
Chapter 8
Stochastic Volatility

Stochastic volatility refers to the modeling of volatility using time-dependent
stochastic processes, in contrast to the constant volatility assumption made
in the standard Black-Scholes model. In this setting, we consider the pricing
of realized variance swaps and options using moment matching approxima-
tions. We also cover the pricing of vanilla options by PDE arguments in the
Heston model, and by perturbation analysis approximations in more general
stochastic volatility models.
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8.1 Stochastic Volatility Models

Time-dependent stochastic volatility

The next Figure 8.1 refers to the EURO/SGD exchange rate, and shows some
spikes that cannot be generated by Gaussian returns with constant variance.
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Fig. 8.1: Euro / SGD exchange rate.

This type data shows that, in addition to jump models that are commonly
used to take into account the slow decrease of probability tails observed in
market data, other tools should be implemented in order to model a possibly
random and time-varying volatility.

We consider an asset price driven by the stochastic differential equation

dSt = rStdt+ St
√
vtdBt (8.1)

under the risk-neutral probability measure P∗, with solution

ST = St exp
(
(T − t)r+

w T
t

√
vsdBs − 1

2
w T
t
vsds

)
(8.2)

where (vt)t∈R+ is a (possibly random) squared volatility (or variance) process
adapted to the filtration (Ft)t∈R+ generated by (Bt)t∈R+ .

Time-dependent deterministic volatility

When the variance process (v(t))t∈R+ is a deterministic function of time,
the solution (8.2) of (8.1) is a lognormal random variable at time T with
conditional log-variance w T

t
v(s)ds

given Ft. In particular, the European call option on ST can be priced by the
Black-Scholes formula as

e−(T−t)rE∗[(ST −K)+ | Ft] = Bl
(
St,K, r,T − t,

√
v̂(t)

)
,

with integrated squared volatility parameter

v̂(t) :=

r T
t v(s)ds

T − t
, t ∈ [0,T ).
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Independent (stochastic) volatility

When the volatility (vt)t∈R+ is a random process generating a filtration(
F (2)
t

)
t∈R+

, independent of the filtration
(
F (1)
t

)
t∈R+

generated by the driv-

ing Brownian motion
(
B

(1)
t

)
t∈R+

under P∗, the equation (8.1) can still be
solved as

ST = St exp
(
(T − t)r+

w T
t

√
vsdB

(1)
s − 1

2
w T
t
vsds

)
,

and, given F (2)
T , the asset price ST is a lognormal random variable with

random variance w T
t
vsds.

In this case, taking

Ft := F (1)
t ∨ F (2)

t , 0 ⩽ t ⩽ T ,

where
(
F (1)
t

)
t∈R+

is the filtration generated by
(
B

(1)
t

)
t∈R+

, we can still price
an option with payoff ϕ(ST ) on the underlying asset price ST using the tower
property

E∗[ϕ(ST ) | Ft] = E∗[E∗[ϕ(ST ) ∣∣F (1)
t ∨ F (2)

T

] ∣∣F (1)
t ∨ F (2)

t

]
.

As an example, the European call option on ST can be priced by averaging
the Black-Scholes formula as follows:

e−(T−t)rE∗[(ST −K)+ | Ft]

= e−(T−t)rE∗[E∗[(ST −K)+
∣∣F (1)

t ∨ F (2)
T

] ∣∣F (1)
t ∨ F (2)

t

]
.

= E∗

Bl

St,K, r,T − t,

√r T
t vsds

T − t

∣∣∣∣Ft


= E∗[Bl
(
x,K, r,T − t,

√
v̂(t,T )

) ∣∣F (2)
t

]
|x=St

,

which represents an averaged version of Black-Scholes prices, with the random
integrated volatility

v̂(t,T ) :=
1

T − t

w T
t
vsds, 0 ⩽ t ⩽ T .

On the other hand, the probability distribution of the time integral
w T
t
vsds

given F (2)
t can be computed using integral expressions, see Yor (1992)
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and Proposition 13.5 when (vt)t∈R)+ is a geometric Brownian motion, and
Lemma 9 in Feller (1951) or Corollary 24 in Albanese and Lawi (2005) and
(17.6) when (vt)t∈R)+ is the CIR process.

Two-factor stochastic volatility model

Evidence based on financial market data, see Figure 9.16, Figure 1 of Papan-
icolaou and Sircar (2014) or § 2.3.1 in Fouque et al. (2011), shows that the
variations in volatility tend to be negatively correlated with the variations
of underlying asset prices. For this reason we need to consider an asset price
process (St)t∈R+ and a stochastic volatility process (vt)t∈R+ driven by

dSt = rStdt+
√
vtStdB

(1)
t

dvt = µ(t, vt)dt+ β(t, vt)dB(2)
t ,

Here,
(
B

(1)
t

)
t∈R+

and
(
B

(2)
t

)
t∈R+

are possibly correlated Brownian motions,
with

Cov
(
B

(1)
t ,B(2)

t

)
= ρt and dB

(1)
t

• dB
(2)
t = ρdt,

where the correlation parameter ρ satisfies −1 ⩽ ρ ⩽ 1, and the coefficients
µ(t,x) and β(t,x) can be chosen e.g. from mean-reverting models (CIR) or
geometric Brownian models, as follows. Note that the observed correlation
coefficient ρ is usually negative, cf. e.g. § 2.1 in Papanicolaou and Sircar
(2014) and Figures 9.16 and 9.17.

The Heston model

In the Heston (1993) model, the stochastic volatility (vt)t∈R+ is chosen to be
a Cox et al. (1985) (CIR) process, i.e. we have

dSt = rStdt+ St
√
vtdB

(1)
t

dvt = −λ(vt −m)dt+ η
√
vtdB

(2)
t ,

and µ(t, v) = −λ(v−m), β(t, v) = η
√
v, where λ, m, η > 0.

Option pricing formulas can be derived in the Heston model using Fourier
inversion and complex integrals, cf. (8.29) below.

The SABR model

In the Sigma-Alpha-Beta-Rho (σ-α-β-ρ-SABR) model Hagan et al. (2002),
based on the parameters (α,β, ρ), the stochastic volatility process (σt)t∈R+
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is modeled as a geometric Brownian motion with
dFt = σtF

β
t dB

(1)
t

dσt = ασtdB
(2)
t ,

where (Ft)t∈R+ typically models a forward interest rate. Here, we have α > 0
and β ∈ (0, 1], and

(
B

(1)
t

)
t∈R+

,
(
B

(2)
t

)
t∈R+

are standard Brownian motions
with the correlation

dB
(1)
t

• dB
(2)
t = ρdt.

This setting is typically used for the modeling of LIBOR rates and is not
mean-reverting, hence it is preferably used with a short time horizon. It
allows in particular for short time asymptotics of Black implied volatilities
that can be used for pricing by inputting them into the Black pricing formula,
cf. § 3.3 in Rebonato (2009).

8.2 Realized Variance Swaps

Another look at historical volatility

In this section, given T > 0 and N ⩾ 1, we let

tk := k
T

N
, k = 0, 1, . . . ,N .

a natural estimator for the trend parameter µ can be written in terms of
actual returns as

µ̂N :=
1
N

N∑
k=1

1
tk − tk−1

Stk − Stk−1

Stk−1
,

or in terms of log-returns as

µ̂N :=
1
N

N∑
k=1

1
tk − tk−1

log Stk
Stk−1

=
1
T

N∑
k=1

(
log(Stk ) − log(Stk−1)

)
=

1
T

log ST
S0

.

Similarly, one can use the squared volatility (or realized variance) estimator
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σ̂2
N :=

1
N − 1

N−1∑
k=0

1
tk+1 − tk

(
Stk+1 − Stk

Stk
− (tk+1 − tk)µ̂N

)2

=
1

N − 1

N∑
k=1

1
tk − tk−1

(
Stk − Stk−1

Stk−1

)2
− T

N − 1 (µ̂N )2

using actual returns, or, using log-returns,∗

σ̂2
N :=

1
N − 1

N∑
k=1

1
tk − tk−1

(
log Stk

Stk−1
− (tk − tk−1)µ̂N

)2

=
1

N − 1

N∑
k=1

1
tk − tk−1

(
log Stk

Stk−1

)2
− T

N − 1 (µ̂N )2. (8.3)

Realized variance swaps

Realized variance swaps are forward contracts that allow for the exchange of
the estimated volatility (8.3) against a fixed value κσ. They can be priced
using log-returns and expected value as

E
[
σ̂2
N

]
=

1
T

E

[
N∑
k=1

(
log Stk

Stk−1

)2
− 1
N − 1

(
log ST

S0

)2
]

− κ2
σ

of their payoff

1
T

(
N∑
k=1

(
log Stk

Stk−1

)2
− 1
N − 1

(
log ST

S0

)2
)

− κ2
σ,

where κσ is the volatility level. Note that the above payoff has to be multiplied
by the Vega notional, which is part of the contract, in order to convert it into
currency units.

