.

d) By minimization in t, show that

" 291

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

P
(w ∞

0
f(y)dNy −

w ∞

0
f(y)dy ⩾ x

)
⩽ ex/K

(
1 + xK

α2

)−x/K−α2/K2

,

for all x > 0, and that

P
(w ∞

0
f(y)dNy −

w ∞

0
f(y)dy ⩾ x

)
⩽
(

1 + xK

α2

)−x/2K
,

for all x > 0.

292 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Chapter 12
The Boolean Model

In this chapter, we consider a spherical Boolean model made of spheres of
random radii whose centers are located according to Poisson point process.
In particular, we study the related percolation problem in which the union of
spheres is expected to cover the whole space, and provide sufficient conditions
based on the integrability of random sphere radii. The Boolean model has
applications in fields such as stochastic geometry, spatial telecommunication
systems, continuum percolation theory, etc.

12.1 Boolean-Poisson model . 293
12.2 Void probabilities . 296
12.3 Coverage probabilities . 297
12.4 Boolean percolation . 300
Exercises . 303

12.1 Boolean-Poisson model

The study of random sets can be traced back to the 1930s (see Matheron
(1975)), and the Boolean model has been thoroughly studied since its intro-
duction in the 1970s in the framework of geostatistics.

In what follows, we let d ⩾ 1 and

B (x, r) := {y ∈ Rd : ∥x− y∥d < r} and B (x, r) := {y ∈ Rd : ∥x− y∥d ⩽ r}

respectively denote the open and closed Euclidean ball of Rd centered at x ∈ Rd

with radius r ∈ [0,∞), where ∥ · ∥d denotes the Euclidean distance on Rd.
Definition 12.1. The Boolean model is constructed as follows.
1) We consider a Poisson point process Φ with intensity measure σ(dx) on

Rd, and its associated random locally finite sequence (Xk)1⩽k⩽N of points
in Rd.

" 293

This version: March 5, 2024 https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

2) To every point Xi ∈ Φ we associate a random radius Ri distributed according
to a common probability distribution µ(dr), so that (Rk)1⩽k⩽N forms an
i.i.d. sequence independent of (Xi)i∈N.

The Boolean model Ξ is the union of the Euclidean balls centered around the
points Xk ∈ Φ, with radius Rk, 1 ⩽ k ⩽ N .

In other words, every point in Φ is the center of a Euclidean ball with random
radius distributed according to a probability measure µ(dx) on [0,∞) with
cumulative distribution function

Fµ(r) := µ([0, r]) =
w r

0
µ(dx), r ⩾ 0,

independently of the other radii and of the Poisson point process Φ, see Fig-
ure 12.1.

x y

z

Fig. 12.1: Sample of the Boolean model in dimension three.

For any [0, 1]-valued (Borel measurable) function f : Rd → [0, 1], we define the
Probability Generating Functional (PGFl) of Φ at f as

Gσ(f) := E

[∏
x∈Φ

f(x)

]
.

As Φ is a Poisson point process on Rd with intensity measure σ(dy), by Propo-
sition 11.9 its moment generating functional is given for Borel [0, 1]-valued
functions f by

Gσ(f) = exp
(
−
w

Rd
(1− f(y))σ(dy)

)
. (12.1)

The following code generates a sample of the two-dimensional Boolean model
with constant and uniformly distributed radii, see Figure 12.2.

294 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

 install.packages("spatstat");library(spatstat)
 B <- discs(runifpoint(15) %mark% 0.2,trim=FALSE) # constant radii

plot(B, main = "", col = "purple")
 B <- discs(runifpoint(5),0.1*runif(5),trim=FALSE) # uniform radii

plot(B, main = "", col = "purple")
 lambda = 1000

bellcurve <- function(x,y,s){return(exp(-s*((x-0.5)**2+(y-0.5)**2)))}
 X <- rpoispp(function(x,y){lambda*bellcurve(x+0.2,y+0.2,60)})

B <- discs(X,0.02*runif(length(X$x)),trim=FALSE) # uniform radii
 plot(B, main = "", col = "purple")

Fig. 12.2: Sample of the Boolean model in dimension two with uniform radii.

The following code generates a sample of the two-dimensional Boolean model
with exponentially distributed radii, see Figure 12.3.
 X <- discs(runifpoint(20),0.1*rexp(20),trim=FALSE) # exponential radii
 plot(X, main = "", col = "purple")

Fig. 12.3: Sample of the Boolean model in dimension two with exponential radii.

" 295

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

12.2 Void probabilities

Definition 12.2. Let Ψ denote the Poisson point process with intensity mea-
sure

σ⊗ µ(dy, dr) := σ(dy)µ(dr) = σ(dy)ρ(r)dr

on Rd × [0,∞), given by the sequence ψ := {(Yk,Rk)}k⩾1 that represents the
points of Φ.

Every point (x, r) ∈ ψ models a location x ∈ Rd along with a radius r ∈ [0,∞)
corresponding to the radius of the ball centered around it.

•

•

•

•

x

y

r

0

Fig. 12.4: Two-dimensional Boolean model from the Poisson point process Ψ on R2 ×
[0, ∞).

The spherical Boolean model Ξ with Ψ as its driving Poisson point process
can now be constructed as

Ξ =
⋃

(x,r)∈ψ

B (x, r),

which consists in the random subset of points in Rd which are covered by at
least one Euclidean ball centered around the points of the Poisson point process
Φ.

Lemma 12.3. The void probabilities of Ψ are given for any Borel set A in
Rd × [0,∞) by

IP
(
Ψ ∩A = ∅

)
= exp

(
− (σ⊗ µ)(A)

)
= Gσ

(w ∞

0
1Ac(·, r)µ(dr)

)
, (12.2)

where 1Ac denotes the indicator function of the set Ac, and Ac is the comple-
ment of the set A in Rd × [0,∞).

Proof. As in Proposition 11.9, we have

IP
(
Ψ ∩A = ∅

)
= IP(ψ(A) = 0)

296 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

= exp
(
− (σ⊗ µ)(A)

)
= exp

(
−
w

Rd×[0,∞)
1A(y, r)σ(dy)µ(dr)

)
= exp

(
−
w

Rd

w ∞

0
(1− 1Ac)(y, r)µ(dr)σ(dy)

)
= exp

(w
Rd

(w ∞

0
1Ac(y, r)µ(dr)− 1

)
σ(dy)

)
= Gσ

(w ∞

0
1Ac(·, r)µ(dr)

)
.

□

•

•

•

x

y

r

0

(a) The point 0 is covered by Ξ.

•
•

•

x

y

r

0

(b) The point 0 is not covered by Ξ.

Fig. 12.5: Coverage of the point 0 in the two-dimensional Boolean model.

We note that in Figure 12.5-(a) the origin 0 is covered by the Boolean model Ξ,
which is not the case in Figure 12.5-(b). Here, the coverage of the point 0 can
be characterized from the intersection of the underlying Poisson point process
on R2 × [0,∞) with the cone

C0 :=
{
(x, r) ∈ R2 × [0,∞) : x ∈ B (0, r)

}
.

12.3 Coverage probabilities

Next, the probability that a fixed point in Rd is covered by the spherical
Boolean model is computed in the following proposition.
Proposition 12.4. The probability that a point located at z ∈ Rd is covered
by the Boolean model Ξ can be expressed as

IP
(
z ∈ Ξ

)
= 1−Gσ

(
Fµ
(
∥ · −z∥d

))
, (12.3)

where Fµ is the cumulative distribution function of µ(dr).

" 297

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

Proof. In the one-dimensional case (d = 1), the proof can be illustrated as in
Figure 12.6.

σ(dx)

µ(dr)

• •
••

•
•

•
•

•

Fig. 12.6: One-dimensional Boolean model from a Poisson point process on R × [0, ∞).

Given a point located at z ∈ Rd, we consider the cone Cz in Rd+1 defined as

Cz :=
{
(x, r) ∈ Rd × [0,∞) : x ∈ B (z, r)

}
.

The next figure describes Cz in the one-dimensional Boolean model, d = 1,
where the spheres are intervals of R.

z

CzCz

σ(dx)

µ(dr)

• •
••

•
•

•

•

(a) The point z is covered by Ξ.

σ(x)

µ(dr)

z

Cc
zCc

z

• •
••

•
•

(b) The point z is not covered by Ξ.

Fig. 12.7: Cone Cz in the one-dimensional Boolean model.

Then, we have

z /∈ Ξ ⇐⇒ ∀(x, r) ∈ ψ, z /∈ B (x, r) (12.4)
⇐⇒ ∀(x, r) ∈ ψ, x /∈ B (z, r) (12.5)
⇐⇒ ψ(Cz) = 0,

hence taking A := Cz in Lemma 12.3, we obtain

IP(z ∈ Ξ) = 1− IP(z /∈ Ξ)
= 1− IP

(
Ψ ∩ Cz = ∅

)
= 1−Gσ

(w ∞

0
1Cc

z
(·, r)µ(dr)

)
298 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

= 1−Gσ
(
Fµ
(
∥ · −z∥d

))
,

since
w ∞

0
1Cc

z
(x, r)µ(dr) =

w ∞

0
1{∥x−z∥d⩾r} µ(dr) (12.6)

=
w ∥x−z∥d

0
µ(dr)

= µ([0, ∥x− z∥d])
= Fµ

(
∥x− z∥d

)
, x ∈ Rd.

□

When Ψ is the Poisson point process on Rd with a flat intensity measure σ(dy)
we have the following result. See, e.g., Flint et al. (2017) for an application of
(12.7) to wireless networks.

Proposition 12.5. Assume that Φ is a Poisson point process on Rd with
intensity measure σ of the form σ(dy) = λℓ(dy), for λ > 0 a constant and
ℓ(dy) the Lebesgue measure. We have

IP
(
z /∈ Ξ

)
= e−λvdE[Rd], λ > 0, (12.7)

where vd = ℓ(B (z, 1)) =
w

B(z,1)
ℓ(dy) denotes the volume of the d-dimensional

unit ball B (0, r).

Proof. The moment generating functional of the Poisson point process on Rd

with the intensity measure σ(dy) = λℓ(dy) is given by (12.1) for Borel [0, 1]-
valued functions f , hence by Proposition 12.4 we have

IP
(
z /∈ Ξ

)
= Gσ

(
Fµ
(
∥ · −z∥d

))
= exp

(
− λ

w

Rd

(
1− Fµ

(
∥y− z∥d

))
ℓ(dy)

)
(12.8)

= exp
(
− λ

w

Rd

w

(∥y−z∥d,∞)
µ(dr) ℓ(dy)

)
= exp

(
− λ

w

Rd

w ∞

0
1{∥y−z∥d⩽r} µ(dr)ℓ(dy)

)
= exp

(
− λ

w ∞

0

w

Rd
1{y∈B(z,r)} ℓ(dy)µ(dr)

)
= exp

(
− λ

w ∞

0
ℓ(B (z, r))µ(dr)

)
= exp

(
− λ

w ∞

0
rdℓ(B (0, 1))µ(dr)

)
" 299

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

= exp
(
− λvd

w ∞

0
rd µ(dr)

)
,

where vd
w ∞

0
rd µ(dr) is the volume of the infinite cone in Rd. We conclude

from the relation
E[Rd] =

w ∞

0
rd µ(dr).

□

For example, in the case of constant radii equal to R > 0 we have IP
(
z /∈

Ξ
)
= e−cvdR

d . More generally, we have the following expression for the capacity
functional

Λ 7→ IP
(
Ξ ∩Λ ̸= ∅

)
on compact sets Λ ⊂ Rd, see Eq. (2.5) in Heinrich (1992), Eq. (6.96) in Chiu
et al. (2013), or Proposition 1 in Flint and Privault (2021).

Proposition 12.6. Assume that Φ is the Poisson point process on Rd with
the intensity measure σ(dx). Then, for any compact set Λ ⊂ Rd we have

IP
(
Ξ ∩Λ = ∅

)
= exp

(
−
w

Rd

(
1− Fµ

(
d(x, Λ)

))
σ(dx)

)
. (12.9)

We note from (12.8) that (12.9) recovers (12.3) by taking Λ = {z}, with
d(y, Λ) = d(y, {z}) = ∥y− z∥d.

12.4 Boolean percolation

Here, percolation means the existence of infinite connected clusters due to
sphere overlaps in the Boolean model. The following result is a direct con-
sequence of Proposition 12.5, see Proposition 3.1 of Meester and Roy (1996).

Theorem 12.7. Assume that Φ is a Poisson point process on Rd with intensity
measure σ of the form σ(dy) = λℓ(dy), for λ > 0 a constant and ℓ(dy) the
Lebesgue measure. Then, the whole space Rd is covered with probability one by
the Boolean model Ξ if and only if the moment of order d of its random radii
is infinite, i.e. w ∞

0
rdµ(dr) = +∞.

Proof. By translation invariance of the flat intensity measure σ(dy), the whole
space Rd is covered by the Boolean model Ξ if and only if the point z = 0 is
covered, which occurs with probability IP

(
z ∈ Ξ

)
. We conclude from (12.7). □

300 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

Example: Assume that µ(dr) = φ(r)dr has a Pareto type distribution with
power density φ(r) = Cα/rα, r ⩾ 1, with the distribution function

Fµ(x) =
w x

1
µ(dr)

=
w x

1
φ(r)dr

= Cα
w x

1
r−αdr

= Cα

[
r1−α

1− α

]x
1

= Cα

(
x1−α

1− α −
1

1− α

)
= 1− 1

xα−1 ,

with Cα = α− 1, and we have
w ∞

1
rdµ(dr) =

w ∞

1
rdφ(r)dr = Cα

w ∞

1
rd−αdr = +∞

if and only
α ⩽ d+ 1.

In the sequel we use random radii samples from the distribution function Fµ,
that can be generated as

F−1
µ (1−U) = 1

U1/(α−1) ,

where U is a uniform random variable on [0, 1].

Two-dimensional Boolean model

In the two-dimensional Boolean model with d = 2, this means that coverage of
R2 with probability one occurs as soon as α ⩽ 3, as illustrated in the following

code.

" 301

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

 install.packages("poweRlaw");library(poweRlaw)
 L=10;N=rpois(1,L*L)

window=owin(xrange=c(-L,L), yrange=c(-L,L), poly=NULL, mask=NULL, unitname=NULL)
 X <- discs(runifpoint(N,window),abs(runif(N)),trim=FALSE)

plot(X, main = "", col = "purple",xlim=c(-L,L),ylim=c(-L,L));L=20;N=rpois(1,L*L)
 window=owin(xrange=c(-L,L), yrange=c(-L,L), poly=NULL, mask=NULL, unitname=NULL)

X <- discs(runifpoint(N,window),abs(rplcon(N,1,3.5)),trim=FALSE)
 plot(X, main = "", col = "purple",xlim=c(-L/5,L/5),ylim=c(-L/5,L/5));N=rpois(1,L*L)

window=owin(xrange=c(-L,L), yrange=c(-L,L), poly=NULL, mask=NULL, unitname=NULL)
 X <- discs(runifpoint(N,window),abs(rcauchy(N)),trim=FALSE)

plot(X, main = "", col = "purple",xlim=c(-L,L),ylim=c(-L,L))

Three-dimensional Boolean model

In the three-dimensional Boolean model with d = 3, coverage of R3 with prob-
ability one occurs as soon as α ⩽ 4, as illustrated in the following code.

 require(rgl);library(poweRlaw)
boolean3d <- function(R,L)

 {clear3d("all");bg3d(color="white");light3d()
spheres3d(L*runif(N), L*runif(N), L*runif(N), radius=R,

color=rgb(runif(N),runif(N),runif(N)))
 c3d2 <- cube3d(color="red", alpha=0.2) %>%

translate3d(L/10,L/10,L/10) %>%
 scale3d(L/2,L/2,L/2)

shade3d(c3d2)
 c3d3 <- cube3d(color = "blue", alpha=0.4) %>%

translate3d(2*L/5,2*L/5,2*L/5) %>%
 scale3d(L/8,L/8,L/8);shade3d(c3d3)}

L=10;N=rpois(1,L*L)
 boolean3d(runif(N),L);boolean3d(abs(rplcon(N,1,4.5)),L);boolean3d(abs(rplcon(N,1,3.5)),L)

Figure 12.8 presents an illustration of the coverage phenomenon for α < 4. For
practical reasons, generation of the Boolean spheres cannot be implemented on
an infinite space, nevertheless coverage is visible on the inner blue cube which
is of small volume in front of the external domain.

(a) Uniform radii. (b) Power radii, α = 4.5. (c) Power radii, α = 3.5.

Fig. 12.8: Three-dimensional Boolean model.

302 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

Three-dimensional Boolean model with sphere clipping

Examples of coverage in the three-dimensional Boolean model are provided in
the following code which uses sphere clipping, see Figure 12.9.

 boolean3d <- function(R,L)
{clear3d("all");bg3d(color="white");light3d()

 rgl.viewpoint(theta = 30, phi = 35, interactive = TRUE)
spheres3d(L*runif(N), L*runif(N), L*runif(N), radius=R, color="black",alpha=1)

 clipplanes3d(1,0,0,-L/6);clipplanes3d(0,1,0,-L/6);clipplanes3d(0,0,1,-L/6)
clipplanes3d(-1,0,0,5*L/6);clipplanes3d(0,-1,0,5*L/6);clipplanes3d(0,0,-1,5*L/6)

 rgl.bbox(color = "pink",xlen=0,ylen=0,zlen=0,alpha = 0.5)
c3d3 <- cube3d(color = "blue", alpha=0.4) %>%

 translate3d(3,3,3) %>%
scale3d(L/6,L/6,L/6);shade3d(c3d3)}

 L=100;N=rpois(1,L*L)
boolean3d(runif(N),L);boolean3d(rplcon(N,1,4.5),L);boolean3d(rplcon(N,1,3.5),L)

(a) Uniform radii. (b) Power radii, α = 6. (c) Power radii, α = 3.5.

Fig. 12.9: Three-dimensional Boolean model with clipped spheres.

Notes

See also Section 3 in Chiu et al. (2013) for a summary of Boolean model con-
cepts, and in particular Section 3.1.2 therein for a wide range of applications.

Exercises

Exercise 12.1 Consider a Poisson point process ω with intensity σ(dy)e−rdr
on [0, 1]d × [0,∞), given by ω := {(Yk,Rk)}k. Each point (x, r) ∈ ω models a
location x ∈ [0, 1]d along with a radius r ∈ [0,∞) corresponding to the radius
of the ball centered around it. The spherical Boolean model Ξ with ω as its
driving Poisson point process can now be constructed as

" 303

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

Ξ =
⋃

(x,r)∈ω

B(x, r),

which consists in the random subset of points in [0, 1]d which are covered by
at least one Euclidean ball centered around the points of the Poisson point
process ω.

a) Give the probability of not observing any ball of radius smaller than 1/2.
b) Give the mean number of balls which have radius less than 1/2.

Exercise 12.2 Let Φ be a Poisson point process with finite intensity measure
σ(dx) on X := Rd ×R+, given by σ(dx) = λdyρ(r)dr, x = (y, r) ∈ Rd ×R+,
where λ > 0 and ρ(r) is a probability density function on R+. We also consider

the Probability Generating Functional (PGFl) GΦ(f) := E

[∏
x∈Φ

f(x)

]
.

(a) Show that GΦ(f) = exp
(w

X
(f(x)− 1)σ(dx)

)
, where f − 1 ∈ L1(X,σ).

(b) Using the PGFl GΦ, recover the probability P(Φ∩A = ∅) that no process
points can be found within a given subset A of X.

(c) Consider the Boolean model Ξ on Rd made of the union of balls constructed
by associating every point (y, r) of Φ to a ball of radius r centered at
y ∈ Rd, see Figure 12.1. Using the volume vd = πd/2/Γ(1 + d/2) of the
unit ball in Rd, find the probability that the union of balls contains the
point 0.

(d) Find the probability that this Boolean model covers the whole space Rd.

304 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Chapter 13
Point Processes

This chapter considers general point processes that extend the construction
of Poisson point processes, without making spatial independence assumptions.
Poisson cluster processes and self-exciting point processes such as Hawkes pro-
cesses are considered as examples. Hawkes processes have applications to high-
frequency trading, social Media, the study of seismic activity, the understanding
of crime patterns, etc.

13.1 General point processes . 305
13.2 Poisson cluster processes . 310
13.3 Borel distribution . 312
13.4 Self-exciting point processes . 314
Exercises . 319

13.1 General point processes

This section reviews the construction and main properties of point processes.
We refer the reader to e.g. Daley and Vere-Jones (2003) and references therein
for more details. In general, a point point process ω on X ⊂ Rd is a random
element on a probability space (Ω, Nσ) with values in ΩX, whose distribution
is denoted by P. Similarly to the characteristic functional of Proposition 11.6,
the Laplace transform L of the point process ω is defined, for any measurable
nonnegative function f on X, by

L(f) = E

[
exp

(
−
∑
x∈ω

f(x)

)]
.

" 305

This version: March 5, 2024 https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

Janossy densities

Given a reference Radon measure ν on X, the expected value of a random
functional F : ΩX → [0,∞) of the form (11.2) is given by

E [F (ω)] = F (∅) j0 (13.1)

+
∑
n⩾1

1
n!

w

Xn
fn({x1, . . . ,xn}) jn (x1, . . . ,xn) ν(dx1) · · · ν(dxn),

where the symmetric measurable functions jn : Xn → [0,∞) are called the
Janossy densities of ω, see e.g. Georgii and Yoo (2005). The Janossy densities
are proportional, up to a multiplicative constant, to the joint density of the n
points of the point process, given that it has exactly n points. For n = 0, j0(∅)
represents the probability that there are no points in X.

Correlation functions

The correlation functions of the point process ω are measurable symmetric
functions ρn : Xn −→ [0,∞) such that

E

[
n∏
i=1

ω(Bi)

]
=

w

B1×···×Bn
ρn(x1, . . . ,xn) ν(dx1) · · · ν(dxn), (13.2)

for any family of mutually disjoint bounded subsets B1, . . . ,Bn of X, n ⩾ 1.
Intuitively,

ρn(x1, . . . ,xn) ν(dx1) · · · ν(dxn)

represents the probability of finding a particle in the vicinity of (x1, . . . ,xn).
From Theorem 5.4.II page 135 of Daley and Vere-Jones (2003), the relation
between Janossy densities and correlation functions is given by the following
proposition.
Proposition 13.1. The Janossy densities jn can be recovered from the corre-
lation functions ρn via the relations

jn(x1, . . . ,xn) =
∑
m⩾0

(−1)
m!

m w

Xm
ρn+m(x1, . . . ,xn, y1, . . . , ym) ν(dy1) · · · ν(dym),

and

ρn(x1, . . . ,xn) =
∑
m⩾0

1
m!

w

Xm
jm+n(x1, . . . ,xn, y1, . . . , ym) ν(dy1) · · · ν(dym),

x1, . . . ,xn ∈ X, n ⩾ 1.
For example, when the point process ω is a Poisson point process with finite
intensity measure ν(dx) on X, we have jn(x1, . . . ,xn) = e−ν(X), n ⩾ 1, and

306 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

ρn(x1, . . . ,xn) = e−ν(X)
∑
m⩾0

(ν(X))m1
m!

= 1, x1, . . . ,xn ∈ X, n ⩾ 1,

Probability generating functionals

The Probability Generating Functional (PGFl) of the point process ω is defined
by

h 7→ Gω(h) := E

ω(X)∏
i=1

h(Xi)


= j0 +

∑
n⩾1

1
n!

w

Xn
jn(x1, . . . ,xn)

n∏
i=1

h(xi) ν(dx1) · · · ν(dxn),

for h ∈ L∞(X) a bounded measurable function on X, see Moyal (1962). Given
F a functional on L∞(X), we consider the functional derivative ∂g/∂h of F(h)
in the direction of g ∈ L∞(X), defined as

∂g
∂h
F(h) := lim

ε→0

F(h+ εg)−F(h)
ε

.

Given x ∈ X, we also let

∂δx

∂h
F(h) := lim

n→∞
∂gn

∂h
F(h), (13.3)

where (gn)n⩾1 is a sequence of bounded functions converging weakly to the
Dirac distribution δx at x ∈ X. The Janossy densities jn(x1, . . . ,xn) and cor-
relation functions ρn(x1, . . . ,xn) of ω can be recovered from the PGFl Gω(h)
using functional derivatives, as

jn(x1, . . . ,xn) =
∂δx1

∂h
· · ·

∂δxn

∂h
Gω(h)|h=0, x1, . . . ,xn ∈ X, (13.4)

see e.g. § 2.4 of Clark et al. (2016), and as

ρn(x1, . . . ,xn) =
∂δx1

∂h
· · ·

∂δxn

∂h
Gω(h)|h=1, x1, . . . ,xn ∈ X,

with xi ̸= xj , 1 ⩽ i < j ⩽ n, see e.g. § 3.4 of Clark et al. (2016).

" 307

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

Georgii-Nguyen-Zessin identity

The distribution of a point process on Nµ(X) can be characterized by its
Campbell measure C defined on X ⊗F by

C(A×B) := E

[∑
x∈ω

1A(x)1B(ω \ {x})
]

, A ∈X , B ∈ F .

The Georgii-Nguyen-Zessin identity Nguyen and Zessin (1979) then reads

E

[∑
x∈ω

u(ω,x)
]
=

w

Nµ(X)

w

X
u(ω ∪ x,x)C(dx, dω), (13.5)

for measurable processes u : Nµ(X)×X → R such that both sides of (13.5)
make sense.

In the particular case of a Poisson point process with intensity µ the
Campbell measure is given by C = µ⊗ P, and (13.5) recovers (11.11). The
next proposition reformulates the identity (13.5) when the Campbell measure
C(dx, dω) admits a density c(x,ω) called the Papangelou density.

Proposition 13.2. Assume that the Campbell measure C(dx, dω) is absolutely
continuous with respect to µ⊗P, with density c(x,ω), i.e.

C(dx, dω) = c(x,ω)µ(dx)P(dω). (13.6)

Then, we have

E

[∑
x∈ω

u(ω,x)
]
= E

[w
X
u(ω ∪ x,x)c(x,ω)µ(dx)

]
.

We note that c(x,ω) = 1 for a Poisson point process with intensity µ(dx).

Next, we turn to some examples of point processes.

Poisson point process (PPP)

When ω is distributed as the Poisson point process on Rd with the intensity
measure λ(dx), recall that by Proposition 11.6, its moment generating func-
tional is given for sufficiently integrable [0, 1]-valued functions f by

Gω(f) = exp
(
−
w

Rd

(
1− f(x)

)
λ(dx)

)
, (13.7)

with constant Janossy densities jn (x1, . . . ,xn) = e−µ(X), x1, . . . ,xn ∈ X, n ∈
N.

308 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

Bernoulli point process (BPP)

By a Bernoulli point process we mean a binomial point process with one point,
i.e. a point process which has no points with probability p ∈ [0, 1] and one point
with probability 1− p, distributed according to a given probability measure
ν(dx) on Rd, see e.g. Karr (1986), pages 27-28. When ω is a Bernoulli point
process, its moment generating functional is given for measurable non-negative
functions f by

Gω(f) = p+ (1− p)
w

Rd
f(x) ν(dx),

with the Janossy densities in (13.1) given by jn = 0, n ⩾ 2, j0 = p, and
j1 = 1− p.

Pairwise interaction point process (PIPP)

In a Pairwise Interaction Point Process (PIPP), the Janossy densities jn in
(13.1) are given by

jn (x1, . . . ,xn) = C
n∏
k=1

φ1(xk)
∏

1⩽k,l⩽n
φ2(∥xk − xl∥), x1, . . . ,xn ∈ X,

(13.8)
where φ1 plays the role of the (non-homogeneous) intensity while φ2 is the
physical interaction potential between the points of the point process, and
C > 0 is a normalization constant.

Poisson hard-core process (PHCP)

In a Poisson Hard-Core Process (PHCP), no two points can be closer than a
given repulsion radius to one another. In this case, the intensity φ1(x) = λ > 0
is constant, and the interaction potential φ2 in (13.8) is given by φ2(r) =
1{r⩾d}, where d > 0.

Determinantal point process (DPP)

Determinantal point processes are examples of point processes with Papangelou
intensities, see (13.6) and e.g. Theorem 2.6 in Decreusefond et al. (2016). They
can be used for the modeling of wireless networks with repulsion properties,
see e.g. Miyoshi and Shirai (2012), Deng et al. (2015), Kong et al. (2016).

" 309

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

13.2 Poisson cluster processes

Consider a Poisson point process ωcenters with intensity σ on X = Rd. The
Poisson cluster process ωclusters is a marked point process constructed as

ωclusters =
⋃

x∈ωcenters

ωx,

where for each x ∈ ωcenters, ωx is an independent Poisson point process whose
intensity γx(dy) is the pushforward of γ(dy) by the translation y 7→ y+ x.

Here, the points of ωcenters are viewed as centers to which are associated
marks given by clusters. The following code produces the samples presented
in Figure 13.1.

 library(spatstat)
 bellcurve <- function(x,y,s){return(exp(-s*(x**2+y**2)))}

lambda = 10; s<-rpoispp(lambda)
 plot(s,pch=1, cex=0.8, lwd=2, main="")

color=4;for (k in 1:length(s$x)){
 s1 <- rpoispp(function(x,y){400*lambda*bellcurve(x-s$x[k],y-s$y[k],400)})

points(s1,pch=1, cex=0.8, lwd=2, col = color, main="")
 color=color+1;}

points(s,pch=4, cex=1.8, col = 1, main="")

(a) Cluster centers. (b) Cluster process.

Fig. 13.1: Poisson cluster process.

In the next proposition, we compute the Probability Generating Functional
(PGFl) of the Poisson cluster process, see also Proposition 2.6 in Bogachev
and Daletskii (2009).

Proposition 13.3. Given f : X→ R+ a non-negative function, we have

G(f) = exp
(w

X

(
exp

(w
X
(f(x+ y)− 1)γ(dy)

)
− 1
)
σ(dx)

)
.

310 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

Proof. By a conditioning argument, we have

G(f) = E

[∏
x∈ωclusters

f(x)

]

= E

[∏
x∈ωcenters

∏
y∈ωx

f(x+ y)

]

= E

[
E

[∏
x∈ωcenters

∏
y∈ωx

f(x+ y)
∣∣∣ωcenters

]]

= E

[∏
x∈ωcenters

E

[∏
y∈ωx

f(x+ y)
∣∣∣ωx]]

= E

[∏
x∈ωcenters

Gγ(f(x+ ·))
]

= E

[∏
x∈ωcenters

exp
(w

X
(f(x+ y)− 1)γ(dy)

)]
= Gσ(Gγ(f(·+ ·)))

= exp
(w

X

(
exp

(w
X
(f(x+ y)− 1)γ(dy)

)
− 1
)
σ(dx)

)
.

□

By differentiating the PGFl G(f) we can compute the mean of the Poisson
cluster process, as follows:

E

[∑
x∈ωclusters

h(x)

]
=

∂h
∂f
G(f)|f=1

=
∂h
∂f

(
Gσ(Gγ(f(·+ ·)))

)
|f=1

=
w

X

w

Y
f(x+ y)γ(dy)σ(dx).

By Proposition 11.5, the expected value over all points generated by the Poisson
cluster process is then given as

E

[∑
x∈ωcenters

h(x)

]
+ E

[∑
x∈ωclusters

h(x)

]
=

w

X
f(x)σ(dx) +

w

X

w

Y
f(x+ y)γ(dy)σ(dx).

" 311

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

13.3 Borel distribution

In this section, we consider a discrete-time, integer-valued branching process
(Zn)n⩾1 starting from Z0 = 1, in which all individuals have identically dis-
tributed random numbers N of offsprings.

Lemma 13.4. Letting

GN (s) :=
∑
n⩾0

snP(N = n), −1 ⩽ s ⩽ 1,

denote the PGF of the random variable N , the PGF of the total population
size (or progeny) X of the branching process (Zn)n⩾1 is given by the recursive
relation

GX (s) = sGN (GX (s)), −1 ⩽ s ⩽ 1, (13.9)

Proof. Letting (Xk)k⩾1 denote a sequence of independent copies of X, we have

GX (s) = E[sX]

= E
[
s1+X1+···+XN

]
= sE

[
N∏
l=1

sXl

]

= s
∑
k⩾0

E

[
N∏
l=1

sXl

∣∣∣ N = k

]
P(N = k)

= s
∑
k⩾0

E

[
k∏
l=1

sXl

∣∣∣ N = k

]
P(N = k)

= s
∑
k⩾0

E

[
k∏
l=1

sXl

]
P(N = k)

= s
∑
k⩾0

(
k∏
l=1

E
[
sXl
])

P(N = k)

= s
∑
k⩾0

(
E
[
sX1

])k
P(N = k)

= sGN
(
E
[
sX1

])
= sGN (GX (s)), −1 ⩽ s ⩽ 1.

□

312 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

Poisson offspring distribution

When N has the Poisson distribution with parameter µ > 0 we have

GN (s) = e−µ
∑
n⩾0

µn

n!
sn = eµ(s−1).

In this case, (13.9) becomes Relation (13) in Haight and Breuer (1960), which
can be solved via Lagrange series, see page 145 of Pólya and Szegö (1998), as

G(s) =
∑
n⩾1

snP(X = n) =
∑
n⩾1

sne−µn (µn)
n−1

n!
,

where
P(X = n) = e−µn (µn)

n!

n−1
, n ⩾ 1,

is the Borel distribution, which belongs to the class of Lagrangian distributions,
see § 8.4 of Consul and Famoye (2006) and also Finner et al. (2015).

Proposition 13.5. The mean population count generated by a single initial
individual is given by the mean of the Borel distribution, as

E[X] = G′
X (1) = 1

1− µ , (13.10)

which is finite provided that µ < 1.

Proof. In order to estimate E[X] = G′
X (1), we differentiate (13.9), which yields

the relation
G′
X (s) = GN (GX (s)) + sG′

X (s)G′
N (GX (s))

at s = 1, which gives

G′
X (1) = GN (1) +G′

N (1)G′
X (1) = 1 + µG′

X (1),

from which we deduce (13.10). □

Relation (13.10) can be recovered from the fact that the mean number of jump
times produced by a single Poisson jump after n generations is µn. Similarly,
knowing that G′′

N (1) = µ2, evaluating the relation

G′′
X (s) = 2G′

X (s)G′
N (GX (s)) + sG′′

X (s)G′
N (GX (s)) + s(G′

X (s))2G′′
N (GX (s))

at s = 1 gives

G′′
X (1) = 2G′

X (1)G′
N (1) +G′′

X (1)G′
N (1) + (G′

X (1))2G′′
N (1)

" 313

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

=
2µ− µ2

(1− µ)2 + µG′′
X (1),

hence
G′′
X (1) = 2µ− µ2

(1− µ)3

and

Var[X] = G′′
X (1) +G′

X (1)− (G′
X (1))2

=
2µ− µ2

(1− µ)3 +
1

1− µ −
1

(1− µ)2

=
µ

(1− µ)3 ,

see e.g. § 7.2.2 of Johnson et al. (2005).

13.4 Self-exciting point processes

Self-exciting point processes have applications in many fields such as neuro-
sciences, geosciences, genomics analysis, as well as finance and social media,
see Rizoiu et al. (2018).

Spatial Hawkes processes

Spatial Hawkes processes can be constructed as an infinite Poisson cluster pro-
cess recursion starting from an initial Poisson point process, as in the following

code, see Figure 13.2.

 library(spatstat)
bellcurve <- function(x,y,s){return(exp(-s*(x**2+y**2)))}

 lambda = 10
hawkes <- function(s0){

 if (length(s0$x)==0) {return (c())}
for (k in 1:length(s0$x)){

 s1 <- rpoispp(function(x,y){30*lambda*bellcurve(x-s0$x[k],y-s0$y[k],1000)})
if (length(s1$x)>=1) {s0=superimpose(s0,hawkes(s1))}}

 return (s0)}
s<-rpoispp(lambda);z<-hawkes(s)

 plot(s,pch=4, cex=1.8, main="")
points(z,pch=1, cex=0.8, col = 'blue', lwd=2, main="")

 points(s,pch=4, cex=1.8, col = 'red', main="")

314 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●
●

●●

●●
●

●

●

●

● ●

●

●

●

●

●

●
● ● ●
●

●
●

●

●

●
●

●

●
●

●

●
●

●

●
●●

●

●

●

●
●

●
●

●

●

●

●
●●

●

●

●●

●
●

●
●

●

●

●

●

●
●●

●
●
●●

●

●

●●

●●
●

●

●

●●
●

●●

●●

●

●

●

●●
●

● ●

●

●

●
●
●

●

●

●●●

●

●

●

●●

●

●

●

●●

●
●

●●

●

●
●

●

● ●

●

●

● ●
●●
●

●

●

●

● ●●
●
●

●

●
●●

●

●●
●

●

●

● ●

●

●
●
● ●

● ●
●

●

●

●
●● ●

●

●

●

●●●●
●

●
●

●

●
●

●●
●

●●●

●

●

●

●

●

●

●●
●●

●

●

●

Fig. 13.2: Sample spatial Hawkes process.

Following the above argument, the mean of a spatial Hawkes process ω with
initial intensity σ(dx) and recursive cluster intensity γx(dy) can be computed
as the following series:

E

[∑
x∈ω

h(x)

]
=
∑
n⩾1

w

X
· · ·

w

Y
f(x+ y1 + · · ·+ yn)γ(dy1) · · · γ(dyn)σ(dx).

In what follows, we consider self-exciting processes on the half line X := R+,
with initial intensity of the form σ(dt) = µdt for some µ > 0, and cluster
intensity of the form

γ(dt) = 1[0,∞)(t)ϕ(t)dt,

where ϕ : R→ R+ is an integrable intensity function.

Hawkes processes - branching cluster method

The next code implements the simulation of Hawkes processes using the
branching cluster method of Section 13.2. By Proposition 11.11, samples of the
Poisson process (Xt)t∈R+ with the time-dependent intensity (ϕ(t))t∈R+ can be
generated from a standard Poisson process (Nt)t∈R+ as

Xt = Nτ (t),

where τ (t) = Λ−1(t) is the inverse of the cumulative intensity

" 315

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

Λ(t) :=
w t

0
ϕ(s)ds, t ⩾ 0.

In the case of the exponential kernel (13.12), we have

Λ(t) =
w t

0
ϕ(s)ds = α

w t
0

e−δsds =
α

δ
(1− e−δt), t ⩾ 0,

and Proposition 11.11 shows that

τ (t) = −1
δ

log
(

1− δ

α
t

)
, 0 ⩽ t <

α

δ
< 1.

This algorithm is implemented in the following code and allows one to locate
the initial Poisson points which are indicated by red crosses, see Figure 13.3.

 nu = 0.5;n = 20;T=10;alpha=9;delta=10;N=1000;dt=T*1.0/N
inverse <- function(s){if (is.null(s)) {return (s)}

 r<-c();for (u in s) {if (1-delta*u/alpha>0) r=c(r,-log(1-delta*u/alpha)/delta)}
return (r)}

 hawkes <- function(s0){ if (is.null(s0) || length(s0)==0) {return (NULL)}
for (k in 1:length(s0)){tau_n <- rexp(n,1); Tn <- cumsum(tau_n);Tn<-Tn[Tn<T]

 s1<-s0[k]+inverse(Tn);s1<-s1[s1<T]; if (length(s1)>=1) {s0=(c(s0,hawkes(s1)))}}
return (s0)}

 tau_n <- rexp(n,nu); Tn <- cumsum(tau_n); Tn<-Tn[Tn<T]
s<-sort(hawkes(Tn)); dev.new(width=T, height=2)

 plot(0, xlim = c(0,T), axes=FALSE, type = "n", xlab = "", ylab = "", yaxs="i")
axis(1, at = c(0,T),pos=0)

 points(s,rep(0,length(s)),xlim =c(0,T),ylim=c(-0.1,0.1),xlab="t",ylab="",pch=1,
cex=0.8, col='blue', lwd=2, main="")

points(Tn,rep(0,length(Tn)),pch=4, cex=1, col="red", lwd=2, main="")
 dev.new(width=T, height=6)

plot(stepfun(s,cumsum(c(0,rep(1,length(s))))),xlim =c(0,T),xlab="t",ylab="Nt",pch=1,
cex=0.8, col='blue', lwd=2, main="")

 points(Tn,rep(0,length(Tn)),pch=4, cex=1, col="red", lwd=2, main="")
dev.new(width=T, height=6)

 x<-seq(0,T,dt);y<-c();for (t in x) {y<-c(y,lambda(s,t));}
plot(x,y,xlim =c(0,T),type="l",xlab="t",ylab="Nt",pch=1, cex=0.8, col='blue', lwd=2,

main="")
 points(Tn,rep(0,length(Tn)),pch=4, cex=1, col="red", lwd=2, main="")

316 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

0 10

●●●●●●●●●●●●●●●●● ● ● ● ● ●●●● ●●● ●●●●●

0 2 4 6 8 10

0
5

10
15

20
25

30

t

Nt

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 2 4 6 8 10

0
10

20
30

40
50

t

Nt

Fig. 13.3: Hawkes process simulation.

Hawkes processes - intensity method

In order to construct the Hawkes point process with intensity λ(t) on a given
time interval [0,T], we start from an initial sequence of jump times created from
a standard Poisson process with constant intensity ν > 0. Next, we note that by
construction, every jump time Ti yields its own Poisson point process of jumps
started at time Ti, with the time-dependent intensity (ϕ(t− Ti))t∈[Ti,∞). This
generates a random count of new jump times (corresponding e.g. to earthquake
aftershocks), which is Poisson distributed with mean

w T
Ti

ϕ(t− Ti)dt ⩽ µ :=
w T

0
ϕ(t)dt,

and according to Proposition 13.5, the total mean count of jump times gener-
ated is bounded by

νT
∑
n⩾0

µn =
νT

1− µ ,

" 317

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

where νT is the mean number of Poisson jump times generated over [0,T] at
the rate ν. The resulting point processes (Nt)t∈R+ has a self-exciting intensity
(λ(t))t∈R+ of the form

λ(t) = ν +
w t

−∞
ϕ(t− s)dNs = ν +

∑
Ti⩽t

ϕ(t− Ti), t ⩾ 0, (13.11)

see Hawkes (1971).

A sample construction of Hawkes process paths is presented in the code
below when ϕ(t) is the exponential kernel

ϕ(t) = α1[0,∞)(t)e−δt, t ∈ R, (13.12)

based on the description (13.11), where the sample clusters are generated using
the result of Proposition 11.11, see Figure 13.4. Here, we assume that

µ :=
w ∞

−∞
ϕ(t)dt = α

w ∞

0
e−δtdt =

α

δ
< 1,

hence 0 < α < δ.

 nu = 0.5;T=10.0;alpha=9;delta=10;N=1000;dt=T/N
lambda <- function(times,t){lambda=nu;times<-times[times<t];if (is.null(times))

{return (lambda)}
 for (u in times) {lambda=lambda+alpha*exp(-delta*(t-u))}; return (lambda)}

t=0;times=c();for (k in 1:N) {if (runif(1)<lambda(times,t)*dt)
{times=c(times,t)};t=t+dt}

 dev.new(width=T, height=2)
plot(0, xlim = c(0,T), axes=FALSE, type = "n", xlab = "", ylab = "", yaxs="i")

 axis(1, at = c(0,T),pos=0)
points(times,rep(0,length(times)),pch=1, cex=1, col="blue", main="")

 dev.new(width=T, height=6)
plot(stepfun(times,cumsum(c(0,rep(1,length(times))))),xlim

=c(0,T),xlab="t",ylab="Nt",pch=1, cex=0.8, col='blue', lwd=2, main="")
 dev.new(width=T, height=6)

x<-seq(0,T,dt);y<-c();for (t in x) {y<-c(y,lambda(times,t));}
 plot(x,y,xlim =c(0,T),type="l",xlab="t",ylab=expression(lambda(t)),pch=1, cex=0.8,

col='blue', lwd=2, main = "")

318 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

0 10

●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●●●●●●●●●●●●●●●●●

0 2 4 6 8 10

0
10

20
30

40
50

60
70

t

Nt

●
●
●

●
●

●
●
●
●

●
●
●
●

●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●

●
●
●
●
●

●
●
●
●

●
●
●
●
●
●
●

●
●
●
●

●
●
●
●
●

●
●
●
●

0 2 4 6 8 10

0
10

20
30

40
50

60

t

Λ(t
)

Fig. 13.4: Hawkes process simulation.

Notes

See Ogata (1981), Dassios and Zhao (2013) for efficient simulation methods
for Hawkes processes, and Chen (2016) in the multivariate case. See also Rein-
hart (2018) for the declustering problem, which consists of recovering cluster
locations (red crosses) from a given process path.

Exercises

Exercise 13.1 In the code used to generate Figure 13.2, find the critical
value of λ for which the spatial Hawkes process explodes.

Exercise 13.2 Borel distribution. Let (Xn)n⩾0 be an integer-valued branching
process started at X0 = 1 with random offspring count N having the probabil-
ity generating function GN (s), i.e. we have

Xn+1 = N1 + · · ·+NXn , n ⩾ 1,

" 319

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

where (Nk)k⩾1 denotes a sequence of independent random variables with same
distribution as N . We let X denote the total number of descendants of a given
ancestor, including this ancestor and all subsequent ancestors, i.e. X :=

∑
n⩾0

Xn

is the total count (progeny) of offsprings generated by (Xn)n⩾0.

a) Show that the Probability Generating Functions (PGFs) GX of X and GN
of N satisfies the recursion

GX (s) = E[sX] = sGX (GN (s)), −1 < s < 1.

b) Assume that N has the Poisson distribution with parameter µ ∈ (0, 1). Give
the expression of the probability generating function GN (s) of N .

c) Show that the mean count of all descendants including all ancestors is given
by

E[X] =
1

1− µ .

d) Show that the variance of the count of all descendants including all ancestors
is given by

Var[X] =
µ

(1− µ)3 .

320 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Appendix: Probability Generating
Functions

Probability Generating Functions

Consider
X : Ω −→N∪ {+∞}

a discrete random variable possibly taking infinite values. The probability gen-
erating function (PGF) of X is the function

GX :[−1, 1] −→ R

s 7−→ GX (s)

defined by

GX (s) := E
[
sX1{X<∞}

]
=
∑
n⩾0

snP(X = n), −1 ⩽ s ⩽ 1. (A.13)

Note that the series summation in (A.3) is over the finite integers, which ex-
plains the presence of the truncating indicator 1{X<∞} inside the expectation
in (A.3).

If the random variable X : Ω −→ N is almost surely finite, i.e. P(X <
∞) = 1, we simply have

GX (s) = E
[
sX
]
=
∑
n⩾0

snP(X = n), −1 ⩽ s ⩽ 1,

and for this reason the probability generating function GX characterizes the
probability distribution P(X = n), n ⩾ 0, of the random variable X : Ω −→N.

We note that from (A.3) we can write

GX (s) = E
[
sX
]
, −1 < s < 1,

" 321

This version: March 5, 2024 https://personal.ntu.edu.sg/nprivault/indext.html

https://en.wikipedia.org/wiki/Probability-generating_function
https://en.wikipedia.org/wiki/Probability-generating_function
https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

since sX = sX1{X<∞} when −1 < s < 1.

Some properties of probability generating functions

i) Taking s = 0, we have

GX (0) = E[0X] = E[1{X=0}] = P(X = 0),

since 00 = 1 and 0X = 1{X=0}, hence

GX (0) = P(X = 0). (A.14)

ii) Taking s = 1, we have

GX (1) =
∑
n⩾0

P(X = n) = P(X <∞) = E
[
1{X<∞}

]
,

hence
GX (1) = P(X <∞).

iii) The derivative G′
X (s) of GX (s) with respect to s satisfies

G′
X (s) =

∑
n⩾1

nsn−1P(X = n), −1 < s < 1,

hence if P(X <∞) = 1 we have∗

G′
X (1−) = E[X] =

∑
n⩾0

nP(X = n), (A.15)

provided that E[X] <∞.

iv) By computing the second derivative

G′′
X (s) =

∑
n⩾n

(n− 1)nsn−2P(X = n)

=
∑
n⩾0

(n− 1)nsn−2P(X = n)

=
∑
n⩾0

n2sn−2P(X = n)−
∑
n⩾0

nsn−2P(X = n), −1 < s < 1,

we similarly find
∗ Here G′

X (1−) denotes the derivative on the left at the point s = 1.

322 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

G′′
X (1−) =

∑
n⩾0

(n− 1)nP(X = n)

=
∑
n⩾0

n2P(X = n)−
∑
n⩾0

nP(X = n)

= E[X2]−E[X]

= E[X(X − 1)],

provided that E[X2] <∞.

More generally, using the n-th derivative of GX we can compute the fac-
torial moment

G
(n)
X (1−) = E[X(X − 1) · · · (X − n+ 1)], n ⩾ 1, (A.16)

provided that E[|Xn|] <∞. In particular, we have

Var[X] = G′′
X (1−) +G′

X (1−)(1−G′
X (1−)), (A.17)

provided that E[X2] <∞.

v) When X : Ω −→ N and Y : Ω −→ N are two finite independent random
variables we have

GX+Y (s) = E
[
sX+Y

]
(A.18)

= E
[
sXsY

]
= E

[
sX
]
E
[
sY
]

= GX (s)GY (s), −1 ⩽ s ⩽ 1.

vi) The probability generating function can also be used from (A.3) to recover
the distribution of the discrete random variable X as

P(X = n) =
1
n!

∂n

∂sn
GX (s)|s=0, n ∈N, (A.19)

extending (A.4) to all n ⩾ 0.

" 323

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Appendix: Some Useful Identities

Here we present a summary of algebraic identities that are used in this text.

Indicator functions

1A(x) =

1 if x ∈ A,

0 if x /∈ A.
1[a,b](x) =

1 if a ⩽ x ⩽ b,

0 otherwise.

Binomial coefficients(
n

k

)
:=

n!
(n− k)!k!

, k = 0, 1, . . . ,n.

Exponential series

ex =
∑
n⩾0

xn

n!
, x ∈ R. (B.19)

Geometric sum
n∑
k=0

rk =
1− r
1− r

n+1
, r ̸= 1. (B.20)

Geometric series

" 325

This version: March 5, 2024 https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault∑
k⩾0

rk =
1

1− r , −1 < r < 1. (B.21)

Differentiation of geometric series∑
k⩾1

krk−1 =
∂

∂r

∑
k⩾0

rk =
∂

∂r

1
1− r =

1
(1− r)2 , −1 < r < 1. (B.22)

Binomial identity
n∑
k=0

(
n

k

)
akbn−k = (a+ b)n.

Taylor expansion

(1 + x)α =
∑
k⩾0

xk

k!
α(α− 1)× · · · × (α− (k− 1)). (B.23)

326 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Solutions to the Exercises

Chapter 1 - A Summary of Markov Chains

Exercise 1.1

a) The chain has the following graph:

0 1 21

1/4

3/4

1

Noting that state 0 is absorbing, by first step analysis we have

g0(0) = 1

g0(1) =
1
4g0(0) +

3
4g0(2)

g0(2) = g0(1),

which has for solution

g0(0) = g0(1) = g0(2) = 1

as illustrated in the following code.

" 327

This version: March 5, 2024 https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

 install.packages("igraph");install.packages("markovchain")
library("igraph");library(markovchain)

 P<-matrix(c(1,0,0,1/4,0,3/4,0,1,0),nrow=3,byrow=TRUE);
MC<-new("markovchain",transitionMatrix=P)

graph <- as(MC, "igraph")
 plot(graph,vertex.size=50,edge.label.cex=2, edge.label=E(graph)$prob,

edge.color='black', vertex.color='dodgerblue', vertex.label.cex=3)
hittingProbabilities(object = MC)

 1 2 3
1 1 0.00 0.00

 2 1 0.75 0.75
3 1 1.00 0.75

b) By first step analysis, we have

h0(0) = 0

h0(1) = 1 + 1
4h0(0) +

3
4h0(2)

h0(2) = 1 + h0(1),

which has for solution

h0(0) = 0, h0(1) = 7, h0(2) = 8,

as illustrated in the following code.

 meanAbsorptionTime(object = MC)
 7 8

Exercise 1.2 (Steele (2001), page 3). For all k = 0, 1, . . . ,L and n ⩾ 1, we have

P(T0,L =∞ | S0 = k) ⩽ P(T0,L > nL | S0 = k)

⩽ P

(
n−1⋂
k=0
{XkL+1 = 1, . . . ,X(k+1)L = 1}c

)
= (1− pk)n,

from which we obtain P(T0,L =∞ | S0 = k) = 0 after letting n tend to infinity
when p ∈ [0, 1), hence P(T0,L < ∞ | S0 = k) = 1. In case p = 1, we clearly
have P(T0,L <∞ | S0 = k) = 1.

Exercise 1.3 The chain has the following graph:

328 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

0

1

2

31

0.3

0.4

0.3

0.3

0.4

0.3
1

a) The absorbing states are 0 and 3 .
b) By the example page 128 of Privault (2018) we have g0(1) = g3(1) = 1/2.

On the other hand, we clearly have g1(0) = g1(3) = 0 and g1(1) = 1, hence

g1(2) = 0.3× g1(0) + 0.4× g1(1) + 0.3× g1(3) = 0.4.

c) We clearly have p1(0) = p1(3) = 0, and{
p1(1) = 0.3× p1(0) + 0.4× p1(2) + 0.3× p1(3) = 0.4× p1(2)
p1(2) = 0.3× p1(0) + 0.4 + 0.3× p1(3) = 0.4,

hence p1(1) = 0.16.
d) We have h1(1) = 0 by construction and h1(0) = h1(3) = +∞ because

states 0 and 3 are absorbing, and h1(2) = +∞ because g0(2) ⩾ 0.3 > 0.
Regarding mean return times, we have µ1(0) = µ1(1) = µ1(2) = µ1(3) =
+∞ because states 1 and 2 communicate while states 0 and 3 are
absorbing.

Exercise 1.4

a) The boundary conditions are given by

f(x, 0) = −x and f(0, y) = y, x, y ⩾ 0.

b) The finite difference equation satisfied by f(x, y) is given by

f(x, y) = x

x+ y
(f(x− 1, y)− 1) + y

x+ y
(f(x, y− 1) + 1), x, y ⩾ 1.

c) We have

" 329

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

f(1, 1) = 1
2 (f(0, 1)− 1) + 1

2 (f(1, 0) + 1) = 0,

f(1, 2) = 1
3 (f(0, 2)− 1) + 2

3 (f(1, 1) + 1) = 1,

f(2, 2) = 1
2 (f(1, 2)− 1) + 1

2 (f(2, 1) + 1) = 0,

f(1, 3) = 1
4 (f(0, 3)− 1) + 3

4 (f(1, 2) + 1) = 2,

f(2, 3) = 2
5 (f(1, 3)− 1) + 3

5 (f(2, 2) + 1) = 1,

f(3, 3) = 1
2 (f(2, 3)− 1) + 1

2 (f(3, 2) + 1) = 0.

d) We check that f(x, y) := y− x solves the finite difference equation

x

x+ y
(f(x− 1, y)− 1) + y

x+ y
(f(x, y− 1) + 1)

=
x

x+ y
(y− (x− 1)− 1) + y

x+ y
(y− 1− x+ 1)

=
x

x+ y
(y− x) + y

x+ y
(y− x)

= y− x
= f(x, y),

with the correct boundary conditions.

Exercise 1.5

a) It clearly takes S steps for Buffalo A to travel up from 0 to S , and for
Buffalo B to travel down from S to 0 ?

b) After the buffalos collide they can be assumed to both continue their way
without any impact on their travel times to the boundary

{
0 , S

}
, there-

fore the answer is S steps in this case as well.

Exercise 1.6

a) By a recurrence using Pascal’s identity(
n

k

)
=

(
n− 1
k− 1

)
+

(
n− 1
k

)
,

we find

330 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

[Pn]i,j =


pj−iqn−(j−i)

(
n

j − i

)
, 0 ⩽ j − i ⩽ n,

0, n < j − i,

0, i > j.

b) We have

0 ⩽ lim
n→∞

[Pn]i,j

=
pj−iq−(j−i)

(j − i)!
lim
n→∞

qn
n!

(n− (j − i))!
= lim

n→∞
qnn(n− 1) · · · (n− (j − i) + 1)

⩽ lim
n→∞

qnnj−i

= lim
n→∞

elog(qnnj−i)

= lim
n→∞

en log q+(j−i) logn

= 0, 0 ⩽ j − i.

c) We have

∑
n⩾0

[Pn]i,j =


∑
n⩾j−i

pj−iqn−(j−i)
(

n

j − i

)
, i ⩽ j,

0, i > j,

=


pj−i

(j − i)!
∑
n⩾0

qn
(n+ j − i)!

n!
, i ⩽ j,

0, i > j,

=


pj−i

(j − i)!
∑
n⩾0

qn
(n+ j − i)!

n!
, i ⩽ j,

0, i > j,

=


pj−i

(j − i)!
∂j−i

∂qj−i
1

1− q , i ⩽ j,

0, i > j,

=


pj−i

(1− q)j−i+1 , i ⩽ j,

0, i > j,

" 331

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

=


1
p

, i ⩽ j,

0, i > j.

d) We have

pi,j = P(Tj <∞ | X0 = i) =


1, i < j,

q < 1, i = j,

0, i > j.

e) Since pi,i = q < 1 for all i ⩾ 0, the chain (Xn)n⩾0 is transient as all of its
states are transient.

f) As in Proposition 1.7, the mean number of returns from state i to state
j is given by

∑
n⩾1

[Pn]i,j = E[Rj | X0 = i] =



p
∑
n⩾1

nqn−1 =
1
p
=

pi,j
1− pj,j

, i < j,

qp
∑
n⩾1

nqn−1 =
q

p
=

pi,i
1− pi,i

, i = j,

0 =
pi,j

1− pj,j
, i > j.

g) The matrix

I − P =


1− q −p 0 0 · · ·

0 1− q −p 0 · · ·

0 0 1− q −p · · ·
...

...
...

...
. . .

 =


p −p 0 0 · · ·

0 p −p 0 · · ·

0 0 p −p · · ·
...
...

...
...
. . .


is invertible, and as in (1.38), its inverse can be expressed as

(I − P)−1 =

 ∑
n⩾0

[Pn]i,j


i,j∈N

=
[

1{i=j} + E[Rj | X0 = i]
]
i,j∈N

332 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

=



1
p

1
p

1
p

1
p

1
p
· · ·

0 1
p

1
p

1
p

1
p
· · ·

0 0 1
p

1
p

1
p
· · ·

0 0 0 1
p

1
p
· · ·

...
...
...
...
...
. . .


.

Note that although the vector e = (1, 1, 1, . . .) satisfies (I −P)e = 0 it does
not belong to ℓ1(N), and I −P is invertible as an operator from ℓ1(N) into{

(uk)k⩾0 :
∑
n⩾0

∣∣∑
k⩾n

uk
∣∣ <∞}.

Exercise 1.7
a) We have µA(x, y) = 0 for all (x, y) ∈ A.
b) For all 0 ⩽ x, y ⩽ 3 we have

µA(x, y) = 1 + 1
2µA(x+ 1, y) + 1

2µA(x, y+ 1). (S.24)

c) We have 

µA(2, 2) = 1 + 1
2µA(3, 2) + 1

2µA(2, 3) = 1,

µA(1, 2) = 1 + 1
2µA(2, 2) + 1

2µA(1, 3) = 3
2 ,

µA(2, 1) = 1 + 1
2µA(2, 2) + 1

2µA(3, 1) = 3
2 ,

µA(0, 2) = 1 + 1
2µA(1, 2) + 1

2µA(0, 3) = 7
4 ,

µA(2, 0) = 1 + 1
2µA(2, 1) + 1

2µA(3, 0) = 7
4 ,

µA(1, 1) = 1 + 1
2µA(2, 1) + 1

2µA(1, 2) = 5
2 ,

µA(0, 1) = 1 + 1
2µA(1, 1) + 1

2µA(0, 2) = 25
8 ,

µA(1, 0) = 1 + 1
2µA(1, 1) + 1

2µA(2, 0) = 25
8 ,

µA(0, 0) = 1 + 1
2µA(1, 0) + 1

2µA(0, 1) = 33
8 .

" 333

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

4 0 0 0 0 0

3 0 0 0 0 0

2 7/4 3/2 1 0 0

1 25/8 5/2 3/2 0 0

0 33/8 25/8 7/4 0 0

0 1 2 3 4

Table 16.1: Values of µA(x, y) with N = 3 and the set A in blue.

d) The mean number of rounds is µA(0, 0) = 33/8 = 4.125.

Fig. S.1: Backward solution of Equation (S.24) for µA(x, y) with N = 10.∗

The following code can be used to generate Figure S.1.

334 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

 install.packages("plot3D"); require(plot3D);N=10;M=15
 X=array(1:2,c(M+1,M+1));

for (i in seq(1,M+1)) {for (j in seq(1,M+1)) X[i,j]=0;}
 par(mar=c(1,2,0,0)+0.01)

for (k in seq(N,-N)) {for (i in seq(k,N)) {
 if (i>=1 && N+k-i>=1) {X[i,N+k-i]=1+(X[i+1,N+k-i]+X[i,N+k-i+1])/2.0;dev.hold();

hist3D(x=0:M, y=0:M, z=X, scale=T, bty="g", phi=35, theta=120, border="black",
zlim=c(0,20), shade=0.3, space=0.15, col="#0072B2", colkey=F,
ticktype="detailed"); dev.flush();}}}

Exercise 1.8

a) When X0 = x ⩾ 2 and Y0 = y ⩾ 2 we have TA = 0, hence

µA(x, y) := E[TA <∞ | X0 = x, Y0 = y] = 0, x ⩾ 2, y ⩾ 2.

b) This equation is obtained by first step analysis, noting that we can only
move up to to the right with probability 1/2 in both cases.

c) We note that µA(x, y) = µA(x, y+ 1) for y ⩾ 2, and

µA(1, y) = 1 + 1
2µA(2, y) + 1

2µA(1, y+ 1) = 1 + 1
2µA(1, y), y ⩾ 2,

hence µA(1, y) = 2 for all y ⩾ 2. We also have

µA(0, y) = 1 + 1
2µA(1, y) + 1

2µA(0, y+ 1) = 2 + 1
2µA(0, y), y ⩾ 2,

hence µA(0, y) = 4, y ⩾ 2. By symmetry we also have µA(x, 1) = 2 and
µA(x, 0) = 4 for all x ⩾ 2.

These results can also be recovered using pathwise analysis as

µA(1, y) =
∑
k⩾1

k

2k =
1
2
∑
k⩾0

k

2k−1 =
1

2(1− 1/2)2 = 2, y ⩾ 2,

which yields similarly µA(x, 1) = 2 for all x ⩾ 2. Repeating this argument
once also leads to µA(x, 0) = µA(0, y) = 4 for all x, y ⩾ 2.

d) We have
∗ Animated figure (works in Acrobat Reader).

" 335

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

µA(1, 1) = 1 + 1
2µA(2, 1) + 1

2µA(1, 2) = 3,

µA(0, 1) = 1 + 1
2µA(1, 1) + 1

2µA(0, 2) = 9
2 ,

µA(1, 0) = 1 + 1
2µA(2, 0) + 1

2µA(1, 1) = 9
2 ,

µA(0, 0) = 1 + 1
2µA(1, 0) + 1

2µA(0, 1) = 11
2 ,

hence the mean time it takes until both cans contain at least $2 is µA(0, 0) =
11/2.

4 4 2 0 0 0

3 4 2 0 0 0

2 4 2 0 0 0

1 9/2 3 2 2 2

0 11/2 9/2 4 4 4

0 1 2 3 4

Table 16.2: Values of µA(x, y) with N = 2 and the set A in blue.

336 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

Fig. S.2: Backward solution of (1.51) for µA(x, y) with N = 10.∗

The following code can be used to generate Figure S.2.

 require(plot3D);N=10;M=20;X=array(1:2,c(M+1,M+1));
for (i in seq(N+2,M+1)) {for (j in seq(N+2,M+1)) X[i,j]=0;}

 for (i in seq(N+1,M+1)) {for (j in seq(1,N+1)) X[i,j]=2*(N+1-j);}
for (i in seq(1,N+1)) {for (j in seq(N+1,M+1)) X[i,j]=2*(N+1-i);}

 for (k in seq(N,-N)) {for (i in seq(k,N)) {if (i>=1 && N+k-i>=1)
X[i,N+k-i]=1+(X[i+1,N+k-i]+X[i,N+k-i+1])/2.0;}}

hist3D(x=1:21, y=1:21, z=X, scale=T, bty="g", phi=35, theta=120, border="black",
zlim=c(0,25), shade=0.3, space=0.15, col="#0072B2", colkey=F,
ticktype="detailed")

Problem 1.9
a) We have f (1)i,j = Pi,j , i, j ∈ S.
b) We have

f
(n+1)
i,j = P(Xn+1 = j,Xn ̸= j, . . . ,X1 ̸= j | X0 = i)

=
∑
k∈S
k ̸=j

Pi,kP(Xn+1 = j,Xn ̸= j, . . . ,X2 ̸= j | X1 = k)

=
∑
k∈S
k ̸=j

Pi,kP(Xn = j,Xn−1 ̸= j, . . . ,X1 ̸= j | X0 = k)

∗ Animated figure (works in Acrobat Reader).

" 337

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

=
∑
k∈S
k ̸=j

Pi,kf
(n)
k,j , i, j ∈ S, n ⩾ 1.

c) By summing (1.53) over n ⩾ 1, we find

fi,j =
∑
n⩾1

f
(n)
i,j

= f
(1)
i,j +

∑
n⩾2

f
(n)
i,j

= Pi,j +
∑
n⩾1

f
(n+1)
i,j

= Pi,j +
∑
n⩾1

∑
k∈S
k ̸=j

Pi,kf
(n)
k,j

= Pi,j +
∑
k∈S
k ̸=j

Pi,kfk,j , i, j ∈ S.

d) Let f̃ denote another solution of (1.54). We have f̃i,j ⩾ Pi,j = f
(1)
i,j , and if

f̃i,j ⩾
∑n

l=1 f
(l)
i,j then by (1.53) and (1.54) we have

f̃i,j = Pi,j +
∑
k∈S
k ̸=j

Pi,kf̃k,j

⩾ Pi,j +
∑
k∈S
k ̸=j

Pi,k

n∑
l=1

f
(l)
k,j

= Pi,j +
n∑
l=1

∑
k∈S
k ̸=j

Pi,kf
(l)
k,j

= Pi,j +
n∑
l=1

f
(l+1)
i,j

= Pi,j +
n+1∑
l=2

f
(l)
i,j

=
n+1∑
l=1

f
(l)
i,j

hence by induction we obtain

338 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

f̃i,j ⩾
n∑
l=1

f
(l)
i,j , i, j ∈ S, n ⩾ 1,

and letting n tend to infinity, we find

f̃i,j ⩾
∞∑
l=1

f
(l)
i,j = fi,j , i, j ∈ S.

Finally, we check that if f and g are two minimal solutions then f ⩾ g and
g ⩾ f , hence f = g and the minimal solution is unique.

e) The condition g
(1)
i,j = f

(1)
i,j is satisfied by construction, for i, j ∈ S. Next,

assuming that g(n)i,j = nf
(n)
i,j , i, j ∈ S, we have

g
(n+1)
i,j = f

(n+1)
i,j + n

∑
k∈S
k ̸=j

Pi,kf
(n)
k,j

= f
(n+1)
i,j + nf

(n+1)
k,j

= (n+ 1)f (n+1)
i,j , i, j ∈ S, n ⩾ 1.

f) We have

hi,j =
∑
n⩾1

g
(n)
i,j

= g
(1)
i,j +

∑
n⩾1

g
(n+1)
i,j

= f
(1)
i,j +

∑
n⩾1

(
f
(n+1)
i,j + n

∑
k∈S
k ̸=j

Pi,kf
(n)
k,j

)

=
∑
n⩾1

f
(n)
i,j +

∑
k∈S
k ̸=j

Pi,k
∑
n⩾1

nf
(n)
k,j

= fi,j +
∑
k∈S
k ̸=j

Pi,khk,j , i, j ∈ S.

g) By (1.55), for n = 1 we have

h̃i,j = fi,j +
∑
k∈S
k ̸=j

Pi,kh̃k,j

⩾ fi,j

⩾ f
(1)
i,j

" 339

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

= g
(1)
i,j .

Next, assuming that

h̃i,j ⩾
n∑
l=1

g
(l)
i,j , i, j ∈ S,

holds at the rank n ⩾ 1, we have

h̃i,j = fi,j +
∑
k∈S
k ̸=j

Pi,kh̃k,j

⩾ fi,j +
∑
k∈S
k ̸=j

Pi,k

n∑
l=1

g
(l)
k,j

= fi,j +
n∑
l=1

∑
k∈S
k ̸=j

Pi,kg
(l)
k,j

= fi,j +
n∑
l=1

l
∑
k∈S
k ̸=j

Pi,kf
(l)
k,j

= fi,j +
n∑
l=1

lf
(l+1)
i,j

= fi,j +
n+1∑
l=2

(l− 1)f (l)i,j

⩾
n+1∑
l=1

f
(l)
i,j +

n+1∑
l=2

(l− 1)f (l)i,j

= f
(1)
i,j +

n+1∑
l=2

lf
(l)
i,j

=
n+1∑
l=1

g
(l)
i,j , i, j ∈ S.