Heston model

Consider the Heston (1993) model driven by the stochastic differential equa-
tion

dvt = (a− bvt)dt+ σ
√
vtdWt,

where a, b,σ > 0. We have

E[vT ] = v0e
−bT +

a

b

(
1 − e−bT

)
,

∗ We apply the identity
∑n

k=1

(
ak −

∑n
l=1 al

)2
=
∑n

k=1 a2
k −
(∑n

l=1 al

)2.
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see Exercise 4.20-(b), and Exercise 8.2-(a), from which it follows that the
realized variance R2

0,T :=
w T

0
vtdt can be averaged as

E
[
R2

0,T
]
= E

[w T
0
vtdt

]
(8.4)

=
w T

0
E[vt]dt

= v0
1 − e−bT

b
+ a

e−bT + bT − 1
b2 ,

and the variance swap with strike level κ2
σ and payoff R2

0,T −κ2
σ can be priced

as
E
[
R2

0,T − κ2
σ

]
= v0

1 − e−bT

b
+ a

e−bT + bT − 1
b2 − κ2

σ.

We can also express the variances

Var[vT ] = v0
σ2

b

(
e−bT − e−2bT )+ aσ2

2b2
(
1 − e−bT )2,

cf. Exercise 4.20-(e), and

Var
[
R2

0,T
]
= v0σ

2 1 − 2bTe−bT − e−2bT

b3 (8.5)

+aσ2 e−2bT + 2bT + 4(bT + 1) e−bT − 5
2b4 ,

see e.g. Relation (3.3) in Prayoga and Privault (2017).

Stochastic volatility

In what follows, we assume that the risky asset price process is given by

dSt
St

= rdt+ σtdBt, (8.6)

under the risk-neutral probability measure P∗, i.e.

St = S0 exp
(
rt+

w t
0
σsdBs − 1

2
w t

0
σ2
sds

)
, t ⩾ 0, (8.7)

where (σt)t∈R+ is a stochastic volatility process. In this setting, we have the
following proposition.

Proposition 8.1. Denoting by F0 := erTS0 the futures contract price on
ST , we have the relation
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E∗
[w T

0
σ2
t dt

]
= 2E∗

[
log F0

ST

]
. (8.8)

Proof. From (8.7), we have

E∗
[
log ST

F0

]
= E∗

[
log ST

S0

]
− rT

= E∗
[w T

0
σtdBt − 1

2
w T

0
σ2
t dt

]
= −1

2E∗
[w T

0
σ2
t dt

]
.

□

Independent stochastic volatility

In this subsection, we assume that the stochastic volatility process (σt)t∈R+

in (8.6) is independent of the Brownian motion (Bt)t∈R+ .
Lemma 8.2. (Carr and Lee (2008), Proposition 5.1) Assume that (σt)t∈R+

is independent of (Bt)t∈R+ , and let

p±
λ :=

1
2 ±

√
1
4 + 2λ.

Then, for every λ > 0 we have

E∗
[
exp

(
λ
w T

0
σ2
t dt

)]
= e−rp±

λ
TE∗

[(
ST
S0

)p±
λ

]
. (8.9)

Proof. Letting (Fσ
t )t∈R+ denote the filtration generated by the process

(σt)t∈R+ , we have

e−rpλTE∗
[(

ST
S0

)pλ
∣∣∣∣Fσ

T

]
= E∗

[
exp

(
pλ

w T
0
σtdBt − pλ

2
w T

0
σ2
t dt

) ∣∣∣∣Fσ
T

]
= exp

(
−pλ

2
w T

0
σ2
t dt

)
E∗
[
exp

(
pλ

w T
0
σtdBt

) ∣∣∣∣Fσ
T

]
= exp

(
−pλ

2
w T

0
σ2
t dt

)
exp

(
p2
λ

2
w T

0
σ2
t dt

)
= exp

(
pλ
2 (pλ − 1)

w T
0
σ2
t dt

)
= exp

(
λ
w T

0
σ2
t dt

)
,

provided that λ = pλ(pλ − 1)/2, and in this case we have
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e−rpλTE∗
[(

ST
S0

)pλ
]
= e−rpλTE∗

[
E∗
[(

ST
S0

)pλ
∣∣∣∣Fσ

T

]]
= E∗

[
exp

(
λ
w T

0
σ2
t dt

)]
.

It remains to note that the equation λ = pλ(pλ − 1)/2, i.e. p2
λ − pλ − 2λ = 0,

has for solutions
p±
λ =

1
2 ±

√
1
4 + 2λ,

with p−
λ < 0 < p+λ when λ > 0. □

By differentiating the moment generating function computed in Lemma 8.2
with respect to λ > 0, we can compute the first moment of the realized
variance R2

0,T =
w T

0
σ2
t dt in the following corollary.

Corollary 8.3. Assume that (σt)t∈R+ is independent of (Bt)t∈R+ . Denoting
by F0 := erTS0 the futures contract price on ST , we have

E∗
[w T

0
σ2
t dt

]
= 2E∗

[
ST
F0

log ST
F0

]
.

Proof. Rewriting (8.9) as

E∗
[
exp

(
λ
w T

0
σ2
t dt

)]
= E∗

[
exp

(
−rp±

λ T + p±
λ log ST

S0

)]
and differentiating this relation with respect to λ, we get

E∗
[w T

0
σ2
t dt exp

(
λ
w T

0
σ2
t dt

)]
= −rp′

λTE∗
[
exp

(
−rp±

λ T + p±
λ log ST

S0

)]
+p′

λE∗
[
exp

(
−rp±

λ T + p±
λ log ST

S0

)
log ST

S0

]
= ∓ rT√

2λ+ 1/4
E∗
[

exp
(
−rp±

λ T
)(ST

S0

)p±
λ

]

± 1√
2λ+ 1/4

E∗
[
exp

(
−rp±

λ T + p±
λ log ST

S0

)
log ST

S0

]
,

which, when λ = 0, recovers (8.8) in Proposition 8.1 as

E∗
[w T

0
σ2
t dt

]
= 2rT − 2E∗

[
log ST

S0

]
= −2E∗

[w T
0
σtdBt − 1

2
w T

0
σ2
t dt

]
if p−

0 = 0, and yields
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E∗
[w T

0
σ2
t dt

]
= 2 e−rTE∗

[
ST
S0

log e−rTST
S0

]
for p+0 = 1. □

8.3 Realized Variance Options

In this section, we consider the realized variance call option with payoff(w T
0
σ2
t dt− κ2

σ

)+

.

Proposition 8.4. Under the condition
w t

0
σ2
udu ⩾ κ2

σ, the price of the real-
ized variance call option in the money is given by

e−(T−t)rE∗
[( w T

0
σ2
udu− κ2

σ

)+∣∣∣∣Ft]
= e−(T−t)r

w t
0
σ2
udu− e−(T−t)rκ2

σ + e−(T−t)rE∗
[ w T

t
σ2
udu

∣∣∣∣Ft].
Proof. In case

w t
0
σ2
udu ⩾ κ2

σ, we have

e−(T−t)rE∗
[(w T

0
σ2
udu− κ2

σ

)+∣∣∣∣Ft]
= e−(T−t)rE∗

[(
x+

w T
t
σ2
udu− κ2

σ

)+∣∣∣∣Ft]
x=

r t
0 σ

2
udu

= e−(T−t)rE∗
[
x+

w T
t
σ2
udu− κ2

σ

∣∣∣∣Ft]
x=

r t
0 σ

2
udu

= e−(T−t)r
w t

0
σ2
udu− e−(T−t)rκ2

σ + e−(T−t)rE∗
[w T

t
σ2
udu

∣∣∣∣Ft].
□

In Proposition 8.4, the futures contract price E∗
[w T

t
σ2
udu

∣∣∣∣Ft] can be com-

puted from Proposition 8.1.

Lognormal approximation

When R2
0,t :=

w t
0
σ2
udu < κ2

σ, in order to estimate the price
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e−(T−t)rE∗
[(
x+

w T
t
σ2
udu− κ2

σ

)+ ∣∣∣∣Ft]
x=

r t
0 σ

2
udu

, (8.10)

of the realized variance call option out of the money, we can approximate
Rt,T :=

√r T
t σ2

udu by a lognormal random variable

Rt,T =

√w T
t
σ2
udu ≃ eµ̃t,T +σ̃t,TX

with mean µ̃t,T and variance η2
t,T , where X ≃ N (0,T − t) is a centered

Gaussian random variable with variance T − t.
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Fig. 8.2: Fitting of a lognormal probability density function (example).

Proposition 8.5. (Lognormal approximation by volatility swap moment
matching). The probability density function φRt,T of Rt,T :=

√r T
t σ2

udu can
be approximated as

φRt,T (x) ≈ 1
xσ̃t,T

√
2(T − t)π

exp
(

−
(µ̃t,T − log x)2

2(T − t)σ̃2
t,T

)
, x > 0, (8.11)

where

µ̃t,T := log

(E[Rt,T ]
)2√

E
[
R2
t,T
]
 and σ̃2

t,T :=
2

T − t
log


√

E
[
R2
t,T
]

E[Rt,T ]

 , (8.12)

and E
[
R2
t,T
]
, E[Rt,T ] can be estimated from realized variance and volatility

swap prices.

Proof. The parameters µ̃t,T and σ̃t,T are estimated by matching the first
and second moments E

[
Rt,T

]
and E

[
R2
t,T
]

of Rt,T to those of the lognormal
distribution with mean µ̃t,T and variance (T − t)σ̃2

t,T , which yields
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E[Rt,T ] = eµ̃t,T +(T−t)σ̃2
t,T /2 and E

[
R2
t,T
]
= e2(µ̃t,T +(T−t)σ̃2

t,T ),

and (8.12). □

By (8.12), the parameters µ̃t,T and σ̃2
t,T can be estimated from the realized

volatility swap price

e−(T−t)rE∗[Rt,T | Ft
]
= e−(T−t)rE∗

[√w T
t
σ2
udu

∣∣∣∣Ft],
and from the realized variance swap price

e−(T−t)rE∗[R2
t,T | Ft

]
= e−(T−t)rE∗

[w T
t
σ2
udu

∣∣∣∣Ft].
By Proposition 8.7, we can estimate the price (8.10) of the realized variance
call option by approximating R2

t,T =
r T
t σ2

udu by a lognormal random vari-
able. We refer to § 8.4 in Friz and Gatheral (2005) or to Relation (11.15)
page 152 of Gatheral (2006) for the following result.
Proposition 8.6. Under the lognormal approximation (8.11), the price

VCt,T (κσ) = e−(T−t)rE
[(
x+R2

t,T − κ2
σ

)+]
x=R2

0,t

of the realized variance call option can be approximated as

VCt,T (κσ) ≈ e−(T−t)rE
[
R2
t,T
]
Φ(d+) − e−(T−t)r(κ2

σ −R2
0,t
)
Φ(d−), (8.13)

where

d+ :=
log
(
(E[Rt,T ])

2/
(
κ2
σ −R2

0,t
))

2σ̃t,T
√
T − t

+ 2σ̃t,T
√
T − t

=
− log

(
κ2
σ −R2

0,t
)
+ 2µ̃t,T + 4(T − t)σ̃2

t,T

2σ̃t,T
√
T − t

,

and

d− := d+ − 2σ̃t,T
√
T − t =

2µ̃t,T − log
(
κ2
σ −R2

0,t
)

2σ̃t,T
√
T − t

,

and Φ denotes the standard Gaussian cumulative distribution function.
Proof. The lognormal approximation (8.13) by realized variance moment
matching states that

φRt,T (x) ≈ 1
xσ̃t,T

√
2(T − t)π

e−(−µ̃t,T +log x)2/(2(T−t)σ̃2
t,T ), x > 0,

or equivalently
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φR2
t,T

(x) =
1

2
√
x
φRt,T (

√
x)

≈ 1
2xσ̃t,T

√
2(T − t)π

e−(−2µ̃t,T +log x)2/(2(T−t)(2σ̃t,T )2), x > 0.

In other words, the distribution of R2
t,T is approximately that of e2µ̃t,T +2σ̃t,TX

where X ≃ N (0,T − t), hence by e.g. Lemma 7.7 we have

VCt,T (κσ) = e−(T−t)rE
[(
x+R2

t,T − κ2
σ

)+]
x=R2

0,t

= e−(T−t)r
w ∞

κσ

(
y−

(
κ2
σ −R2

0,t
))+

φR2
t,T

(y)dy

≈ e−(T−t)rE
[(

e2µ̃t,T +2σ̃t,TX − (κ2
σ − x)

)+]
x=R2

0,t

= e−(T−t)r( e2µ̃t,T +2(T−t)σ̃2
t,T Φ(d+) −

(
κ2
σ −R2

0,t
)
Φ(d−)

)
= e−(T−t)rE

[
R2
t,T
]
Φ(d+) − e−(T−t)r(κ2

σ −R2
0,t
)
Φ(d−),(8.14)

see Lemma 7.7. □

In order to estimate the price

e−(T−t)rE∗
[(
x+

w T
t
σ2
udu− κ2

σ

)+ ∣∣∣∣Ft]
x=

r t
0 σ

2
udu

,

of the realized variance call option when R0,t :=

√w t
0
σ2
udu < κσ, we can

also approximate R2
t,T :=

r T
t σ2

udu by a lognormal random variable

R2
t,T =

w T
t
σ2
udu ≃ eµ̃t,T +σ̃t,TX

with mean µ̃t,T and variance σ2
t,T , where X ≃ N (0, 1) is a standard normal

random variable.

Proposition 8.7. (Lognormal approximation by realized variance moment
matching). Under the lognormal approximation, the probability density func-
tion φR2

t,T
of R2

t,T :=
r T
t σ2

udu can be approximated as

φR2
t,T

(x) ≈ 1
xσ̃t,T

√
2(T − t)π

exp
(

−
(µ̃t,T − log x)2

2(T − t)σ̃2
t,T

)
, x > 0, (8.15)

where

µ̃t,T := −(T − t)
σ̃2
t,T
2 + log E[R2

t,T ], (8.16)

and
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σ̃2
t,T =

1
T − t

log
(

1 +
Var[R2

t,T ]

(E[R2
t,T ])

2

)
. (8.17)

Proof. The parameters µ̃t,T and σ̃t,T are estimated by matching the first
and second moments E

[
R2
t,T
]

and E
[
R4
t,T
]

of R4
t,T to those of the lognormal

distribution with mean µ̃t,T and variance (T − t)σ̃2
t,T , which yields

E
[
R2
t,T
]
= eµ̃t,T +(T−t)σ̃2

t,T /2, E
[
R4
t,T
]
= e2(µ̃t,T +(T−t)σ̃2

t,T ),

and

µ̃t,T = −(T − t)
σ̃2
t,T
2 + log E

[
R2
t,T
]

and σ̃2
t,T :=

1
T − t

log

 E
[
R4
t,T
](

E
[
R2
t,T
])2
 .

□

By (8.16)-(8.17), the parameters µ̃t,T and σ̃2
t,T can be estimated from the

realized variance swap price

e−(T−t)rE∗[R2
t,T | Ft

]
= e−(T−t)rE∗

[w T
t
σ2
udu

∣∣∣∣Ft],
and from the realized variance power option price

e−(T−t)rE∗[R4
t,T | Ft

]
= e−(T−t)rE∗

[(w T
t
σ2
udu

)2 ∣∣∣∣Ft].
The next proposition is obtained by the same argument as in the proof of
Proposition 8.6.