Letting n tend to infinity, we find

h̃i,j ⩾
∞∑
l=1

g
(l)
i,j = hi,j , i, j ∈ S,

proving that hi,j is a minimal solution to (1.55). Finally, we check that if f
and g are two minimal solutions then f ⩾ g and g ⩾ f , hence f = g and
the minimal solution is unique.

340 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

Chapter 2 - Phase-Type Distributions

Exercise 2.1

a) We have h3(3) = 0, andh3(1) = 1 + (1− p)h3(1) + ph3(2)

h3(2) = 1 + (1− q)h3(1),

henceh3(1) = 1 + (1− p)h3(1) + ph3(2) = 1 + p+ ((1− p) + (1− q)p)h3(1)

h3(2) = 1 + (1− q)h3(1),

hence 
h3(1) =

1 + p

1− (1− p)− (1− q)p =
1 + p

pq

h3(2) = 1 + (1 + p)(1− q)
1− ((1− p) + (1− q)p) =

1 + p− q
pq

.

b) We have
G1(s) = (1− p)E

[
s1+T3

∣∣X0 = 1] + pE
[
s1+T3

∣∣X0 = 2]

G2(s) = (1− q)E
[
s1+T3

∣∣X0 = 1] + qs,

i.e. 
G1(s) = (1− p)sE

[
sT3
∣∣X0 = 1] + psE

[
sT3
∣∣X0 = 2]

G2(s) = (1− q)sE
[
sT3
∣∣X0 = 1] + qs,

hence G1(s) = (1− p)sG1(s) + psG2(s)

G2(s) = (1− q)sG1(s) + qs

or G1(s) = (1 + ps)G2(s)− qs

G2(s) = (1− q)sG1(s) + qs

i.e. 
G1(s) = (1 + ps)(1− q)sG1(s) + qs(1 + ps)− qs

G2(s) = (1− q)s(1 + ps)G2(s)− q(1− p)s2 + qs,
hence

" 341

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault
G1(s) =

pqs2

1− (1− p)s− p(1− q)s2

G2(s) =
−q(1− p)s2 + qs

1− (1− q)s(1 + ps)

c) Using the identity√
(1− p)2 + 4(1− q)p

1− (1− p)s− p(1− q)s2 =
∞∑
n=0

sn

zn+1
+

−
∞∑
n=0

sn

zn+1
−

,

we find

G1(s) =
pqs2

1− (1− p)s− p(1− q)s2

=
pqs2√

(1− p)2 + 4(1− q)p

∞∑
n=0

(
sn

zn+1
+

− sn

zn+1
−

)

=
pq√

(1− p)2 + 4(1− q)p

∞∑
n=2

(
sn

zn−1
+

− sn

zn−1
−

)

=
∞∑
n=0

snP(T3 = n
∣∣X0 = 1), −1 ⩽ s ⩽ 1,

hence by identification we find P(T3 = n
∣∣X0 = 1) = 0, n = 0, 1, and

P(T3 = n
∣∣X0 = 1) = pq√

(1− p)2 + 4(1− q)p

(
1

zn−1
+

− 1
zn−1

−

)
, n ⩾ 2.

In particular, this recovers

P(T3 = 2
∣∣X0 = 1) = pq√

(1− p)2 + 4(1− q)p

(
1
z+
− 1
z−

)
=

pq√
(1− p)2 + 4(1− q)p

z− − z+
z−z+

= pq.

d) We note that the hitting time is a.s.∗ finite, i.e. P(T3 < ∞ | X0 = 1) = 1,
hence the mean hitting time E[T3 | X0 = 1] is given from (A.5) as

E[T3 | X0 = 1] = G′
1(1)

=
2pqs

1− (1− p)s− p(1− q)s2
|s=1

∗ Almost surely, i.e. with probability one.

342 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

+
pqs2(1− p) + 2p(1− q)s

(1− (1− p)s− p(1− q)s2)2
|s=1

=
1 + p

pq
.

Chapter 3 - Synchronizing Automata

Exercise 3.1

a) We have

E[T (m)] = mpm +
m−1∑
k=0

pkq(k+ 1 + E[T (m)]).

b) We find

E[T (m)] =

mpm + q
m−1∑
k=0

pk(k+ 1)

1− q
m−1∑
k=0

pk

=
mpm +

1− (m+ 1)pm +mpm+1

1− p .

pm

=
m(1− p)pm + 1− (m+ 1)pm +mpm+1

(1− p)pm

=
1/pm − 1

1− p

=
m∑
k=1

1
pk

. (S.25)

Alternative solution: We note the recurrence relation

E[T (m)] = E[T (m−1)] + p× 1 + (1− p)(1 + E[T (m)]), m ⩾ 2,

which rewrites as

E[T (m)] =
E[T (m−1)] + 1

p
, m ⩾ 2,

and also recovers (S.25) from E[T (0)] = 0.

" 343

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

Exercise 3.2

a) The sequence (Zn)n⩾0 is a Markov chain since every new transition is de-
termined by the current state, and its transition matrix P is given by

P =



q p 0 · · · · · · 0 0
q 0 p · · · · · · 0 0
q 0 0 · · · · · · 0 0
...
...
. . .

. . .
...

...
...

q 0 · · · . . . p 0 0
q 0 · · · · · · 0 p 0
q 0 · · · · · · 0 0 p


,

b) By first step analysis, the mean hitting times E
[
T (m)

∣∣ Z0 = l
]
, l =

0, 1, . . . ,m, satisfy the equations

E
[
T (m)

∣∣Z0 = 0
]
= 1 + (1− p)E

[
T (m)

∣∣Z0 = 0
]
+ pE

[
T (m)

∣∣Z0 = 1
]

E
[
T (m)

∣∣Z0 = 1
]
= 1 + (1− p)E

[
T (m)

∣∣Z0 = 0
]
+ pE

[
T (m)

∣∣Z0 = 2
]

...

E
[
T (m)

∣∣Z0 = m− 1
]
= 1 + (1− p)E

[
T (m)

∣∣Z0 = 0
]
+ pE

[
T (m)

∣∣Z0 = m
]

E
[
T (m)

∣∣Z0 = m
]
= 0,

i.e.

E[Tm | Z0 = 0] = 1
p
+ E[Tm | Z0 = 1]

pE[Tm | Z0 = 1] = pE[Tm | Z0 = 2] + E[Tm | Z0 = 0]−E[Tm | Z0 = 1]
...

pE[Tm | Z0 = m− 1] = pE[Tm | Z0 = m]

+E[Tm | Z0 = m− 2]−E[Tm | Z0 = m− 1]
E[Tm | Z0 = m] = 0,

or 

E
[
T (m)

∣∣Z0 = 0
]
=

1
p
+ E

[
T (m)

∣∣Z0 = 1
]

E
[
T (m)

∣∣Z0 = 1
]
=

1
p
+ E

[
T (m)

∣∣Z0 = 2
]

...

E
[
T (m)

∣∣Z0 = m− 1
]
=

1
p
+ E

[
T (m)

∣∣Z0 = m
]
,

E
[
T (m)

∣∣Z0 = m
]
= 0,

with solution

344 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

E
[
T (m)

∣∣Z0 = k
]
=

m∑
l=k+1

1
pl

=
1

pk+1

m−k−1∑
l=0

1
pl

=
1− (1/p)m−k

(1− 1/p)pk+1

=
1− pm−k

(1− p)pm , k = 0, 1, . . . ,m.

c) We have

E
[
T (m)

]
= E

[
T (m)

∣∣Z0 = 0
]

=
m∑
l=1

1
pl

=
1− (1/p)m

(1− 1/p)p

=
1− pm

(1− p)pm .

Problem 3.3

a) The transition matrix is given by

aa

ab

ba

bb

[
aa

p

0
p

0

ab

q

0
q

0

ba

0
p

0
p

bb

0
q

0
q
] .

b) We have τab = 1 with probability one, hence

Gab(s) = E[s | Z1 = (a, b)] = s.

c) We find Gaa(s) = psGaa(s) + qsGab(s),

Gba(s) = psGaa(s) + qsGab(s).

d) We have

" 345

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. PrivaultGaa(s) = psGaa(s) + qs2,

Gba(s) = psGaa(s) + qs2,
hence

Gaa(s) = Gba(s) =
pqs3

1− ps + qs2 =
qs2

1− ps , s ∈ (−1, 1).

We note that

P(τab <∞ | Z1 = (a, a)) = P(τab <∞ | Z1 = (b, a))
= Gba(1−)

= lim
s↗1

Gba(s)

= lim
s↗1

qs2

1− ps
=

q

1− p
= 1.

e) We have

E[τab | Z1 = (a, a)] = E[τab | Z1 = (b, a)]
= G′

ba(1) = G′
aa(1)

=
2q

1− p +
pq

(1− p)2 = 2 + p

q
.

f) This average time is

pE[τab | Z1 = (a, a)] + qE[τab | Z1 = (a, b)] = p

(
2 + p

q

)
+ q = 1 + p

q
.

Exercise 3.4

a) The word “abb” synchronizes to state 4 starting from states 1 and 2 .
However, the unique shortest word that synchronizes to state 4 starting
from all states 1 , 2 and 3 is “aabb”.

b) The process (Zk)k⩾0 is a Markov chain on the state space {0, 1, 2, 3, 4}, with
the following graph:

346 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

0 1 2 3 4

1

1/21/2

1/2

1/2 1/2

1/2

1

The transition matrix of the chain (Zk)k⩾0 is

[
Pi,j

]
0⩽i,j⩽4 =


1 0 0 0 0

1/2 0 1/2 0 0
0 0 1/2 1/2 0
0 1/2 0 0 1/2
0 0 0 0 1

 .

c) Denoting by g4(k) the probability that state 4 is reached first starting
from state k = 0, 1, 2, 3, 4, we have the equations

g4(0) = 0

g4(1) =
1
2g4(0) +

1
2g4(2) =

1
2g4(2)

g4(2) =
1
2g4(2) +

1
2g4(3)

g4(3) =
1
2g4(1) +

1
2g4(4) =

1
2g4(1) +

1
2

g4(4) = 1,

with the solution 

g4(0) = 0

g4(1) =
1
3

g4(2) =
2
3

g4(3) =
2
3

g4(4) = 1.
Hence the probability that the first synchronized word is “aabb” when the
automaton is started from state 1 is 1/3.

" 347

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

Exercise 3.5
a) The unique shortest word that synchronizes to state 4 starting from all

states 1 , 2 and 3 is “aba”.
b) By the same analysis as in Exercise 3.4-(c), the probability that the first

synchronized word is “aba” when the automaton is started from state 1 is
1/3.

Exercise 3.6 Denoting by ⌊x⌋ = Max{n ∈ Z : n ⩽ x} the integer floor of
x ∈ R, we have

GT (m)(s) = pmsm
1− ps

1− s+ qpmsm+1

= pmsm(1− ps)
∑
k⩾0

sk(1− qpmsm)k

= pmsm(1− ps)
∑
k⩾0

sk
k∑
l=0

(
k

l

)
(−qpmsm)l

= pmsm(1− ps)
∑
n⩾0

sn
⌊n/(m+1)⌋∑

l=0

(
n−ml

l

)
(−q)lpml

= pmsm
∑
n⩾0

sn

⌊n/(m+1)⌋∑
l=0

(
n−ml

l

)
(−q)lpml − p

⌊(n−1)/(m+1)⌋]∑
l=0

(
n− 1−ml

l

)
(−q)lpml

 ,

−1 ⩽ s ⩽ 1, which shows that

P
(
T (m) = m+ n

)
= pm

⌊n/m⌋∑
l=0

(
n−ml

l

)
(−q)lpml − p

⌊(n−1)/m⌋∑
l=0

(
n− 1−ml

l

)
(−q)lpml


= pm

⌊(n−1)/m⌋∑
l=0

((
n−ml

l

)
− p
(
n− 1−m[n/m]

l

))
(−q)lpml

+pm1{[n/m]>⌊(n−1)/(m+1)⌋}

(
n−m ⌊n/m⌋
⌊n/m⌋

)
(−q)⌊n/m⌋pm⌊n/m⌋, (S.26)

and recovers in particular P
(
T (m) = m

)
= pm and

P
(
T (m) = m+ n

)
= qpm, n = 1, 2, . . . ,m,

and yields
P
(
T (m) = 2m+ 1

)
= (1− pm)qpm.

For m = 1 we also have

348 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

GT (m)(1) = ps
1− ps

1− s+ qps2 =
ps

1− qs =
∑
k⩾1

skpqk−1,

and
P
(
T (1) = n

)
= pqn−1, n ⩾ 1.

Chapter 4 - Random Walks and Recurrence

Exercise 4.1

a) By independence of the sequence (Xk)1⩽k⩽n, we have

E

[
exp

(
t
n∑
k=1

Xk

)]
=

n∏
k=1

E[etXk]

= (q+ pet)n, n ⩾ 0, t ∈ R.

b) By the classical Markov or Chernoff bound argument, we have

P

(
1
n

n∑
k=1

(Xk − p) ⩾ z

)
= P

(
exp

(
t
n∑
k=1

Xk

)
⩾ entz+npt

)

= e−ntz−nptE

[
exp

(
t
n∑
k=1

Xk

)]
= e−ntz−npt(q+ pet)n

= e−n(t(p+z)−log(q+pet)), t > 0.

c) By differentiating t 7→ xt− log(q + pet) with respect to t > 0, we find that
the maximizing value t(x) is given by

t(x) = log qx

(1− x)p , x ∈ (0, 1).

d) We have

P

(
1
n

n∑
k=1

(Xk − p) ⩾ z

)
⩽ e−n((p+z)t(x)−log(q+pet(x)))

= exp
(
−n
(
(p+ z) log (p+ z)q

(q− z)p
− log q

q− z

))
, 0 ⩽ z < q.

e) Applying Taylor’s formula with remainder

" 349

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

f(t) = f(0) + tf ′(0) + t2

2 f
′′(θt)

to the function f(t) := log(q + pet) with f(0) = 0, f ′(t) = pet/(q + pet),
and f ′′(t) = pqet/(q+ pet)2, hence f ′(0) = p and

f ′′(θt) =
pqeθt

(q+ peθt)2 ⩽
1
4 ,

we obtain

log(q+ pet) = pt+
t2

2 f
′′(θt) ⩽ pt+

t2

8 , t ∈ R.

The inequality 4pqeθt ⩽ (q + peθt)2 can be proved by noting that it is
equivalent to (q− peθt)2 ⩾ 0.

f) By differentiating t 7→ zt− t2/8 with respect to t > 0 we find that the
maximizing value t(z) is given by t(z) = 4z, z ∈ (0, 1).

g) We have

P

(
1
n

n∑
k=1

(Xk − p) ⩾ z

)
⩽ e−n(t(p+z)−log(q+pet))

⩽ e−n(zt(z)−t(z)2/8)

⩽ e−2nz2 , z ⩾ 0.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

x

(p+x)*log((q*(p+x)/p/(q-x)))-log(q/(q-x))
2*x**2

Fig. S.3: Comparison of rate functions.

Problem 4.2

a) If none of the stated conditions, hold, i.e. if

350 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

m̂
(N ,α∗)
n−1 +

√
2 logn
T
(N ,α∗)
n−1

> pN , m̂
(i,α∗)
n−1 ⩽ pi+

√
2 logn
T
(i,α∗)
n−1

, T
(i,α∗)
n−1 ⩾

2 logn
(pN − pi)2 ,

then we have

m̂
(N ,α∗)
n−1 +

√
2 logn
T
(N ,α∗)
n−1

> pN

= pi + pN − pi

⩾ pi +

√
2 logn
T
(i,α∗)
n−1

⩾ m̂
(i,α∗)
n−1 ,

which implies α∗
n ̸= i.

b) We have

E[T
(i,α∗)
n] = E

[
n∑
k=1

1{α∗
k
=i}

]

⩽ E

[
n∑
k=1

1{α∗
k
=i}1{T (i,α∗)

k−1 < 2 log n

(pN −pi)
2 }

]
+ E

[
n∑
k=1

1{α∗
k
=i}1{T (i,α∗)

k−1 ⩾ 2 log n

(pN −pi)
2 }

]

⩽ n̂i + E

 ∑
n̂i<k⩽n

1{α∗
k
=i}1{T (i,α∗)

k−1 ⩾ 2 log n

(pN −pi)
2 }


⩽ n̂i +

∑
n̂i<k⩽n

P

m̂(N ,α∗)
k−1 +

√√√√ 2 log k
T
(N ,α∗)
k−1

⩽ pN


+

∑
n̂i<k⩽n

P

m̂(N ,α∗)
k−1 > pi +

√√√√ 2 log k
T
(i,α∗)
k−1

 .

c) We have

P

m̂(N ,α∗)
k−1 +

√√√√ 2 log k
T
(N ,α∗)
k−1

⩽ pN


⩽ P

∃l ∈ {1, . . . , k} :
1
l

l∑
j=1

(X
(N ,α∗)
j − pN) +

√
2 log k
l
⩽ pN


⩽

k∑
l=1

P

1
l

l∑
j=1

(X
(N ,α∗)
j − pN) +

√
2 log k
l
⩽ pN


" 351

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

⩽
k∑
l=1

P

1
l

l∑
j=1

(1−X(N ,α∗)
j − (1− pN)) ⩾

√
2 log k
l


⩽

k∑
l=1

e−4 log k =
k∑
l=1

1
k4 =

1
k3 .

The argument is similar for

P

m̂(i,α∗)
k−1 > pi +

√√√√ 2 log k
T
(i,α∗)
k−1

 ⩽ 1
k3 , i = 1, . . . ,N , k > N .

d) We have

E[T
(i)
n] ⩽ n̂i +

n∑
k=1

2
k3

=
8 logn

(pN − pi)2 +
n∑
k=1

2
k3

⩽
8 logn

(pN − pi)2 +
w n

1
2
t3
dt

⩽
8 logn

(pN − pi)2 +

(
1− 1

n2

)
,

hence

Rα∗
n = npN −E

[
n∑
k=1

pα∗
k

]

=
n∑
k=1

E[pN − pα∗
k
]

= npN −
N∑
i=1

piE[T i,α
∗

n]

=
N∑
i=1

(pN − pi)E[T i,α
∗

n]

⩽ 8
N−1∑
i=1

logn
pN − pi

+
N−1∑
i=1

(pN − pi).

Problem 4.3

a) i) By first step analysis, the probability generating function

352 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

Gi(s) := E
[
sT0,L

∣∣S0 = i
]
, s ∈ [−1, 1],

of T0,L satisfies the equation

Gi(s) = psGi+1(s) + qsGi−1(s), i = 1, . . . ,L− 1,

with the boundary conditions G0(s) = GL(s) = 1. This equation can
be solved as

Gi(s) = C+(s)

(
1 +

√
1− 4pqs2

2ps

)i
+C−(s)

(
1−

√
1− 4pqs2

2ps

)i
,

i = 0, . . . ,L, where
C+(s) :=

(2ps)L − (1−
√

1− 4pqs2)L

(1 +
√

1− 4pqs2)L − (1−
√

1− 4pqs2)L

C−(s) :=
(1−

√
1 + 4pqs2)L − (2ps)L

(1 +
√

1− 4pqs2)L − (1−
√

1− 4pqs2)L
.

ii) The Laplace transform

Li(λ) := E
[
e−λT0,L

∣∣S0 = i
]
, i = 0, 1, . . . ,L, λ ⩾ 0.

of T0,L is then evaluated as

Li(λ) = Gi(e−λ)

= C+(e−λ)

(
1 +

√
1− 4pqe−2λ

2pe−λ

)i
+C−(e−λ)

(
1−

√
1− 4pqe−2λ

2pe−λ

)i
,

i = 0, . . . ,L.
b) i) When µ = 0, taking the limit as ε tends to zero yields the Laplace

transform

Lx(λ) :=
sinh(x

√
2λ) + sinh((y− x)

√
2λ)

sinh(y
√

2λ)
,

x ∈ [0, y], λ ⩾ 0, of the first hitting time of the boundary {0, y} by a
standard Brownian motion (Bt)t∈R+ started at x ∈ [0, y], which recov-
ers Equation (3) in Antal and Redner (2005), see also Equation (2.2.10)
in Redner (2001), Theorem 1 in Williams (1992), and Relation (2.12)
in Borodin (2017).

ii) When µ ̸= 0, we find the Laplace transform

Lx(λ) = C1(λ)eµ+
√

2λ+µ2
+C2(λ)eµ−

√
2λ+µ2

" 353

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

=
e(x−y)µ sinh(x

√
2λ+ µ2) + eµx sinh((y− x)

√
2λ+ µ2)

sinh(y
√

2λ+ µ2)
,

x ∈ [0, y], λ ⩾ 0, of the first hitting time of the boundary {0, y} by
a Brownian motion (Bt + µt)t∈R+ with drift µ ∈ R and started at
x ∈ [0, y], which recovers Equation (3), where

C1(s) :=
1− e(µ−

√
2λ+µ2)y

e(µ+
√

2λ+µ2)y − e(µ−
√

2λ+µ2)y

C2(s) :=
e(µ+

√
2λ+µ2)y

e(µ+
√

2λ+µ2)y − e(µ−
√

2λ+µ2)y
,

see Theorem 1 in Williams (1992) in the case x = 0, by taking α = 0
and C = −1 therein.

c) i) By first step analysis, the probability generating function

Gi(s) := E
[
sT0,L

∣∣S0 = i
]
, s ∈ [−1, 1],

of T0,L satisfies the same equation

Gi(s) = psGi+1(s) + qsGi−1(s), i = 1, . . . ,L− 1,

as above. However, the boundary conditions are modified into G0(s) =
psG1(s) + qsG0(s), with GL(s) = 1. The finite difference equation can
now be solved as

Gi(s) = C+(s)

(
1 +

√
1− 4pqs2

2ps

)i
+C−(s)

(
1−

√
1− 4pqs2

2ps

)i
,

i = 0, . . . ,L, where
C+(s) :=

psα−(s) + qs− 1
(1− qs)(αL−(s)− αL+(s))− ps(α+(s)α−(s)L − αL+(s)α−(s))

C−(s) :=
psα+(s) + qs− 1

(qs− 1)(αL−(s)− αL+(s)) + ps(α+(s)α−(s)L − αL+(s)α−(s))

and

α+(s) =
1 +

√
1− 4pqs2

2ps , α−(s) =
1−

√
1− 4pqs2

2ps .

ii) The Laplace transform is then evaluated as

Li(λ) = Gi(e−λ)

354 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

= C+(e−λ)

(
1 +

√
1− 4pqe−2λ

2pe−λ

)i
+C−(e−λ)

(
1−

√
1− 4pqe−2λ

2pe−λ

)i
,

i = 0, . . . ,L.

i) When µ = 0, taking the limit as ε tends to zero yields the Laplace
transform

Lx(λ) :=
cosh(x

√
2λ)

cosh(y
√
λ)

, x ∈ [0, y], λ ⩾ 0,

of the first hitting time of the boundary {y} by a standard Brownian
motion reflected at 0, which recovers Equation (5) in Antal and Redner
(2005), see also Equation (2.2.21) in Redner (2001).∗

ii) When µ ̸= 0 we find the Laplace transform

Lx(λ) := e(x−y)µµ sinh(x
√

2λ+ µ2)−
√

2λ+ µ2 cosh(x
√

2λ+ µ2)

µ sinh(y
√

2λ+ µ2)−
√

2λ+ µ2 cosh(y
√

2λ+ µ2)
,

x ∈ [0, y], λ ⩾ 0, of the first hitting time of the boundary {y} by a
Brownian motion (Bt + µt)t∈R+ with drift µ ∈ R reflected at 0 and
started at x ∈ [0, y].

Problem 4.4

a) By first step analysis, we have

Hi(s) = psHi+1(s) + qsHi−1(s), −1 ⩽ s ⩽ 1, i ⩽ −2, i ⩾ 2,

and

H1(s) = psH2(s) + qs(1+H0(s)), H−1(s) = psH−2(s) + qs(1+H0(s)),

and
H0(s) = psH1(s) + qsH−1(s), −1 ⩽ s ⩽ 1.

b) Letting
∗ Equation (2.2.21) in Redner (2001) is stated for a reflecting boundary at x = L (“Re-
flection mode” page 48), however in Antal and Redner (2005) the reflecting boundary is
at x = 0, and therefore (5) therein has to be corrected accordingly.

" 355

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

Hi(s) :=



1√
1− 4pqs2

(
1−

√
1− 4pqs2

2ps

)i
, i ⩾ 1,

1−
√

1− 4pqs2√
1− 4pqs2

, i = 0,

1√
1− 4pqs2

(
1−

√
1− 4pqs2

2qs

)−i

, i ⩽ −1,

we check that

psHi+1(s) + qsHi−1(s)

=
ps√

1− 4pqs2

(
1−

√
1− 4pqs2

2ps

)i+1

+
qs√

1− 4pqs2

(
1−

√
1− 4pqs2

2ps

)i−1

=
1√

1− 4pqs2

(
1−

√
1− 4pqs2

2ps

)i(
1−

√
1− 4pqs2

2 +
2pqs2

1−
√

1− 4pqs2

)

=
1√

1− 4pqs2

(
1−

√
1− 4pqs2

2ps

)i
, i ⩾ 1.

c) We have

Hi(s) = (1 +H0(s))Gi(s), i ∈ Z, −1 ⩽ s ⩽ 1.

d) As a direct consequence of the answers to Questions (b) and (c), we have

Gi(s) :=



(
1−

√
1− 4pqs2

2ps

)i
, i ⩾ 1,

1−
√

1− 4pqs2, i = 0,(
1−

√
1− 4pqs2

2qs

)−i

, i ⩽ −1.

e) We find

P(T0 <∞ | S0 = i) = Gi(1) =


min

(
1,
(
q

p

)i)
, i ̸= 0,

1− |p− q|, i = 0,

356 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

see (4.6) and (4.11).
f) Using the relations E[T r0 | S0 = i] = G′

i(1) when P
(
T r0 | S0 = i

)
= 1, see

(A.5), and E[T r0 | S0 = i] = +∞ when P
(
T r0 | S0 = i

)
< 1, We find

E[T r0 | S0 = i] =



i

q− p
, i ⩾ 1, q > p,

+∞, i ⩾ 1, q ⩽ p,

+∞, i = 0,

i

q− p
, i ⩽ −1, p > q

+∞, i ⩽ −1, p ⩽ q,

see (4.8).

Problem 4.5

a) We have

P(S2n = 2k) =
(

2n
n+ k

)
pn+kqn−k, −n ⩽ k ⩽ n.

b) We partition the event {S2n = 0} into

{S2n = 0} =
2n⋃
k=1

{
S1 ̸= 0, . . . ,S2k−1 ̸= 0, S2k = 0

}
, n ⩾ 1,

according to all possible times 2k = 2, 4, . . . , 2n of first return to state 0
before time 2n, see Figure S.4.

n

Sn

S0 =
2k =

0

1

2

3

4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. S.4: Last return to state 0 at time k = 10.

Then we have

" 357

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

P(S2n = 0) =
n∑
r=1

P
(
S2 ̸= 0, . . . ,S2r−1 ̸= 0, S2r = 0, S2n = 0

)
=

n∑
r=1

P
(
S2n = 0 | S2r = 0, S2r−1 ̸= 0, . . . , S2 ̸= 0

)
×P

(
S2 ̸= 0, . . . ,S2r−1 ̸= 0, S2r = 0

)
=

n∑
r=1

P
(
S2n = 0 | S2r = 0

)
P
(
T0 = 2r

)
=

n∑
k=1

P
(
S2n−2r = 0

)
P
(
T0 = 2r

)
, n ⩾ 1.

c) The idea of the proof is to note that after starting from S0 = 0, one may
move up with probability 1/2, in which case T0 = 2r time steps strictly
above 0 will be counted from time 0 until time T0, after which the remaining
2r− 2k time steps will be counted from time T0 until time 2n. On the other
hand, if one moves down with probability 1/2, zero time step strictly above
0 will be counted from time 0 until time T0 = 2r, after which the remaining
2k time steps strictly above zero will be counted from time T0 = 2r until
time 2n. Hence we have

P(T+
2n = 2k) =

n∑
r=1

P
(
S0 = 0,T0 = 2r,T+

2n = 2k
)

=
n∑
r=1

P
(
S0 = 0,S1 = 1,T0 = 2r,T+

2n = 2k
)

+
n∑
r=1

P
(
S0 = 0,S1 = −1,T0 = 2r,T+

2n = 2k
)

=
k∑
r=1

P
(
S0 = 0,S1 = 1,T0 = 2r

)
P
(
T+

2n = 2k | S1 = 1,T0 = 2r
)

+
n−k∑
r=1

P
(
S0 = 0,S1 = −1,T0 = 2r

)
P
(
T+

2n = 2k | S1 = −1,T0 = 2r
)

=
k∑
r=1

P
(
S0 = 0,S1 = 1,T0 = 2r

)
P
(
T+

2n−2r = 2k− 2r
)

+
n−k∑
r=1

P
(
S0 = 0,S1 = −1,T0 = 2r

)
P
(
T+

2n−2r = 2k
)

=
1
2

k∑
r=1

P
(
T0 = 2r

)
P
(
T+

2n−2r = 2k− 2r
)
+

1
2

n−k∑
r=1

P
(
T0 = 2r

)
P
(
T+

2n−2r = 2k
)
,

358 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

n ⩾ 1.
d) We check that, when

P
(
T+

2n−2r = 2k− 2r
)
= 2−(2n−2r)

(
2k− 2r
k− r

)(
2n− 2k
n− k

)
and

P
(
T+

2n−2r = 2k
)
= 2−(2n−2r)

(
2k
k

)(
2n− 2r− 2k
n− r− k

)
,

we have

1
2

k∑
r=1

P
(
T0 = 2r

)
P
(
T+

2n−2r = 2k− 2r
)
+

1
2

n−k∑
r=1

P
(
T0 = 2r

)
P
(
T+

2n−2r = 2k
)

=
1
2

k∑
r=1

P
(
T0 = 2r

)
2−2n+2r

(
2k− 2r
k− r

)(
2n− 2k
n− k

)

+
1
2

n−k∑
r=1

2−2n+2rP
(
T0 = 2r

)(2k
k

)(
2n− 2r− 2k
n− r− k

)

=
1
22−2n

(
2n− 2k
n− k

)
22k

k∑
r=1

P
(
T0 = 2r

) 1
22(k−r)

(
2k− 2r
k− r

)

+
1
22−2n

(
2k
k

)
22(n−k)

n−k∑
r=1

P
(
T0 = 2r

) 1
22(n−k−r)

(
2n− 2r− 2k
n− r− k

)

=
1
22−2(n−k)

(
2n− 2k
n− k

) k∑
r=1

P
(
T0 = 2r

)
P(S2k−2r = 0)

+
1
2

(
2k
k

)
2−2k

n−k∑
r=1

P
(
T0 = 2r

)
P(S2n−2k+2r = 0)

=
1
22−2(n−k)

(
2n− 2k
n− k

)
P(S2k = 0) + 1

22−2k
(

2k
k

)
P(S2n−2k = 0)

=
1
22−2n

(
2n− 2k
n− k

)(
2k
k

)
+

1
22−2n

(
2k
k

)(
2n− 2k
n− k

)
= 2−2n

(
2k
k

)(
2n− 2k
n− k

)
= P

(
T+

2n = 2k
)
, n ⩾ 1.

e) We have

P
(
T+

2n = 2k
)
= 2−2n

(
2k
k

)(
2n− 2k
n− k

)

" 359

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

= 2−2n (2k)!
k!2

(2n− 2k)!
(n− k)!2

≃ 2−2n (2k/e)2k√4πk
(k/e)2k2πk

((2n− 2k)/e)(2n−2k)√2π(2n− 2k)
((n− k)/e)(2n−2k)2π(n− k)

=
1

π
√
k(n− k)

, k,n− k →∞.

Next, we compute the limit

lim
n→∞

P
(
T+

2n/2n ⩽ x
)
= lim

n→∞

nx∑
k=0

P
(
T+

2n/2n = k/n
)

= lim
n→∞

∑
0⩽k/n⩽x

2−2n
(

2k
k

)(
2n− 2k
n− k

)
≃ 1
π

lim
n→∞

1
n

∑
0⩽k/n⩽x

1√
k(1− k/n)/n

=
1
π

w x
0

1√
t(1− t)

dt

=
1
2 +

arcsin(2x− 1)
π

=
2
π

arcsin
√
x, x ∈ [0, 1],

which yields the arcsine distribution.

Problem 4.6
a) We have

E

[
exp

(
α

n∑
l=1

f(Xl)

)]
=

n∏
l=1

E
[
eαf (l)

]
=
(

E
[
eαf (l)

])n
= (λ0(α))

n, n ⩾ 1.

b) For any α ∈ R and γ > 0, we have

eαγnP

(
n∑
l=1

f(Xl) ⩾ nγ

)
= eαγnE

[
1{∑n

l=1 f (Xl)⩾nγ
}]

⩽ E

[
exp

(
α

n∑
l=1

f(Xl)

)]
= e−αγn(λ0(α))

n

360 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

= e−n(αγ−log λ0(α)), n ⩾ 1,

hence

P

(
n∑
l=1

f(Xl) ⩾ nγ

)
= e−n(αγ−log λ0(α)), n ⩾ 1. (S.27)

c) Since
d∑
l=1

πlf(l) = E[f(X1)] = 0,

we have

λ0(α) =
d∑
l=1

πle
αf (l)

=
d∑
l=1

πl + α
d∑
l=1

πlf(l) +
d∑
l=1

πl(e
αf (l) − αf(l)− 1)

= 1 +
d∑
l=1

πl(e
αf (l) − αf(l)− 1), α ⩾ 1.

d) We have

λ0(α) = 1 +
d∑
l=1

πl(e
αf (l) − αf(l)− 1),

= 1 +
∞∑
k=2

d∑
l=1

πl
(αf(l))n

n!

⩽ 1 +
∞∑
k=2

d∑
l=1

πlα
n

= 1 +
∞∑
k=2

αn

= 1 + α2

1− α , α ∈ [0, 1).

e) By (S.27) and Question (d), for any α ∈ [0, 1) and γ > 0 we have

P

(
1
n

n∑
l=1

f(Xl) ⩾ γ

)
⩽ e−n(αγ− α2

1−α), n ⩾ 1.

f) The value of α ∈ [0, 1) which maximizes αγ − α2/(1− α) satisfies

" 361

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

γ − 2 α

1− α −
α2

(1− α)2 = 0

i.e.
α =

γ

γ + 1 +
√
γ + 1 < 1

and
1− α =

1 +
√
γ + 1

γ + 1 +
√
γ + 1 =

1√
γ + 1 .

g) We have

αγ − α2

1− α =
γ2

γ + 1 +
√
γ + 1 −

γ2

γ + 1 +
√
γ + 1(1 +

√
γ + 1)

=
γ2√γ + 1

(γ + 1 +
√
γ + 1)(1 +

√
γ + 1)

=
γ2

(1 +
√
γ + 1)2

⩾
γ2

(1 +
√

2)2

⩾
γ2

6 ,

hence for all γ ∈ [0, 1) and n ⩾ 0 we have

P

(
1
n

n∑
l=1

f(Xl) ⩾ γ

)
⩽ e−nγ2/6.

We note that this bound is better than the upper bound e−(1−λ1)nγ2/12

where λ1 is the second largest eigenvalue of P , since 0 ⩽ 1− λ1 ⩽ 2.

Problem 4.7
a) For all i = 1, . . . , d, we have

E

 d∑
j=1

∣∣∣∣∣ 1n
n∑
k=1

1{Xk=j} − πj

∣∣∣∣∣
 =

1
n

d∑
j=1

E

[∣∣∣∣∣
n∑
k=1

(1{Xk=j} − πj)

∣∣∣∣∣
]

⩽
1
n

d∑
j=1

√√√√√E

∣∣∣∣∣
n∑
k=1

(1{Xk=j} − πj)

∣∣∣∣∣
2


=
1
n

d∑
j=1

√√√√E

[
n∑
k=1

∣∣1{Xk=j} − πj
∣∣2]

362 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

=
1√
n

d∑
j=1

√
E[
∣∣1{Xk=j} − πj

∣∣2]
=

1√
n

d∑
j=1

√
πj(1− πj)

⩽
1√
n

d∑
j=1

√
πj

⩽

√
d√
n

√√√√ d∑
j=1

πj

=

√
d

n
.

b) We have

Sup
y∈R

|f(x1, . . . ,xn)− f(x1, . . . ,xi−1, y,xi+1, . . . ,xn)|

= Sup
y∈R

d∑
j=1

∣∣∣∣ 1n (1{xi=j} − 1{y=j})

∣∣∣∣
⩽ Sup

y∈R

d∑
j=1

1
n

∣∣1{xi=j} + 1{y=j}
∣∣

⩽
2
n

,

x1, . . . ,xn ∈ R, i = 1, . . . ,n.
c) For all i = 1, . . . , d we have

P

 d∑
j=1

∣∣∣∣∣ 1n
n∑
k=1

1{Xk=j} − πj

∣∣∣∣∣ > ε


= P

 d∑
j=1

∣∣∣∣∣ 1n
n∑
k=1

1{Xk=j} − πj

∣∣∣∣∣−E

 d∑
j=1

∣∣∣∣∣ 1n
n∑
k=1

1{Xk=j} − πj

∣∣∣∣∣


> ε−E

 d∑
j=1

∣∣∣∣∣ 1n
n∑
k=1

1{Xk=j} − πj

∣∣∣∣∣


⩽ P

 d∑
j=1

∣∣∣∣∣ 1n
n∑
k=1

1{Xk=j} − πj

∣∣∣∣∣−E

 d∑
j=1

∣∣∣∣∣ 1n
n∑
k=1

1{Xk=j} − πj

∣∣∣∣∣
 > ε−

√
d

n



" 363

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

⩽ exp

−n2
(
ε−

√
d

n

)2
 ,

provided that ε−
√
d/n > 0, which implies

P

 d∑
j=1

∣∣∣∣∣ 1n
n∑
k=1

1{Xk=j} − πj

∣∣∣∣∣ > ε

 ⩽ exp

−n2 Max
(

0, ε−
√
d

n

)2
 .

d) When n ⩾ 4d/ε2, i.e. ε ⩾ 2
√
d/n, we have

P

 d∑
j=1

∣∣π̃j(n)− πj∣∣ > ε

 ⩽ exp

−n2 Max
(

0, ε−
√
d

n

)2


= e−nε2/8.

e) Setting n > −8(log δ)/ε2, we have

P

 d∑
j=1

∣∣π̃j(n)− πj∣∣ > ε

 ⩽ e−nε2/8 < δ,

which allows us to conclude by taking c = 8.

Chapter 5 - Cookie-Excited Random Walks

Exercise 5.1
a) The number of cookies present in the considered region is kL.
b) The number of time steps is kL.
c) Let N denote the average number of time steps needed. From the relation

N(p̃− q̃) = L we deduce N = L/(p̃− q̃).
d) The condition is kL ⩽ N = L/(p̃− q̃), or k ⩽ 1/(p̃− q̃), which yields

1
2 < p̃ ⩽

1
2

(
1 + 1

k

)
.

e) Under the condition

p̃ >
1
2

(
1 + 1

k

)
the amount of cookies consumed will remain strictly lower than the number
of available cookies, thus ensuring the transience of the random walk.

364 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

Problem 5.2

a) The probability P(X = 0) that the random walk eats no cookies before
hitting the origin is the probability of going directly from 0 to 0 in one
time step, which is 1/2.

The probability P(X = 1) that the random walk eats exactly one cookie
before hitting the origin is the probability of first moving from 0 to 1 in
one time step and then back to 0 in one time step, that is q× (1/2) = q/2.

In general, we have

P(X = x) = P(τx < τ0 | S0 = 0)−P(τx+1 < τ0 | S0 = 0)

=
1
2

x∏
l=2

(
1− 2q

l

)
− 1

2

x+1∏
l=2

(
1− 2q

l

)
,

=
1
2

(
1−

(
1− 2q

x+ 1

)) x∏
l=2

(
1− 2q

l

)

=
q

x+ 1

x∏
l=2

(
1− 2q

l

)
.

b) We have

E[X] =
∑
x⩾0

xP(X = x) = q
∑
x⩾0

x

x+ 1

x∏
l=2

(
1− 2q

l

)
,

hence
qcq
∑
x⩾0

x

(x+ 1)x2q ⩽ E[X] ⩽ qCq
∑
x⩾0

x

(x+ 1)x2q ,

and E[X] is finite if and only if 2q > 1.

Remark. One could show in addition that the mean return time to 0 is
always infinite, see Antal and Redner (2005).

Chapter 6 - Convergence to Equilibrium

Exercise 6.1 The limiting distribution of the chain (Yk)k⩾0 is (0, 0, 0, 0, 0, 1)
independently of the initial state because the states {0, 1, 2, 3, 4} are transient
and state 5 is absorbing. This means that

" 365

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

lim
n→∞

Pn =


0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1

 ,

which would be difficult to recover by a direct computation of Pn. The equation
π = πP which determines the stationary distribution π reads

π0 = qπ0 + qπ1 + qπ2
π1 = pπ0 + pπ4
π2 = pπ1
π3 = pπ2 + pπ3
π4 = pπ3
π5 = qπ4 + π5,

i.e. 

pπ0 = qπ1 + qπ2
π1 = pπ0 + pπ4
π2 = pπ1
qπ3 = pπ2
π4 = pπ3
π4 = 0,

hence (π0,π1,π2,π3,π4,π5) = (0, 0, 0, 0, 0, 1), which coincides with the limiting
distribution. Note that the relation πi = 1/µi(i) still holds for i = 0, 1, 2, 3, 4, 5,
although not all of the assumptions of Theorems 6.2, 6.6 and 6.6 (notably the
irreducibility condition) are satisfied here.

Exercise 6.2 Writing the condition πP = π leads to the equations
π0
3 + 2π1

3 = π0

2π0
3 +

π1
3 = π1

i.e. π0 = π1. Combining this relation with the condition π0 + π1 = 1 shows
that π0 = π1 = 1/2.

0 1

a

b

1− a 1− b

Using the general relation

366 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

[π0,π1] =

[
b

a+ b
, a

a+ b

]
,

with (a, b) ̸= (0, 0) and (a, b) ̸= (1, 1) for the two-state chain with transition
matrix

P =

1− a a

b 1− b


yields the same answer

[π0,π1] =

[
1
2 , 1

2

]
when a = b, in which case the matrix P is also column-stochastic, as illustrated
in the following code.

 install.packages("igraph");install.packages("markovchain")
 library("igraph");library(markovchain)

P<-matrix(c(1/3,2/3,2/3,1/3),nrow=2,byrow=TRUE);MC
<-new("markovchain",transitionMatrix=P)

 graph <- as(MC, "igraph")
plot(graph,vertex.size=50,edge.label.cex=2,edge.label=E(graph)$prob,edge.color='black',

vertex.color='dodgerblue',vertex.label.cex=3)
 steadyStates(object = MC)

1 2
 [1,] 0.5 0.5

Exercise 6.3

a) The chain is reducible and its communicating classes are {0, 1, 2, 3, 4} and
{5}.

b) The limiting distribution is (0, 0, 0, 0, 0, 1) independently of the initial state
because the states {0, 1, 2, 3, 4} are transient (cf. Proposition 7.4 in Privault
(2018)) and state 5 is absorbing. This means that

lim
n→∞

Pn =


0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1

 ,

which would be difficult to recover by a direct computation of Pn.

For the stationary distribution, the equation π = πP reads

" 367

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

π0 = qπ0 + qπ1 + qπ2
π1 = pπ0 + pπ4
π2 = pπ1
π3 = pπ2 + pπ3
π4 = pπ3
π5 = qπ4 + π5,

i.e. 

pπ0 = qπ1 + qπ2
π1 = pπ0 + pπ4
π2 = pπ1
qπ3 = pπ2
π4 = pπ3
π4 = 0,

hence (π0,π1,π2,π3,π4,π5) = (0, 0, 0, 0, 0, 1), which coincides with the lim-
iting distribution.

Note that the relation πi = 1/µi(i) still holds for i = 0, 1, 2, 3, 4, 5, al-
though not all of the assumptions of Theorems 6.2, 6.6 and 6.6 (notably the
irreducibility condition) are satisfied here.

Exercise 6.4
a) We have

(π0,π1) =

(
b

a+ b
, a

a+ b

)
.

b) We have

µ0(0) = 1 + a

b
, µ1(1) = 1 + b

a
, h0(1) =

1
b

, h1(0) =
1
a

.

c) We have

E[τ − 1 | X0 = 0] = aµ1(1) + (1− a)µ0(0)

= a

(
1 + b

a

)
+ (1− a)

(
1 + a

b

)
= (1 + b− a)a+ b

b

=
1 + b− a

π0
,

and

E[τ − 1 | X0 = 1] = (1− b)µ1(1) + bµ0(0)

= (1− b)
(

1 + b

a

)
+ b

(
1 + a

b

)
368 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

= (1 + a− b)a+ b

a

=
1 + a− b

π1
.

d) We have

E

[
τ−1∑
l=1

1{Xl=1}

∣∣∣X0 = 1
]
= b(µ0(0)− 1) + (1− b) = 1 + a− b,

E

[
τ−1∑
l=1

1{Xl=1}

∣∣∣X0 = 0
]
= a+ (1− a)(µ0(0)− 1) = a+ (1− a)a

b
= (1 + b− a)π1

π0
,

E

[
τ−1∑
l=1

1{Xl=0}

∣∣∣X0 = 1
]
= b+ (1− b)(µ1(1)− 1) = b+ (1− b) b

a
= (1 + a− b)π0

π1
,

E

[
τ−1∑
l=1

1{Xl=0}

∣∣∣X0 = 0
]
= a(µ1(1)− 1) + (1− a) = 1 + b− a.

e) We note that

E

[
τ−1∑
l=1

1{Xl=1}

∣∣∣X0 = 1
]
= E[τ − 1 | X0 = 1]π1,

E

[
τ−1∑
l=1

1{Xl=1}

∣∣∣X0 = 0
]
= E[τ − 1 | X0 = 0]π1,

E

[
τ−1∑
l=1

1{Xl=0}

∣∣∣X0 = 1
]
= E[τ − 1 | X0 = 1]π0,

E

[
τ−1∑
l=1

1{Xl=0}

∣∣∣X0 = 0
]
= E[τ − 1 | X0 = 0]π0,

hence for any initial distribution (P(X0 = 0), P(X0 = 1)) we have

E
[∑τ−1

l=1 1{Xl=i}

]
E[τ − 1]

=
P(X0 = 0)E

[∑τ−1
l=1 1{Xl=i}

∣∣∣X0 = 0
]
+ P(X0 = 1)E

[∑τ−1
l=1 1{Xl=i}

∣∣∣X0 = 1
]

E[τ − 1]

=
P(X0 = 0)E[τ − 1 | X0 = 0]πi + P(X0 = 1)E[τ − 1 | X0 = 0]πi

E[τ − 1]
= πiP(X0 = 0) + πiP(X0 = 1)

" 369

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

= πi, i = 0, 1.

Exercise 6.5

a) This inequality follows from the definitions of d̂(n) and d(n), n ⩾ 0.
b) We have

d(n) = Max
µ∈PN

∥µPn − π∥1

= Max
µ∈PN

N∑
l=1

∣∣[µPn]l − πl∣∣
= Max

µ∈PN

N∑
l=1

∣∣∣∣∣
N∑
k=1

µk[P
n]k,l − πl

∣∣∣∣∣
= Max

µ∈PN

N∑
l=1

∣∣∣∣∣
N∑
k=1

µk
(
[Pn]k,l − πl

)∣∣∣∣∣
⩽ Max

µ∈PN

N∑
l=1

N∑
k=1

∣∣µk([Pn]k,l − πl
)∣∣

= Max
µ∈PN

N∑
l=1

N∑
k=1

µk
∣∣[Pn]k,l − πl

∣∣
= Max

µ∈PN

N∑
k=1

µk

N∑
l=1

∣∣[Pn]k,l − πl
∣∣

= Max
µ∈PN

N∑
k=1

µk
∥∥[Pn]k,· − π

∥∥
1

⩽ Max
µ∈PN

N∑
k=1

µk Max
j=1,2,...,N

∥∥[Pn]j,· − π∥∥1

= d̂(n) Max
µ∈PN

N∑
k=1

µk

= d̂(n).

Alternatively, we can note that

µ 7→ ∥µPn − π∥1

is a convex function on the polyhedron

∆N :=
{
µ ∈ [0, 1]N : µ1 + · · ·+ µN = 1

}
,

370 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

and therefore it reaches its maximum on an extremal vertex on ∆N , i.e.
there exists some k0 ∈ {1, . . . ,N} such that

d(n) := Max
µ∈PN

∥µPn − π∥1

=
∥∥[Pn]k0,· − π

∥∥
1

⩽ Max
k=1,2,...,N

∥∥[Pn]k,· − π
∥∥

1

= d̂(n), n ⩾ 0.

Exercise 6.6

a) We have

P(Xn ∈ A) = P(Xn ∈ A and τ ⩽ n) + P(Xn ∈ A and τ > n)

= P(Xn ∈ A | τ ⩽ n)P(τ ⩽ n) + P(Xn ∈ A | τ > n)P(τ > n)

= π(A)P(τ ⩽ n) + P(Xn ∈ A | τ > n)P(τ > n)

= π(A) + (P(Xn ∈ A | τ > n)− π(A))P(τ > n).

b) We have

| P(Xn ∈ A)− π(A) | = | (P(Xn ∈ A | τ > n)− π(A)) | P(τ > n)

⩽ P(τ > n),

since for any a, b ∈ [0, 1] we have |a− b| ⩽ 1 due to the inequalities

−1 ⩽ a− 1 ⩽ a− b ⩽ 1− b ⩽ 1.

c) Such an example can be constructed as the hitting time τ of a domain inside
S, by freezing Xn as Xn = Xmin(τ ,n) after time τ .

Exercise 6.7

a) Since M has positive entries and is column-stochastic, P := M⊤ is the
transition probability matrix of an aperiodic irreducible Markov chain with
finite state space S = {1, 2, . . . ,n}. By Corollary 6.7, the chain admits a
unique stationary distribution π such that π = πP , i.e. π⊤ = (πP)⊤ =
P⊤π⊤ = Mπ⊤, i.e. πT is the only eigenvector of M with eigenvalue 1
under the normalization condition ∥π∥1 = 1.

b) The first statement follows as in Question (a) above from Corollary 6.7, by
letting π = q⊤. The second statement also follows from Corollary 6.7, which
states that

q = π⊤ = lim
k→∞

(ejP
k)⊤ = lim

k→∞
(P⊤)ke⊤

j = lim
k→∞

Mke⊤
j = lim

k→∞
[Mk]·,j

" 371

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://math.stackexchange.com/questions/2946023/maximum-of-a-convex-function-over-a-polyhedron
https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

for any ej = 1{j}, j ∈ S. Therefore, decomposing x0 as x0 =
∑

j∈S x
j
0e

⊤
j ,

we have

q = q
∑
j∈S

xj0 =
∑
j∈S

xj0 lim
k→∞

Mke⊤
j = lim

k→∞
Mk

∑
j∈S

xj0e
⊤
j = lim

k→∞
Mkx0.

Exercise 6.8

a) We have

lim
n→∞

E[Rin]

n
= lim

n→∞
1
n

E

 n∑
j=1

1{Xj=i}


= lim

n→∞
1
n

n∑
j=1

E[1{Xj=i}]

= lim
n→∞

1
n

n∑
j=1

P(Xj = i)

= lim
n→∞

1
n

n∑
j=1

∑
l∈S

P(Xj = i | X0 = l)P(X0 = l)

= lim
n→∞

1
n

n∑
j=1

∑
l∈S

[P j]l,iP(X0 = l)

= lim
n→∞

1
n

n−1∑
j=0

∑
l∈S

[P j+1]l,iP(X0 = l)

=
∑
k∈S

Pk,i lim
n→∞

1
n

n∑
j=1

∑
l∈S

[P j]l,kP(X0 = l)

=
∑
k∈S

Pk,i lim
n→∞

E[Rkn]

n
,

hence ηi := limn→∞ E[Rin]/n, i ∈ S, satisfies the equation η = ηP and we
conclude by uniqueness of the stationary distribution (πi)i∈S as the solution
to that equation.

b) Letting τ (0)x := 0 and letting τ (k)x denote the time of the kth visit to state
x, the sequence

(
τ
(k+1)
x − τ (k)x

)
k⩾0, resp.

(
Ry
τ
(k+1)
x

−Ry
τ
(k)
x

)
k⩾0, is made of

independent random variables, i ∈ S, hence by the law of large numbers for
renewal processes, see Corollary 14 page 106 of Serfozo (2009), we have

372 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

πy = lim
n→∞

E[Ryn]

n
=

E
[
Ry
τ
(1)
x

∣∣X0 = x
]

E
[
τ
(1)
x

∣∣X0 = x
] =

E[Nx,y | X0 = x]

E[τx | X0 = x]
, x, y ∈ S.

c) We have

P(Nx,y = 0 | X0 = x) = 1−P(Nx,y ⩾ 1 | X0 = x) = 1− αx,y

and

P(Nx,y = k | X0 = x)

= P(Nx,y ⩾ 1 | X0 = x)
(
P(Ny,x = 0 | X0 = y)

)k−1
P(Ny,x ⩾ 1 | X0 = y)

= αx,y(1− αy,x)
k−1αy,x, k ⩾ 1,

and we check that

P(Nx,y ⩾ 0 | X0 = x) = P(Nx,y = 0 | X0 = x) + P(Nx,y ⩾ 1 | X0 = x)

= 1− αx,y +
∑
k⩾1

P(Nx,y = k | X0 = x)

= 1− αx,y + αx,yαy,x
∑
k⩾1

(1− αy,x)
k−1

= 1, x, y ∈ S.

d) We have

πy
πx

= πyE[τx | X0 = x]

= E[Nx,y | X0 = x]

=
∞∑
k=1

kP(Nx,y = k | X0 = x)

= αx,yαy,x

∞∑
k=1

k(1− αy,x)
k−1

=
αx,yαy,x
α2
y,x

=
αx,y
αy,x

, x, y ∈ S.

Problem 6.9

a) The computation of eigenvalues shows that the two eigenvalues are λ =
1− a− b and 1.

b) Solving the equation π = πP for π shows that the stationary distribution
is given by (π0,π1) = (b/(a+ b), a/(a+ b)).

" 373

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

c) The relation is clearly verified for n = 0. Next, assuming that it holds at
the rank n, we haveE

[
exp

(
t
∑n+1

k=1 Xk

) ∣∣X0 = 0
]

E
[

exp
(
t
∑n+1

k=1 Xk

) ∣∣X0 = 1
]


=

 (1− a)E[exp
(
t
∑n+1

k=2 Xk

) ∣∣X1 = 0
]

bE
[

exp
(
t
∑n+1

k=2 Xk

) ∣∣X1 = 0
]

+aetE
[

exp
(
t
∑n+1

k=2 Xk

) ∣∣X1 = 1
]

+(1− b)etE
[

exp
(
t
∑n+1

k=2 Xk

) ∣∣X1 = 1
]


=

1− a aet

b (1− b)et

E
[

exp
(
t
∑n+1

k=2 Xk

) ∣∣X1 = 0
]

E
[

exp
(
t
∑n+1

k=2 Xk

) ∣∣X1 = 1
]


=

1− a aet

b (1− b)et

[E
[

exp (t
∑n

k=1 Xk)
∣∣X0 = 0

]
E
[

exp (t
∑n

k=1 Xk)
∣∣X0 = 1

]]

=

1− a aet

b (1− b)et

 1− a aet

b (1− b)et

n 1

1


=

1− a aet

b (1− b)et

n+1 1

1

 , t ∈ R.

d) By diagonalizing P as 1− a a

b 1− b

 =


1√
π0

0

0 1√
π1


√π0 −

√
π1

√
π1
√
π0

 1 0

0 λ

 √π0
√
π1

−√π1
√
π0

√π0 0

0 √
π1

 ,

we have

E

[
exp

(
t
n∑
k=1

Xk

)]
= [π0,π1]

[
E
[

exp (t
∑n

k=1 Xk)
∣∣X0 = 0

]
E
[

exp (t
∑n

k=1 Xk)
∣∣X0 = 1

]]

= [π0,π1]

1− a aet

b (1− b)et

n 1

1


= [π0,π1]

1− a a

b 1− b

1 0

0 et/2

1 0

0 et/2

n 1

1


374 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

= [π0,π1]

 1− a a

b 1− b

1 0

0 et/2


×

1 0

0 et/2

1− a a

b 1− b

1 0

0 et/2

n−1 1 0

0 et/2

1

1


= [π0,π1]

 1 0

0 et/2



×




1√
π0

0

0 et/2
√
π1


√π0 −

√
π1

√
π1
√
π0

 1 0

0 λ

 √π0
√
π1

−√π1
√
π0

√π0 0

0 et/2√π1



n−1

×

1 0

0 et/2

1

1


= [π0,π1et/2]

×




1√
π0

0

0 1√
π1


 √

π0 −√π1

et/2√π1 et/2√π0

 1 0

0 λ

 √π0 et/2√π1

−√π1 et/2√π0

√π0 0

0 √
π1



n−1

×

 1

et/2


= [π0,π1et/2]


1√
π0

0

0 1√
π1


 √

π0 −√π1

et/2√π1 et/2√π0

1 0

0 λ

 √π0 et/2√π1

−√π1 et/2√π0

n−1

×

√π0 0

0 √
π1

 1

et/2


= [
√
π0,√π1et/2]

 λ+ (1− λ)π0 (1− λ)et/2√π0π1

(1− λ)et/2√π0π1 (λ+ (1− λ)π1)et

n−1  √
π0

√
π1et/2

 ,

t ∈ R.
e) Taking

M (t) =

 λ+ (1− λ)π0 (1− λ)et/2√π0π1

(1− λ)et/2√π0π1 (λ+ (1− λ)π1)et



" 375

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

=

 π0 + λπ1 (1− λ)et/2√π0π1

(1− λ)et/2√π0π1 et(π1 + λπ0)

 ,

We have
µ(t) =

1
2
(
Tr(M (t)) +

√
(Tr(M (t)))2 − 4λet

)
,

where
Tr(M (t)) = λ+ (1− λ)π0 + (λ+ (1− λ)π1)et

f) Since the matrix M (t) is symmetric, by Proposition 9 in Foucart (2010) we
have

E

[
exp

(
t

n∑
k=1

Xk

)]
⩽ ∥[
√
π0,√π1et/2]∥2

×

∥∥∥∥∥∥∥
 λ+ (1− λ)π0 (1− λ)et/2√π0π1

(1− λ)et/2√π0π1 (λ+ (1− λ)π1)et

n−1
∥∥∥∥∥∥∥

2

∥∥∥∥∥∥
 √

π0

√
π1et/2

∥∥∥∥∥∥
2

= (µ(t))n−1∥[
√
π0,√π1et/2]∥22

= (π0 + π1et)(µ(t))n−1.

Next, applying again Proposition 9 in Foucart (2010) to A :=
√
M (t), we

have

µ(t) ⩾
1

∥[√π0, et/2√π1]∥22

∥∥√M (t)[
√
π0, et/2√π1]

⊤∥∥2
2

=
1

π0 + π1et ⟨[
√
π0, et/2√π1],M (t)[

√
π0, et/2√π1]

⊤⟩

=
1

π0 + π1et

〈
[
√
π0, et/2√π1],

 π0
√
π0 + λπ1

√
π0 + (1− λ)etπ1

√
π0

(1− λ)et/2π0
√
π1 + e3t/2π1

√
π1 + λe3t/2π0

√
π1

〉

=
π2

0 + 2etπ0π1 + e2tπ2
1 + λ(π0π1 − 2etπ0π1 + e2tπ0π1)

π0 + π1et

= π0 + π1e
t + λ

(π0 − etπ1)2

π0 + π1et
⩾ π0 + π1e

t

since λ ⩾ 0, which shows that

E

[
exp

(
t
n∑
k=1

Xk

)]
⩽ (µ(t))n, t ∈ R+.

376 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

g) By the classical Markov or Chernoff bound argument, we have

P

(
1
n

n∑
k=1

(Xk − π1) ⩾ z

)
= P

(
exp

(
t
n∑
k=1

Xk

)
⩾ entz+ntπ1

)

= e−ntz−ntπ1E

[
exp

(
t
n∑
k=1

Xk

)]
= e−ntz−ntπ1(µ(t))n

= e−n(t(π1+z)−logµ(t)), t > 0.

h) This section only sketches the solution argument, see Appendices A and B
in Léon and Perron (2004) for the full proof details. By differentiating

t 7→ xt− logµ(t)
= xt

− log
(

1
2
(
λ+ (1− λ)π0 + (λ+ (1− λ)π1)et

+
√
(λ+ (1− λ)π0 + (λ+ (1− λ)π1)et)2 − 4λet

))
with respect to t > 0, we find that the maximizing value t(x) satisfies

x =
µ′(t)

µ(t)

=
Tr(M ′(t)) + (2Tr(M ′(t))Tr(M (t))− 4λet)/2/

√
(Tr(M (t)))2 − 4λet

Tr(M (t)) +
√
(Tr(M (t)))2 − 4λet

,

After multiplying the numerator and denominator by

Tr(M (t))−
√
(Tr(M (t)))2 − 4λet

and simplifying, we obtain

(2x− 1)
√
(Tr(M (t)))2 − 4λet = (π1 + λπ0)et − (π0 + λπ1).

This relation can be used to derive a quadratic equation for et(x), with
solution

et(x) =
(π0 + λπ1)

(
2x− 1 +

√
∆(x)

)
(π1 + λπ0)

(
1− 2x+

√
∆(x)

) ,

where

" 377

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

∆(x) := 1 + 4λ(1− x)x
π0π1(1− λ)2 ,

which yields

µ(t(x)) =
(π0 + λπ1)(1 +

√
∆)

1− 2x+
√

∆
.

Letting
g(x) :=

xt(x)− logµ(t(x))
(x− π1)2 , x ∈ (0, 1),

we check that g′(π0) = 0 and g(x) admits a global minimum at x = π0.
Then, we have

∆(π0) := 1 + 4λ
(1− λ)2 =

(1 + λ)2

(1− λ)2 ,

t(π0) = log
(π0 + λπ1)

(
π0 − π1 +

1+λ
1−λ

)
(π1 + λπ0)

(
π1 − π0 +

1+λ
1−λ

) ,

µ(t(π0)) =
(π0 + λπ1)(1 + 1+λ

1−λ)

π1 − π0 +
1+λ
1−λ

,

and letting r := (b− a)/(2− a− b), we have

g(π0) =
1

π0 − π1
log 1− (1− λ)π1

1− (1− λ)π0

=
a+ b

b− a
log 1− a

1− b

=
1− λ
1 + λ

1
r

log 1 + r

1− r

=
1− λ
1 + λ

1
r
(log(1 + r)− log(1− r))

=
1− λ
1 + λ

1
r

∑
n⩾1

(−1)n+1 r
n

n
+
∑
n⩾1

rn

n


=

1− λ
1 + λ

1
r

∑
n⩾0

r2n+1

2n+ 1

⩾ 2 1− λ
1 + λ

,

hence for z ∈ [0, 1− π1] we have

log P

(
1
n

n∑
k=1

(Xk − π1) ⩾ z

)
⩽ −nz2g(π1 + z)

⩽ −nz2g(π0)

378 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

⩽ −2nz2 1− λ
1 + λ

,

while

P

(
1
n

n∑
k=1

(Xk − π1) ⩾ z

)
= 0

for z > 1− π1.

Problem 6.10

a) Theorem 31 page 15 of Freedman (1983) shows that letting τ0 := 0, the
sequence (τk+1− 1− τk)k⩾0, resp. (Riτk+1−1−Riτk

)k⩾0, is made of indepen-
dent random variables, i ∈ S, hence by the law of large numbers for renewal
processes, see Corollary 14 page 106 of Serfozo (2009), we have

πi = lim
n→∞

E[Rin]

n
=

E[Riτ1−1]

E[τ1 − 1] .

b) By the Wald identity, see e.g. Theorem 2 of Chewi (2017), we have

E[T − 1] = E[τ1 − 1]E[κ]

and

E

T−1∑
j=1

1{Xj=i}

 = E

τ1−1∑
j=1

1{Xj=i}

E[κ],

hence

πi =
E
[∑τ1−1

j=1 1{Xj=i}

]
E[τ1 − 1] =

E
[∑T−1

j=1 1{Xj=i}

]
E[T − 1] , i ∈ S.

Problem 6.11

a) Bounded regret.

i) Define the sequence (τk)k⩾1 recursively as

τ1 := inf{l > 1 : Xl = X1},

and
τk := inf{l > τk−1 : Xl = X1}, k ⩾ 2,

and let
T := inf{l > τ : Xl = X1}.

By Question (b) of Problem 6.10, we have

" 379

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

π
(i)
1 E[T − 1] = E

[
R
(i)
T−1

]
, i ∈ S.

Hence we have

R
(i)
T−1 − (T − τ) ⩽ R

(i)
T − (T − τ) ⩽ R

(i)
τ ⩽ R

(i)
T−1

and

π
(i)
1 E[T − 1]−E[T − τ] ⩽ E

[
R
(i)
τ

]
⩽ E

[
R
(i)
T−1

]
= π

(i)
1 E[T − 1]

or
π
(i)
1 E[T − 1]−E[T − τ] ⩽ E

[
R
(i)
τ

]
⩽ π

(i)
1 E[τ] + E[T − τ]

hence

π
(i)
1 E[τ]−E[T − τ] ⩽ E

[
R
(i)
τ

]
⩽ π

(i)
1 E[τ] + E[T − τ],

and therefore ∣∣E[R(i)
τ

]
− π(i)1 E[τ]

∣∣ ⩽ E[T − τ]. (S.28)

ii) We have∣∣∣∣∣∣∣E
 N∑
i=1

T
(i,α)
n∑
k=1

X
(i)
k −

N∑
i=1

π
(i)
1 T

(i,α)
n


∣∣∣∣∣∣∣ ⩽

N∑
i=1

∣∣∣∣∣∣∣E
T (i,α)

n∑
k=1

X
(i)
k − π

(i)
1 T

(i,α)
n


∣∣∣∣∣∣∣

⩽
N∑
i=1

∣∣∣E[R(i)

T
(i,α)
n

− π(i)1 T
(i,α)
n

]∣∣∣
⩽

N∑
i=1

E
[
τ
(i)
κ − T

(i,α)
n

]
=

N∑
i=1

∑
l,j∈{0,1}

E
[
τ
(i)
κ − T

(i,α)
n

∣∣X(i)

τ
(i)
κ

= l, X(i)

T
(i,α)
n

= j
]
P
(
X

(i)

τ
(i)
κ

= l, X(i)

T
(i,α)
n

= j
)

⩽ C, n > N ,

for some constant C > 0 independent of n > N , where we applied
(S.28), see also Anantharam et al. (1987).

Remark 16.6. Note that in general we do not have

E
[
τ
(i)
κ − τ

]
⩽ Max

j∈S
µ
(i)
j (j)

for any stopping time τ . For example, if τ is the first hitting time of
state 0 by the two-state chain with transition matrix P =

[
1− a a
b 1− b

]
,

we have

380 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

E
[
τ
(i)
κ − τ

]
= µ0(0)P(X

(i)
1 = 0) + µ1(0)P(X

(i)
1 = 1)

= P(X
(i)
1 = 0)

(
1 + a

b

)
+

1
a

P(X
(i)
1 = 1)

=
(
(1− a)P(X

(i)
0 = 0) + bP(X

(i)
0 = 1)

) (
1 + a

b

)
+

1
a

(
aP(X

(i)
0 = 0) + (1− b)P(X

(i)
0 = 1)

)
.