Proposition 8.8. Under the lognormal approximation (8.15), the price

VCt,T (κσ) = e−(T−t)rE
[(
x+R2

t,T − κ2
σ

)+]
x=R0,t

of the realized variance call option can be approximated as

VCt,T (κσ) ≈ e−(T−t)rE
[
R2
t,T
]
Φ(d+) − e−(T−t)r(κ2

σ −R2
0,t
)
Φ(d−), (8.18)

where

d+ :=
log
(
E
[
R2
t,T
]
/
(
κ2
σ −R2

0,t
))

σ̃t,T
√
T − t

+ σ̃t,T

√
T − t

2

=
− log

(
κ2
σ −R2

0,t
)
+ µ̃t,T + (T − t)σ̃2

t,T

σ̃t,T
√
T − t

,

and
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d− := d+ − σ̃t,T
√
T − t =

µ̃t,T − log
(
κ2
σ −R2

0,t
)

σ̃t,T
√
T − t

,

and Φ denotes the standard Gaussian cumulative distribution function.

Note that, using the integral identity

√
x =

1
2
√
π

w ∞

0
(1 − e−λx)

dλ

λ3/2 ,

see e.g. Relation 3.434.1 in Gradshteyn and Ryzhik (2007) for ρ = 1/2 and
Exercise 9.11-(a), the realized volatility swap price E[Rt,T ] can be expressed
as

E[Rt,T ] =
1

2
√
π

w ∞

0

(
1 − E

[
e−λR2

t,T
]) dλ
λ3/2 , (8.19)

see § 3.1 in Friz and Gatheral (2005), where E
[
e−λR2

t,T
]

can be expressed
from Lemma 8.2. In particular, by e.g. Relation (3.25) in Brigo and Mercurio
(2006), in the Cox et al. (1985) (CIR)

dvt = (a− bvt)dt+ η
√
vtdWt

variance model with vt = σ2
t , we have

E
[
e−λR2

0,T
]

= exp
(

− 2v0λ(1 − e−bT )

b+ b+ (b− b) e−bT
− a

η2 (b− b)T − 2a
η2 log b+ b+ (b− b)e−bT

2b

)
,

where b :=
√
b2 + 2λη2.

Gamma approximation

In case R2
0,t =

w t
0
σ2
udu < κ2

σ, the realized variance call option price

e−(T−t)rE∗
[(
x+

w T
t
σ2
udu− κ2

σ

)+ ∣∣∣∣Ft]
x=

r t
0 σ

2
udu

can be estimated by approximating R2
t,T =

r T
t σ2

udu by a gamma random
variable as in the probability density graph of Figure 8.3.
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Fig. 8.3: Fitting of a gamma probability density function (example).

Proposition 8.9. (Gamma approximation). Under the gamma approxima-
tion the probability density function φR2

t,T
of R2

t,T :=
r T
t σ2

udu can be approx-
imated as

φR2
t,T

(x) ≈
(x/θt,T )−1+νt,T

θt,T Γ (νt,T )
e−x/θt,T , x > 0, (8.20)

where

θt,T =
Var

[
R2
t,T
]

E
[
R2
t,T
] and νt,T =

E
[
R2
t,T
]

θt,T
=

(
E
[
R2
t,T
])2

Var
[
R2
t,T
] . (8.21)

Proof. The parameters θt,T , νt,T are estimated by matching the first and
second moments of R2

t,T to those of the gamma distribution with scale and
shape parameters θt,T and νt,T , which yields

E
[
R2
t,T
]
= νt,T θt,T and Var

[
R2
t,T
]
= νt,T θ

2
t,T ,

and (8.21). □

Proposition 8.10. Under the gamma approximation (8.20), the price

EA(κσ,T ) = e−(T−t)rE
[(
x+R2

t,T − κ2
σ

)+]
x=R2

0,t

of the realized variance call option can be approximated as

EA(κσ,T ) = e−(T−t)r
(

E
[
R2
t,T
]
Q

(
1 + νt,T , κ

2
σ

θt,T

)
− κ2

σQ

(
νt,T , κ

2
σ

θt,T

))
,

(8.22)
where

Q(λ, z) :=
1

Γ(λ)

w ∞

z
tλ−1 e−tdt, z > 0,

is the (normalized) upper incomplete gamma function.
Proof. Using the gamma approximation
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φR2
t,T

(x) ≈ e−x/θt,T

Γ(νt,T )
x−1+νt,T

(θt,T )
νt,T

, (8.23)

where θt,T and νt,T are given by (8.21), we have

E
[(
R2
t,T − κ2

σ

)+]
=

w ∞

κ2
σ

(x− κ2
σ)

+φR2
t,T

(x)dx

≈ 1
Γ(νt,T )

w ∞

κ2
σ

(x− κ2
σ)
x−1+νt,T

(θt,T )
νt,T

e−x/θt,T dx

=
1

Γ(νt,T )

w ∞

κ2
σ

(x/θt,T )νt,T e−x/θt,T dx− κ2
σ

Γ(νt,T )

w ∞

κ2
σ

x−1+νt,T

(θt,T )
νt,T

e−x/θt,T dx

=
θt,T

Γ(νt,T )

w ∞

κ2
σ/θt,T

xνt,T e−xdx− κ2
σ

Γ(νt,T )

w ∞

κ2
σ/θt,T

x−1+νt,T e−xdx

= θt,T νt,TQ

(
1 + νt,T , κ

2
σ

θt,T

)
− κ2

σQ

(
νt,T , κ

2
σ

θt,T

)
,

where
Q(λ, z) :=

1
Γ(λ)

w ∞

z
tλ−1 e−tdt, z > 0,

is the (normalized) upper incomplete gamma function, which yields

EA(κσ,T ) = e−(T−t)rE
[(
x+R2

t,T − κ2
σ

)+]
≈ e−(T−t)r

(
νt,T θt,TQ

(
1 + νt,T , κ

2
σ

θt,T

)
− κ2

σQ

(
νt,T , κ

2
σ

θt,T

))
(8.24)

= e−(T−t)r
(

E
[
R2
t,T
]
Q

(
1 + νt,T , κ

2
σ

θt,T

)
− κ2

σQ

(
νt,T , κ

2
σ

θt,T

))
.

□

Realized variance options in the Heston model

Taking r = 0, t = 0 and R0,0 = 0, and using the parameters

σ = 0.39, b = 1.15, a = 0.04 × b, v0 = 0.04, T = 1

in the Heston stochastic differential equation

dvt = (a− bvt)dt+ σ
√
vtdWt,

in Figures 8.4-8.5 we plot the graphs of the lognormal volatility swap and
realized variance moment matching approximations (8.13), (8.18), and of the
gamma approximation (8.22) for realized variance call option prices with
κ2
σ ∈ [0, 0.2], based on the expressions (8.4)-(8.5) of E

[
R2

0,T
]

and Var
[
R2

0,T
]
.
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Fig. 8.4: One-year variance call option prices with b = 0.15.

The graphs of Figures 8.4-8.5 are obtained using this and .
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Fig. 8.5: One-year variance call option prices with b = −0.05.

As can be checked from in Figure 8.5 with

σ = 0.39, b = 1.15, a = 0.04 × b, v0 = 0.04, T = 1,

the gamma approximation (8.22) appears to be more accurate than the log-
normal approximations for large values of κ2

σ, which can be consistent with
the fact that the long run distribution of the CIR-Heston process has the
gamma probability density function

f(x) =
1

Γ(2a/σ2)

(
2b
σ2

)2a/σ2

x−1+2a/σ2 e−2bx/σ2 , x > 0.
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install.packages("gsl")

library(gsl)

sigma=0.39
b=1.15
a=0.04*b
S0=0.04
T=1
r=0

mean = S0*(1-exp(-b*T))/b+a*(exp(-b*T)+b*T-1)/b/b

var = S0*sigma*sigma*(1-2*b*T*exp(-b*T)-exp(-2*b*T))/b/b/b-a*sigma*sigma*(5-2*b*T-exp(-2*b*T)-4*(b*T+1)*exp(-b*T))/2/b/b/b/b

sigmatT = sqrt(log(1+var/mean/mean))/sqrt(T)

mutT = -sigmatT*sigmatT*T/2 + log(mean)

lognormal <- function(K) {
d1 <- (-log(K)+mutT+sigmatT*sigmatT*T)/sigmatT/sqrt(T) 
d2 <- d1 - sigmatT*sqrt(T)
lognormal = exp(-r*T)*mean*pnorm(d1)-exp(-r*T)*K*pnorm(d2)
lognormal 
}

laplace <- function(z) {
bbar = sqrt(b*b-2*z*sigma*sigma)
psi = -2*z*(1-exp(-bbar*T))/(b+bbar+(bbar-b)*exp(-bbar*T))
phi = (bbar-b)*T/sigma/sigma + 2*log((bbar+b+(bbar-b)*exp(-bbar*T))/2/bbar)/sigma/sigma
laplace = exp(-S0*psi-a*phi) 
laplace 
}

integrand <- function(x) {(1-laplace(-x))*x^(-3/2)/2/sqrt(pi)}

rootmean = integrate(integrand, lower = 0, upper = Inf)$val

rootsigmatT = sqrt(log(mean/rootmean/rootmean))/sqrt(T)

rootmutT = 0.5*log(rootmean^4/mean)

rootlognormal <- function(K) {
d1 <- (-0.5*log(K)+rootmutT+2*rootsigmatT*rootsigmatT*T)/rootsigmatT/sqrt(T) 
d2 <- d1 - 2*rootsigmatT*sqrt(T)
rootlognormal = exp(-r*T)*mean*pnorm(d1)-exp(-r*T)*K*pnorm(d2)
rootlognormal 
}

thetatT = var/mean

nutT = mean*mean/var

gamma <- function(K) {
gamma = exp(-r*T)*(thetatT*nutT*gamma_inc_Q(1+nutT,K/thetatT,give=FALSE,strict=TRUE)-K*gamma_inc_Q(nutT,K/thetatT,give=FALSE,strict=TRUE))
gamma 
}

WD <- getwd()
if (!is.null(WD)) setwd(WD)

MC<-read.table("montecarlo.dat",header=F)

x<-seq(0,0.2,0.01)
plot(x,rootlognormal(x), type="l", xaxs="i", yaxs="i",xlab="Strike Price K", lwd = 3, ylab="Variance Call Option Price",col="black",ylim=c(-0.0,0.04),xlim=c(0,0.2))
par(new=TRUE)
curve(lognormal(x), from=0, to=0.2, xaxs="i", yaxs="i", lwd = 3, labels = FALSE, col="red", xlab="",ylab="")
par(new=TRUE)
curve(gamma(x), from=0, to=0.2 ,  xaxs="i", yaxs="i", lwd = 3, labels = FALSE,col = "blue", xlab="",ylab="")

lines(MC[,1],MC[,2],xaxs="i", yaxs="i", xlab="", labels = FALSE,col = "orange",lwd = 3, ylab="" )

legend(0.064, 0.04, legend=c("Lognormal variance swap moment matching", "Lognormal volatility swap moment matching", "Gamma variance swap moment matching", "Monte Carlo"),col=c("red", "black", "blue","orange"), lty=1:1, cex=1.,lwd=3)

grid(nx = 20, ny = 20, col = "gray" )
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with shape parameter 2a/σ2 and scale parameter σ2/(2b), which is also the
invariant distribution of vt.

8.4 European Options - PDE Method

In what follows we consider an asset price process (St)t∈R+ in the stochastic
volatility model

dSt = rStdt+ St
√
vtdB

(1)
t

under the risk-neutral probability measure P∗, where (vt)t∈R+ is a squared
volatility (or variance) process satisfying a stochastic differential equation of
the form

dvt = µ(t, vt)dt+ β(t, vt)dB(2)
t .

Here,
(
B

(1)
t

)
t∈R+

and
(
B

(2)
t

)
t∈R+

are correlated standard Brownian motions

started at 0 with correlation Corr
(
B

(1)
s ,B(2)

t

)
= ρmin(s, t) under the risk-

neutral probability measure P∗, i.e. dB(1)
t

• dB
(2)
t = ρdt.

Proposition 8.11. Assume that
(
B

(2)
t

)
t∈R+

is also a standard Brownian
motion under the risk-neutral probability measure∗ P∗. Consider a vanilla
option with payoff h(ST ) priced as

Vt = f(t, vt,St) = e−(T−t)rE∗[h(ST ) | Ft], 0 ⩽ t ⩽ T .

The function f(t, y,x) satisfies the PDE

∂f

∂t
(t, v,x) + rx

∂f

∂x
(t, v,x) + 1

2vx
2 ∂

2f

∂x2 (t, v,x) (8.25)

+ µ(t, v)∂f
∂v

(t, v,x) + 1
2β

2(t, v)∂
2f

∂v2 (t, v,x) + ρβ(t, v)x
√
v
∂2f

∂v∂x
(t, v,x)

= rf(t, v,x),

under the terminal condition f(T , v,x) = h(x).
Proof. By Itô calculus with respect to the correlated Brownian motions(
B

(1)
t

)
t∈R+

and
(
B

(2)
t

)
t∈R+

, the portfolio value f(t, vt,St) can be differenti-
ated as follows:

df(t, vt,St) (8.26)

=
∂f

∂t
(t, vt,St)dt+ rSt

∂f

∂x
(t, vt,St)dt+

√
vtSt

∂f

∂x
(t, vt,St)dB(1)

t

∗ When this condition is not satisfied, we need to introduce a drift that will yield a
market price of volatility.
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+
1
2vtS

2
t
∂2f

∂x2 (t, vt,St)dt+ µ(t, vt)
∂f

∂v
(t, vt,St)dt

+β(t, vt)
∂f

∂v
(t, vt,St)dB(2)

t +
1
2β

2(t, vt)
∂2f

∂v2 (t, vt,St)dt

+β(t, vt)
√
vtSt

∂2f

∂v∂x
(t, vt,St)dB(1)

t
• dB

(2)
t

=
∂f

∂t
(t, vt,St)dt+ rSt

∂f

∂x
(t, vt,St)dt+

√
vtSt

∂f

∂x
(t, vt,St)dB(1)

t

+
1
2vtS

2
t
∂2f

∂x2 (t, vt,St)dt+ µ(t, vt)
∂f

∂v
(t, vt,St)dt

+β(t, vt)
∂f

∂v
(t, vt,St)dB(2)

t +
1
2β

2(t, vt)
∂2f

∂v2 (t, vt,St)dt

+ρβ(t, vt)
√
vtSt

∂2f

∂v∂x
(t, vt,St)dt.

Knowing that the discounted portfolio value process ( e−rtf(t, vt,St))t∈R+ is
also a martingale under P∗, from the relation

d( e−rtf(t, vt,St)) = −r e−rtf(t, vt,St)dt+ e−rtdf(t, vt,St),

we obtain

− rf(t, vt,St)dt+
∂f

∂t
(t, vt,St)dt+ rSt

∂f

∂x
(t, vt,St)dt+

1
2vtS

2
t
∂2f

∂x2 (t, vt,St)dt

+ µ(t, vt)
∂f

∂v
(t, vt,St)dt+

1
2β

2(t, vt)
∂2f

∂v2 (t, vt,St)dt

+ ρβ(t, vt)St
√
vt
∂2f

∂v∂x
(t, vt,St)dt

= 0,

and the pricing PDE (8.25). □

Heston model

In the Heston model with µ(t, v) = −λ(v −m) and β(t, v) = η
√
v, from

(8.25) we find the Heston PDE

∂f

∂t
(t, v,x) + rx

∂f

∂x
(t, v,x) + 1

2vx
2 ∂

2f

∂x2 (t, v,x) (8.27)

− λ(v−m)
∂f

∂v
(t, v,x) + 1

2η
2v
∂2f

∂v2 (t, v,x) + ρηxv
∂2f

∂v∂x
(t, v,x) = rf(t, v,x).
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The solution of this PDE has been expressed in Heston (1993) as a complex
integral by inversion of a characteristic function.

Using the change of variable y = log x where with g(t, v, y) = f(t, v, ey), the
PDE (8.27) is transformed into

∂g

∂t
(t, v, y) + 1

2v
∂2g

∂y2 (t, v, y) +
(
r− v

2

) ∂g
∂y

(t, v,x)

+ λ(m− v)
∂g

∂v
(t, v, y) + v

η2

2
∂2g

∂v2 (t, v, y) + ρηv
∂2g

∂v∂y
(t, v, y) = rg(t, v, y).

The following proposition shows that the Fourier transform of g(t, v, y) sat-
isfies an affine PDE with respect to the variable v, when z is regarded as a
constant parameter.

Proposition 8.12. Assume that ρ = 0. The Fourier transform

ĝ(t, v, z) :=
w ∞

−∞
e−iyzg(t, v, y)dy

satisfies the partial differential equation

∂ĝ

∂t
(t, v, z) +

(
irz − 1

2vz
2
)
ĝ(t, v, z) − iz

1
2vĝ(t, v, z) (8.28)

+ (λ(m− v) + iρηzv)
∂ĝ

∂v
(t, v, z) + v

η2

2
∂2ĝ

∂v2 (t, v, z) = rĝ(t, v, z).

Proof. We apply the relations i2 = −1 and

izĝ(t, v, z) =
w ∞

−∞
e−iyz ∂g

∂y
(t, v, y)dy.

□

The equation (8.28) can be solved in closed form, and the final solution
g(t, v, y) can then be obtained by the Fourier inversion relation

g(t, v, y) = 1
2π

w ∞

−∞
eizy ĝ(t, v, z)dz, (8.29)

see Heston (1993), Attari (2004), Albrecher et al. (2007), and Rouah (2013)
for details.

Delta hedging in the Heston model

Consider a portfolio of the form
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Vt = ηt ert + ξtSt

based on the riskless asset At = ert and on the risky asset St. When this
portfolio is self-financing we have

dVt = df(t, vt,St)
= rηt ertdt+ ξtdSt

= rηt ertdt+ ξt
(
rStdt+ St

√
vtdB

(1)
t

)
= rVtdt+ ξtSt

√
vtdB

(1)
t

= rf(t, vt,St)dt+ ξtSt
√
vtdB

(1)
t . (8.30)

However, trying to match (8.26) to (8.30) yields

√
vtSt

∂f

∂x
(t, vt,St)dB(1)

t + β(t, vt)
∂f

∂v
(t, vt,St)dB(2)

t = ξtSt
√
vtdB

(1)
t ,
(8.31)

which admits no solution unless β(t, v) = 0, i.e. when volatility is determin-
istic. A solution to that problem is to consider instead a portfolio

Vt = f(t, vt,St) = ηt ert + ξtSt + ζtP (t, vt,St)

that includes an additional asset with price P (t, vt,St), which can be an
option depending on the volatility vt.
Proposition 8.13. Assume that ρ = 0. The self-financing portfolio alloca-
tion (ξt, ζt)t∈[0,T ] in the assets ( ert,St,P (t, vt,St))t∈[0,T ] with portfolio value

Vt = f(t, vt,St) = ηt ert + ξtSt + ζtP (t, vt,St) (8.32)

is given by

ζt =

∂f

∂v
(t, vt,St)

∂P

∂v
(t, vt,St)

, (8.33)

and

ξt =
∂f

∂x
(t, vt,St) − ∂f

∂v
(t, vt,St)

∂P

∂x
(t, vt,St)

∂P

∂v
(t, vt,St)

. (8.34)

Proof. Using (8.32), we replace (8.30) with the self-financing condition

dVt = df(t, vt,St)
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= rηt ertdt+ ξtdSt + ζtdP (t, vt,St)

= rηt ertdt+ ξt(rStdt+ St
√
vtdB

(1)
t ) + rζtSt

∂P

∂x
(t, vt,St)dt

+ζtµ(t, vt)
∂P

∂v
(t, vt,St)dt+ ζt

∂P

∂t
(t, vt,St)dt+

1
2ζtS

2
t vt

∂2P

∂x2 (t, vt,St)dt

+
1
2ζtβ

2(t, vt)
∂2P

∂v2 (t, vt,St)dt+ ρζtβ(t, vt)St
√
vt
∂2P

∂x∂v
(t, vt,St)dt

+ζtSt
√
vt
∂P

∂x
(t, vt,St)dB(1)

t + ζtβ(t, vt)
∂P

∂v
(t, vt,St)dB(2)

t ,

= (Vt − ζtP (t, vt,St))rdt+ ξtSt
√
vtdB

(1)
t + rζtSt

∂P

∂x
(t, vt,St)dt

+ζtµ(t, vt)
∂P

∂v
(t, vt,St)dt+ ζt

∂P

∂t
(t, vt,St)dt+

1
2ζtS

2
t vt

∂2P

∂x2 (t, vt,St)dt

+
1
2ζtβ

2(t, vt)
∂2P

∂v2 (t, vt,St)dt+ ρζtβ(t, vt)St
√
vt
∂2P

∂x∂v
(t, vt,St)dt

+ζtSt
√
vt
∂P

∂x
(t, vt,St)dB(1)

t + ζtβ(t, vt)
∂P

∂v
(t, vt,St)dB(2)

t

= rf(t, vt,St)dt+ ξtSt
√
vtdB

(1)
t + rζtSt

∂P

∂x
(t, vt,St)dt

+ζtµ(t, vt)
∂P

∂v
(t, vt,St)dt+ ζt

∂P

∂t
(t, vt,St)dt+

1
2ζtS

2
t vt

∂2P

∂x2 (t, vt,St)dt

+
1
2ζtβ

2(t, vt)
∂2P

∂v2 (t, vt,St)dt+ ρζtβ(t, vt)St
√
vt
∂2P

∂x∂v
(t, vt,St)dt

+ζtSt
√
vt
∂P

∂x
(t, vt,St)dB(1)

t + ζtβ(t, vt)
∂P

∂v
(t, vt,St)dB(2)

t , (8.35)

and by matching (8.35) to (8.26), the equation (8.31) now becomes

√
vtSt

∂f

∂x
(t, vt,St)dB(1)

t + β(t, vt)
∂f

∂v
(t, vt,St)dB(2)

t

= ξtSt
√
vtdB

(1)
t + ζtSt

√
vt
∂P

∂x
(t, vt,St)dB(1)

t + ζtβ(t, vt)
∂P

∂v
(t, vt,St)dB(2)

t .

This leads to the equations
√
vtSt

∂f

∂x
(t, vt,St) = ξtSt

√
vt + ζtSt

√
vt
∂P

∂x
(t, vt,St),

β(t, vt)
∂f

∂v
(t, vt,St) = ζtβ(t, vt)

∂P

∂v
(t, vt,St),

which show that

ζt =

∂f

∂v
(t, vt,St)

∂P

∂v
(t, vt,St)

,
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and

ξt =
1

St
√
vt

(
√
vtSt

∂f

∂x
(t, vt,St) − ζtSt

√
vt
∂P

∂x
(t, vt,St),

)
=
∂f

∂x
(t, vt,St) − ζt

∂P

∂x
(t, vt,St)

=
∂f

∂x
(t, vt,St) − ∂f

∂v
(t, vt,St)

∂P

∂x
(t, vt,St)

∂P

∂v
(t, vt,St)

.

□

We note in addition that identifying the “dt” terms when equating (8.35) to
(8.26) would now lead to the more complicated PDE

(f(t, vt,St) − ζtP (t, vt,St))r+ rζtSt
∂P

∂x
(t, vt,St) + ζtµ(t, vt)

∂P

∂v
(t, vt,St)

+ζt
∂P

∂t
(t, vt,St) +

1
2ζtS

2
t vt

∂2P

∂x2 (t, vt,St) +
1
2ζtβ

2(t, vt)
∂2P

∂v2 (t, vt,St)

+ρζtβ(t, vt)St
√
vt
∂2P

∂x∂v
(t, vt,St)

=
∂f

∂t
(t, vt,St) + rSt

∂f

∂x
(t, vt,St) +

1
2vtS

2
t
∂2f

∂x2 (t, vt,St) + µ(t, vt)
∂f

∂v
(t, vt,St)

+
1
2β

2(t, vt)
∂2f

∂v2 (t, vt,St) + ρβ(t, vt)St
√
vt
∂2f

∂v∂x
(t, vt,St),

which can be rewritten using (8.33) as

∂f

∂v
(t, v,x)

(
−rP (t, v,x) + ∂P

∂t
(t, v,x) + rx

∂P

∂x
(t, v,x) + µ(t, v)∂P

∂v
(t, v,x)

)
+
∂f

∂v
(t, v,x)

(
x2v

2
∂2P

∂x2 (t, v,x) + 1
2β

2(t, v)∂
2P

∂v2 (t, v,x) + ρβ(t, v)x
√
v
∂2P

∂x∂v
(t, v,x)

)
=
∂P

∂v
(t, v,x)

(
−rf(t, v,x) + ∂f

∂t
(t, v,x) + rx

∂f

∂x
(t, v,x) + vx2

2
∂2f

∂x2 (t, v,x)
)

+
∂P

∂v
(t, v,x)

(
µ(t, v)∂f

∂v
(t, v,x) + 1

2β
2(t, v)∂

2f

∂v2 (t, v,x) + ρβ(t, v)x
√
v
∂2f

∂v∂x
(t, v,x)

)
.

Therefore, dividing both sides by ∂P

∂v
(t, v,x) and letting

λ(t, v,x) (8.36)

:=
1

∂P
∂v (t, v,x)

(
−rP (t, v,x) + rx

∂P

∂x
(t, v,x) + ∂P

∂t
(t, v,x)

)
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+
1

∂P
∂v (t, v,x)

(
x2v

2
∂2P

∂x2 (t, v,x) + 1
2β

2(t, v)∂
2P

∂v2 (t, v,x) + ρβ(t, v)x
√
v
∂2P

∂x∂v
(t, v,x)

)
=

1
∂f
∂v (t, v,x)

(
−rf(t, v,x) + ∂f

∂t
(t, v,x) + rx

∂f

∂x
(t, v,x) + vx2

2
∂2f

∂x2 (t, v,x)
)

(8.37)

+
1

∂f
∂v (t, v,x)

(
1
2β

2(t, v)∂
2f

∂v2 (t, v,x) + ρβ(t, v)x
√
v
∂2f

∂v∂x
(t, v,x)

)
(8.38)

defines a function λ(t, v,x) that depends only on the parameters (t, v,x) and
not on P , without requiring

(
B

(2)
t

)
t∈R+

to be a standard Brownian motion
under P. The function λ(t, v,x) is linked to the market price of volatility
risk, cf. Chapter 1 of Gatheral (2006) § 2.4.1 in Fouque et al. (2000; 2011)
for details.

Combining (8.36)-(8.38) allows us to rewrite the pricing PDE as

∂f

∂t
(t, v,x) + rx

∂f

∂x
(t, v,x) + vx2

2
∂2f

∂x2 (t, v,x) + 1
2β

2(t, v)∂
2f

∂v2 (t, v,x)

+ρβ(t, v)x
√
v
∂2f

∂v∂x
(t, v,x) = rf(t, v,x) + λ(t, v,x)∂f

∂v
(t, v,x),

and (8.25) corresponds to the choice λ(t, v,x) = −µ(t, v), which corresponds
to a vanishing “market price of volatility risk”.

8.5 Perturbation Analysis

We refer to Chapter 4 of Fouque et al. (2011) for the contents of this section.
Consider the time-rescaled model

dSt = rStdt+ St
√
vt/εdB

(1)
t

dvt = µ(vt)dt+ β(vt)dB
(2)
t .

(8.39)

We note that v(ε)t := vt/ε satisfies the SDE

dv
(ε)
t = dvt/ε

≃ v(t+dt)/ε − vt/ε

= vt/ε+dt/ε − vt/ε

=
1
ε
µ(vt/ε)dt+ β(vt/ε)dB

(2)
t/ε,

with
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(
dB

(2)
t/ε

)2 ≃ dt

ε
≃ 1
ε

(
dB

(2)
t

)2 ≃
(

1√
ε
dB

(2)
t

)2
,

hence the SDE for v(ε)t can be rewritten as the slow-fast system

dv
(ε)
t =

1
ε
µ(v

(ε)
t )dt+

1√
ε
β(v

(ε)
t )dB

(2)
t .

In other words, ε → 0 corresponds to fast mean-reversion and (8.39) can be
rewritten as

dSt = rStdt+

√
v
(ε)
t StdB

(1)
t

dv
(ε)
t =

1
ε
µ
(
v
(ε)
t

)
dt+

1√
ε
β
(
v
(ε)
t

)
dB

(2)
t , ε > 0.

The perturbed PDE

∂fε
∂t

(t, v,x) + rx
∂fε
∂x

(t, v,x) + vx2

2
∂2fε
∂x2 (t, v,x) + 1

ε
µ(v)

∂fε
∂v

(t, v,x)

+
1
2εβ

2(v)
∂2fε
∂v2 (t, v,x) + ρ√

ε
β(v)x

√
v
∂2fε
∂v∂x

(t, v,x) = rfε(t, v,x)

with terminal condition fε(T , v,x) = (x−K)+ rewrites as

1
ε

L0fε(t, v,x) + 1√
ε

L1fε(t, v,x) + L2fε(t, v,x) = rfε(t, v,x), (8.40)

where

L0fε(t, v,x) :=
1
2β

2(v)
∂2fε
∂v2 (t, v,x) + µ(v)

∂fε
∂v

(t, v,x),

L1fε(t, v,x) := ρxβ(v)
√
v
∂2fε
∂v∂x

(t, v,x),

L2fε(t, v,x) :=
∂fε
∂t

(t, v,x) + rx
∂fε
∂x

(t, v,x) + vx2

2
∂2fε
∂x2 (t, v,x).

Note that

• L0 is the infinitesimal generator of the process
(
v1
s

)
s∈R+

, see (8.44) below,

and

• L2 is the Black-Scholes operator, i.e. L2f = rf is the Black-Scholes PDE.

The solution fε(t, v,x) will be expanded as
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fε(t, v,x) = f (0)(t, v,x) +
√
εf (1)(t, v,x) + εf (2)(t, v,x) + · · · (8.41)

with f(T , v,x) = (x−K)+, f (1)(T , v,x) = 0, and f (2)(T , v,x) = 0. Since
L0 contains only differentials with respect to v, we will choose f (0)(t, v,x) of
the form

f (0)(t, v,x) = f (0)(t,x),

cf. § 4.2.1 of Fouque et al. (2011) for details, with

L0f
(0)(t,x) = L1f

(0)(t,x) = 0. (8.42)

Proposition 8.14. (Fouque et al. (2011), § 3.2). The first-order term
f0(t, v) in (8.41) satisfies the Black-Scholes PDE

rf (0)(t,x) = ∂f (0)

∂t
(t,x) + rx

∂f (0)

∂x
(t,x) + η2

2
w ∞

0
vϕ(v)dv

∂2f (0)

∂x2 (t,x)

with the terminal condition f (0)(T ,x) = (x−K)+, where ϕ(v) is the sta-
tionary (or invariant) probability density function of the process

(
v
(1)
t

)
t∈R+

.

Proof. By identifying the terms of order 1/
√
ε when plugging (8.41) in (8.40),

we have
L0f

(1)(t, v,x) + L1f
(0)(t,x) = 0,

hence L0f (1)(t, v,x) = 0. Similarly, by identifying the terms that do not
depend on ε in (8.40) and taking f (1)(t, v,x) = f (1)(t,x), we have L1f (1) = 0
and

L0f
(2)(t, v,x) + L2f

(0)(t,x) = 0. (8.43)

Using the Itô formula, we have

E
[
f (2)

(
t, v1

s ,x
)]

= f (2)
(
t, v1

0 ,x
)
+ E

[
w s

0
∂f (2)

∂x

(
t, v1

τ ,x
)
dB

(2)
τ

]

+E

[
w s

0

(
µ
(
v1
τ

)∂f (2)
∂v

(
t, v1

τ ,x
)
+

1
2β

2(v1
τ

)∂2f (2)

∂v2
(
t, v1

τ ,x
))

dτ

]
= f (2)

(
t, v1

0 ,x
)
+

w s
0

E
[
L0f

(2)(t, v1
τ ,x
)]
dτ . (8.44)

When the process
(
v
(1)
t

)
t∈R+

is started under its stationary (or invariant)
probability distribution with probability density function ϕ(v), we have

E
[
f (2)

(
t, v1

τ ,x
) ]

=
w ∞

0
f (2)(t, v,x)ϕ(v)dv, τ ⩾ 0,
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hence (8.44) rewrites as
w ∞

0
f (2)(t, v,x)ϕ(v)dv =

w ∞

0
f (2)(t, v,x)ϕ(v)dv+

w s
0

w ∞

0
L0f

(2)(t, v,x)ϕ(v)dvdτ .

By differentiation with respect to s > 0 this yields
w ∞

0
L0f

(2)(t, v,x)ϕ(v)dv = 0,

hence by (8.43) we find
w ∞

0
L2f

(0)(t,x)ϕ(v)dv = 0,

cf. § 3.2 of Fouque et al. (2011), i.e. we find

∂f (0)

∂t
(t,x) + rx

∂f (0)

∂x
(t,x) + η2

2
w ∞

0
vϕ(v)dv

∂2f (0)

∂x2 (t,x) = rf (0)(t,x),

with the terminal condition f (0)(T ,x) = (x−K)+. □

As a consequence of Proposition 8.14, the first-order term f (0)(t,x) in the
expansion (8.41) is the Black-Scholes function

f (0)(t,x) = Bl
(
St,K, r,T − t,

√w ∞

0
vϕ(v)dv

)
,

with the averaged squared volatility
w ∞

0
vϕ(v)dv = E

[
v1
τ

]
, τ ⩾ 0, (8.45)

under the stationary distribution of the process with infinitesimal generator
L0, i.e. the stationary distribution of the solution to

dv
(1)
t = µ

(
v
(1)
t

)
dt+ β

(
v
(1)
t

)
dB

(2)
t .

Perturbation analysis in the Heston model

We have 
dSt = rStdt+ St

√
v
(ε)
t dB

(1)
t

dv
(ε)
t = −λ

ε

(
v
(ε)
t −m

)
dt+ η

√
v
(ε)
t

ε
dB

(2)
t ,

under the modified short mean-reversion time scale, and the SDE can be
rewritten as
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dv
(ε)
t = −λ

ε

(
v
(ε)
t −m

)
dt+ η

√
v
(ε)
t

ε
dB

(2)
t .

In other words, ε → 0 corresponds to fast mean reversion, in which v
(ε)
t

becomes close to its mean (8.45).

Recall, cf. (17.7), that the CIR process
(
v
(1)
t

)
t∈R+

has a gamma invariant
(or stationary) distribution with shape parameter 2λm/η2, scale parameter
η2/(2λ), and probability density function ϕ given by

ϕ(v) =
1

Γ(2λm/η2)(η2/(2λ))2λm/η2 v
−1+2λm/η2 e−2vλ/η2

1[0,∞)(v), v > 0,

and mean
m =

w ∞

0
vϕ(v)dv.

Hence the first-order term f (0)(t,x) in the expansion (8.41) reads

f (0)(t,x) = Bl
(
St,K, r,T − t,

√
m
)

,

with the averaged squared volatility

m =
w ∞

0
vϕ(v)dv = E

[
v1
τ

]
, τ ⩾ 0,

under the stationary distribution of the process with infinitesimal generator
L0, i.e. the stationary distribution of the solution to

dv
(1)
t = µ

(
v
(1)
t

)
dt+ β

(
v
(1)
t

)
dB

(2)
t .

In Figure 8.6, cf. Privault and She (2016), related approximations of put
option prices are plotted against the value of v with correlation ρ = −0.5
and ε = 0.01 in the α-hypergeometric stochastic volatility model of Fonseca
and Martini (2016), based on the series expansion of Han et al. (2013), and
compared to a Monte Carlo curve requiring 300, 000 samples and 30, 000 time
steps.
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Fig. 8.6: Option price approximations plotted against v with ρ = −0.5.

Exercises

Exercise 8.1 (Gatheral (2006), Chapter 11). Compute the expected realized
variance on the time interval [0,T ] in the Heston model, with

dvt = −λ(vt −m)dt+ η
√
vtdBt, 0 ⩽ t ⩽ T .

Exercise 8.2 Compute the variance swap rate

VST :=
1
T

E

 lim
n→∞

n∑
k=1

(
SkT/n − S(k−1)T/n

S(k−1)T/n

)2
 =

1
T

E

[w T
0

1
S2
t

(dSt)
2
]

on the index whose level St is given in the following two models.
a) Heston (1993) model. Here, (St)t∈R+ is given by the system of stochastic

differential equations
dSt = (r− αvt)Stdt+ St

√
β + vtdB

(1)
t

dvt = −λ(vt −m)dt+ γ
√
vtdB

(2)
t ,

where
(
B

(1)
t

)
t∈R+

and
(
B

(2)
t

)
t∈R+

are standard Brownian motions with
correlation ρ ∈ [−1, 1] and α ⩾ 0, β ⩾ 0, λ > 0, m > 0, r > 0, γ > 0.

b) SABR model with β = 1. The index level St is given by the system of
stochastic differential equations

dSt = σtStdB
(1)
t

dσt = ασtdB
(2)
t ,
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where α > 0 and
(
B

(1)
t

)
t∈R+

and
(
B

(2)
t

)
t∈R+

are standard Brownian
motions with correlation ρ ∈ [−1, 1].

Exercise 8.3 Convexity adjustment (§ 2.3 of Broadie and Jain (2008)).

a) Using Taylor’s formula

√
x =

√
x0 +

x− x0
2√

x0
− (x− x0)2

8x3/2
0

+ o((x− x0)
2),

find an approximation of R0,T =
√
R2

0,T using
√

E
[
R2

0,T
]

and correction
terms.

b) Find an (approximate) relation between the variance swap price E∗[R2
0,T
]

and the volatility swap price E∗[R0,T ] up to a correction term.

Exercise 8.4 Consider an asset price process (St)t∈R+ with the log-return
dynamics

d logSt = µdt+ ZNt-dNt, t ⩾ 0,

i.e. St := S0 eµt+Yt in a pure jump Merton model, where (Nt)t∈R+ is a
Poisson process with intensity λ > 0 and (Zk)k⩾0 is a family of independent
identically distributed Gaussian N (δ, η2) random variables. Compute the
price of the log-return variance swap

E

[w T
0
(d logSt)2dNt

]
= E

[w T
0
(µdt+ ZNt-dNt)

2dNt

]
= E

[w T
0
(ZNt-dNt)

2dNt

]
= E

[
w T

0

(
log St

St-

)2
dNt

]

= E

NT∑
n=1

(
log

STk

STk−1

)2


using the smoothing lemma Proposition 20.11.

Exercise 8.5 Consider an asset price (St)t∈R+ given by the stochastic dif-
ferential equation

dSt = rStdt+ σStdBt, (8.46)

where (Bt)t∈R+ is a standard Brownian motion, with r ∈ R and σ > 0.

a) Write down the solution (St)t∈R+ of Equation (8.46) in explicit form.
b) Show by a direct calculation that Corollary 8.3 is satisfied by (St)t∈R+ .
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Exercise 8.6 (Carr and Lee (2008)) Consider an underlying asset price
(St)t∈R+ given by dSt = rStdt + σtStdBt, where (Bt)t∈R+ is a standard
Brownian motion and (σt)t∈R+ is an (adapted) stochastic volatility process.
The riskless asset is priced At := ert, t ∈ [0,T ]. We consider a realized
variance swap with payoff R2

0,T =
w T

0
σ2
t dt.

a) Show that the payoff
w T

0
σ2
t dt of the realized variance swap satisfies

w T
0
σ2
t dt = 2

w T
0
dSt
St

− 2 log ST
S0

. (8.47)

b) Show that the price Vt := e−(T−t)rE∗
[w T

0
σ2
t dt

∣∣∣∣Ft] of the variance swap

at time t ∈ [0,T ] satisfies

Vt = Lt + 2(T − t)r e−(T−t)r + 2 e−(T−t)r
w t

0
dSu
Su

, (8.48)

where
Lt := −2 e−(T−t)rE∗

[
log ST

S0

∣∣∣∣Ft]
is the price at time t of the log contract (see Neuberger (1994), Demeterfi
et al. (1999)) with payoff −2 log(ST/S0), see also Exercises 6.10 and 7.15.

c) Show that the portfolio made at time t ∈ [0,T ] of:

• one log contract priced Lt,

• 2 e−(T−t)r/St in shares priced St,

• 2 e−rT
(w t

0
dSu
Su

+ (T − t)r− 1
)

in the riskless asset At = ert,

hedges the realized variance swap.
d) Show that the above portfolio is self-financing.

Exercise 8.7 Let (St)t∈R+ denote the geometric Brownian motion

St = S0 exp
(w t

0
σsdWs − 1

2
w t

0
σ2
sds

)
, t ⩾ 0,

solution of dSt = σtStdWt, where (σt)t∈R+ denotes a stochastic volatil-
ity process. Show that the gamma swap (or entropy contract) with payoffw T

0
Std⟨logS⟩t can be priced as in Corollary 8.3.
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Exercise 8.8 Compute the moment E∗[R4
0,T
]

from Lemma 8.2.
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