In particular, when a = b we find

E
[
τ
(i)
κ − τ

]
= 2

(
(1− a)P(X

(i)
0 = 0) + aP(X

(i)
0 = 1)

)
+P(X

(i)
0 = 0) + 1− a

a
P(X

(i)
0 = 1),

which does not remain bounded as a tends to zero, whereas in this case

Max
j∈S

µ
(i)
j (j) = Max

(
a+ b

a
, a+ b

b

)
= 2.

iii) Letting

K := 2
N∑
i=1

Max
l,j∈S

µ
(i)
l (j),

we have

Rαn = nπ
(N)
1 −E

[
n∑
k=1

X
(αk)
k

]

⩽ K + nπ
(N)
1 −

N∑
i=1

π
(i)
1 E[T

(i,α)
n], n > N .

b) Bounding the modified regret.

i) If none of the stated conditions, hold, i.e. if

m̂
(N ,α∗)
n−1 +

√
L logn
T
(N ,α∗)
n−1

> π
(N)
1 ,

m̂
(i,α∗)
n−1 ⩽ π

(i)
1 +

√
L logn
T
(i,α∗)
n−1

,

T
(i,α∗)
n−1 ⩾

4L logn
(π

(N)
1 − π(i)1)2

,

then we have

" 381

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

m̂
(N ,α∗)
n−1 +

√
L logn
T
(N ,α∗)
n−1

> π
(N)
1

= π
(i)
1 + π

(N)
1 − π(i)1

⩾ π
(i)
1 + 2

√
L logn
T
(i,α∗)
n−1

⩾ m̂
(i,α∗)
n−1 +

√
L logn
T
(i,α∗)
n−1

,

which implies α∗
n ̸= i.

ii) We have

T
(i,α∗)
n =

n∑
k=1

1{α∗
k
=i}

=
n∑
k=1

1{α∗
k
=i}1{T (i,α∗)

k−1 <n̂i}
+

n∑
k=1

1{α∗
k
=i}1{T (i,α∗)

k−1 ⩾n̂i}

=
n∑
k=1

1{α∗
k
=i}1{T (i,α∗)

k
⩽n̂i}

+
n∑
k=1

1{α∗
k
=i}1{T (i,α∗)

k−1 ⩾n̂i}

⩽ n̂i +
n∑
k=1

1{α∗
k
=i}1{T (i,α∗)

k−1 ⩾n̂i}

⩽ n̂i +
n∑

k>n̂i

1{α∗
k
=i}1{T (i,α∗)

k−1 ⩾n̂i}

⩽ n̂i +
n∑

k>n̂i

1{α∗
k
=i}1{T (i,α∗)

k−1 ⩾ 4L log k

(π
(N)
1 −π

(i)
1)2

}
⩽ n̂i +

n∑
k=1+n̂i

1{
m̂

(N ,α∗)
k−1 +

√
(L log k)/T (N ,α∗)

k−1 ⩽π(N)
1

}
+

n∑
k=1+n̂i

1{
m̂

(N ,α∗)
k−1 >π

(i)
1 +

√
(L log k)/T (i,α∗)

k−1

},

hence

E
[
T
(i,α∗)
n

]
⩽ n̂i +

n∑
k=n̂i+1

P

m̂(N ,α∗)
k−1 +

√√√√ L log k
T
(N ,α∗)
k−1

⩽ π
(N)
1



382 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

+
n∑

k=n̂i+1

P

m̂(N ,α∗)
k−1 > π

(i)
1 +

√√√√L log k
T
(i,α∗)
k−1

 ,

see § 2.2 of Bubeck and Cesa-Bianchi (2012).
iii) By Question (h) of Problem 6.9, we have

P

m̂(N ,α∗)
k−1 +

√√√√ L log k
T
(N ,α∗)
k−1

⩽ π
(N)
1


⩽ P

∃l ∈ {1, . . . , k} :
1
l

l∑
j=1

(
X

(N)
j − π(N)

1
)
+

√
L log k
l
⩽ π

(N)
1


⩽

k∑
l=1

P

1
l

l∑
j=1

(
X

(N)
j − π(N)

1
)
+

√
L log k
l
⩽ π

(N)
1


⩽

k∑
l=1

P

1
l

l∑
j=1

(
1−X(N)

j −
(
1− π(N)

1
))
⩾

√
L log k
l


⩽

k∑
l=1

e−2(1−λN)(L log k)/(1+λN)

=
k∑
l=1

1
k2L(1−λ)/(1+λ)

=
1

k2L(1−λ)/(1+λ)−1 ,

and similarly

P

m̂(i,α∗)
k−1 > π

(i)
1 +

√√√√L log k
T
(i,α∗)
k−1


⩽ P

∃l ∈ {1, . . . , k} :
1
l

l∑
j=1

X
(N)
j > π

(N)
1 +

√
L log k
l


⩽

k∑
l=1

P

1
l

l∑
j=1

(
X

(N)
j − π(N)

1
)
>

√
L log k
l


⩽

k∑
l=1

e−2L(1−λ)(log k)/(1+λ)

=
1

k2L(1−λ)/(1+λ)−1 .

" 383

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

iv) We have

E
[
T
(i,α∗)
n

]
⩽

4L logn
(π

(N)
1 − π(i)1)2

+
n∑
k=1

2
k2L(1−λ)/(1+λ)−1

⩽
4L logn

(π
(N)
1 − π(i)1)2

+
w n

1
2

t2L(1−λ)/(1+λ)−1 dt

⩽
4L logn

(π
(N)
1 − π(i)1)2

+
1

L(1− λ)/(1 + λ)− 1

(
1− 1

n2L(1−λ)/(1+λ)−2

)
,

hence

Rα∗
n = nπ

(N)
1 −E

[
n∑
k=1

πα∗
k

]

=
n∑
k=1

E
[
π
(N)
1 − π(α

∗
k
)

1
]

= nπ
(N)
1 −

N∑
i=1

π
(i)
1 E[T

(i,α∗)
n]

=
N∑
i=1

(
π
(N)
1 − π(i)1

)
E[T

(i,α∗)
n]

⩽ (logn)
N−1∑
i=1

4L
π
(N)
1 − π(i)1

+
N∑
i=1

π
(N)
1 − π(i)1

L(1− λ)/(1 + λ)− 1 ,

provided that L > (1 + λ)/(1− λ).

Problem 6.12
a) We have

P(Tl − Tl−1 = m) =
l

N

(
1− l

N

)m−1
, m ⩾ 1, l = 1, . . . ,N − 1,

i.e. Tl − Tl−1 has a geometric distribution started at 1, with parameter
pl := 1− l/N , l = l, . . . ,N − 1.

b) We have

E[Tk] =
k∑
l=1

E[Tl − Tl−1] =
k∑
l=1

N

l
,

and in particular

E[TN−1] =
N−1∑
l=1

N

l
.

384 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

c) We have

Var[Tk] =
k∑
l=1

Var[Tl − Tl−1] =
k∑
l=1

pl
(1− pl)2 =

k∑
l=1

N2

l2

(
1− l

N

)
,

and in particular

Var[TN−1] =
N−1∑
l=1

N2

l2

(
1− l

N

)
⩽ CN2,

with

C :=
∞∑
l=1

1
l2

=
π2

6 <∞.

d) Since

E[TN−1] =
N−1∑
k=1

N

k
⩽ N(1 + logN),

using Markov’s inequality we have, for N large enough,

P(TN−1 > (1 + a)N logN)

= P(TN−1 −E[TN−1] > (1 + a)N logN −E[TN−1])

⩽ P(TN−1 −E[TN−1] > (1 + a)N logN −N(1 + logN))

⩽ P(TN−1 −E[TN−1] > aN logN −N)

⩽
Var[TN−1]

(aN logN −N)2

⩽
CN2

(N(−1 + a logN))2

=
C

(−1 + a logN)2 .

e) The distribution of Xn given that 1 + TN−1 ⩽ n is uniform on S, because
at time 1 + TN−1 all cards have been uniformly displaced, including the
original bottom card after it reached the top position at time TN−1.

f) Let (Yn)n⩾0 denote a Markov chain with same transition matrix as (Xn)n⩾0,
but started in the uniform stationary distribution. Since Xn has the uniform
distribution π given that 1+TN−1 ⩽ n, by the coupling argument of Propo-
sition 6.24 and the answers to Questions (b) and (d), for N large enough
we find the convergence rate in total variation to the uniform distribution∥∥P

(
X1+(1+a)N logN ∈ ·

)
− π
∥∥

TV = Sup
A⊂S

∣∣P(X1+(1+a)N logN ∈ A
)
− π(A)

∣∣
= Sup

A⊂S

∣∣P(X1+(1+a)N logN ∈ A
)
−P

(
Y1+(1+a)N logN ∈ A

)∣∣
" 385

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

⩽ Sup
A⊂S

∣∣P(X1+(1+a)N logN ∈ A and TN−1 ⩽ (1 + a)N logN
)

−P
(
Y1+(1+a)N logN ∈ A and TN−1 ⩽ (1 + a)N logN

)∣∣
+ Sup
A⊂S

∣∣P(X1+(1+a)N logN ∈ A and 1 + TN−1 > 1 + (1 + a)N logN
)

−P
(
Y1+(1+a)N logN ∈ A and 1 + TN−1 > 1 + (1 + a)N logN

)∣∣
= Sup

A⊂S

∣∣P(X1+(1+a)N logN ∈ A and 1 + TN−1 > 1 + (1 + a)N logN
)

−P
(
Y1+(1+a)N logN ∈ A and 1 + TN−1 > 1 + (1 + a)N logN

)∣∣
⩽ P

(
1 + TN−1 > 1 + (1 + a)N logN

)
⩽

C

(−1 + a logN)2 ,

provided that a > 0.

Remark. It can also be shown that

lim inf
N→∞

∥∥P
(
X(1+a)N logN ∈ ·

)
− π
∥∥

TV > 0,

for all a ∈ (−1, 0), which shows that the speed N logN is optimal for the
convergence of the random shuffling (Xn)n⩾0 to the uniform distribution
on S in total variation distance as N tends to infinity.

In addition to the top-to-random shuffle, other types of shuffling include
the random transpositions shuffle, the transposing neighbors shuffle, the
overhand shuffle, the riffle shuffle, etc.

Problem 6.13 (cf. Levin et al. (2009)-§ 4.3-4.5)

a) For any two probability distributions µ = [µ1,µ2, . . . ,µN] and ν = [ν1, ν2, . . . , νN]
on {1, 2, . . . ,N} we have

∥µ− ν∥TV =
1
2

N∑
k=1
|µk − νk|

⩽
1
2

N∑
k=1

(µk + νk)

=
1
2

N∑
k=1

µk +
1
2

N∑
k=1

νk

= 1.

b) We have

386 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

∥µP − νP∥TV =
1
2

N∑
j=1
|[µP]j − [νP]j |

=
1
2

N∑
j=1

∣∣∣∣∣
n∑
i=1

µiPi,j −
n∑
i=1

νiPi,j

∣∣∣∣∣
⩽

1
2

N∑
j=1

n∑
i=1

Pi,j |µi − νi|

=
1
2

n∑
i=1
|µi − νi|

N∑
j=1

Pi,j

=
1
2

n∑
i=1
|µi − νi|.

c) Replacing µ and ν with µPn and π in the result of Question (b) we find

∥µPn+1 − π∥TV = ∥(µPn)P − πP∥TV

⩽ ∥µPn − π∥TV.

d) Letting k ∈ {1, 2, . . . ,N} and taking

µ := (0, . . . , 0, 1,
↑
k

0, . . . , 0)

we have µPn+1 = [Pn+1]k,· and by Question (c) we find

∥[Pn+1]k,· − π∥TV = ∥µPn+1 − πP∥TV

⩽ ∥µPn − π∥TV

= ∥[Pn]k,· − π∥TV.

Taking the maximum over k = 1, 2, . . . ,N in the above inequality yields

d(n+ 1) = Max
k=1,2,...,N

∥[Pn+1]k,· − π∥TV

⩽ Max
k=1,2,...,N

∥[Pn]k,· − π∥TV

= d(n), n ∈N.

e) The chain is irreducible because all states can communicate in one time step
since Pi,j > 0, 1 ⩽ i, j ⩽ N . In addition the chain is aperiodic as all states
have period one, given that Pi,i > 0, i = 1, 2, . . . ,N . Since the state space
is finite, Corollary 6.2 shows that all states are positive recurrent, hence by
Corollary 6.7 the chain admits a limiting and a stationary distribution that
are equal.

" 387

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

f) We note that Qθ can be written as

Qθ = [[Qθ]i,j]1⩽i,j⩽N

=



[Qθ]1,1 [Qθ]1,2 · · · [Qθ]1,N

[Qθ]2,1 [Qθ]2,2 · · · [Qθ]2,N

...
...

. . .
...

[Qθ]N ,1 [Qθ]N ,2 · · · [Qθ]N ,N



=



1
1−θ (P1,1 − θπ1)

1
1−θ (P1,2 − θπ2) · · · 1

1−θ (P1,N − θπN)

1
1−θ (P2,1 − θπ1)

1
1−θ (P2,2 − θπ2) · · · 1

1−θ (P2,N − θπN)

...
...

. . .
...

1
1−θ (PN ,1 − θπ1)

1
1−θ (PN ,2 − θπ2) · · · 1

1−θ (PN ,N − θπN)


Clearly, all entries of Qθ are nonnegative due to the condition

Pi,j ⩾ θπj , i, j = 1, 2, . . . ,N .

In addition, for all i = 1, 2, . . . ,N we have

N∑
j=1

[Qθ]i,j =
1

1− θ

N∑
j=1

(Pi,j − θΠi,j)

=
1

1− θ

N∑
j=1

(Pi,j − θπj)

=
1

1− θ

N∑
j=1

Pi,j −
θ

1− θ

N∑
j=1

πj

=
1

1− θ −
θ

1− θ
= 1, 0 < θ < 1,

and we conclude that Qθ is a Markov transition matrix.
g) Clearly, the property holds for n = 1 by the definition of Qθ. Next, assume

that
Pn = Π + (1− θ)n (Qnθ −Π)

for some n ⩾ 1. Noting that the condition πP = π implies ΠP = Π, we
have

388 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

Pn+1 =
(
Π + (1− θ)n(Qnθ −Π)

)
P

= ΠP + (1− θ)nQnθP − (1− θ)nΠP
= Π + (1− θ)nQnθP − (1− θ)nΠ
= Π + (1− θ)nQnθ

(
Π + (1− θ)(Qθ −Π)

)
− (1− θ)nΠ

= Π + θ(1− θ)nQnθΠ + (1− θ)n+1Qn+1
θ − (1− θ)nΠ.

Next, we note that since Qθ is a Markov transition matrix by Question (f)
we have QθΠ = Π, in other words we have PΠ = Π2 = Π, and

QθΠ =
1

1− θ (P − θΠ)Π =
1

1− θ
(
PΠ− θΠ2) = 1

1− θ (Π− θΠ) = Π,

and more generally QnθΠ = Π, n ⩾ 1, hence

Pn+1 = Π + θ(1− θ)nQnθΠ + (1− θ)n+1Qn+1
θ − (1− θ)nΠ

= Π + θ(1− θ)nΠ + (1− θ)n+1Qn+1
θ − (1− θ)nΠ

= Π + (1− θ)n+1Qn+1
θ − (1− θ)n+1Π

= Π + (1− θ)n+1(Qn+1
θ −Π

)
.

h) Let k ∈ {1, 2, . . . ,N}. By Question (g) we have

∥[Pn]k,· − π∥TV = ∥[Pn]k,· −Πk,·∥TV

=
1
2

N∑
j=1
|[Pn]k,j − πj |

=
1
2

N∑
j=1
|(1− θ)n[Qnθ]k,j − (1− θ)nπj |

=
(1− θ)n

2

N∑
j=1
|[Qnθ]k,j − πj |

= (1− θ)n∥[Qnθ]k,· − π∥TV

⩽ (1− θ)n, n ⩾ 0,

where we applied the result of Question (a), since Πk,· = π is a probabil-
ity distribution and the same holds for [Qnθ]k,· for all k = 1, 2, . . . ,N by
Question (f).

The relation

∥[Pn]k,· − π∥TV = (1− θ)n∥[Qnθ]k,· − π∥TV, n ⩾ 0,

" 389

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

also shows that, in total variation distance, at each time step the chain
associated to P converges faster (by a factor 1− θ) to π than the chain
associated to Qθ.

Finally, we find

d(n) = Max
k=1,2,...,N

∥[Pn]k,· − π∥TV ⩽ (1− θ)n, n ⩾ 0.

i) If tmix = 0 the inequality is clearly satisfied, so that we can suppose that
tmix ⩾ 1. By the definition of tmix and the result of Question (h) we have

1
4 < d(tmix − 1) ⩽ (1− θ)tmix−1,

hence

log 1
4 < log d(tmix − 1) ⩽ log

(
(1− θ)tmix−1) = (tmix − 1) log(1− θ),

and
tmix − 1 ⩽ log d(tmix − 1)

log(1− θ) <
log 1/4

log(1− θ) .

Hence we have
tmix < 1 + log 1/4

log(1− θ) ,

which yields
tmix < 1 +

⌈
log 1/4

log(1− θ)

⌉
,

and finally
tmix ⩽

⌈
log 1/4

log(1− θ)

⌉
.

j) Given the transition matrix

P =

2/3 1/6 1/6
1/3 1/2 1/6
1/6 2/3 1/6


and its stationary distribution

π = [π1,π2,π3] = [11/24, 9/24, 4/24],

we check that in order to satisfy all nine conditions Pi,j ⩾ θπj , i, j = 1, 2, 3,
the value of θ should be in the range [0, 4/11]. The optimal value of θ is the

one that minimizes the bound
⌈

log 1/4
log(1− θ)

⌉
, i.e. θ = 4/11, and

390 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

tmix ⩽
⌈

log 1/4
log 7/11

⌉
= ⌈3.067⌉ = 4.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

Dis
tan

ce

Time	steps	n

d(n)
(1-θ)n

Fig. S.5: Graphs of distance to stationarity d(n) and upper bound (1 − θ)n.

We check from the above graph that the actual value of the mixing time is
tmix = 2. The value of d(0) is the maximum distance between π and all deter-
ministic initial distributions starting from states k = 1, 2, . . . ,N .

Remark. We have shown that the conditions πP = π and Pi,j ⩾ θπj , i, j =
1, 2, . . . ,N , for some θ ∈ (0, 1), define a unique (stationary) distribution π
which is also a limiting distribution independent of the initial state. This is
the case in particular when Pi,j > 0, i, j = 1, 2, . . . ,N , in which case the
chain is irreducible and aperiodic, and admits a unique limiting and stationary
distribution. More generally, the result holds when P is regular, i.e. when there
exists n ⩾ 1 such that [Pn]i,j > 0 for all i, j = 1, 2, . . . ,N , cf. § 4.3-4.5 of Levin
et al. (2009).

Below is the Matlab/Octave code used to generate Figure S.5.
 P = [2/3,1/6,1/6;
 1/3,1/2,1/6;

1/6,2/3,1/6;]
 pi = [11/24,9/24,4/25]

theta = 4/11
 for n = 1:11

y(n)=n-1;
 u(n)=0.25;

z(n)=(1-theta)^(n-1);
 distance(n) = 0;

for k = 1:3
 d = mpower(P,n-1)(k,1:3) - pi;

dist=0;
 for i = 1:3

dist = dist + 0.5*abs(d(i));
 end

distance(n) = max(distance(n) ,dist);
 end

" 391

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

end
 graphics_toolkit("gnuplot");

plot(y,distance,'-bo','LineWidth',8,y,z,'-ro','LineWidth',8,y,u,'-k',
 'LineWidth',8)

legend('d(n)','(1-\theta)^n')
 set (gca, 'xtick', 1:10)

set (gca, 'ytick', 0:0.1:1)
 grid on

xlabel('time steps n')
 ylabel('distance')

pause

Problem 6.14 (cf. Lezaud (1998))

a) By the Perron-Frobenius theorem applied to the nonnegative matrix P , the
largest eigenvalue λ0 of P has a single multiplicity and satisfies

1 = min
1⩽i⩽d

d∑
j=1

Pi,j ⩽ λ0 ⩽ Max
1⩽i⩽d

d∑
j=1

Pi,j = 1.

Moreover, the eigenvector with eigenvalue λ0 = 1 is clearly e⃗ = (1, . . . , 1),
as P e⃗ = e⃗.

b) The projection operator Π onto e⃗ is the linear mapping given by

u 7→ Π(u) =
⟨u, e⃗⟩
⟨e⃗, e⃗⟩ e⃗ = ⟨u, e⃗⟩e⃗ =

d∑
i=1
⟨u, e⃗⟩e⃗i,

where {e⃗1, . . . , e⃗d} is in the orthogonal basis

ek := (0, . . . , 0, 1,
↑
k

0, . . . , 0), k = 1, 2, . . . , d,

of Rd. Its matrix in {e⃗1, . . . , e⃗d} is given by

Π = (Πi,j)1⩽i,j⩽d = (⟨e⃗j , e⃗⟩)1⩽i,j⩽d = (πj)1⩽i,j⩽d,

i.e.

Π :=



π

π

π

...

π


=



π1 π2 π3 π4 · · · πd

π1 π2 π3 π4 · · · πd

π1 π2 π3 π4 · · · πd

...
...

...
...

. . .
...

π1 π2 π3 π4 · · · πd


.

392 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://en.wikipedia.org/wiki/Perron%E2%80%93Frobenius_theorem
https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

We also note that Π is self-adjoint with respect to ⟨·, ·⟩, as

⟨Πu, v⟩ =
d∑

i,j=1
πiπjuivj = ⟨u, Πv⟩,

and its highest eigenvalue is 1.
c) The equality clearly holds for n = 0, due to the convention

∑0
l=1 = 0.

Assuming that it holds at the rank n ⩾ 0, we have

E

[
exp

(
α

n+1∑
l=1

f(Xl)

) ∣∣∣X0 = k

]
= E

[
eαf (X1) exp

(
α

n+1∑
l=2

f(Xl)

) ∣∣∣X0 = k

]

=
d∑
r=1

E

[
1{X1=r}e

αf (X1) exp
(
α

n+1∑
l=2

f(Xl)

) ∣∣∣X0 = k

]

=
1

P(X0 = k)

d∑
r=1

eαf (r)E

[
1{X0=k,X1=r} exp

(
α

n+1∑
l=2

f(Xl)

)]

=
d∑
r=1

eαf (r)
P(X0 = k,X1 = r)

P(X0 = k)
E

[
exp

(
α

n+1∑
l=2

f(Xl)

) ∣∣∣X0 = k, X1 = r

]

=
d∑
r=1

eαf (r)P(X1 = r | X0 = k)E

[
exp

(
α

n+1∑
l=2

f(Xl)

) ∣∣∣X0 = k, X1 = r

]

=
d∑
r=1

eαf (r)Pk,rE

[
exp

(
α

n+1∑
l=2

f(Xl)

) ∣∣∣X1 = r

]

=
d∑
r=1

eαf (r)Pk,rE

[
exp

(
α

n∑
l=1

f(Xl)

) ∣∣∣X=r

]

=
d∑
r=1

Pk,re
αf (r)

d∑
l=1

[(
PeαDf

)n]
r,l

=
d∑
l=1

[(
PeαDf

)n+1]
k,l.

d) We have

eαγnP

(
n∑
l=1

f(Xl) ⩾ nγ
∣∣∣X0 = k

)
= eαγnE

[
1{∑n

l=1 f (Xl)⩾nγ
} ∣∣∣X0 = k

]

⩽ E

[
exp

(
α

n∑
l=1

f(Xl)

) ∣∣∣X0 = k

]

" 393

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

= e−αγn
d∑
l=1

[(
PeαDf

)n]
k,l, n ⩾ 0.

e) We have

d∑
k,l=1

πk
[(
PeαDf

)n]
k,l =

〈
e⃗,
(
PeαDf

)n
e⃗
〉

=
〈
e⃗, e−αDf /2(eαDf /2PeαDf /2)neαDf /2e⃗

〉
=
〈
e−αDf /2e⃗,

(
eαDf /2PeαDf /2)neαDf /2e⃗

〉
⩽ ∥e−αDf /2e⃗∥ ·

∥∥(eαDf /2PeαDf /2)neαDf /2e⃗
∥∥

⩽ ∥e−αDf /2e⃗∥ · ∥eαDf /2e⃗∥ ·
∥∥(eαDf /2PeαDf /2)n∥∥

⩽ eα(λ0(α))
n.

f) By Questions (d) and (e) we have

P

(
n∑
l=1

f(Xl) ⩾ nγ
∣∣∣X0 = k

)
⩽ e−αγneα(λ0(α))

n = eα−n(αγ−log λ0(α)),

n ⩾ 0.
g) The first equality follows from the fact that ΠP = P . Next, letting M =

(Mi,j)1⩽i,j⩽d, we have

ΠDn
fMDm

f =

(
d∑
l=1

πle
nf (l)Ml,je

mf (j)

)
1⩽i,j⩽d

,

hence

tr(ΠDn
fMDm

f) =
d∑
j=1

d∑
l=1

πle
nf (l)Ml,je

mf (j) = ⟨fn,Mfm⟩.

h) We apply II-(2.31) in Kato (1995) by matching the expansion

PeαDf =
∑
n⩾0

αnP
(Df)

n

n!

to II-(2.1) in Kato (1995) and by taking m = 1, see page 74 line -1 therein,
since by Question (a) the multiplicity of the eigenvalue λ0(0) = 1 of P is 1.
We have

c1 = −tr(PDfS
(0))

= tr(PDfΠ)

394 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

= tr(ΠPDf)

= tr(ΠDf)

=
d∑

k=1
πkf(k)

= E[f(X1)]

= 0,

and
c2 = −1

2∥f∥
2 +

1
2 ⟨f ,Sf⟩ ⩽ 1

2 ⟨f ,Sf⟩ ⩽ (1− λ1)
−1.

where we used S(0) = −Π and S(1) = S. Next, for n ⩾ 2 we have

cn =
n∑
p=1

(−1)p
p

∑
ν1+···+νp=n

k1+···+kp=p−1
ν1⩾1,...,νp⩾1
k1⩾0,...,kp⩾0

tr
(
P
(Df)

ν1

ν1!
S(k1) · · ·P

(Df)
νp

νp!
S(kp)

)

=
n∑
p=1

(−1)p+1

p

∑
ν1+···+νp=n

k1+···+kp=p−1
ν1⩾1,...,νp⩾1
k1⩾0,...,kp⩾0

1
ν1! · · · νp!

tr
(
ΠP (Df)

ν1S(k′
1) · · ·S(k′

p−1)P (Df)
νp
)

=
n∑
p=1

(−1)p+1

p∑
ν1+···+νp=n

k1+···+kp=p−1
ν1⩾1,...,νp⩾1
k1⩾0,...,kp⩾0

1
ν1! · · · νp!

⟨fν1 ,Sk′
1P (Df)

ν2 · · ·Sk
′
p−2P (Df)

νp−1S
k′

p−1Pfνp⟩,

where we used S(0) = −Π, S(n) = Sn, Question (g), and the relation
tr(AB) = tr(BA).

i) We have ∑
k1+···+kp=p−1

k1⩾0,...,kp⩾0

1 =
∑

ν1+···+νp−p=p−1
ν1⩾1,...,νp⩾1

1 =

(
2p− 2
p− 1

)
.

j) Since |λ1| ⩽ 1 by the Perron-Frobenius theorem, we have 0 ⩽ 1− λ1 ⩽ 2,
hence

cn =
n∑
p=1

(−1)p+1

p

" 395

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault∑
ν1+···+νp=n

k1+···+kp=p−1
ν1⩾1,...,νp⩾1
k1⩾0,...,kp⩾0

1
ν1! · · · νp!

⟨fν1 ,Sk′
1P (Df)

ν2 · · ·Sk
′
p−2P (Df)

νp−1S
k′

p−1Pfνp⟩

⩽
n∑
p=1

1
p∑

ν1+···+νp=n

k1+···+kp=p−1
ν1⩾1,...,νp⩾1
k1⩾0,...,kp⩾0

1
ν1! · · · νp!

∥fν1∥ ·
∥∥Sk′

1P (Df)
ν2 · · ·Sk

′
p−2P (Df)

νp−1S
k′

p−1P
∥∥ · ∥fνp∥

⩽
n∑
p=1

1
p

∑
ν1+···+νp=n

k1+···+kp=p−1
ν1⩾1,...,νp⩾1
k1⩾0,...,kp⩾0

1
ν1! · · · νp!

∥∥Sk′
1 · · ·Sk

′
p−1
∥∥

⩽
n∑
p=1

1
p

∑
ν1+···+νp=n

k1+···+kp=p−1
ν1⩾1,...,νp⩾1
k1⩾0,...,kp⩾0

1
2ν1−1 · · · 2νp−1

∥∥Sk′
1 · · ·Sk

′
p−1
∥∥

⩽
n∑
p=1

(1− λ1)−(p−1)

p2n−p

∑
ν1+···+νp=n

k1+···+kp=p−1
ν1⩾1,...,νp⩾1
k1⩾0,...,kp⩾0

1

⩽
n∑
p=1

((1− λ1)/2)−(p−1)

p2n−1

(
n− 1
p− 1

)(
2p− 2
p− 1

)

⩽
n∑
p=1

((1− λ1)/2)−(n−1)

p2n−1

(
n− 1
p− 1

)(
2p− 2
p− 1

)

= (1− λ1)
−(n−1)

n∑
p=1

1
p

(
n− 1
p− 1

)(
2p− 2
p− 1

)

⩽ (1− λ1)
−(n−1)

1 +
n∑
p=2

1
p

(
n− 1
p− 1

)
22p−2
√
πp


⩽ (1− λ1)

−(n−1)
n−1∑
p=0

1
p+ 1

(
n− 1
p

)
4p, n ⩾ 2.

Next, we note that for x > 0 we have

396 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

n−1∑
p=0

(
n− 1
p

)
xp

p+ 1 =
1
x

w x
0

n−1∑
p=0

(
n− 1
p

)
ypdy

=
1
x

w x
0
(1 + y)n−1dy

=
(1 + x)n − 1

nx

⩽
(1 + x)n

nx
,

hence, taking x := 4 we obtain

cn ⩽ (1− λ1)
−(n−1) 5n

4n ⩽ (1− λ1)
−(n−1) 5n

25 , n ⩾ 7.

and we check by hand calculation that the bound

1 +
n∑
p=2

1
p

(
n− 1
p− 1

)
4p−1
√
πp
⩽

5n
25

is also valid for n = 3, 4, 5, 6, hence we have

cn ⩽ (1− λ1)
−(n−1) 5n

25 , n ⩾ 2.

k) Noting that c1 = 0, we have

λ0(α) = 1 +
∑
n⩾2

cnα
n

⩽ 1 +
∑
n⩾2

5n−2αn

(1− λ1)n−1

⩽ 1 +
∑
n⩾2

5n−2αn

(1− λ1)n−1

⩽ 1 + α2

1− λ1

1
1− 5α/(1− λ1)

= 1 + α2

1− λ1 − 5α , α ∈ [0, (1− λ1)/5),

hence

P

(
1
n

n∑
l=1

f(Xl) ⩾ γ

)
⩽ exp

(
α− n

(
αγ − log

(
1 + α2

1− λ1 − 5α

)))

⩽ exp
(

1− λ1
5 − nγα+

nα2

1− λ1 − 5α

)
,

" 397

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

α ∈ [0, (1− λ1)/5).
l) We minimize

α 7→ −γα+
α2

1− λ1 − 5α
over α ∈ [0, (1− λ1)/5) by noting that the vanishing of its derivative

5
(

α

1− λ1 − 5α

)2
+ 2 α

1− λ1 − 5α − γ = 0

occurs at
α∗

1− λ1 − 5α∗
=
−1 +

√
1 + 5γ

5 ,

i.e.

α∗ = (1− λ1)
−1 +

√
1 + 5γ

5
√

1 + 5γ =
(1− λ1)γ

1 + 5γ +
√

1 + 5γ <
1− λ1

5 ,

hence

−γα∗ +
α2

∗
1− λ1 − 5α∗

= α∗

(
−γ + α∗

1− λ1 − 5α∗

)
= α∗

−1− 5γ +
√

1 + 5γ
5

= (1− λ1)γ
−1− 5γ +

√
1 + 5γ

5(1 + 5γ +
√

1 + 5γ)

= (1− λ1)γ
1 + 5γ − (1 + 5γ)2

5(1 + 5γ +
√

1 + 5γ)2

= − (1− λ1)γ2(1 + 5γ)
(1 + 5γ +

√
1 + 5γ)2

= − (1− λ1)γ2

(1 +
√

1 + 5γ)2

⩽ − (1− λ1)γ2

(1 +
√

6)2

⩽ − (1− λ1)γ2

7 + 2
√

6

< −(1− λ1)
γ2

12 .

398 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

Chapter 7 - Ising Model

Exercise 7.1 (See also here). By first step analysis, we have

h(3) = 1 + h(2),

h(2) = 1 + 2
3h(1) +

1
3h(3),

h(1) = 1 + 1
3 × 0 + 2

3h(2),

h(0) = 0,

which yields

h(2) = 1 + 2
3

(
1 + 2

3h(2)
)
+

1
3 (1 + h(2))

= 1 + 2
3 +

4
9h(2) +

1
3 +

1
3h(2)

= 2 + 7
9h(2),

hence 

h(3) = 10,

h(2) = 9,

h(1) = 7

h(0) = 0.

Problem 7.2 (See also here).
a) We have h(d) = 0.
b) We have h(0) = 1 + h(1).
c) We have

h(r) = 1 + r

d
h(r− 1) + d− r

d
h(r+ 1), r = 1, 2, . . . , d− 1.

d) We have

h(r) = 1 + r

d
h(r− 1) + d− r

d
h(r+ 1), r = 1, 2, . . . , d− 1,

hence
r

d
h(r) +

d− r
d

h(r) = 1 + r

d
h(r− 1) + d− r

d
h(r+ 1),

hence
r

d
f(r− 1) = 1 + d− r

d
f(r), r = 1, 2, . . . , d− 1.

" 399

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://math.stackexchange.com/questions/28179/logic-question-ant-walking-a-cube
https://math.stackexchange.com/questions/28179/logic-question-ant-walking-a-cube
https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

e) We have f(0) = h(1)− h(0) = −1, and

f(r) = − d

d− r
+

r

d− r
f(r− 1), r = 1, 2, . . . , d,

hence

f(r) = − 1
(d−1
r)

r∑
l=0

(
d

l

)
, r = 0, 1, . . . , r.

f) We have

h(r) = h(d) +
d−1∑
k=r

(h(k)− h(k+ 1))

= h(d)−
d−1∑
k=r

f(k)

=
d−1∑
k=r

1
(d−1
k)

k∑
l=0

(
d

l

)
, r = 0, 1, . . . , d.

g) We have

h(0) =
d−1∑
k=0

1
(d−1
k)

k∑
l=0

(
d

l

)
and

h(1) =
d−1∑
k=1

1
(d−1
k)

k∑
l=0

(
d

l

)
, and h(2) =

d−1∑
k=2

1
(d−1
k)

k∑
l=0

(
d

l

)
.

h) i) When d = 1 we find h(0) = 1, h(1) = 0.
ii) When d = 2 we find h(0) = 4, h(1) = 3, h(2) = 0.
iii) When d = 3 we have h(0) = 10, h(1) = 9, h(2) = 7, h(3) = 0.

Remark. This random walk is the same as the one in Exercises 6.7 and 7.3 in
Privault (2018) on the Ehrenfest chain.

Chapter 8 - Search Engines

Problem 8.1

a) The transition matrix of the chain (Xn)n⩾0 is given as follows:

400 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

P =


0 0 0 1/2 1/2
0 1 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 1 0

 .

b) The chain (Xn)n⩾0 admits the following graph, and is clearly reducible:

c
b

d

e a
c

b

d

e
a

1/2

1/2

1

1

1

1

c) Starting from state a , d or e , the limiting distribution is (0, 0, 0, 1, 0),
starting from state b or c , the limiting distribution is (0, 1, 0, 0, 0), so
that although the chain admits limiting distributions, it does not admit a
limiting distribution independent of the initial state. More precisely, it can
be checked that the powers Pn of the transition matrix P take the form

Pn =


0 0 0 1 0
0 1 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 1 0

 for all n ⩾ 2, hence lim
n→∞

Pn =


0 0 0 1 0
0 1 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 1 0

 .

d) The equation π = πP is satisfied by any probability distribution of the form

π = [πa,πb,πc,πd,πe] = [0, p, 0, 1− p, 0],

with p ∈ [0, 1]. The stationary distribution is not unique here because the
chain is reducible.

e) All rows in the matrix P̃ clearly add up to 1, so P̃ is a Markov transition
matrix. On the other hand, all states become accessible from each other so
that the new chain is irreducible and all states have period 1.

f) Since the chain is irreducible, aperiodic and has a finite state space, we
know by Corollary 6.7 that it admits a unique stationary distribution π̃.
The equation π̃ = π̃P̃ reads

π̃ = π̃P̃

" 401

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

=
ε

n
π̃


1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

+ (1− ε)π̃P

=
[ε

5 , ε5 , ε5 , ε5 , ε5

]
+ (1− ε)π̃P .

g) The equation
π̃ =

[ε
5 , ε5 , ε5 , ε5 , ε5

]
+ (1− ε)π̃P

reads

[πa,πb,πc,πd,πe] =
[ε

5 , ε5 , ε5 , ε5 , ε5

]
+ (1− ε)π̃


0 0 0 1/2 1/2
0 1 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 1 0

 ,

which admits the solution

πa =
ε

5 ,

πb =
2− ε

5 ,

πc =
ε

5 ,

πd =
(2− ε)(3− ε)

10 ,

πe =
(3− ε)ε

10 .

(S.29)

h) We note that
πa = πc < πe < πb < πd,

hence we will rank the states as
Rank State

1 d

2 b

3 e

4 a ≃ c

402 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

based on the idea that the most visited states should rank higher. In the
graph of Figure S.6 the stationary distribution is plotted as a function of
ε ∈ [0, 1].

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1

St
at

io
na

ry
 d

ist
rib

ut
io

n

ε

πa+πb+πc+πd+πe
πd
πb
πe
πc
πa

Fig. S.6: Stationary distribution as a function of ε ∈ [0, 1].

We note again that the ranking of states is clearer for smaller values of ε. On
the other hand, ε cannot be be chosen too large, for example taking ε = 1
makes all mean return times equal and corresponds to a uniform stationary
distribution. This can be illustrated using the following code.

 install.packages("igraph")
install.packages("markovchain")

 library("igraph")
library(markovchain)

 P<-matrix(c(0,0,0,0.5,0.5,0,1,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,1,0),nrow=5,
byrow=TRUE)

MC <-new("markovchain",transitionMatrix=P,states=c("a","b","c","d","e"))
 graph <- as(MC, "igraph")

plot(graph,vertex.size=50,edge.label.cex=2,edge.label=E(graph)$prob,
edge.color='black', vertex.color='dodgerblue',vertex.label.cex=3)

 page_rank(graph,damping=0.97)
$vector

 a b c d e
0.00600 0.39400 0.00600 0.58509 0.00891

" 403

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

1

1

0.5 0.5

1

1

a

bc

d e

Fig. S.7: Markovchain package output.

i) By Corollary 6.7, we find

µa(a) =
5
ε

µb(b) =
5

2− ε

µc(c) =
5
ε

µd(d) =
10

(2− ε)(3− ε)

µe(e) =
10

ε(3− ε) .

In the graph of Figure S.8 the mean return times are plotted as a function
of ε ∈ [0, 1]. A commonly used value in the literature is ε = 1/7.

404 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

 0

 5

 10

 15

 20

 0 0.2 0.4 0.6 0.8 1

Me
an

 re
tu

rn
 ti

m
es

ε

5/ε
µa(a)
µc(c)
µe(e)
µb(b)
µd(d)

Fig. S.8: Mean return times as functions of ε ∈ [0, 1].

For small values of ε the mean return times can be higher, and therefore the
simulations may take a longer time.

Chapter 9 - Hidden Markov Model

Exercise 9.1

a) By summing over o1, . . . , ot we have

P(Xt = it, . . . ,X0 = i0)

= P(Xt = it | Xt−1 = it−1) · · ·P(X1 = i1 | X0 = i0)P(X0 = i0)

= P(Xt = it | Xt−1 = it−1)P(Xt−1 = it−1, . . . ,X0 = i0),

which recovers (1.1) as

P(Xt = it | Xt−1 = it−1, . . . ,X0 = i0) = P(Xt = it | Xt−1 = it−1), t ⩾ 1.

b) We have

P(Xt = it, . . . ,X0 = i0, Ot = ot, . . . ,O1 = o1)

= P(Ot = ot | Xt = it)P(Xt = it | Xt−1 = it−1)

P(Xt−1 = it−1, . . . ,X0 = i0,Ot−1 = ot−1, . . . ,O1 = o1),

hence by summing over i0, i1, . . . , it−2 and ot−1, we have

P(Xt = it,Xt−1 = it−1, Ot−1 = ot−1, . . . ,O1 = o1)

= P(Xt = it | Xt−1 = it−1)P(Xt−1 = it−1,Ot−1 = ot−1, . . . ,O1 = o1),

which implies

" 405

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

P(Xt = it | Xt−1 = it−1, Ot−1 = ot−1, . . . ,O1 = o1)

= P(Xt = it | Xt−1 = it−1), t ⩾ 1. (S.30)

Exercise 9.2

a) We have

P(Ot+1 = v, Ot = u) =
∑
x∈S

P(Ot+1 = v, Ot = u, Xt = x)

=
∑
x∈S

P(Ot+1 = v | Xt = x)P(Xt = x,Ot = u)

=
∑
x∈S

P(Ot+1 = v, Xt = x)P(Ot = u | Xt = x)

=
∑
x,y∈S

P(Ot+1 = v, Xt+1 = y, Xt = x)Mx,u

=
∑
x,y∈S

P(Ot+1 = v | Xt+1 = y, Xt = x)P(Xt+1 = y, Xt = x)Mx,u

=
∑
x,y∈S

P(Ot+1 = v | Xt+1 = y, Xt = x)P(Xt+1 = y | Xt = x)P(Xt = x)Mx,u

=
∑
x,y∈S

πxPx,yMx,uP(Ot+1 = v | Xt+1 = y)

=
∑
x,y∈S

πxPx,yMx,uMy,v, u, v ∈ O.

b) We have

P(Ot+1 ∈ B, Ot ∈ A) =
∑
u∈A

∑
v∈B

P(Ot+1 = v, Ot = u)

=
∑
x,y∈S

πxPx,y
∑
v∈B

My,v
∑
u∈A

Mx,u.

c) We find

P(Ot ∈ A) =
∑
u∈A

∑
v∈O

P(Ot+1 = v, Ot = u)

=
∑
u∈A

∑
v∈O

∑
x,y∈S

My,vπxPx,yMx,u

=
∑
x∈S

πx
∑
u∈A

Mx,u,

and

406 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

P(Ot+1 ∈ B | Ot ∈ A) =
P(Ot+1 ∈ B | Ot ∈ A)

P(Ot ∈ A)
.

d) If [∑
u∈A M0,u

∑
v∈B M0,v∑

u∈A M1,u
∑

v∈B M1,v

]
=

[
1 0

0 1

]
,

then

P(Ot+1 ∈ A, Ot ∈ A) =
∑
u,v∈A

∑
x,y∈S

My,vπxPx,yMx,u = π0P0,0,

and similarly

P(Ot ∈ A) =
∑
u∈A

∑
v∈O

∑
x,y∈S

My,vπxPx,yMx,u = π0,

hence P(Ot+1 ∈ A, Ot ∈ A) = P0,0, and more generally,[
P(Ot+1 ∈ A | Ot ∈ A) P(Ot+1 ∈ A | Ot ∈ B)

P(Ot+1 ∈ B | Ot ∈ A) P(Ot+1 ∈ B | Ot ∈ B)

]
=

[
P0,0 P0,1

P1,0 P1,1

]
.

e) We have

[π0,π1] =

[
0.6842348

0.8564253 + 0.6842348 , 0.8564253
0.8564253 + 0.6842348

]
= [0.444117947, 0.555882053].

f) We have

P̂(Ot+1 ∈ A, Ot ∈ A) =
∑
x,y∈S

πxPx,y
∑
v∈A

M̂y,v
∑
u∈A

M̂x,u

= π0P0,0
∑
v∈A

M̂0,v
∑
u∈A

M̂0,u + π0P0,1
∑
v∈A

M̂1,v
∑
u∈A

M̂0,u

+π1P1,0
∑
v∈A

M̂0,v
∑
u∈A

M̂1,u + π1P1,1
∑
v∈A

M̂1,v
∑
u∈A

M̂1,u

= 0.444117947× 0.1435747× 0.53605372× 0.53605372
+0.444117947× 0.8564253× 0.02345197× 0.53605372
+0.555882053× 0.6842348× 0.53605372× 0.02345197
+0.555882053× 0.3157652× 0.02345197× 0.02345197

= 0.027982632,

and

" 407

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

P(Ot ∈ A) =
∑
x∈S

πx
∑
u∈A

Mx,u

= π0
∑
u∈A

M0,u + π1
∑
u∈A

M1,u

= 0.444117947× 0.53605372 + 0.555882053× 0.02345197
= 0.251107607,

hence
P̂(Ot+1 ∈ A | Ot ∈ A) =

0.027982632
0.251107607 = 0.1114368,

and more generally,[
P̂(Ot+1 ∈ A | Ot ∈ A) P̂(Ot+1 ∈ A | Ot ∈ B)

P̂(Ot+1 ∈ B | Ot ∈ A) P̂(Ot+1 ∈ B | Ot ∈ B)

]
(S.31)

=

[
0.1114368 0.8885632

0.2957185 0.7042815

]
.

g) We find that (S.31) is a close approximation of (9.20).

Problem 9.3 (Wolfer and Kontorovich (2021))

a) For all i = 1, . . . , d we have

E

 d∑
j=1

∣∣∣∣∣ 1n
n∑
k=1

1{Zi(k)=j} − Pi,j

∣∣∣∣∣
 =

1
n

d∑
j=1

E

[∣∣∣∣∣
n∑
k=1

1{Zi(k)=j} − nPi,j

∣∣∣∣∣
]

⩽
1
n

d∑
j=1

√√√√√E

∣∣∣∣∣
n∑
k=1

(
1{Zi(k)=j} − Pi,j

)∣∣∣∣∣
2


=
1
n

d∑
j=1

√√√√Var
[

n∑
k=1

1{Zi(k)=j}

]

=
1
n

d∑
j=1

√
n(1− Pi,j)Pi,j

=
1√
n

d∑
j=1

√
Pi,j

⩽

√
d

n

√√√√ d∑
j=1

Pi,j

408 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

=

√
d

n
, n ⩾ 1,

where we used the Cauchy-Schwarz inequality.
b) Using the inequality ||u| − |v|| ⩽ |u− v|, u, v ∈ R, we have∣∣∣∣∣∣

d∑
j=1

∣∣∣∣∣∣ 1n1{x=j} +
1
n

n∑
k=1, k ̸=i

1{z(k)=j} − Pi,j

∣∣∣∣∣∣
−

d∑
j=1

∣∣∣∣∣∣ 1n1{y=j} +
1
n

n∑
k=1, k ̸=i

1{z(k)=j} − Pi,j

∣∣∣∣∣∣
∣∣∣∣∣∣

⩽
1
n

d∑
j=1

∣∣∣∣∣∣1{x=j} +
n∑

k=1, k ̸=i
1{z(k)=j} − Pi,j

−

 d∑
j=1

1{y=j} +
n∑

k=1, k ̸=i
1{z(k)=j} − Pi,j

∣∣∣∣∣∣
=

1
n

d∑
j=1

∣∣1{x=j} − 1{y=j}
∣∣

⩽
2
n

:= ci, i = 1, . . . ,n.

c) Using McDiarmid’s inequality, for all i = 1, . . . , d we have

P

 d∑
j=1

∣∣∣∣∣ 1n
n∑
k=1

1{Zi(k)=j} − Pi,j

∣∣∣∣∣ > ε


= P

 d∑
j=1

∣∣∣∣∣ 1n
n∑
k=1

1{Zi(k)=j} − Pi,j

∣∣∣∣∣−E

 d∑
j=1

∣∣∣∣∣ 1n
n∑
k=1

1{Zi(k)=j} − Pi,j

∣∣∣∣∣


> ε−E

 d∑
j=1

∣∣∣∣∣ 1n
n∑
k=1

1{Zi(k)=j} − Pi,j

∣∣∣∣∣


⩽ P

 d∑
j=1

∣∣∣∣∣ 1n
n∑
k=1

1{Zi(k)=j} − Pi,j

∣∣∣∣∣−E

 d∑
j=1

∣∣∣∣∣ 1n
n∑
k=1

1{Zi(k)=j} − Pi,j

∣∣∣∣∣
 > ε−

√
d

n


⩽ exp

− 2∑d
i=1 c

2
i

Max
(

0, ε−
√
d

n

)2


" 409

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://en.wikipedia.org/wiki/McDiarmid%27s_inequality
https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

= exp

−n2 Max
(

0, ε−
√
d

n

)2
 .

d) When Ñi(m) = n ⩾ 1, we have

P̃i,j(m) :=
1

Ñi(m)

m−1∑
k=1

1{X̃k=i,X̃k+1=j}

=
1
n

m−1∑
k=1

1{X̃k=i,Z
X̃k

(1+Ñ
X̃k

(k))=j}

=
1
n

m−1∑
k=1

1{X̃k=i,Zi(1+Ñi(k))=j}

=
1
n

n∑
k=1

1{Zi(k)=j} i, j = 1, . . . , d.

e) This follows from the fact that X̃k+1 has the same distribution as Zi given
that X̃k = i.

f) Letting ni := ⌈mπi/2⌉, i = 1, . . . , d, letting c1 := (1− 1/
√

2)2 we have

0 ⩽ ε−
√
d

n
⩽ ε
√
c1, n ⩾ ni ⩾ 2d/ε2,

hence

3ni∑
n=ni

P

 d∑
j=1

∣∣P̂i,j(m)− Pi,j
∣∣ > ε and Ni(m) = n


=

3ni∑
n=ni

P

 d∑
j=1

∣∣P̃i,j(m)− Pi,j
∣∣ > ε and Ñi(m) = n


=

3ni∑
n=ni

exp

−n2 Max
(

0, ε−
√
d

n

)2


⩽
3ni∑
n=ni

e−2nc1ε2

⩽ (2ni + 1)e−2nic1ε2

⩽ (2ni + 1)e−mπic1ε2 ,

provided that ni ⩾ 2d/ε2, or m ⩾ 4d/(ε2πi).
g) We have

410 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

d∑
i=1

3ni∑
n=ni

P

 d∑
j=1

∣∣P̂i,j(m)− Pi,j
∣∣ > ε and Ni(m) = n


⩽

d∑
i=1

(2ni + 1)e−c1mπiε
2

⩽
d∑
i=1

2ni + 1
c1mπiε2 e

−c1mπiε
2/2

⩽
d∑
i=1

2⌈mπi/2⌉+ 1
c1mπiε2 e−c1mπiε

2/2

⩽
d∑
i=1

m+ 3/πi
c1mε2 e−c1mπiε

2/2

⩽
1

c1ε2

d∑
i=1

(
1 + 3

mπ∗

)
e−c1mπiε

2/2

=
d

c1ε2

(
1 + 3

mπ∗

)
e−c1mπiε

2/2

⩽
d

c1ε2

(
1 + 3ε2

4d

)
e−c1mπiε

2/2

⩽
2d
c1ε2 e

−c1mπ∗ε2/2,

provided that m ⩾ 4d/(ε2π∗) and ε ∈ (0, 1).
h) For all ε > 0, we have

P

 Max
i=1,...,d

d∑
j=1

∣∣P̂i,j(m)− Pi,j
∣∣ > ε


= P

 Max
i=1,...,d

d∑
j=1

∣∣P̂i,j(m)− Pi,j
∣∣ > ε and

d⋂
j=1
{Ni(m) ∈ [ni, 3ni]}


+P

 Max
i=1,...,d

d∑
j=1

∣∣P̂i,j(m)− Pi,j
∣∣ > ε and

d⋃
j=1
{Ni(m) /∈ [ni, 3ni]}


⩽ P

 ⋃
i=1,...,d


d∑
j=1

∣∣P̂i,j(m)− Pi,j
∣∣ > ε and Ni(m) ∈ [ni, 3ni]




+P

 d⋃
j=1
{Ni(m) /∈ [ni, 3ni]}


" 411

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

⩽
d∑
i=1

P

 d∑
j=1

∣∣P̂i,j(m)− Pi,j
∣∣ > ε and Ni(m) ∈ [ni, 3ni]


+P

 d⋃
j=1
{Ni(m) /∈ [ni, 3ni]}


=

d∑
i=1

3ni∑
n=ni

P

 d∑
j=1

∣∣P̂i,j(m)− Pi,j
∣∣ > ε and Ni(m) = n


+P(∃i ∈ {1, . . . , d} : Ni(m) /∈ [ni, 3ni]).

i) Letting fi(x) := 1{x=i} − πi, i = 1, . . . , d, we have

Ni(m)− (m− 1)πi =
m−1∑
k=1

fi(Xk)

and

E[fi(Xk)] = E[Ni(m)− (m− 1)πi] = E

[
m−1∑
k=1

fi(Xk)

]
= (m− 1)πi = 0,

hence by the bound in Question (l) of Problem 6.14, we have

P(∃i ∈ {1, . . . , d} : Ni(m) /∈ [ni, 3ni])
= P(∃i ∈ {1, . . . , d} : Ni(m) > 3ni) + P(∃i ∈ {1, . . . , d} : Ni(m) < ni)

⩽ P(∃i ∈ {1, . . . , d} : Ni(m) > 3(m− 1)πi/2)
+P(∃i ∈ {1, . . . , d} : Ni(m) < 2 + (m− 1)πi/2)

= P

(
∃i ∈ {1, . . . , d} :

1
m− 1

m−1∑
k=1

fi(Xk) >
πi
2

)

+P

(
∃i ∈ {1, . . . , d} :

1
m− 1

m−1∑
k=1

fi(Xk) < −
πi
2 +

2
m− 1

)

⩽ P

(
Max
i=1,...,d

1
m− 1

m−1∑
k=1

fi(Xk) >
πi
2

)

+P

(
Max
i=1,...,d

1
m− 1

m−1∑
k=1

(−fi(Xk)) >
πi
2 −

2
m− 1

)
⩽ e(1−λ1)/5e−(1−λ1)mπ2

i /48 + e(1−λ1)/5e−(1−λ1)m(πi/2−2/(m−1))2/12

⩽ c2de
−c3m(1−λ1)π2

∗ , m ⩾ 2,

where c2 = 2e(1−λ1)/5 and

412 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

c3 = Max
(

1
48 , 1

12

(
1− 4

π∗(m− 1)

))
⩽

5
12 ,

provided that m ⩾ 1 + 4/π∗.
j) We upper bound

d∑
i=1

3ni∑
n=ni

P

 d∑
j=1

∣∣P̂i,j(m)− Pi,j
∣∣ > ε and Ni(m) = n


⩽

2d
c1ε2 e

−c1mπ∗ε2/2

<
δ

2

and

P(∃i ∈ {1, . . . , d} : Ni(m) /∈ [ni, 3ni]) ⩽ c2de
−c3m(1−λ1)π2

∗

<
δ

2 ,

which yields
m >

2
c1π∗ε2 log 4d

δc1ε2

and
m >

1
c3(1− λ1)π2

∗
log 2c2d

δ
,

hence, using the facts that d ⩾ 2 and y + log x < 2 log x, x > ey, we find
that there is a constant c > 0 such that for all

m ⩾ cMax
(

1
ε2π∗

Max
(
d, log d

δε

)
, 1
(1− λ1)π2

∗
log d

δ

)
,

we have

P

 Max
i=1,...,d

d∑
j=1

∣∣P̂i,j(m)− Pi,j
∣∣ ⩽ ε

 ⩾ 1− δ.

For example, taking ε = δ = 5% and π∗ = 1/d with d = 26 we find
m ⪆ 62300.

Chapter 10 - Markov Decision Processes

Exercise 10.1 By first step analysis, we have

" 413

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault
Va(a) = 0

Va(b) = −1 + 2
3Va(a) +

1
3Va(c)

Va(c) = 2 + Va(b),

which has for solution Va(a) = 0, Va(b) = −1/2, Va(c) = 3/2, as confirmed
by the following code.

 install.packages("igraph");install.packages("markovchain")
 library("igraph");library(markovchain); statenames <- c("a", "b", "c")

P<-matrix(c(1,0,0,2/3,0,1/3,0,1,0),nrow=3,byrow=TRUE, dimnames =
list(statenames,statenames));

 MC <-new("markovchain",transitionMatrix=P); graph <- as(MC, "igraph")
plot(graph,vertex.size=50, edge.label.cex=2, edge.label=E(graph)$prob,

edge.color='black', vertex.color='dodgerblue',vertex.label.cex=3)
 expectedRewards(MC,100,c(0,-1,2))

0.0 -0.5 1.5
 meanAbsorptionTime(object = MC)

b c
 a 2 3

Exercise 10.2 By first step analysis, we have
V (1) = −2 + (1− p)γV (1) + pγV (2)

V (2) = 3 + (1− q)γV (1) + qγV (3)

V (3) = 1 + γV (3)

hence 

V (1) = −2 + (1− p)γV (1) + pγV (2)

V (2) = 3 + (1− q)γV (1) + qγ

1− γ

V (3) = 1
1− γ =

∑
n⩾0

γn,

and 

V (1) = (3pγ − 2)(1− γ) + pqγ2

(1− (1− p)γ − (1− q)pγ2)(1− γ)

V (2) = 3 + qγ

1− γ +
(1− q)((3pγ − 2)(γ − γ2) + pqγ3)

(1− (1− p)γ − (1− q)pγ2)(1− γ)

V (3) = 1
1− γ .

In particular, when p = q = 1 we check that

414 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

V (1) = −2 + 3γ + γ2

1− γ

V (2) = 3 + γ

1− γ ,

V (3) = 1
1− γ =

∑
n⩾0

γn.

Exercise 10.3

a) We have

h(k) = E

∑
i⩾0

βic(Xi)
∣∣∣ X0 = k


= E[c(X0) | X0 = k] + E

∑
i⩾1

βic(Xi)
∣∣∣ X0 = k


= c(k) +

∑
j∈S

Pk,jE

∑
i⩾1

βic(Xi)
∣∣∣ X1 = j


= c(k) + β

∑
j∈S

Pk,jE

∑
i⩾0

βic(Xi)
∣∣∣ X0 = j


= c(k) + β

∑
j∈S

Pk,jh(j), k ∈ S.

This type of equation may be difficult to solve in full generality.
b) The chain has the following graph:

0 1

2

0.5

0.5 0.5

0.5

1

The average utility h(k) solves the first step analysis equations

" 415

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

h(0) = c(0) + 1
2h(1) = 5 + 1

2h(1)

h(1) = c(1) + 1
2h(0) +

1
2h(1) = −2 + 1

2h(0) +
1
2h(1)

h(2) = 0,

which yields
h(0) = 6, h(1) = 2, h(2) = 0.

See also Exercise 5.22 in Privault (2018) for a related problem with explicit
solution.

Exercise 10.4

a) The optimal action-value functional Q∗(k, a) is obtained as follows:

V ∗(1) = −1

Q∗(1, ↓) = −1

V ∗(4) = −1

Q∗(4, ↓) = −2

Q∗(4,→) = −1

Q∗(1,→) = −2

V ∗(7) = −1

Q∗(7, ↓) = −3

Q∗(7,→) = −1

V ∗(2) = −2

Q∗(2, ↓) = −2

Q∗(2,→) = −3 V ∗(3) = −1

Q∗(3, ↓) = −1

Q∗(3,→) = −5

V ∗(5) = 0 Q∗(5,→) = 0

Q∗(5, ↓) = −2

V ∗(8) = 1 Q∗(8,→) = 1

Q∗(8, ↓) = −3

V ∗(6) = 3

Q∗(6, ↓) = 3

Q∗(6,→) = 1

V ∗(9) = 5

Q∗(9, ↓) = 5

Q∗(9,→) = 5

V ∗(10) = 0

1

1

1 1 1

1

1

1

1

1 1

1

1

1

11

1
1

b) The optimal value function V ∗(k), k = 1, 2, . . . , 9, is given in the next table.

1 V ∗(1) = −1 2 V ∗(2) = −2 3 V ∗(3) = −1

4 V ∗(4) = −1 5 V ∗(5) = 0 6 V ∗(6) = +3

7 V ∗(7) = −1 8 V ∗(8) = 1 9 V ∗(9) = +5

c) The optimal policy π∗(k) ∈ {→, ↓}, k = 1, 2, . . . , 9, is given as follows.

416 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

1 π∗(1) =↓ 2 π∗(2) =↓ 3 π∗(3) =↓

4 π∗(4) =→ 5 π∗(5) =→ 6 π∗(6) =↓

7 π∗(7) =→ 8 π∗(8) =→ 9 π∗(9) = ↓↱

Chapter 11 - Spatial Poisson Processes

Exercise 11.1

a) Based on the area πr2 = 9π, this probability is given by

e−9π/2 (9π/2)10

10!
.

b) This probability is

e−9π/2 (9π/2)5

5!
× e−9π/2 (9π/2)3

3!
.

c) This probability is

e−9π (9π)8

8!
.

d) Since the location of points are uniformly distributed by (11.1), the prob-
ability that a point in the disk D((0, 0), 1) is located in the subdisk
D((1/2, 0), 1/2) is given by the ratio π/4/π = 1/4 of their surfaces. Hence,
given that 5 items are found in D((0, 0), 1), the number of points located
withinD((1/2, 0), 1/2) has a binomial distribution with parameter (5, 1/4),
cf. the solutions of Exercise 1.6 and Exercise 9.2-(d) in Privault (2018), and
we find the probability(

5
3

)(
1
4

)3(3
4

)2
=

45
512 ≃ 0.08789.

Exercise 11.2 (Wang et al. (2012)) By the moment identity (11.4.2) in Privault
(2013), we have

" 417

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

E

[∣∣∣∣Sn − λn√
n

∣∣∣∣p] = n−p/2
p∑

k=0
(nλ)kS2(p, k) ⩽ n−p/2

p/2∑
k=0

(nλ)kS2(p, k)

= n−p/2
p/2∑
k=0

(nλ)kpk = n−p/2 (npλ)
1+p/2 − 1

npλ− 1

⩽
(pλ)1+p/2

pλ− 1/n
< Cp,

where S2(p, k) denotes the count of partitions of a set of p elements into k
blocks and Cp > 0 is a finite constant.

Exercise 11.3
a) We have

M ′(s) =
w

X
f(x)(esf (x) − 1)σ(dx)EPX

σ

[
exp

(
s
w ∞

0
f(y)(dNy − dy)

)]
= s

w

X
|f(x)|2 esf (x) − 1

sf(x)
σ(dx)EPX

σ

[
exp

(
s
w ∞

0
f(y)(dNy − dy)

)]
⩽

esK − 1
K

w

X
|f(x)|2σ(dx)EPX

σ

[
exp

(
s
w ∞

0
f(y)(dNy − dy)

)]
= α2 esK − 1

K
EPX

σ

[
exp

(
s
w ∞

0
f(y)(dNy − dy)

)]
= α2 esK − 1

K
M (s),

which shows that

M ′(s)

M (s)
⩽ h(s) := α2 esK − 1

K
, s ⩾ 0.

b) We have

logM(t) = logM (0) +
w t

0
d logM (s)

⩽
w t

0
M ′(s)

M (s)
ds

⩽
w t

0
h(s)ds,

hence

M (t) ⩽ exp
(w t

0
h(s)ds

)
= exp

(
α2

w t
0

esK − 1
K

ds

)
, t ⩾ 0.

c) By the Markov inequality, we have

PX
σ

(w ∞

0
f(y)(dNy − dy) ⩾ x

)
= EPX

σ

[
1{

r ∞
0 f (y)(dNy−dy)⩾x}

]
418 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

⩽ e−txEPX
σ

[
1{

r ∞
0 f (y)(dNy−dy)⩾x} exp

(
t
w ∞

0
f(y)dNy

)]
⩽ e−txEPX

σ

[
exp

(
t
w ∞

0
f(y)dNy

)]
⩽ exp

(
−tx+

w t
0
h(s)ds

)
⩽ exp

(
−tx+ α2

w t
0

esK − 1
K

ds

)
= exp

(
−tx+ α2

K2 (e
tK − tK − 1)

)
,

which also yields

P
(w ∞

0
f(y)(dNy − dy) ⩾ x

)
⩽ exp

(
−tx+ α2

w t
0
esK − 1
K

ds

)
.

d) By minimizing the above term in t with the optimal value

t∗ :=
1
K

log
(

1 + Kx

α2

)
,

we find

PX
σ

(w ∞

0
f(y)(dNy − dy) ⩾ x

)
⩽ exp

(
x

K
−
(
x

K
+
α2

K2

)
log
(

1 + xK

α2

))
⩽ exp

(
− x

2K log
(

1 + xK

α2

))
=

(
1 + xK

α2

)−x/2K
,

where we used the inequality

1− (1 + y) log
(

1 + 1
y

)
⩽ −1

2 log
(

1 + 1
y

)
, y > 0.

Chapter 12 - Boolean Model

Exercise 12.1

a) This probability is given by

exp
(
−
w

[0,1]d
σ(dy)

w 1/2

0
e−rdr

)
= e−σ([0,1]d)(1−e−1/2).

" 419

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

b) The mean is given by
w

[0,1]d
σ(dy)

w 1/2

0
e−rdr = σ([0, 1]d)(1− e−1/2).

Exercise 12.2

a) We have

GΦ(f) = e−σ(X)
∞∑
n=0

1
n!

w

Xn

n∏
i=1

f(xi)σ(dx1) · · ·σ(dxn)

= e−σ(X)
∞∑
n=0

1
n!

(w
X
f(x1)σ(dx1)

)n
= exp

(w
X
f(x)σ(dx)− σ(X)

)
= exp

(w
X
(f(x)− 1)σ(dx)

)
, f ∈ L1(X,µ).

b) We have

P(Φ ∩A = ∅) = E
[
1{Φ∩A=∅}

]
= E

[∏
x∈Φ

1Ac(x)

]
= GΦ(1Ac)

= exp
(w

X
(1Ac(x)− 1)σ(dx)

)
= exp

(
−
w

X
1A(x)σ(dx)

)
= e−σ(A).

c) Letting
C := {(x, r) ∈ Rd ×R+ : ∥x∥ ⩽ r},

we have

P(0 ∈ B) = 1−P(0 /∈ B)
= 1−P(Φ ∩ C = ∅)
= 1−GΦ(1Cc)

= 1− exp
(
−
w

Rd×R+
1C(x)σ(dx)

)
= 1− exp

(
−λ

w

Rd×R+
1{y∈B(0,r)}dyρ(r)dr

)
= 1− exp

(
−λ

w

Rd
ρ(r)

w ∞

0
1{y∈B(0,r)}dydr

)
420 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

= 1− exp
(
−λvd

w

Rd
ρ(r)rddr

)
.

d) By translation invariance, this probability is given by

P(0 ∈ B) = 1− exp
(
−λvd

w

Rd
ρ(r)rddr

)
.

Chapter 13 - Point Processes

Exercise 13.1 The density of the intensity measure is given by

ρ(x, y) = 30λe− x2+y2

2σ2 , (x, y) ∈ R2,

with σ2 = 1/2000. Hence, the mean number of new cluster points at each
generation is given by

µ =
w ∞

−∞

w ∞

−∞
ρ(x, y)dxdy

= 60πλσ2
w ∞

−∞

w ∞

−∞
e− x2+y2

2σ2 dxdy

2πσ2

= 60πλσ2

=
3πλ
100 ,

and the condition µ < 1 reads

λ <
100
3π ≈ 10.61.

Exercise 13.2
a) We have

GX (s) = E[sX]

= E
[
s1+N1+···+NX

]
= sE

[
X∏
l=1

sNl

]

= s
∑
k⩾0

E

[
X∏
l=1

sNl

∣∣∣ X = k

]
P(X = k)

= s
∑
k⩾0

E

[
k∏
l=1

sNl

∣∣∣ X = k

]
P(X = k)

" 421

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

= s
∑
k⩾0

E

[
k∏
l=1

sNl

]
P(N = k)

= s
∑
k⩾0

(
k∏
l=1

E
[
sNl
])

P(X = k)

= sGX
(
E
[
sN1
])

= sGX (GN (s)), −1 ⩽ s ⩽ 1, (S.32)

where (Xk)k⩾1 denotes a sequence of independent copies of X, see also Re-
lation (13) in Haight and Breuer (1960) and the recursion in Proposition 8.1
of Privault (2018).

b) We have

GN (s) = e−µ
∑
k⩾0

sn
µn

n!
= eµ(s−1), −1 ⩽ s ⩽ 1.

In this case, Relation (S.32) can be solved using Lagrange series as

G(s) =
∞∑
n=1

snP(X = n) =
∞∑
n=1

sne−µn (µn)
n−1

n!
,

see page 145 of Pólya and Szegö (1998), where

P(X = n) = e−µn (µn)

n!

n−1
, n ⩾ 1,

is the Borel distribution, see also Finner et al. (2015).
c) We have

G′(s) = Gµ(G(s)) + sG′(s)G′
µ(G(s))

at s = 1, which gives

G′(1) = Gµ(1) +G′
µ(1)G′(1) = 1 + µG′(1),

and
E[X] =

1
1− µ ,

which is finite if µ < 1.
d) Similarly, knowing that G′′

µ(1) = µ2, the relation

G′′(s) = 2G′(s)G′
µ(G(s)) + sG′′(s)G′

µ(G(s)) + s(G′(s))2G′′
µ(G(s))

at s = 1 gives

G′′(1) = 2G′(1)G′
µ(1) +G′′(1)G′

µ(1) + (G′(1))2G′′
µ(1)

422 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

=
2µ− µ2

(1− µ)2 + µG′′(1),

hence
G′′(1) = 2µ− µ2

(1− µ)3

and

Var[X] = G′′(1) +G′(1)− (G′(1))2

=
2µ− µ2

(1− µ)3 +
1

1− µ −
1

(1− µ)2

=
µ

(1− µ)3 ,

see § 7.2.2 of Johnson et al. (2005).

" 423

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

424 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

References

[1] Agapie, A. and Höns, R. (2007). Analysis of a voter model. Math. Rep. (Bucur.),
9(59)(2):135–145. (Cited on page 197.)

[2] Aldous, D. and Diaconis, P. (1986). Shuffling cards and stopping times. Amer. Math.
Monthly, 93(5):333–348. (Cited on pages 170 and 177.)

[3] Althoen, S., King, L., and Schilling, K. (1993). How long is a game of Snakes and
Ladders? The Mathematical Gazette, 77(478):71–76. (Cited on page 26.)

[4] Anantharam, V., Varaiya, P., and Walrand, J. (1987). Asymptotically efficient allo-
cation rules for the multiarmed bandit problem with multiple plays - Part II: Marko-
vian rewards. IEEE Transactions on Automatic Control, 32(11):977–982. (Cited on
page 380.)

[5] Antal, T. and Redner, S. (2005). The excited random walk in one dimension. J. Phys.
A, 38(12):2555–2577. (Cited on pages 112, 121, 129, 140, 353, 355, and 365.)

[6] Applebaum, D. (2009). Lévy processes and stochastic calculus, volume 116 of Cambridge
Studies in Advanced Mathematics. Cambridge University Press, Cambridge, second
edition. (Cited on page 290.)

[7] Asmussen, S. (2003). Applied probability and queues, volume 51 of Applications of
Mathematics (New York). Springer-Verlag, New York, second edition. Stochastic Mod-
elling and Applied Probability. (Cited on page 31.)

[8] Azais, R. and Bouguet, F., editors (2018). Statistical Inference for Piecewise-
deterministic Markov Processes. Wiley-ISTE. (Cited on page 39.)

[9] Baccelli, F., Błaszczyszyn, B., and Karray, M. (2020). Random Measures, Point Pro-
cesses, and Stochastic Geometry. hal-02460214f. Inria. (Cited on page 290.)

[10] Barbu, A. and Zhu, S.-C. (2020). Monte Carlo Methods. Springer. (Cited on page 197.)
[11] Benjamini, I. and Wilson, D. (2003). Excited random walk. Electron. Comm. Probab.,

8:86–92. (Cited on pages 121 and 140.)
[12] Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems. J.

Roy. Statist. Soc. Ser. B, 36:192–236. (Cited on page 193.)
[13] Bhattacharya, B. and Mukherjee, S. (2018). Inference in Ising models. Bernoulli,

24(1):493–525. (Cited on page 193.)
[14] Billingsley, P. (1961). Statistical inference for Markov processes. Statistical Research

Monographs, Vol. II. University of Chicago Press, Chicago, Ill. (Cited on page 39.)
[15] Bogachev, L. and Daletskii, A. (2009). Poisson cluster measures: Quasi-invariance,

integration by parts and equilibrium stochastic dynamics. J. Funct. Anal., 256:432–478.
(Cited on page 310.)

[16] Borodin, A. (2017). Stochastic processes. Probability and its Applications.
Birkhäuser/Springer, Cham. Original Russian edition published by LAN Publishing,
St. Petersburg, 2013. (Cited on page 353.)

425

N. Privault

[17] Bosq, D. and Nguyen, H. (1996). A Course in Stochastic Processes: Stochastic Models
and Statistical Inference. Mathematical and Statistical Methods. Kluwer. (Cited on
page 151.)

[18] Bouneffouf, D. and Rish, I. (2019). A survey on practical applications of multi-armed
and contextual bandits. Preprint arXiv:1904.10040 [cs.LG]. (Cited on page 110.)

[19] Broemeling, L. (2018). Bayesian inference for stochastic processes. CRC Press, Boca
Raton, FL. (Cited on page 39.)

[20] Bryan, K. and Leise, T. (2006). The $25,000,000,000 eigenvector: The linear algebra
behind Google. SIAM Rev., 48(3):569–581. (Cited on pages 164, 170, 205, 207, and 217.)

[21] Bubeck, S. and Cesa-Bianchi, N. (2012). Regret analysis of stochastic and nonstochas-
tic multi-armed bandit problems. Foundations and Trends in Machine Learning, 5(1):1–
122. (Cited on page 383.)

[22] Celeux, G. and Durand, J.-B. (2008). Selecting hidden Markov model state num-
ber with cross-validated likelihood. Computational Statistics, 23:541–564. (Cited on
page 238.)

[23] Champion, W., Mills, T., and Smith, S. (2007). Lost in space. Math. Scientist,
32:88–96. (Cited on pages 92 and 94.)

[24] Chen, B. and Hong, Y. (2012). Testing for the Markov property in time series.
Econometric Theory, 28:130–178. (Cited on page 39.)

[25] Chen, M.-F. (2004). From Markov chains to non-equilibrium particle systems. World
Scientific Publishing Co., second edition. (Cited on page 44.)

[26] Chen, Y. (2016). Multivariate Hawkes processes and their simulations. Preprint, 7
pages. (Cited on page 319.)

[27] Chewi, S. (2017). Wald’s identity. https://inst.eecs.berkeley.edu/~ee126/fa17/
wald.pdf. Accessed: 2022-08-25. (Cited on pages 174 and 379.)

[28] Chiu, S., Stoyan, D., Kendall, W., and Mecke, J. (2013). Stochastic Geometry and its
Applications. Wiley Series in Probability and Statistics. Wiley-Interscience, New York,
third edition. (Cited on pages 290, 300, and 303.)

[29] Clark, D., Delande, E., and Houssineau, J. (2016). Basic concepts for multi-object
estimation. Lecture notes, Heriot-Watt University. (Cited on page 307.)

[30] Consul, P. and Famoye, F. (2006). Lagrangian probability distributions. Birkhäuser
Boston, Inc., Boston, MA. (Cited on page 313.)

[31] Daley, D. J. and Vere-Jones, D. (2003). An introduction to the theory of point pro-
cesses. Vol. I. Probability and its Applications. Springer-Verlag, New York. (Cited on
pages 305 and 306.)

[32] Dassios, A. and Zhao, H. (2013). Exact simulation of Hawkes process with expo-
nentially decaying intensity. Electron. Comm. Probab., 18:Paper No. 62, 13. (Cited on
page 319.)

[33] Decreusefond, L., Flint, I., Privault, N., and Torrisi, G. (2016). Determinantal point
processes. In Peccati, G. and Reitzner, M., editors, Stochastic Analysis for Poisson Point
Processes: Malliavin Calculus, Wiener-Itô Chaos Expansions and Stochastic Geometry,
volume 7 of Bocconi & Springer Series, pages 311–342, Berlin. Springer. (Cited on
page 309.)

[34] Deng, N., Zhou, W., and Haenggi, M. (2015). The Ginibre point process as a model
for wireless networks with repulsion. IEEE Transactions on Wireless Communications,
14:107–121. (Cited on page 309.)

[35] Diaconis, P. (2009). The Markov chain Monte Carlo revolution. Bull. Amer. Math.
Soc. (N.S.), 46(2):179–205. (Cited on page 151.)

[36] Finner, H., Kern, P., and Scheer, M. (2015). On some compound distributions with
Borel summands. Insurance Math. Econom., 62:234–244. (Cited on pages 313 and 422.)

[37] Flint, I., Kong, H.-B., Privault, N., Wang, P., and Niyato, D. (2017). Wireless energy
harvesting sensor networks: Boolean-Poisson modeling and analysis. IEEE Transactions
on Wireless Communications, 16:7108–7122. (Cited on page 299.)

426 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://inst.eecs.berkeley.edu/~ee126/fa17/wald.pdf
https://inst.eecs.berkeley.edu/~ee126/fa17/wald.pdf
https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

[38] Flint, I. and Privault, N. (2021). Computation of coverage probabilities in a spher-
ical germ-grain model. Methodol. Comput. Appl. Probab., 23(2):491–502. (Cited on
page 300.)

[39] Foucart, S. (2010). Linear algebra and matrix analysis, Lecture 6. https://www.
math.drexel.edu/~foucart/TeachingFiles/F12/M504Lect6.pdf. Accessed: 2022-08-
25. (Cited on pages 173, 182, 183, and 376.)

[40] Freedman, D. (1983). Markov chains. Springer-Verlag, New York-Berlin. (Cited on
pages 174 and 379.)

[41] Georgii, H. and Yoo, H. (2005). Conditional intensity and Gibbsianness of determi-
nantal point processes. J. Stat. Phys., 118(1-2):55–84. (Cited on page 306.)

[42] Goldberg, S. (1986). Introduction to difference equations. Dover Publications, Inc.,
New York, second edition. With illustrative examples from economics, psychology, and
sociology. (Cited on page 11.)

[43] Gusev, V. (2014). Synchronizing automata with random inputs. In Developments
in Language Theory, volume 8633 of Lecture Notes in Computer Science, pages 68–75.
Springer, New York. (Cited on page 76.)

[44] Haight, F. and Breuer, M. (1960). The Borel-Tanner distribution. Biometrika, 47:143–
150. (Cited on pages 313 and 422.)

[45] Hairer, M. (2016). Convergence of Markov processes. Notes. (Cited on page 109.)
[46] Hawkes, A. (1971). Spectra of some self-exciting and mutually exciting point pro-

cesses. Biometrika, 58:83–90. (Cited on page 318.)
[47] Heinrich, L. (1992). On existence and mixing properties of germ-grain models. Statis-

tics, 23(3):271–286. (Cited on page 300.)
[48] Johnson, N., Kemp, A., and Kotz, S. (2005). Univariate discrete distributions. Wiley

Series in Probability and Statistics. Wiley-Interscience, Hoboken, NJ, third edition.
(Cited on pages 314 and 423.)

[49] Jonasson, J. (2009). The mathematics of card shuffling. http://www.math.chalmers.
se/~jonasson/convrates.pdf. Accessed: 2019-10-10. (Cited on pages 170 and 177.)

[50] Karlin, S. and Taylor, H. (1981). A Second Course in Stochastic Processes. Academic
Press Inc., New York. (Cited on pages 11 and 14.)

[51] Karlin, S. and Taylor, H. (1998). An introduction to stochastic modeling. Academic
Press, Inc., San Diego, CA, third edition. (Cited on pages 145 and 150.)

[52] Karr, A. F. (1986). Point processes and their statistical inference. M. Dekker, New
York. (Cited on page 309.)

[53] Kato, T. (1995). Perturbation Theory for Linear Operators. Classics in Mathematics.
Springer-Verlag, Berlin. Reprint of the 1980 edition. (Cited on pages 182, 183, and 394.)

[54] Kijima, M. (1997). Markov processes for stochastic modeling. Stochastic Modeling
Series. Chapman & Hall, London. (Cited on page 31.)

[55] Kong, H. B., Flint, I., Wang, P., Niyato, D., and Privault, N. (2016). Exact perfor-
mance analysis of ambient RF energy harvesting wireless sensor networks with Gini-
bre point process. IEEE Journal on Selected Areas in Communications, 34:3769–3784.
(Cited on page 309.)

[56] Last, G. (2016). Stochastic analysis for Poisson processes. In Stochastic Analysis
for Poisson Point Processes: Malliavin Calculus, Wiener-Itô Chaos Expansions and
Stochastic Geometry, volume 7 of Bocconi & Springer Series, pages 1–36. Springer-
Verlag. (Cited on page 290.)

[57] Latouche, G. and Ramaswami, V. (1999). Introduction to matrix analytic methods in
stochastic modeling. ASA-SIAM Series on Statistics and Applied Probability. Society
for Industrial and Applied Mathematics (SIAM), Philadelphia, PA; American Statistical
Association, Alexandria, VA. (Cited on page 56.)

[58] Léon, C. and Perron, F. (2004). Optimal Hoeffding bounds for discrete reversible
Markov chains. The Annals of Applied Probability, pages 958–970. (Cited on page 377.)

" 427

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://www.math.drexel.edu/~foucart/TeachingFiles/F12/M504Lect6.pdf
https://www.math.drexel.edu/~foucart/TeachingFiles/F12/M504Lect6.pdf
http://www.math.chalmers.se/~jonasson/convrates.pdf
http://www.math.chalmers.se/~jonasson/convrates.pdf
https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

[59] Levin, D., Peres, Y., and Wilmer, E. (2009). Markov Chains and Mixing Times.
American Mathematical Society, Providence, RI. With a chapter by James G. Propp
and David B. Wilson. (Cited on pages 163, 164, 168, 178, 386, and 391.)

[60] Lezaud, P. (1998). Chernoff-type bound for finite Markov chains. Ann. Appl. Probab.,
8(3):849–867. (Cited on pages 180 and 392.)

[61] Liu, Y., Gao, B., Liu, T.-Y., Zhang, Y., Ma, Z., He, S., and Li, H. (2008). BrowseR-
ank: Letting web users vote for page importance. In SIGIR ’08: Proceedings of the 31st
annual international ACM SIGIR conference on Research and development in infor-
mation retrieval, page 451–458. Association for Computing Machinery, Inc. (Cited on
page 217.)

[62] Markov, A. A. (1909). Recherches sur un cas remarquable d’épreuves dépendantes.
Acta Math., 33:87–104. (Cited on page 1.)

[63] Matheron, G. (1975). Random Sets and Integral Geometry. Wiley. (Cited on
page 293.)

[64] Mecke, J. (1967). Stationäre zufällige Masse auf lokalkompakten Abelschen Gruppen.
Z. Wahrscheinlichkeitstheorie Verw. Geb., 9:36–58. (Cited on page 276.)

[65] Meester, R. and Roy, R. (1996). Continuum percolation, volume 119 of Cambridge
Tracts in Mathematics. Cambridge University Press, Cambridge. (Cited on page 300.)

[66] Miyoshi, N. and Shirai, T. (2012). A cellular network model with Ginibre configurated
base stations. Research Rep. on Math. and Comp. Sciences (Tokyo Inst. of Tech.). (Cited
on page 309.)

[67] Moyal, J. E. (1962). The general theory of stochastic population processes. Acta
Math., 108:1–31. (Cited on page 307.)

[68] Neuts, F. (1981). Matrix-geometric solutions in stochastic models, volume 2 of Johns
Hopkins Series in the Mathematical Sciences. Johns Hopkins University Press, Balti-
more, Md. An algorithmic approach. (Cited on page 47.)

[69] Neveu, J. (1977). Processus ponctuels. In Ecole d’été de Probabilités de Saint-Flour
VI, volume 598 of Lecture Notes in Mathematics, pages 249–445. Springer-Verlag. (Cited
on page 268.)

[70] Nguyen, X. and Zessin, H. (1979). Integral and differential characterization of the
Gibbs process. Math. Nachr., 88:105–115. (Cited on page 308.)

[71] Norris, J. (1998). Markov Chains, volume 2 of Cambridge Series in Statistical and
Probabilistic Mathematics. Cambridge University Press, Cambridge. Reprint of 1997
original. (Cited on page 288.)

[72] Ogata, Y. (1981). On Lewis’ simulation method for point processes. IEEE Trans.
Inform. Theory, IT-27(1):23–31. (Cited on page 319.)

[73] Pólya, G. (1921). Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffrend die
Irrfahrt im Strassenetz. Mathematische Annalen, 84:149–160. (Cited on page 92.)

[74] Pólya, G. and Szegö, G. (1998). Problems and Theorems in Analysis I. Springer.
Reprint of the 1978 Edition. (Cited on pages 313 and 422.)

[75] Privault, N. (2013). Understanding Markov Chains - Examples and applications.
Springer Undergraduate Mathematics Series. Springer, first edition. (Cited on pages 291
and 417.)

[76] Privault, N. (2018). Understanding Markov Chains. Springer Undergraduate Math-
ematics Series. Springer, second edition. (Cited on pages 25, 31, 37, 39, 90, 111, 145,
150, 180, 290, 329, 367, 400, 416, 417, and 422.)

[77] Privault, N. (2022). Introduction to Stochastic Finance with Market Examples (2nd
edition). Financial Mathematics Series. Chapman & Hall/CRC. (Cited on page 112.)

[78] Redner, S. (2001). A guide to first-passage processes. Cambridge University Press,
Cambridge. (Cited on pages 112, 353, and 355.)

[79] Reinhart, A. (2018). A review of self-exciting spatio-temporal point processes and
their applications. Statistical Science, 33(3):299–318. (Cited on page 319.)

[80] Rizoiu, M.-A., Lee, Y., Mishra, S., and Xie, L. (2018). Hawkes processes for events
in social media. In Chang, S.-F., editor, Frontiers of multimedia research, volume 17

428 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

of ACM Books, pages 230–262. Association for Computing Machinery and Morgan &
Claypool Publishers. (Cited on page 314.)

[81] Russell, S. and Norvig, P. (1995). Artificial Intelligence. Prentice Hall, third edition.
(Cited on page 261.)

[82] Schalekamp, F. and van Zuylen, A. (2009). Rank aggregation: Together we’re strong.
In 2009 Proceedings of the Eleventh Workshop on Algorithm Engineering and Experi-
ments (ALENEX09), pages 38–51. SIAM. (Cited on page 210.)

[83] Schneider, R. and Weil, W. (2008). Stochastic and integral geometry. Probability and
its Applications (New York). Springer-Verlag, Berlin. (Cited on page 290.)

[84] Serfozo, R. (2009). Basics of applied stochastic processes. Probability and its Appli-
cations (New York). Springer-Verlag, Berlin. (Cited on pages 174, 372, and 379.)

[85] Shukla, N. (2018). Machine learning with TensorFlow. Manning Publications. (Cited
on pages 230 and 233.)

[86] Slivnyak, I. (1962). Some properties of stationary flows of homogeneous random
events. Theory Probab. Appl., 7(3):336–341. (Cited on page 276.)

[87] Stamp, M. (2015). A revealing introduction to hidden Markov models. Preprint.
(Cited on page 238.)

[88] Steele, J. (2001). Stochastic Calculus and Financial Applications, volume 45 of Ap-
plications of Mathematics. Springer-Verlag, New York. (Cited on page 328.)

[89] Streit, R. (2010). Poisson point processes. Springer, New York. Imaging, tracking,
and sensing. (Cited on page 290.)

[90] Vinay, S. and Kok, P. (2019). Statistical analysis of quantum-entangled-network
generation. Phys. Rev. E, 99:042313. (Cited on page 56.)

[91] Volkov, M. V. (2008). Synchronizing automata and the Černý conjecture. In Language
and Automata Theory and Applications, volume 5196 of Lecture Notes in Computer
Science, pages 11–27. Springer, New York. (Cited on page 76.)

[92] Wang, Z., Stocker, A., and Lee, D. (2012). Optimal neural tuning curves for arbi-
trary stimulus distributions: Discrimax, infomax and minimum lp loss. In Advances in
Neural Information Processing Systems (NIPS 2012), volume 25, pages 1–9. (Cited on
page 417.)

[93] Williams, R. J. (1992). Asymptotic variance parameters for the boundary local times
of reflected Brownian motion on a compact interval. J. Appl. Probab., 29(4):996–1002.
(Cited on pages 353 and 354.)

[94] Wolfer, G. and Kontorovich, A. (2021). Statistical estimation of ergodic Markov chain
kernel over discrete state space. Bernoulli, 27(1):532–553. (Cited on pages 241 and 408.)

[95] Yang, F., Balakrishnan, S., and Wainwright, M. (2017). Statistical and computational
guarantees for the Baum-Welch algorithm. Journal of Machine Learning Research, 18:1–
53. (Cited on pages 234 and 238.)

[96] Zucchini, W., MacDonald, I., and Langrock, R. (2016). Hidden Markov Models for
Time Series. Monographs on statistics and applied probability. CRC Press, Boca Raton,
FL, second edition. (Cited on page 238.)

" 429

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

430 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Index

code, 5, 16, 155, 209, 234, 267, 271, 274,
284, 287, 289, 290, 310, 314, 316, 318,
327, 328, 334, 337, 367, 403

package
HMM, 234
igraph, 5, 16, 209
markovchain, 5, 16, 209
MDPtoolbox, 258
Stan, 155

absorbing
set, 9
state, 9, 31

absorption
time, 12

accepting state, 71
accessible state, 19
action-value function, 249
algorithm

Baum-Welch, 234, 237
EM, 234

ant problem, 197
aperiodic

chain, 32
state, 31, 145, 150

aperiodicity, 31

backward optimization, 253
balance

detailed, 148, 190
global, 148

balance condition, 148
bandit, 110, 174
Baum-Welch algorithm, 234, 237
Bellman equation, 250
Bernoulli

random walk, 81

Bernoulli point process, 308
binary classification, 234
binomial

coefficient, 325
identity, 326

Boltzmann distribution, 191
Boolean model, 293, 303, 304
Borel distribution, 313, 320
buffalos, 41

chain rule, 2
class

communicating, 20
recurrent, 23, 25
transient, 26

class property, 25, 26, 31
classification of states, 19
code

Matlab, 391
column-stochastic, 171, 367
communicating

class, 20
state, 19, 20

compensated Poisson stochastic integral,
272

contractivity, 159
convolution equation, 96
cookie, 117, 140, 365
counting process, 283
coupling, 167
coverage probability, 297
Cox process, 286
cumulants, 273

damping factor, 203, 218
declustering, 319
detailed balance, 148, 190

431

N. Privault

determinantal point process, 309
Dirichlet problem, 12
discount factor, 15
discrete-time

Markov chain, 1
dispersion index, 285
distance

total variation, 156
distance from stationarity, 170
distance to stationarity, 160, 179
distribution

Boltzmann, 191
Borel, 313, 320
invariant, 147, 149
Lagrangian, 313
limiting, 143, 144
negative binomial, 48
Pareto, 301
phase-type, 47
stationary, 146, 151

double-heralding, 56
dynamic programming, 245, 253, 258

EM algorithm, 234
emission probabilities, 220
entanglement generation, 56
equation

convolution, 96
equivalence relation, 19
ergodic

state, 31
ERW, 117
excited random walk, 117, 140, 365
Expectation-Maximization algorithm, 234
exponential

distribution, 289
series, 325

factorial moment, 56, 323
first step analysis, 6, 9, 14
Frullani’s identity, 274

generating function, 321
geometric

series, 325
sum, 325

Georgii-Nguyen-Zessin identity, 307
global balance, 148
graphical

Markov model, 219, 238
hidden Markov model, 220

GridWorld, 245

Hamiltonian, 192

Hawkes process, 318
hidden Markov, 219, 235
hitting

probability, 9
time, 12

HMM, 234
Hoeffding inequality, 173

igraph, 5, 16, 209, 327, 367, 403, 414
independence, 323
indicator function, 325
infimum, 38
invariant distribution, 147, 149
inverse

temperature, 191
IPython notebook, 62, 127, 230, 233, 234
irreducible, 20, 145, 150
Ising model, 185

kernel
potential, 26

Lagrangian distribution, 313
law

of total expectation, 13
of total probability, 2, 4, 6, 10

limiting distribution, 143, 144
link farm, 209

MAB, 110, 174
Markov

decision process, 245, 258
graphical, 219, 238
hidden, 219, 235
property, 1, 13

Markov chain, 1
discrete time, 1
irreducible, 20, 145, 150
Monte Carlo, 149
recurrent, 23, 145
reducible, 20
reversible, 149
two-state, 47, 144, 149

markovchain, 414
markovchain (R package), 5, 16, 209, 327,

367, 403
matrix

column-stochastic, 171, 367
McDiarmid’s inequality, 242
MCMC, 149
MDP, 245, 258

toolbox, 258
mean

game duration, 38, 103

432 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

number of returns, 16
recurrence time, 30
return time, 14

Metropolis algorithm, 151
Metropolis-Hastings algorithm, 151
minimal solution, 44
mixing time, 165, 180
model

Boolean, 293, 303, 304
graphical hidden Markov, 220
graphical Markov, 219, 238
hidden Markov, 219, 235

moment, 273
multi-armed bandit, 110, 174

natural logarithm, 120
negative

binomial distribution, 48
null recurrent, 31
number of returns, 16

PageRank™, 203, 212, 218
pairwise interaction point process, 309
Papangelou density, 308
Pareto, 301
Pascal identity, 41
pattern recognition, 59, 77
percolation, 300
periodicity, 31
Perron-Frobenius theorem, 181
PGFl, 274
phase-type distribution, 47
photon transfer, 56
point process

Bernoulli, 308
determinantal, 309
Hawkes, 318
pairwise interaction, 309
Poisson, 308
Poisson hard-core, 309
self-exciting, 309

Poisson
cumulants, 273
moments, 273
point process, 265
process, 265, 283

transformation, 278
stochastic integral, 270

Poisson hard-core process, 309
Poisson point process, 308
policy, 245
positive recurrence, 30, 150
potential kernel, 26
probabilistic automaton, 59

probability
distribution, 146
generating function, 321
ruin, 37, 103

problem
ant, 197
Dirichlet, 12

process
counting, 283
Cox, 286
Hawkes, 318
Poisson, 265
self-exciting, 309
spatial Poisson, 265

pushforward measure, 278
Python code, 62, 89, 91, 127, 230, 233, 234
PyTorch, 230, 233, 234

Q-learning, 245, 251
quantum cryptography, 56

R code, 414
R package

igraph, 327, 367, 403, 414
markovchain, 327, 367, 403, 414

random
walk, 81, 93

random shuffling, 170
random walk

excited, 117, 140, 365
two-dimensional, 42

rank aggregation, 209
rebound, 99
recurrence, 93
recurrent, 23

class, 23, 25
null, 31
positive, 30
random walk, 93
state, 23, 145

reducible, 20
reflected path, 85
reflection principle, 85
reflexive (relation), 19
regret, 110, 174
regular transition matrix, 165, 391
reinforcement learning, 245, 248
relation

equivalence, 19
reflexive, 19
symmetric, 19
transitive, 19

renewal processes, 290
resolvent, 26

" 433

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

return
probabilities, 16
time, 14, 85

reversibility
condition, 148

reversible Markov chain, 149
reward, 15, 262
ring toss game, 42
ruin probability, 37, 103

search engine, 178, 201, 217
second chance, 99
self-exciting point process, 309
shuffling, 170
sink state, 71
snake

and ladders, 26
spatial Poisson point process, 265
spin, 185
St. Petersburg paradox, 90
Stan, 155
state

absorbing, 9, 31
accepting, 71
accessible, 19
aperiodic, 31, 145, 150
communicating, 19, 20
ergodic, 31
null recurrent, 31
positive recurrent, 30, 150
recurrent, 23, 145
sink, 71
transient, 25

stationary

distribution, 146, 151
Stirling

approximation, 91, 114
stochastic dynamic programming, 245, 258
streak (winning), 67
strong Markov property, 288
strongly connected (graph theory), 19
symmetric (relation), 19
synchronizing automaton, 59

TensorFlow, 230, 233, 234
time homogeneous, 3, 37, 103, 148
total variation distance, 156
transience, 25
transient

class, 26
state, 25

transition
matrix, 3

regular, 165
transitive (relation), 19
two-dimensional random walk, 42
two-state Markov chain, 47, 144, 149

unsupervised learning, 219
utility function, 263

value function, 254
variance, 323
Viterbi algorithm, 233
void probability, 295

winning streaks, 67

434 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

Author index

Agapie, A. 197
Aldous, D. 170, 177
Althoen, S.C. 26
Anantharam, V. 380
Antal, T. 112, 127, 140, 353
Applebaum, D. 290
Asmussen, S. 31
Azais, R. 39

Baccelli, F. 290
Balakrishnan, S. 234, 238
Barbu, A. 197
Benjamini, I. 112, 127, 140
Besag, J. 193
Bhattacharya, B.B. 193
Billingsley, P. 39
Błaszczyszyn, B. 290
Bogachev, L. 311
Borodin, A.N. 353
Bosq, D. 150, 151
Bouguet, F. 39
Bouneffouf, D. 174
Breuer, M.A. 313, 422
Broemeling, L.D. 39
Bryan, K. 165, 170, 205, 207, 217
Bubeck, S. 383

Celeux, G. 238
Cesa-Bianchi, N. 383
Champion, W.L. 92, 94
Chen, B. 39
Chen, M.-F. 44
Chewi, S. 174
Chiu, S.N. 290, 300
Consul, P.C. 313

Dalatskii, A. 311
Dassios, A. 319
Deng, N. 309
Diaconis, P. 151, 170, 177
Durand, J.-B. 238

Famoye, F. 313
Finner, H. 313, 422
Flint, I. 299, 300, 309
Foucart, S. 173

Freedman, D. 174

Gao, B. 217
Goldberg, S. 11
Gusev, V.V. 76

Haenggi, M. 309
Haight, F.A. 313, 422
Hawkes, A.G. 318
He, S. 217
Heinrich, L. 300
Hong, Y. 39
Höns, R. 197

Johnson, N.L. 314, 423
Jonasson, J. 170, 177

Karlin, S. 11, 14, 145, 150
Karray, M. 290
Kemp, A.W. 314, 423
Kendall, W.S. 290, 300
Kern, P. 313, 422
Kijima, M. 31
King, L. 26
Kok, P. 56
Kong, H. B. 309
Kontorovich, A. 241, 408
Kotz, S. 314, 423

Langrock, R. 238
Last, G. 290
Latouche, G. 56
Lee, D.D. 417
Leise, T. 165, 170, 205, 207, 217
Léon, C.A. 377
Levin, D.A. 163, 168, 178, 386
Lezaud, P. 180, 392
Li, H. 217
Liu, M. 380
Liu, T.-Y. 217
Liu, Y. 217

Ma, Z. 217
MacDonald, I.L. 238
Markov, A.A. 1
Matheron, G. 293
Mecke, J. 276, 300
Meester, R. 300

" 435

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

Mills, T.M. 92, 94
Miyoshi, N. 309
Mukherjee, S. 193

Neuts, M.F. 47
Neveu, J. 268
Nguyen, H.T. 150, 151
Niyato, D. 299, 309
Norris, J.R. 288
Norvig, P. 261

Ogata, Y. 319

Peres, Y. 163, 168, 178, 386
Perron, F. 377
Poisson, S.D. 283
Pólya, G. 313, 422

Ramaswami, V. 56
Redner, S. 112, 127, 140, 353
Reinhart, A. 319
Rish, I. 174
Roy, R. 300
Russell, S. 261

Schalekamp, F. 209, 217
Scheer, M. 313, 422
Schilling, K. 26
Schneider, R. 290
Serfozo, R. 174, 372
Shirai, T. 309
Shukla, N. 230
Slivnyak, I.M. 276

Smith, S.J. 92, 94
Stamp, M. 238
Steele, J. 328
Stocker, A.A. 417
Stoyan, D. 290, 300
Streit, R.L. 290
Szegö, G. 313, 422

Taylor, H.M. 11, 14, 145, 150
Tekin, C. 380

van Zuylen, A. 209, 217
Varaiya, P. 380
Vinay, S.E. 56
Volkov, M.V. 76

Wainwright, M.J. 234, 238
Walrand, J. 380
Wang, P. 299, 309
Wang, Z. 417
Weil, W. 290
Williams, R.J. 353
Wilmer, E.L. 163, 168, 178, 386
Wilson, D.B. 112, 127, 140
Wolfer, G. 241, 408

Yang, F. 234, 238

Zhang, Y. 217
Zhao, H. 319
Zhou, W. 309
Zhu, S.-C. 197
Zucchini, W. 238

436 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

" 437

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Topics in Discrete Stochastic Processes

This text presents selected applications of discrete-time stochastic processes
involving random interactions and algorithms, that revolve around the Markov
property, such as data science (Chapters 2, 9 and 10), computer science/ma-
chine learning (Chapters 3, 6 and 8), applied sciences/physics (Chapters 4, 5
and 7), and stochastic geometry (Chapters 11-13). It covers excited random
walks, including recurrence questions, distribution modeling using phase-type
distributions, convergence and mixing of Markov chains, applications to search
engines and probabilistic automata, and an introduction to the Ising model
used in statistical physics. Applications to data science are also considered via
hidden Markov models and Markov decision processes, and an introduction to
point processes is provided, with application to the Boolean random sphere
model and self-exciting Hawkes processes. A total of 37 exercises and 19 longer
problems with detailed solutions are also included.

438 "

This version: March 5, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

	A Summary of Markov Chains
	Markov property
	Hitting probabilities
	Mean hitting and absorption times
	Classification of states
	Hitting times of random walks
	Exercises

	Phase-Type Distributions
	Negative binomial distribution
	Markovian construction
	Hitting time distribution
	Mean hitting times
	Exercises

	Synchronizing Automata
	Pattern recognition
	Winning streaks
	Synchronizing automata
	Synchronization times
	Exercises

	Random Walks and Recurrence
	Distribution and hitting times
	Recurrence of symmetric random walks
	Reflected random walk
	Conditioned random walk
	Exercises

	Cookie-Excited Random Walks
	Hitting times and probabilities
	Recurrence
	Mean hitting times
	Count of cookies eaten
	Conditional results
	Exercises

	Convergence to Equilibrium
	Limiting and stationary distributions
	Markov Chain Monte Carlo - MCMC
	Transition bounds and contractivity
	Distance to stationarity
	Mixing times
	Exercises

	The Ising Model
	Construction
	Irreducibility, aperiodicity and recurrence
	Limiting and stationary distributions
	Simulation examples
	Exercises

	Search Engines
	Markovian modeling of ranking
	Limiting and stationary distributions
	Matrix perturbation
	State ranking
	Meta search engines
	Exercises

	Hidden Markov Model
	Graphical Markov model
	Forward-backward formulas
	Hidden state estimation
	Forward-backward algorithm
	Baum-Welch algorithm
	Exercises

	Markov Decision Processes
	Construction
	Reinforcement learning
	Example - deterministic MDP
	Example - stochastic MDP
	Exercises

	Poisson Point Processes
	Spatial Poisson processes
	Functionals of Poisson point processes
	Transformations of Poisson point processes
	The Poisson Process
	Exercises

	The Boolean Model
	Boolean-Poisson model
	Void probabilities
	Coverage probabilities
	Boolean percolation
	Exercises

	Point Processes
	General point processes
	Poisson cluster processes
	Borel distribution
	Self-exciting point processes
	Exercises

	Appendix: Probability Generating Functions
	Appendix: Some Useful Identities
	Solutions to the Exercises
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13

	References
	Index
	Author index

a=0.2; b=0.4;

Dimension of the transition matrix

dim=2

Definition of the transition matrix

P=matrix(c(1-a,a,b,1-b),nrow=dim,ncol=dim,byrow=TRUE)

Number of time steps

N=100

Z=array(N+1);

for(ll in seq(1,1000)) {

Z[1]=sample(dim,size=1,prob=P[2,])

Random simulation of Z[j+1] given Z[j]

for (j in seq(1,N)) Z[j+1]=sample(dim,size=1,prob=P[Z[j],])

Y=array(N+1);

S=0;

Computation of the average over the l first steps

for(l in seq(1,N+1)) { Z[l]=Z[l]-1; S=S+Z[l]; Y[l]=S/l; }

X=array(N+1); for(l in seq(1,N+1)) { X[l]=l-1; }

par(mfrow=c(2,1))

plot(X,Y,type="l",yaxt="n",xaxt="n",xlim=c(0,N),xlab="",ylim=c(0,1),ylab="",xaxs="i",col="black",main="",bty="n")

segments(0 , a/(a+b), N, a/(a+b))

axis(2,pos=0,at=c(0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0))

axis(1,pos=0,at=seq(0,N,10),outer=TRUE)

plot(X,Z,type="o",xlab="",ylab="",xlim=c(0,N),yaxt="n",xaxt="n",xaxs="i",col="black",main="",pch=20,bty="n")

axis(1,pos=1,at=seq(0,N+1,10),outer=TRUE,padj=-4,tcl=0.5)

axis(1,pos=0,at=seq(0,N+1,10),outer=TRUE)

axis(2,las=2,at=0:1)

readline(prompt = "Pause. Press <Enter> to continue...")

}

{
 "cells": [
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "from IPython.core.display import display, HTML\n",
 "display(HTML(\"\"\"https://personal.ntu.edu.sg/nprivault/indext.html\"\"\"))"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {
 "slideshow": {
 "slide_type": "skip"
 }
 },
 "outputs": [],
 "source": [
 "from pylab import *\n",
 "import numpy as np\n",
 "import random as rm\n",
 "import matplotlib.pyplot as plt \n",
 "%matplotlib notebook\n",
 "from ipywidgets import Select,interactive,Dropdown\n",
 "from IPython.display import display\n",
 "\n",
 "N=100\n",
 "X = np.empty(N, dtype=int)\n",
 "Y = np.empty(N)\n",
 "\n",
 "ff, axarr = plt.subplots(2, sharex=True,figsize=(12,10))\n",
 "\n",
 "def path(a=0.2,b=0.4):\n",
 " global X,Y\n",
 " P = [[1-a,a],[b,1-b]]\n",
 " X[0] = rm.choice([0,1])\n",
 " S=X[0]\n",
 " Y[0]=S\n",
 " for i in range(1,N):\n",
 " X[i] = np.random.choice([0,1],p=P[X[i-1]])\n",
 " S +=X[i]\n",
 " Y[i]=S/(i+1)\n",
 " i += 1\n",
 " axarr[0].clear()\n",
 " axarr[0].set_xlim([0,N])\n",
 " axarr[0].set_ylim([0,1])\n",
 " axarr[0].plot(X,marker='.',markersize = 10)\n",
 " axarr[0].set_title('Chain samples')\n",
 " axarr[1].clear()\n",
 " axarr[1].set_xlim([0,N])\n",
 " axarr[1].set_ylim([0,1])\n",
 " axarr[1].set_title('Proportion of samples at state 1')\n",
 " axarr[1].axhline(y=a/(a+b),xmin=0,xmax=N,c=\"purple\",linewidth=2,zorder=0)\n",
 " axarr[1].plot(Y)"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {
 "slideshow": {
 "slide_type": "slide"
 }
 },
 "outputs": [],
 "source": [
 "interactive(path, a=(0.0, 1.0, 0.05), b=(0.0, 1.0, 0.05))"
]
 }
],
 "metadata": {
 "anaconda-cloud": {},
 "celltoolbar": "Slideshow",
 "kernelspec": {
 "display_name": "Python 3",
 "language": "python",
 "name": "python3"
 },
 "language_info": {
 "codemirror_mode": {
 "name": "ipython",
 "version": 3
 },
 "file_extension": ".py",
 "mimetype": "text/x-python",
 "name": "python",
 "nbconvert_exporter": "python",
 "pygments_lexer": "ipython3",
 "version": "3.7.5rc1"
 },
 "widgets": {
 "state": {
 "194c9575da7648eeb3eb50de5f6eac77": {
 "views": []
 },
 "230cd7e3c7694c64855d094710ef120f": {
 "views": []
 },
 "34653b0a89a74a718d93006eead7bfc5": {
 "views": []
 },
 "3b280929354944c484121980f9dccab2": {
 "views": [
 {
 "cell_index": 2
 }
]
 },
 "90a55a6236c742738139721eeeaade44": {
 "views": []
 },
 "da88e4c8ba674b7f84258dc7dd8ecafc": {
 "views": []
 }
 },
 "version": "1.1.2"
 }
 },
 "nbformat": 4,
 "nbformat_minor": 1
}

library(tcltk)

a=0.2; b=0.4;

Dimension of the transition matrix

dim=5

Definition of the transition matrix

P=matrix(c(

0.0,0.5,0.0,0.5,0.0,

0.2,0.4,0.0,0.3,0.1,

0.3,0.2,0.1,0.3,0.1,

0.2,0.4,0.1,0.2,0.1,

0.2,0.0,0.0,0.1,0.7

),nrow=dim,ncol=dim,byrow=TRUE)

Number of time steps

N=100

Z=array(N+1);

A=array(2);

B=array(2);

for(ll in seq(1,100)) {

Y=array(N+1);

X=array(N+1); for(l in seq(1,N+1)) { X[l]=l-1; Z[l]=Z[l]-1}

B[1]=2

B[2]=2

split.screen(c(1,1))

for(l in seq(0:1000))

{

A[1]=l-1;

A[2]=A[1]+1;

B[1]=B[2];

B[2]=sample(dim,size=1,prob=P[B[1],])

print(B[1])

screen(1,FALSE)

tkbell()

plot(A,B-1,type="o",lwd=2,col="blue",xlim=c(1,100),ylim=c(0,4),xlab="", ylab="", yaxt="n",xaxt="n",xaxs="i", main = "5-state Markov chain",bty="n")

axis(2,pos=1,at=seq(0,4,1))

axis(1,pos=0,at=seq(0,100,10),outer=TRUE)

Sys.sleep(0.4)

}

}

{
 "cells": [
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "from IPython.core.display import display, HTML\n",
 "display(HTML(\"\"\"https://personal.ntu.edu.sg/nprivault/indext.html\"\"\"))"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "%matplotlib notebook\n",
 "from pylab import *\n",
 "import time\n",
 "import numpy as np\n",
 "import random as rm\n",
 "import matplotlib \n",
 "import matplotlib.pyplot as plt \n",
 "\n",
 "l=0 \n",
 "P = [[0.0,0.3,0.0,0.7,0.0],\n",
 " [0.1,0.3,0.2,0.3,0.1],\n",
 " [0.3,0.2,0.1,0.3,0.1],\n",
 " [0.2,0.5,0.1,0.1,0.1],\n",
 " [0.2,0.0,0.1,0.1,0.6]]\n",
 "N=100\n",
 "X = np.empty(N+1, dtype=int)\n",
 "Y = np.empty(N+1, dtype=int)\n",
 "for i in range(0,N):\n",
 " X[i]=i\n",
 " Y[i]=0\n",
 "Y[0] = 3\n",
 "\n",
 "def path(axarr):\n",
 " global l,X,Y\n",
 " axarr.clear()\n",
 " matplotlib.pyplot.yticks([0,1,2,3,4])\n",
 " axarr.plot(X[0:l+1],Y[0:l+1],marker='.',markersize = 14)\n",
 " matplotlib.pyplot.yticks([0,1,2,3,4])\n",
 " matplotlib.pyplot.xlim((0,N))\n",
 " matplotlib.pyplot.ylim((0,4))\n",
 " l=l+1\n",
 " Y[l]=np.random.choice([0,1,2,3,4],p=P[Y[l-1]])\n",
 " ff.canvas.draw()\n",
 " \n",
 "ff, axarr = plt.subplots(1,figsize=(12,10))"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "l=0\n",
 "for f in range(N):\n",
 " path(axarr)\n",
 " time.sleep(0.1)"
]
 }
],
 "metadata": {
 "anaconda-cloud": {},
 "kernelspec": {
 "display_name": "Python 3",
 "language": "python",
 "name": "python3"
 },
 "language_info": {
 "codemirror_mode": {
 "name": "ipython",
 "version": 3
 },
 "file_extension": ".py",
 "mimetype": "text/x-python",
 "name": "python",
 "nbconvert_exporter": "python",
 "pygments_lexer": "ipython3",
 "version": "3.7.5rc1"
 },
 "widgets": {
 "state": {},
 "version": "1.1.2"
 }
 },
 "nbformat": 4,
 "nbformat_minor": 1
}

library(tcltk)

parameter of the geometric distribution

p=0.5

Maximum number of time steps

N=10000

A=array(10001);

A[1]=10

M=A[1]

m=0;m0=0;

split.screen(c(1,1))

for(l in seq(1:N))

{

if (A[l]>0)

{

A[l+1]=0

for(lll in seq(1:A[l]))

{

A[l+1]=A[l+1]+rgeom(1,1-p)

}

}

if (A[l]==0) {A[l+1]=0;m=m+1}

print(l+1)

print(A[l+1])

if (A[l+1]==0 && A[l]>0) {alarm();m0=l}

if (A[l+1]>0) {tkbell()}

if (A[l+1]>M) {M=A[l+1]}

screen(1,FALSE)

#tkbell()

par(bg = "white")

plot(0:l,A,type="o", xlim=c(0,max(100,l)),ylim=c(0,max(40,M)), xlab="", ylab="", yaxt="n",xaxt="n",xaxs="i",col="blue", main = "Branching process",bty="n" ,lwd =2)

axis(2,pos=0,at=seq(0,max(40,M),max(1,floor(max(40,M)/10))))

axis(1,pos=0,at=seq(0,max(100,l),max(1,floor(max(100,l)/10))),outer=TRUE)

Sys.sleep(0.4)

if (m>5+m0*0.2) {break}

}

dev.copy(png,'branching_rescaled.png')

dev.off()

{
 "cells": [
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "from IPython.core.display import display, HTML\n",
 "display(HTML(\"\"\"https://personal.ntu.edu.sg/nprivault/indext.html\"\"\"))"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "%matplotlib notebook\n",
 "from pylab import *\n",
 "import time\n",
 "import numpy as np\n",
 "import random as rm\n",
 "import matplotlib \n",
 "import matplotlib.pyplot as plt \n",
 "\n",
 "# parameter of the geometric distribution \n",
 "p=0.5\n",
 "\n",
 "N=100\n",
 "A = np.empty(2, dtype=int)\n",
 "B = np.empty(2, dtype=int)\n",
 " \n",
 "def path(axarr):\n",
 " global l,A,B\n",
 " A[0]=l-1;\n",
 " A[1]=A[0]+1;\n",
 " B[0]=B[1];\n",
 " B[1]=0;\n",
 " if (B[0]>0): \n",
 " for k in range(1,B[0]): \n",
 " B[1]=B[1]+np.random.geometric(1-p,1)-1\n",
 " axarr.plot(A,B,marker='.',markersize = 14,color=\"blue\")\n",
 " matplotlib.pyplot.yticks(np.arange(0, 45, 5))\n",
 " matplotlib.pyplot.xlim((0,max(N,l)))\n",
 " l=l+1\n",
 " ff.canvas.draw()\n",
 " if (B[1]==0 and B[0]>0): B[0]=0\n",
 " time.sleep(0.2)\n",
 " \n",
 "ff, axarr = plt.subplots(1, sharex=True,figsize=(12,10))\n",
 "matplotlib.pyplot.yticks(np.arange(0, 45, 5))\n",
 "matplotlib.pyplot.xlim((0,N))"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "l=1\n",
 "B[0]=10\n",
 "B[1]=10\n",
 "axarr.clear()\n",
 "while (B[0]>0): path(axarr)\n",
 "\n",
 "axarr.plot(range(l,max(N,l)),[0]*(N-l),marker='.',markersize = 14,color=\"blue\")\n",
 "matplotlib.pyplot.yticks(np.arange(0, 45, 5))\n",
 "matplotlib.pyplot.xlim((0,max(N,l)))\n",
 "ff.canvas.draw()"
]
 }
],
 "metadata": {
 "anaconda-cloud": {},
 "kernelspec": {
 "display_name": "Python 3",
 "language": "python",
 "name": "python3"
 },
 "language_info": {
 "codemirror_mode": {
 "name": "ipython",
 "version": 3
 },
 "file_extension": ".py",
 "mimetype": "text/x-python",
 "name": "python",
 "nbconvert_exporter": "python",
 "pygments_lexer": "ipython3",
 "version": "3.7.5rc1"
 },
 "widgets": {
 "state": {},
 "version": "1.1.2"
 }
 },
 "nbformat": 4,
 "nbformat_minor": 1
}

a=20; b=40;

Number of time steps

N=1000

Time horizon

T=1.0

Length of time step

h=T/N

Dimension of the transition matrix

dim=2

Transition matrix P = I + hQ over a small time interval

P=matrix(c(1-a*h,a*h,b*h,1-b*h),nrow=dim,ncol=dim,byrow=TRUE)

Z=array(N+1);

for(ll in seq(1,N)) {

Z[1]=sample(dim,size=1,prob=P[2,])

Random simulation of Z[j+1] given Z[j]

for (j in seq(1,N)) Z[j+1]=sample(dim,size=1,prob=P[Z[j],])

Y=array(N+1);

S=0;

Computation of the average over the l first steps

for(l in seq(1,N+1)) { Z[l]=Z[l]-1; S=S+Z[l]; Y[l]=S/l; }

X=array(N+1); for(l in seq(1,N+1)) { X[l]=(l-1)*T/N; }

par(mfrow=c(2,1))

plot(X,Z,type="o",xlab="",ylab="",xlim=c(0,T),yaxt="n",xaxt="n",xaxs="i",col="black",main="",pch=20,cex=0.4,bty="n")

axis(1,pos=1,at=seq(0,T,T/10),outer=TRUE,padj=-4,tcl=0.5)

axis(1,pos=0,at=seq(0,T,T/10),outer=TRUE)

axis(2,las=2,at=0:1)

plot(X,Y,type="l",yaxt="n",xaxt="n",xlim=c(0,T),xlab="",ylim=c(0,1),ylab="",xaxs="i",col="black",main="",bty="n")

segments(0 , a/(a+b), N, a/(a+b))

axis(2,pos=0,at=c(0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0))

axis(1,pos=0,at=seq(0,T,T/10),outer=TRUE)

readline(prompt = "Pause. Press <Enter> to continue...")

}

dev.off()

{
 "cells": [
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "from IPython.core.display import display, HTML\n",
 "display(HTML(\"\"\"https://personal.ntu.edu.sg/nprivault/indext.html\"\"\"))"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "from pylab import *\n",
 "import numpy as np\n",
 "import random as rm\n",
 "import matplotlib.pyplot as plt \n",
 "%matplotlib notebook\n",
 "from ipywidgets import Select,interactive,Dropdown\n",
 "from IPython.display import display\n",
 "\n",
 "# Number of time steps \n",
 "N=1000 \n",
 "\n",
 "# Time horizon \n",
 "T=1.0 \n",
 "\n",
 "# Length of time step \n",
 "h=T/N \n",
 "\n",
 "X = np.empty(N)\n",
 "Y = np.empty(N, dtype=int)\n",
 "Z = np.empty(N)\n",
 "\n",
 "for i in range(0,N): X[i]=i*h\n",
 " \n",
 "ff, axarr = plt.subplots(2, sharex=True,figsize=(12,10))\n",
 "\n",
 "def path(a=20,b=40):\n",
 " global X,Y,Z\n",
 " P = [[1-a*h,a*h],[b*h,1-b*h]]\n",
 " Y[0] = rm.choice([0,1])\n",
 " S=Y[0]\n",
 " Z[0]=S\n",
 " for i in range(1,N):\n",
 " Y[i] = np.random.choice([0,1],p=P[Y[i-1]])\n",
 " S +=Y[i]\n",
 " Z[i]=S/(i+1)\n",
 " i += 1\n",
 " axarr[0].clear()\n",
 " axarr[1].clear()\n",
 " axarr[0].plot(X,Y,marker='.',markersize = 10)\n",
 " axarr[0].set_title('Chain samples')\n",
 " axarr[1].set_title('Proportion of samples at state 1')\n",
 " plt.ylim((0,1))\n",
 " axarr[1].axhline(y=a/(a+b),xmin=0,xmax=N,c=\"purple\",linewidth=2,zorder=0)\n",
 " axarr[1].plot(X,Z)"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "interactive(path, a=(0.0, 100, 5), b=(0.0, 100, 5))"
]
 }
],
 "metadata": {
 "anaconda-cloud": {},
 "kernelspec": {
 "display_name": "Python 3",
 "language": "python",
 "name": "python3"
 },
 "language_info": {
 "codemirror_mode": {
 "name": "ipython",
 "version": 3
 },
 "file_extension": ".py",
 "mimetype": "text/x-python",
 "name": "python",
 "nbconvert_exporter": "python",
 "pygments_lexer": "ipython3",
 "version": "3.7.5rc1"
 },
 "widgets": {
 "state": {
 "01556756cc1f41ec9923fc15faf6ae99": {
 "views": []
 },
 "04194d9bda1746f18f59cf3af0470203": {
 "views": []
 },
 "2b3cf09e92914c82a8c871ebe54af71b": {
 "views": []
 },
 "69ff395470714add932ba50860e564f1": {
 "views": [
 {
 "cell_index": 2
 }
]
 },
 "853668b336ad445ab101a690004c21c0": {
 "views": []
 },
 "ba8da3ee01b442748dcd32e8a0a5044b": {
 "views": []
 }
 },
 "version": "1.1.2"
 }
 },
 "nbformat": 4,
 "nbformat_minor": 1
}

library(tcltk)

Number of time steps

N=1000

Time horizon

T=1.0

Length of time step

h=T/N

Dimension of the transition matrix

dim=5

Definition of the identity matrix

I=matrix(c(

1,0,0,0,0,

0,1,0,0,0,

0,0,1,0,0,

0,0,0,1,0,

0,0,0,0,1

),nrow=dim,ncol=dim,byrow=TRUE)

Definition of the infinitesimal generator

Q=matrix(c(

-40,40,0,0,0,

20,-40,20,0,0,

0,10,-30,20,0,

0,0,20,-60,40,

0,0,0,20,-20

),nrow=dim,ncol=dim,byrow=TRUE)

Definition of the transition matrix

P=I+h*Q

A=array(2);

B=array(2);

C=array(2);

Y=array(N+1);

X=array(N+1); for(l in seq(1,N+1)) { X[l]=l-1; }

B[1]=2

B[2]=2

split.screen(c(1,1))

A[1]=0;A[2]=h;

screen(1,FALSE)

plot(A,B-1,type="o", xlim=c(0,T),ylim=c(0,4),xlab="", ylab="", yaxt="n",xaxt="n",xaxs="i",col="red", main = "Birth and death process - embedded chain",cex=1.2,bty="n")

for(l in seq(0:N))

{

A[1]=(l-1)*h;

A[2]=A[1]+h;

B[1]=B[2];

B[2]=sample(dim,size=1,prob=P[B[1],])

screen(1,FALSE)

plot(A,B-1,type="o", xlim=c(0,T),ylim=c(0,4),xlab="", ylab="", yaxt="n",xaxt="n",xaxs="i",col="black", main = "Birth and death process - embedded chain",cex=0.4,bty="n")

if (B[2]!=B[1]) {alarm();

screen(1,FALSE)

C[1]=B[2];C[2]=B[2]

plot(A,C-1,type="o", xlim=c(0,T),ylim=c(0,4),xlab="", ylab="", yaxt="n",xaxt="n",xaxs="i",col="red", main = "Birth and death process - embedded chain",cex=1.2,bty="n")

}

axis(2,pos=0,at=seq(0,4,1))

axis(1,pos=0,at=seq(0,T,T/10),outer=TRUE)

Sys.sleep(0.02)

}

{
 "cells": [
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "from IPython.core.display import display, HTML\n",
 "display(HTML(\"\"\"https://personal.ntu.edu.sg/nprivault/indext.html\"\"\"))"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "%matplotlib notebook\n",
 "from pylab import *\n",
 "import time\n",
 "import numpy as np\n",
 "import random as rm\n",
 "import matplotlib \n",
 "import matplotlib.pyplot as plt \n",
 "\n",
 "# Number of time steps \n",
 "N=500 \n",
 "\n",
 "# Time horizon \n",
 "T=1.0 \n",
 "\n",
 "# Length of time step \n",
 "h=T/N \n",
 "\n",
 "I = [[1,0,0,0,0],\n",
 " [0,1,0,0,0],\n",
 " [0,0,1,0,0],\n",
 " [0,0,0,1,0],\n",
 " [0,0,0,0,1]]\n",
 "\n",
 "Q = [[-40.0,40.0,0.0,0.0,0.0],\n",
 " [20.0,-40.0,20.0,0.0,0.0],\n",
 " [0.0,10.0,-30.0,20.0,0.0],\n",
 " [0.0,0.0,20.0,-60.0,40.0],\n",
 " [0.0,0.0,0.0,20.0,-20.0]]\n",
 "\n",
 "# Definition of the transition matrix\n",
 "P=I+h*np.array(Q) \n",
 "\n",
 "A = np.empty(2)\n",
 "B = np.empty(2, dtype=int)\n",
 "C = np.empty(2, dtype=int)\n",
 "\n",
 "X = np.empty(N)\n",
 "Y = np.empty(N, dtype=int)\n",
 "\n",
 "for i in range(0,N): X[i]=i\n",
 "\n",
 "B[0]=2\n",
 "B[1]=2\n",
 "\n",
 "def path(axarr):\n",
 " global l,A,B\n",
 " A[0]=(l-1)*h;\n",
 " A[1]=A[0]+h;\n",
 " B[0]=B[1];\n",
 " B[1]=0;\n",
 " B[1]=np.random.choice([0,1,2,3,4],p=P[B[0]])\n",
 " axarr.plot(A,B,marker='.',markersize = 4,color=\"blue\")\n",
 " if (B[1]!=B[0]):\n",
 " C[0]=B[1];C[1]=B[1]\n",
 " axarr.plot(A,C,marker='o',markersize = 8,color=\"red\")\n",
 " matplotlib.pyplot.yticks([0,1,2,3,4])\n",
 " matplotlib.pyplot.xlim((0,1))\n",
 " l=l+1\n",
 " ff.canvas.draw()\n",
 " \n",
 "ff, axarr = plt.subplots(1, sharex=True,figsize=(12,10))"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "l=0\n",
 "for f in range(N):\n",
 " path(axarr)\n",
 " time.sleep(0.0)"
]
 }
],
 "metadata": {
 "anaconda-cloud": {},
 "kernelspec": {
 "display_name": "Python 3",
 "language": "python",
 "name": "python3"
 },
 "language_info": {
 "codemirror_mode": {
 "name": "ipython",
 "version": 3
 },
 "file_extension": ".py",
 "mimetype": "text/x-python",
 "name": "python",
 "nbconvert_exporter": "python",
 "pygments_lexer": "ipython3",
 "version": "3.7.5rc1"
 },
 "widgets": {
 "state": {},
 "version": "1.1.2"
 }
 },
 "nbformat": 4,
 "nbformat_minor": 1
}

	6.Plus:
	6.Reset:
	6.Minus:
	6.EndRight:
	6.StepRight:
	6.PlayPauseRight:
	6.PlayRight:
	6.PauseRight:
	6.PlayPauseLeft:
	6.PlayLeft:
	6.PauseLeft:
	6.StepLeft:
	6.EndLeft:
	anm6:
	6.121:
	6.120:
	6.119:
	6.118:
	6.117:
	6.116:
	6.115:
	6.114:
	6.113:
	6.112:
	6.111:
	6.110:
	6.109:
	6.108:
	6.107:
	6.106:
	6.105:
	6.104:
	6.103:
	6.102:
	6.101:
	6.100:
	6.99:
	6.98:
	6.97:
	6.96:
	6.95:
	6.94:
	6.93:
	6.92:
	6.91:
	6.90:
	6.89:
	6.88:
	6.87:
	6.86:
	6.85:
	6.84:
	6.83:
	6.82:
	6.81:
	6.80:
	6.79:
	6.78:
	6.77:
	6.76:
	6.75:
	6.74:
	6.73:
	6.72:
	6.71:
	6.70:
	6.69:
	6.68:
	6.67:
	6.66:
	6.65:
	6.64:
	6.63:
	6.62:
	6.61:
	6.60:
	6.59:
	6.58:
	6.57:
	6.56:
	6.55:
	6.54:
	6.53:
	6.52:
	6.51:
	6.50:
	6.49:
	6.48:
	6.47:
	6.46:
	6.45:
	6.44:
	6.43:
	6.42:
	6.41:
	6.40:
	6.39:
	6.38:
	6.37:
	6.36:
	6.35:
	6.34:
	6.33:
	6.32:
	6.31:
	6.30:
	6.29:
	6.28:
	6.27:
	6.26:
	6.25:
	6.24:
	6.23:
	6.22:
	6.21:
	6.20:
	6.19:
	6.18:
	6.17:
	6.16:
	6.15:
	6.14:
	6.13:
	6.12:
	6.11:
	6.10:
	6.9:
	6.8:
	6.7:
	6.6:
	6.5:
	6.4:
	6.3:
	6.2:
	6.1:
	6.0:
	5.Plus:
	5.Reset:
	5.Minus:
	5.EndRight:
	5.StepRight:
	5.PlayPauseRight:
	5.PlayRight:
	5.PauseRight:
	5.PlayPauseLeft:
	5.PlayLeft:
	5.PauseLeft:
	5.StepLeft:
	5.EndLeft:
	anm5:
	5.99:
	5.98:
	5.97:
	5.96:
	5.95:
	5.94:
	5.93:
	5.92:
	5.91:
	5.90:
	5.89:
	5.88:
	5.87:
	5.86:
	5.85:
	5.84:
	5.83:
	5.82:
	5.81:
	5.80:
	5.79:
	5.78:
	5.77:
	5.76:
	5.75:
	5.74:
	5.73:
	5.72:
	5.71:
	5.70:
	5.69:
	5.68:
	5.67:
	5.66:
	5.65:
	5.64:
	5.63:
	5.62:
	5.61:
	5.60:
	5.59:
	5.58:
	5.57:
	5.56:
	5.55:
	5.54:
	5.53:
	5.52:
	5.51:
	5.50:
	5.49:
	5.48:
	5.47:
	5.46:
	5.45:
	5.44:
	5.43:
	5.42:
	5.41:
	5.40:
	5.39:
	5.38:
	5.37:
	5.36:
	5.35:
	5.34:
	5.33:
	5.32:
	5.31:
	5.30:
	5.29:
	5.28:
	5.27:
	5.26:
	5.25:
	5.24:
	5.23:
	5.22:
	5.21:
	5.20:
	5.19:
	5.18:
	5.17:
	5.16:
	5.15:
	5.14:
	5.13:
	5.12:
	5.11:
	5.10:
	5.9:
	5.8:
	5.7:
	5.6:
	5.5:
	5.4:
	5.3:
	5.2:
	5.1:
	5.0:
	4.Plus:
	4.Reset:
	4.Minus:
	4.EndRight:
	4.StepRight:
	4.PlayPauseRight:
	4.PlayRight:
	4.PauseRight:
	4.PlayPauseLeft:
	4.PlayLeft:
	4.PauseLeft:
	4.StepLeft:
	4.EndLeft:
	anm4:
	4.95:
	4.94:
	4.93:
	4.92:
	4.91:
	4.90:
	4.89:
	4.88:
	4.87:
	4.86:
	4.85:
	4.84:
	4.83:
	4.82:
	4.81:
	4.80:
	4.79:
	4.78:
	4.77:
	4.76:
	4.75:
	4.74:
	4.73:
	4.72:
	4.71:
	4.70:
	4.69:
	4.68:
	4.67:
	4.66:
	4.65:
	4.64:
	4.63:
	4.62:
	4.61:
	4.60:
	4.59:
	4.58:
	4.57:
	4.56:
	4.55:
	4.54:
	4.53:
	4.52:
	4.51:
	4.50:
	4.49:
	4.48:
	4.47:
	4.46:
	4.45:
	4.44:
	4.43:
	4.42:
	4.41:
	4.40:
	4.39:
	4.38:
	4.37:
	4.36:
	4.35:
	4.34:
	4.33:
	4.32:
	4.31:
	4.30:
	4.29:
	4.28:
	4.27:
	4.26:
	4.25:
	4.24:
	4.23:
	4.22:
	4.21:
	4.20:
	4.19:
	4.18:
	4.17:
	4.16:
	4.15:
	4.14:
	4.13:
	4.12:
	4.11:
	4.10:
	4.9:
	4.8:
	4.7:
	4.6:
	4.5:
	4.4:
	4.3:
	4.2:
	4.1:
	4.0:
	3.Plus:
	3.Reset:
	3.Minus:
	3.EndRight:
	3.StepRight:
	3.PlayPauseRight:
	3.PlayRight:
	3.PauseRight:
	3.PlayPauseLeft:
	3.PlayLeft:
	3.PauseLeft:
	3.StepLeft:
	3.EndLeft:
	anm3:
	3.99:
	3.98:
	3.97:
	3.96:
	3.95:
	3.94:
	3.93:
	3.92:
	3.91:
	3.90:
	3.89:
	3.88:
	3.87:
	3.86:
	3.85:
	3.84:
	3.83:
	3.82:
	3.81:
	3.80:
	3.79:
	3.78:
	3.77:
	3.76:
	3.75:
	3.74:
	3.73:
	3.72:
	3.71:
	3.70:
	3.69:
	3.68:
	3.67:
	3.66:
	3.65:
	3.64:
	3.63:
	3.62:
	3.61:
	3.60:
	3.59:
	3.58:
	3.57:
	3.56:
	3.55:
	3.54:
	3.53:
	3.52:
	3.51:
	3.50:
	3.49:
	3.48:
	3.47:
	3.46:
	3.45:
	3.44:
	3.43:
	3.42:
	3.41:
	3.40:
	3.39:
	3.38:
	3.37:
	3.36:
	3.35:
	3.34:
	3.33:
	3.32:
	3.31:
	3.30:
	3.29:
	3.28:
	3.27:
	3.26:
	3.25:
	3.24:
	3.23:
	3.22:
	3.21:
	3.20:
	3.19:
	3.18:
	3.17:
	3.16:
	3.15:
	3.14:
	3.13:
	3.12:
	3.11:
	3.10:
	3.9:
	3.8:
	3.7:
	3.6:
	3.5:
	3.4:
	3.3:
	3.2:
	3.1:
	3.0:
	2.Plus:
	2.Reset:
	2.Minus:
	2.EndRight:
	2.StepRight:
	2.PlayPauseRight:
	2.PlayRight:
	2.PauseRight:
	2.PlayPauseLeft:
	2.PlayLeft:
	2.PauseLeft:
	2.StepLeft:
	2.EndLeft:
	anm2:
	2.99:
	2.98:
	2.97:
	2.96:
	2.95:
	2.94:
	2.93:
	2.92:
	2.91:
	2.90:
	2.89:
	2.88:
	2.87:
	2.86:
	2.85:
	2.84:
	2.83:
	2.82:
	2.81:
	2.80:
	2.79:
	2.78:
	2.77:
	2.76:
	2.75:
	2.74:
	2.73:
	2.72:
	2.71:
	2.70:
	2.69:
	2.68:
	2.67:
	2.66:
	2.65:
	2.64:
	2.63:
	2.62:
	2.61:
	2.60:
	2.59:
	2.58:
	2.57:
	2.56:
	2.55:
	2.54:
	2.53:
	2.52:
	2.51:
	2.50:
	2.49:
	2.48:
	2.47:
	2.46:
	2.45:
	2.44:
	2.43:
	2.42:
	2.41:
	2.40:
	2.39:
	2.38:
	2.37:
	2.36:
	2.35:
	2.34:
	2.33:
	2.32:
	2.31:
	2.30:
	2.29:
	2.28:
	2.27:
	2.26:
	2.25:
	2.24:
	2.23:
	2.22:
	2.21:
	2.20:
	2.19:
	2.18:
	2.17:
	2.16:
	2.15:
	2.14:
	2.13:
	2.12:
	2.11:
	2.10:
	2.9:
	2.8:
	2.7:
	2.6:
	2.5:
	2.4:
	2.3:
	2.2:
	2.1:
	2.0:
	1.Plus:
	1.Reset:
	1.Minus:
	1.EndRight:
	1.StepRight:
	1.PlayPauseRight:
	1.PlayRight:
	1.PauseRight:
	1.PlayPauseLeft:
	1.PlayLeft:
	1.PauseLeft:
	1.StepLeft:
	1.EndLeft:
	anm1:
	1.15:
	1.14:
	1.13:
	1.12:
	1.11:
	1.10:
	1.9:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	0.Plus:
	0.Reset:
	0.Minus:
	0.EndRight:
	0.StepRight:
	0.PlayPauseRight:
	0.PlayRight:
	0.PauseRight:
	0.PlayPauseLeft:
	0.PlayLeft:
	0.PauseLeft:
	0.StepLeft:
	0.EndLeft:
	anm0:
	0.119:
	0.118:
	0.117:
	0.116:
	0.115:
	0.114:
	0.113:
	0.112:
	0.111:
	0.110:
	0.109:
	0.108:
	0.107:
	0.106:
	0.105:
	0.104:
	0.103:
	0.102:
	0.101:
	0.100:
	0.99:
	0.98:
	0.97:
	0.96:
	0.95:
	0.94:
	0.93:
	0.92:
	0.91:
	0.90:
	0.89:
	0.88:
	0.87:
	0.86:
	0.85:
	0.84:
	0.83:
	0.82:
	0.81:
	0.80:
	0.79:
	0.78:
	0.77:
	0.76:
	0.75:
	0.74:
	0.73:
	0.72:
	0.71:
	0.70:
	0.69:
	0.68:
	0.67:
	0.66:
	0.65:
	0.64:
	0.63:
	0.62:
	0.61:
	0.60:
	0.59:
	0.58:
	0.57:
	0.56:
	0.55:
	0.54:
	0.53:
	0.52:
	0.51:
	0.50:
	0.49:
	0.48:
	0.47:
	0.46:
	0.45:
	0.44:
	0.43:
	0.42:
	0.41:
	0.40:
	0.39:
	0.38:
	0.37:
	0.36:
	0.35:
	0.34:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:
	fd@rm@2:
	fd@rm@1:
	fd@rm@0:

