
Chapter 20
Stochastic Calculus for Jump Processes

Jump processes are stochastic processes whose trajectories have discontinu-
ities called jumps, that can occur at random times. This chapter presents
the construction of jump processes with independent increments, such as
the Poisson and compound Poisson processes, followed by an introduction to
stochastic integrals and stochastic calculus with jumps. We also present the
Girsanov Theorem for jump processes, which will be used for the construc-
tion of risk-neutral probability measures in Chapter 21 for option pricing and
hedging in markets with jumps, in relation with market incompleteness.
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20.1 The Poisson Process

The most elementary and useful jump process is
the standard Poisson process (Nt)t∈R+ which is a
counting process, i.e. (Nt)t∈R+ has jumps of size
+1 only and its paths are constant in between two
jumps, with N0 := 0.
The counting process (Nt)t∈R+ that can be used to model discrete arrival
times such as claim dates in insurance, or connection logs.
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Fig. 20.1: Sample path of a counting process (Nt)t∈R+ .

Using the indicator functions

1[Tk,∞)(t) =

{
1 if t ⩾ Tk,

0 if 0 ⩽ t < Tk, k ⩾ 1,

the value of Nt at time t can be written as∗

Nt =
∑
k⩾1

1[Tk,∞)(t), t ⩾ 0, (20.1)

where and (Tk)k⩾1 is the increasing family of jump times of (Nt)t∈R+ such
that

lim
k→∞

Tk = +∞.

The operation defined in (20.1) can be implemented in using the following
code.

1 T=10; Tn=c(1,3,4,7,9); dev.new(width=T, height=5)
plot(stepfun(Tn,c(0,1,2,3,4,5)),xlim =c(0,T),xlab="t",ylab=expression('N'[t]),pch=1, cex=0.8,

col='blue', lwd=2, main="", cex.axis=1.2, cex.lab=1.4,xaxs='i'); grid()

In order for the counting process (Nt)t∈R+ to be a Poisson process, it has to
satisfy the following conditions:

1. Independence of increments: for all 0 ⩽ t0 < t1 < · · · < tn and n ⩾ 1 the
increments

Nt1 −Nt0 , . . . , Ntn −Ntn−1 ,

are mutually independent random variables.

2. Stationarity of increments: Nt+h − Ns+h has the same distribution as
Nt −Ns for all h > 0 and 0 ⩽ s ⩽ t.

The meaning of the above stationarity condition is that for all fixed k ⩾ 0
we have

P(Nt+h −Ns+h = k) = P(Nt −Ns = k),
∗ The notation Nt is not to be confused with the notation used for numéraire processes
in Chapter 16.
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Notes on Stochastic Finance

for all h > 0, i.e., the value of the probability

P(Nt+h −Ns+h = k)

does not depend on h > 0, for all fixed 0 ⩽ s ⩽ t and k ⩾ 0.
Based on the above assumption, given T > 0 a time value, a natural question
arises:

what is the probability distribution of the random variable NT ?

We already know that Nt takes values in N and therefore it has a discrete
distribution for all t ∈ R+.
It is a remarkable fact that the distribution of the increments of (Nt)t∈R+ ,
can be completely determined from the above conditions, as shown in the
following theorem.

As seen in the next result, cf. Theorem 4.1 in Bosq and Nguyen (1996),
the Poisson increment Nt −Ns has the Poisson distribution with parameter
(t− s)λ.
Theorem 20.1. Assume that the counting process (Nt)t∈R+ satisfies the
above independence and stationarity Conditions 1 and 2 on page 726. Then,
for all fixed 0 ⩽ s ⩽ t the increment Nt −Ns follows the Poisson distribution
with parameter (t− s)λ, i.e. we have

P(Nt −Ns = k) = e−(t−s)λ ((t− s)λ)k

k!
, k ⩾ 0, (20.2)

for some constant λ > 0.

The parameter λ > 0 is called the intensity of the Poisson process (Nt)t∈R+

and it is given by
λ := lim

h→0

1
h

P(Nh = 1). (20.3)

The proof of the above Theorem 20.1 is technical and not included here,
cf. e.g. Bosq and Nguyen (1996) for details, and we could in fact take this
distribution property (20.2) as one of the hypotheses that define the Poisson
process.

Precisely, we could restate the definition of the standard Poisson process
(Nt)t∈R+ with intensity λ > 0 as being a stochastic process defined by (20.1),
which is assumed to have independent increments distributed according to
the Poisson distribution, in the sense that for all 0 ⩽ t0 ⩽ t1 < · · · < tn,

(Nt1 −Nt0 , . . . ,Ntn −Ntn−1)

is a vector of independent Poisson random variables with respective param-
eters
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((t1 − t0)λ, . . . , (tn − tn−1)λ).

In particular, Nt has the Poisson distribution with parameter λt, i.e.,

P(Nt = k) =
(λt)k

k!
e−λt, t > 0.

The expected value E[Nt] and the variance of Nt can be computed as

E[Nt] = Var[Nt] = λt, (20.4)

see Exercise A.1. As a consequence, the dispersion index of the Poisson
process is

Var[Nt]
E[Nt]

= 1, t ⩾ 0. (20.5)

Short time behaviour

From (20.3) above we deduce the short time asymptotics∗{
P(Nh = 0) = e−λh = 1 − λh+ o(h), h → 0,

P(Nh = 1) = λh e−λh ≃ λh, h → 0.

By stationarity of the Poisson process we also find more generally that
P(Nt+h −Nt = 0) = e−λh = 1 − λh+ o(h), h → 0,

P(Nt+h −Nt = 1) = λh e−λh ≃ λh, h → 0,

P(Nt+h −Nt = 2) ≃ h2λ
2

2 = o(h), h → 0, t > 0,

(20.6)

for all t > 0. This means that within a “short” time interval [t, t+h] of length
h, the increment Nt+h −Nt behaves like a Bernoulli random variable with
parameter λh. This fact can be used for the random simulation of Poisson
process paths.

The next code and Figure 20.2 present a simulation of the standard Poisson
process (Nt)t∈R+ according to its short time behavior (20.6).

∗ The notation f(h) = o(hk) means limh→0 f(h)/hk = 0, and f(h) ≃ hk means
limh→0 f(h)/hk = 1.
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1 lambda = 0.6;T=10;N=1000*lambda;h=T*1.0/N
2 t=0;s=c();for (k in 1:N) {if (runif(1)<lambda*h) {s=c(s,t)};t=t+h}

dev.new(width=T, height=5)
4 plot(stepfun(s,cumsum(c(0,rep(1,length(s))))),xlim

=c(0,T),xlab="t",ylab=expression('N'[t]),pch=1, cex=0.8, col='blue', lwd=2, main="",
cex.axis=1.2, cex.lab=1.4,xaxs='i'); grid()
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Fig. 20.2: Sample path of the Poisson process (Nt)t∈R+ .

More generally, for k ⩾ 1 we have

P(Nt+h −Nt = k) ≃ hk
λk

k!
, h → 0, t > 0.

Time-dependent intensity

The intensity of the Poisson process can in fact be made time-dependent (e.g.
by a time change), in which case we have

P(Nt −Ns = k) = exp
(

−
w t
s
λ(u)du

) (r t
s λ(u)du

)k
k!

, k = 0, 1, 2, . . . .

Assuming that λ(t) is a continuous function of time t we have in particular,
as h tends to zero,

P(Nt+h −Nt = k)

=


exp

(
−
r t+h
t λ(u)du

)
= 1 − λ(t)h+ o(h), k = 0,

exp
(

−
r t+h
t λ(u)du

) r t+h
t λ(u)du = λ(t)h+ o(h), k = 1,

o(h), k ⩾ 2.

The intensity process (λ(t))t∈R+ can also be made random, as in the case of
Cox processes.
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Poisson process jump times

In order to determine the distribution of the first jump time T1 we note that
we have the equivalence

{T1 > t} ⇐⇒ {Nt = 0},

which implies

P(T1 > t) = P(Nt = 0) = e−λt, t ⩾ 0,

i.e., T1 has an exponential distribution with parameter λ > 0.

In order to prove the next proposition we note that more generally, we
have the equivalence

{Tn > t} ⇐⇒ {Nt ⩽ n− 1},

for all n ⩾ 1. This allows us to compute the distribution of the random
jump time Tn with its probability density function. It coincides with the
gamma distribution with integer parameter n ⩾ 1, also known as the Erlang
distribution in queueing theory.

Proposition 20.2. For all n ⩾ 1, the probability distribution of Tn has the
gamma probability density function

t 7−→ λn e−λt tn−1

(n− 1)!

with shape parameter n ⩾ 1 and scaling parameter λ > 0 on R+, i.e., for all
t > 0 the probability P(Tn ⩾ t) is given by

P(Tn ⩾ t) = λn
w ∞

t
e−λs sn−1

(n− 1)!ds.

Proof. We have

P(T1 > t) = P(Nt = 0) = e−λt, t ⩾ 0,

and by induction, assuming that

P(Tn−1 > t) = λ
w ∞

t
e−λs (λs)

n−2

(n− 2)! ds, n ⩾ 2,

we obtain
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P(Tn > t) = P(Tn > t ⩾ Tn−1) + P(Tn−1 > t)

= P(Nt = n− 1) + P(Tn−1 > t)

= e−λt (λt)
n−1

(n− 1)! + λ
w ∞

t
e−λs (λs)

n−2

(n− 2)! ds

= λ
w ∞

t
e−λs (λs)

n−1

(n− 1)! ds, t ⩾ 0,

where we applied an integration by parts to derive the last line. □

In particular, for all n ∈ Z and t ∈ R+, we have

P(Nt = n) = pn(t) = e−λt (λt)
n

n!
,

i.e., pn−1 : R+ → R+, n ⩾ 1, is the probability density function of the
random jump time Tn.
In addition to Proposition 20.2 we could show the following proposition which
relies on the strong Markov property, see e.g. Theorem 6.5.4 of Norris (1998).

Proposition 20.3. The (random) interjump times

τk := Tk+1 − Tk

spent at state k ⩾ 0, with T0 = 0, form a sequence of independent iden-
tically distributed random variables having the exponential distribution with
parameter λ > 0, i.e.,

P(τ0 > t0, . . . , τn > tn) = e−(t0+t1+···+tn)λ, t0, t1, . . . , tn ⩾ 0.

As the expectation of the exponentially distributed random variable τk with
parameter λ > 0 is given by

E[τk] = λ
w ∞

0
x e−λxdx =

1
λ

,

we can check that the nth jump time Tn = τ0 + · · · + τn−1 has the mean

E[Tn] =
n

λ
, n ⩾ 1.

Consequently, the higher the intensity λ > 0 is (i.e., the higher the probability
of having a jump within a small interval), the smaller the time spent in each
state k ⩾ 0 is on average.

As a consequence of Proposition 20.2, random samples of Poisson process
jump times can be generated from Poisson jump times using the following

code according to Proposition 20.3.
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1 lambda = 0.6;T=10;Tn=c();n=0;
2 S=0; while (S<T) {S=S+rexp(1,rate=lambda); Tn=c(Tn,S); n=n+1}

Z<-cumsum(c(0,rep(1,n))); dev.new(width=T, height=5)
4 plot(stepfun(Tn,Z),xlim =c(0,T),ylim=c(0,8),xlab="t",ylab=expression('N'[t]),pch=1, cex=1,

col="blue", lwd=2, main="", las = 1, cex.axis=1.2, cex.lab=1.4,xaxs='i',yaxs='i'); grid()
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Fig. 20.3: Sample path of the Poisson process (Nt)t∈R+ .

In addition, conditionally to {NT = n}, the n jump times on [0,T ] of the
Poisson process (Nt)t∈R+ are independent uniformly distributed random vari-
ables on [0,T ]n, cf. e.g. § 11.1 in Privault (2018). This fact can also be useful
for the random simulation of Poisson process paths.

1 lambda = 0.6;T=10;n = rpois(1,lambda*T);Tn <- sort(runif(n,0,T)); Z<-cumsum(c(0,rep(1,n)));
dev.new(width=T, height=5)

2 plot(stepfun(Tn,Z),xlim =c(0,T),ylim=c(0,8),xlab="t",ylab=expression('N'[t]),pch=1, cex=1,
col="blue", lwd=2, main="", las = 1, cex.axis=1.2, cex.lab=1.4,xaxs='i',tick.ratio = 0.5);
grid()

Compensated Poisson martingale

From (20.4) above we deduce that

E[Nt − λt] = 0, (20.7)

i.e., the compensated Poisson process (Nt −λt)t∈R+ has centered increments.
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1 lambda = 0.6;T=10;Tn=c();S=0;n=0;
2 while (S<T) {S=S+rexp(1,rate=lambda); Tn=c(Tn,S); n=n+1}

Z<-cumsum(c(0,rep(1,n)));
4 N <- function(t) {return(stepfun(Tn,Z)(t))};t <- seq(0,10,0.01)

dev.new(width=T, height=5)
6 plot(t,N(t)-lambda*t,xlim = c(0,10),ylim =

c(-2,2),xlab="t",ylab=expression(paste('N'[t],'-t')),type="l",lwd=2,col="blue",main="",
xaxs = "i", yaxs = "i", xaxs = "i", yaxs = "i", las = 1, cex.axis=1.2, cex.lab=1.4)

abline(h = 0, col="black", lwd =2)
8 points(Tn,N(Tn)-lambda*Tn,pch=1,cex=0.8,col="blue",lwd=2)
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Fig. 20.4: Sample path of the compensated Poisson process (Nt − λt)t∈R+ .

Since in addition (Nt − λt)t∈R+ also has independent increments, we get the
following proposition, see e.g. Example 2 page 272. We let

Ft := σ
(
Ns : s ∈ [0, t]), t ⩾ 0,

denote the filtration generated by the Poisson process (Nt)t∈R+ .

Proposition 20.4. The compensated Poisson process

(Nt − λt)t∈R+

is a martingale with respect (Ft)t∈R+ .

The Poisson process belong to the family of renewal processes, which are
counting processes of the form

Nt =
∑
n⩾1

1[Tn,∞)(t), t ⩾ 0,

for which τk := Tk+1 − Tk, k ⩾ 0, is a sequence of independent identically
distributed random variables.
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20.2 Compound Poisson Process

The Poisson process itself appears to be too limited to develop realistic price
models as its jumps are of constant size. Therefore there is some interest in
considering jump processes that can have random jump sizes.

Let (Zk)k⩾1 denote a sequence of independent, identically distributed
(i.i.d.) square-integrable random variables, distributed as a common ran-
dom variable Z with probability distribution ν(dy) on R, independent of the
Poisson process (Nt)t∈R+ . We have

P(Z ∈ [a, b]) = ν([a, b]) =
w b
a
ν(dy), −∞ < a ⩽ b < ∞, k ⩾ 1,

and when the distribution ν(dy) admits a probability density φ(y) on R, we
write ν(dy) = φ(y)dy and

P(Z ∈ [a, b]) =
w b
a
φ(y)dy, −∞ < a ⩽ b < ∞, k ⩾ 1.

Figure 20.5 shows an example of Gaussian jump size distribution.

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

P
ro
b
ab

il
it
y
d
en
si
ty

a b

Fig. 20.5: Probability density function φ.

Definition 20.5. The process (Yt)t∈R+ given by the random sum

Yt := Z1 + Z2 + · · · + ZNt =
Nt∑
k=1

Zk, t ⩾ 0, (20.8)

is called a compound Poisson process.∗

Letting Yt- denote the left limit

Yt- := lim
s↗t

Ys, t > 0,

∗ We use the convention
n∑

k=1

Zk = 0 if n = 0, so that Y0 = 0.
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we note that the jump size

∆Yt := Yt − Yt- , t ⩾ 0,

of (Yt)t∈R+ at time t is given by the relation

∆Yt = ZNt ∆Nt, t ⩾ 0, (20.9)

where
∆Nt := Nt −Nt- ∈ {0, 1}, t ⩾ 0,

denotes the jump size of the standard Poisson process (Nt)t∈R+ , and Nt- is
the left limit

Nt- := lim
s↗t

Ns, t > 0,

The next Figure 20.6 represents a sample path of a compound Poisson pro-
cess, with here Z1 = 0.9, Z2 = −0.7, Z3 = 1.4, Z4 = 0.6, Z5 = −2.5,
Z6 = 1.5, Z7 = −0.5, with the relation

YTk
= YT -

k
+ Zk, k ⩾ 1.

t

Yt
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0

1

2

3

T1 T2 T3 T4 T5 T6 T7

Fig. 20.6: Sample path of a compound Poisson process (Yt)t∈R+ .

Example. Assume that the jump sizes Z are Gaussian distributed with mean
δ and variance η2, with

ν(dy) =
1√

2πη2
e−(y−δ)2/(2η2)dy.

1 N<-50;Tk<-cumsum(rexp(N,rate=0.5)); Zk<-rexp(N,rate=0.5); Yk<-cumsum(c(0,Zk))
2 plot(stepfun(Tk,Yk),xlim = c(0,10),lwd=2,do.points = F,main="L=0.5",col="blue")

Zk<-rnorm(N,mean=0,sd=1); Yk<-cumsum(c(0,Zk))
4 plot(stepfun(Tk,Yk),xlim = c(0,10),lwd=2,do.points = F,main="L=0.5",col="blue")

Given that {NT = n}, the n jump sizes of (Yt)t∈R+ on [0,T ] are independent
random variables which are distributed on R according to ν(dx). Based on
this fact, the next proposition allows us to compute the Moment Generating
Function (MGF) of the increment YT − Yt.
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Proposition 20.6. For any t ∈ [0,T ] and α ∈ R we have

E
[
e(YT −Yt)α

]
= exp

(
(T − t)λ

(
E
[
eαZ

]
− 1
))

. (20.10)

Proof. Since Nt has a Poisson distribution with parameter t > 0 and is
independent of (Zk)k⩾1, for all α ∈ R we have, by conditioning on the value
of NT −Nt = n,

E
[
e(YT −Yt)α

]
= E

[
exp

(
α

NT∑
k=Nt+1

Zk

)]
= E

[
exp

(
α

NT −Nt∑
k=1

Zk+Nt

)]

= E

[
exp

(
α

NT −Nt∑
k=1

Zk

)]

=
∑
n⩾0

E

exp

αNT −Nt∑
k=1

Zk

∣∣∣∣NT −Nt = n

P(NT −Nt = n)

=
∑
n⩾0

E

[
exp

(
α

n∑
k=1

Zk

)]
P(NT −Nt = n)

= e−(T−t)λ
∑
n⩾0

λn

n!
(T − t)nE

[
exp

(
α

n∑
k=1

Zk

)]

= e−(T−t)λ
∑
n⩾0

λn

n!
(T − t)n

n∏
k=1

E
[
eαZk

]
= e−(T−t)λ

∑
n⩾0

λn

n!
(T − t)n

(
E
[
eαZ

])n
= exp

(
(T − t)λ

(
E
[
eαZ

]
− 1
))

.

□

As a consequence of Proposition 20.6, we can derive the following version of
the Lévy-Khintchine formula, after approximating f : [0,T ] −→ R a bounded
deterministic function of time by indicator functions:

E

[
exp

(w T
0
f(t)dYt

)]
= exp

(
λ
w T

0

w ∞

−∞

(
eyf (t) − 1

)
ν(dy)dt

)
. (20.11)

We note that we can also write

E
[
e(YT −Yt)α

]
= exp

(
(T − t)λ

w ∞

−∞
( eαy − 1)ν(dy)

)
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= exp
(
(T − t)λ

w ∞

−∞
eαyν(dy) − (T − t)λ

w ∞

−∞
ν(dy)

)
,

since the probability distribution ν(dy) of Z satisfies

E
[
eαZ

]
=

w ∞

−∞
eαyν(dy) and

w ∞

−∞
ν(dy) = 1.

From the moment generating function (20.10) we can compute the expecta-
tion and variance of Yt for fixed t. Note that the proofs of those identities
require to exchange the differentiation and expectation operators, which is
possible when the moment generating function (20.10) takes finite values for
all α in a certain neighborhood (−ε, ε) of 0.

Proposition 20.7. i) The expectation of Yt is given as the product of the
mean number of jump times E[Nt] = λt and the mean jump size E[Z],
i.e.,

E[Yt] = E[Nt]E[Z] = λtE[Z]. (20.12)

ii) Regarding the variance, we have

Var [Yt] = E[Nt]E
[
|Z|2

]
= λtE

[
|Z|2

]
. (20.13)

Proof. (i) We use the relation

E[Yt] =
∂

∂α
E[ eαYt ]|α=0 = λt

w ∞

−∞
yν(dy) = λtE[Z].

(ii) By (20.10), we have

E
[
Y 2
t

]
=

∂2

∂α2 E[ eαYt ]|α=0

=
∂2

∂α2 exp
(
λt
(
E
[
eαZ

]
− 1
))

|α=0

=
∂

∂α

(
λtE

[
Z eαZ

]
exp

(
λt
(
E
[
eαZ

]
− 1
)))

|α=0

= λtE
[
Z2]+ (λtE[Z])2

= λt
w ∞

−∞
y2ν(dy) + (λt)2

(w ∞

−∞
yν(dy)

)2

= λtE[Z2] + (λtE[Z])2.

□

Relation (20.12) can be directly recovered using series summations, as
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E[Yt] = E

[
Nt∑
k=1

Zk

]

=
∑
n⩾1

E

[
Nt∑
k=1

Zk

∣∣∣∣Nt = n

]
P(Nt = n)

= e−λt
∑
n⩾1

λntn

n!
E

[
n∑
k=1

Zk

∣∣∣∣Nt = n

]

= e−λt
∑
n⩾1

λntn

n!
E

[
n∑
k=1

Zk

]

= λt e−λtE[Z]
∑
n⩾1

(λt)n−1

(n− 1)!

= λtE[Z]

= E[Nt]E[Z].

As a consequence, the dispersion index of the compound Poisson process

Var [Yt]
E[Yt]

=
E
[
|Z|2

]
E[Z]

, t ⩾ 0.

coincides with the dispersion index of the random jump size Z. By a multi-
variate version of Theorem A.14, Proposition 20.6 can be used to show the
next result.

Proposition 20.8. (i) The compound Poisson process

Yt =
Nt∑
k=1

Zk, t ⩾ 0,

has independent increments, i.e. for any finite sequence of times t0 < t1 <
· · · < tn, the increments

Yt1 − Yt0 , Yt2 − Yt1 , . . . , Ytn − Ytn−1

are mutually independent random variables.

(ii) In addition, the increment Yt − Ys is stationary, 0 ⩽ s ⩽ t, i.e. the
distribution of Yt+h − Ys+h does not depend of h ⩾ 0.

Proof. This result relies on the fact that the result of Proposition 20.6 can
be extended to sequences 0 ⩽ t0 ⩽ t1 ⩽ · · · ⩽ tn and α1,α2, . . . ,αn ∈ R, as

E

[
n∏
k=1

eiαk(Ytk
−Ytk−1 )

]
= E

[
exp

(
i

n∑
k=1

αk(Ytk − Ytk−1)

)]
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= exp
(
λ

n∑
k=1

(tk − tk−1)
w ∞

−∞
( eiαky − 1)ν(dy)

)
(20.14)

=
n∏
k=1

exp
(
(tk − tk−1)λ

w ∞

−∞
( eiαky − 1)ν(dy)

)
=

n∏
k=1

E
[
eiαk(Ytk

−Ytk−1 )
]
,

which also shows the stationarity in distribution of Yt+h − Ys+h in h ⩾ 0, for
0 ⩽ s ⩽ t. □

Since the compensated compound Poisson process also has independent and
centered increments by (20.7) we have the following counterpart of Proposi-
tion 20.4, cf. also Example 2 page 272.
Proposition 20.9. The compensated compound Poisson process

Mt := Yt − λtE[Z], t ⩾ 0,

is a martingale.

1 lambda = 0.6;T=10;Tn=c();S=0;n=0;
2 while (S<T) {S=S+rexp(1,rate=lambda); Tn=c(Tn,S); n=n+1}

Z<-cumsum(c(0,rep(1,n))); Zn<-cumsum(c(0,rexp(n,rate=2)));
4 Y <- function(t) {return(stepfun(Tn,Zn)(t))};t <- seq(0,10,0.01)

par(oma=c(0,0.1,0,0))
6 plot(t,Y(t)-0.5*lambda*t,xlim = c(0,10),ylim =

c(-2,2),xlab="t",ylab=expression(paste('Y'[t],'-t')),type="l",lwd=2,col="blue",main="", xaxs =
"i", yaxs = "i", xaxs = "i", yaxs = "i", las = 1, cex.axis=1.2, cex.lab=1.4)

8 abline(h = 0, col="black", lwd =2)
points(Tn,Y(Tn)-0.5*lambda*Tn,pch=1,cex=0.8,col="blue",lwd=2);grid()

0 2 4 6 8 10

−2

−1

0

1

2

t

Y
t−

t

Fig. 20.7: Sample path of a compensated compound Poisson process (Yt − λtE[Z])t∈R+ .

20.3 Stochastic Integrals and Itô Formula with Jumps
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Definition 20.10. Based on the relation

∆Yt = ZNt ∆Nt,

we define the stochastic integral of a stochastic process (ϕt)t∈[0,T ] with respect
to (Yt)t∈[0,T ] by

w T
0
ϕtdYt =

w T
0
ϕtZNtdNt :=

NT∑
k=1

ϕTk
Zk. (20.15)

In particular, the compound Poisson process (Yt)t∈R+ in Definition 20.5 ad-
mits the stochastic integral representation

Yt = Y0 +
Nt∑
k=1

Zk = Y0 +
w t

0
ZNsdNs.

Note that the expression (20.15) of
w T

0
ϕtdYt has a natural financial interpre-

tation as the value at time T of a portfolio containing a (possibly fractional)
quantity ϕt of a risky asset at time t, whose price evolves according to random
returns Zk, generating profits/losses ϕTk

Zk at random times Tk.

The next result is also called the smoothing lemma, cf. Theorem 9.2.1 in
Brémaud (1999).

Proposition 20.11. Let (ϕt)t∈R+ be a stochastic process adapted to the
filtration generated by (Yt)t∈R+ , admitting left limits, and such that

E

[w T
0

|ϕt|dt
]
< ∞, T > 0.

The expected value of the compound Poisson stochastic integral can be ex-
pressed as

E

[w T
0
ϕt-dYt

]
= E

[w T
0
ϕt-ZNtdNt

]
= λE[Z]E

[w T
0
ϕt-dt

]
,

(20.16)

where ϕt- denotes the left limit

ϕt- := lim
s↗t

ϕs, t > 0.

Proof. By Proposition 20.9 the compensated compound Poisson process (Yt−
λtE[Z])t∈R+ is a martingale, and the adaptedness of (ϕt)t∈R+ with respect to
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the filtration generated by (Yt)t∈R+ , makes (ϕt-)t>0 predictable, i.e. adapted
with respect to the filtration

Ft- := σ(Ys : s ∈ [0, t) ), t > 0.

Hence, by an argument similar to the first part of the proof of Proposition 7.1
and concluded by dominated convergence as in the proof of Theorem 9.2.1 in
Brémaud (1999), the stochastic integral process

t 7−→
w t

0
ϕs-d

(
Ys − λE[Z]ds

)
=

w t
0
ϕs-
(
ZNsdNs − λE[Z]ds

)
is also a martingale. We can then use the fact that the expectation of a
martingale remains constant over time, i.e.,

0 = E

[w T
0
ϕt-
(
dYt − λE[Z]dt

)]
= E

[w T
0
ϕt-dYt

]
− λE[Z]E

[w T
0
ϕt-dt

]
.

□

For example, taking ϕt = Yt := Nt we have

w T
0
Nt-dNt =

NT∑
k=1

(k− 1) = 1
2NT (NT − 1),

hence

E

[w T
0
Nt-dNt

]
=

1
2
(
E
[
N2
T

]
− E[NT ]

)
=

(λT )2

2
= λ

w T
0
λtdt

= λ
w T

0
E[Nt]dt,

as in (20.16). Note however that while the identity in expectations (20.16)
holds for the left limit ϕt- , it need not hold for ϕt itself. Indeed, taking
ϕt = Yt := Nt we have

w T
0
NtdNt =

NT∑
k=1

k =
1
2NT (NT + 1),

hence
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E

[w T
0
NtdNt

]
=

1
2
(
E
[
N2
T

]
+ E[NT ]

)
=

1
2
(
(λT )2 + 2λT

)
=

(λT )2

2 + λT

̸= λE

[w T
0
Ntdt

]
.

Under similar conditions, the compound Poisson compensated stochastic in-
tegral can be shown to satisfy the Itô isometry (20.17) in the next proposition.

Proposition 20.12. Let (ϕt)t∈R+ be a stochastic process adapted to the
filtration generated by (Yt)t∈R+ , admitting left limits, and such that

E

[w T
0

|ϕt|2dt
]
< ∞, T > 0.

The expected value of the squared compound Poisson compensated stochastic
integral can be computed as

E

[(w T
0
ϕt-(dYt − λE[Z]dt)

)2
]
= λE

[
|Z|2

]
E

[w T
0

|ϕt- |2dt
]

,

(20.17)

Note that in (20.17), the generic jump size Z is squared but λ is not.

Proof. From the stochastic Fubini-type theorem, we have(w T
0
ϕt-(dYt − λE[Z]dt)

)2
(20.18)

= 2
w T

0
ϕt-

w t-

0
ϕs-(dYs − λE[Z]ds)(dYt − λE[Z]dt) (20.19)

+
w T

0
|ϕt- |2|ZNt |

2dNt, (20.20)

where integration over the diagonal {s = t} has been excluded in (20.19) as
the inner integral has an upper limit t- rather than t. Next, taking expectation
on both sides of (20.18)-(20.20), we find

E

[(w T
0
ϕt-(dYt − λE[Z]dt)

)2]
= E

[ w T
0

|ϕt- |2|ZNt |
2dNt

]

742 "

This version: May 3, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html


Notes on Stochastic Finance

= λE
[
|Z|2

]
E

[w T
0

|ϕt- |2dt
]
,

where we used the vanishing of the expectation of the double stochastic in-
tegral:

E

[w T
0
ϕt-

w t-

0
ϕs-(dYs − λE[Z]ds)(dYt − λE[Z]dt)

]
= 0,

and the martingale property of the compensated compound Poisson process

t 7−→

(
Nt∑
k=1

|Zk|2
)

− λtE
[
Z2], t ⩾ 0,

as in the proof of Proposition 20.11. The isometry relation (20.17) can also
be proved using simple predictable processes, similarly to the proof of Propo-
sition 4.21. □

Extensions

a) Take (Bt)t∈R+ a standard Brownian motion independent of (Yt)t∈R+ and
(Xt)t∈R+ a jump-diffusion process of the form

Xt :=
w t

0
usdBs +

w t
0
vsds+ Yt, t ⩾ 0,

where (ut)t∈R+ is a stochastic process which is adapted to the filtration
(Ft)t∈R+ generated by (Bt)t∈R+ and (Yt)t∈R+ , and such that

E
[ w T

0
|ϕt|2|ut|2dt

]
< ∞ and E

[ w T
0

|ϕtvt|dt
]
< ∞, T > 0.

In this case, the stochastic integral of (ϕt)t∈R+ with respect to (Xt)t∈R+

can be defined by
w T

0
ϕtdXt :=

w T
0
ϕtutdBt +

w T
0
ϕtvtdt+

w T
0
ϕtdYt

=
w T

0
ϕtutdBt +

w T
0
ϕtvtdt+

NT∑
k=1

ϕTk
Zk, T > 0.

For the mixed continuous-jump martingale

Xt :=
w t

0
usdBs + Yt − λtE[Z], t ⩾ 0,

we then have the isometry:

" 743

This version: May 3, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html


N. Privault

E

[(w T
0
ϕt-dXt

)2]
= E

[w T
0

|ϕt- |2|ut|2dt
]
+ λE

[
|Z|2

]
E

[ w T
0

|ϕt- |2dt
]
.

(20.21)

provided that (ϕt)t∈R+ is adapted to the filtration (Ft)t∈R+ generated
by (Bt)t∈R+ and (Yt)t∈R+ . The isometry formula (20.21) will be used in
Section 21.6 for mean-variance hedging in jump-diffusion models.

b) When (Xt)t∈R+ takes the form

Xt = X0 +
w t

0
usdBs +

w t
0
vsds+

w t
0
ηsdYs, t ⩾ 0,

the stochastic integral of (ϕt)t∈R+ with respect to (Xt)t∈R+ can be defined
as

w T
0
ϕtdXt :=

w T
0
ϕtutdBt +

w T
0
ϕtvtdt+

w T
0
ηtϕtdYt

=
w T

0
ϕtutdBt +

w T
0
ϕtvtdt+

NT∑
k=1

ϕTk
ηTk

Zk, T > 0.

Itô Formula with Jumps

The next proposition gives the simplest instance of the Itô formula with
jumps, in the case of a standard Poisson process (Nt)t∈R+ with intensity λ.

Proposition 20.13. Itô formula for the standard Poisson process. We have

f(Nt) = f(0) +
w t

0
(f(Ns) − f(Ns-))dNs, t ⩾ 0,

where Ns- denotes the left limit Ns- = limh↘0 Ns−h.

Proof. We note that

Ns = Ns- + 1 if dNs = 1 and k = NTk
= 1 +NT -

k
, k ⩾ 1.

Hence we have the telescoping sum

f(Nt) = f(0) +
Nt∑
k=1

(f(k) − f(k− 1))

= f(0) +
Nt∑
k=1

(f(NTk
) − f(NT -

k
))
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= f(0) +
Nt∑
k=1

(f(1 +NT -
k
) − f(NT -

k
))

= f(0) +
w t

0
(f(1 +Ns-) − f(Ns-))dNs

= f(0) +
w t

0
(f(Ns) − f(Ns − 1))dNs

= f(0) +
w t

0
(f(Ns) − f(Ns-))dNs,

where Ns- denotes the left limit Ns- = limh↘0 Ns−h. □

The next result deals with the compound Poisson process (Yt)t∈R+ in (20.5)
via a similar argument.

Proposition 20.14. Itô formula for the compound Poisson process (Yt)t∈R+ .
We have the pathwise Itô formula

f(Yt) = f(0) +
w t

0
(f(Ys) − f(Ys-))dNs, t ⩾ 0. (20.22)

Proof. We have

f(Yt) = f(0) +
Nt∑
k=1

(
f
(
YTk

)
− f
(
YT -

k

))
= f(0) +

Nt∑
k=1

(
f
(
YT -

k
+ Zk

)
− f
(
YT -

k

))
= f(0) +

w t
0
(f(Ys- + ZNs) − f(Ys-))dNs

= f(0) +
w t

0
(f(Ys) − f(Ys-))dNs, t ⩾ 0.

□

From the expression

Yt = Y0 +
Nt∑
k=1

Zk = Y0 +
w t

0
ZNsdNs,

the Itô formula (20.22) can be decomposed using a compensated Poisson
stochastic integral as

df(Yt) = (f(Yt) − f(Yt-))dNt − E[(f(y+ Z) − f(y)]y=Yt-dt (20.23)
+E[(f(y+ Z) − f(y)]y=Yt-dt,

where
(f(Yt) − f(Yt-))dNt − E[(f(y+ ZNt) − f(y)]y=Yt-dt
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is the differential of a martingale by the smoothing lemma Proposition 20.11.

More generally, we have the following result.

Proposition 20.15. For an Itô process of the form

Xt = X0 +
w t

0
vsds+

w t
0
usdBs +

w t
0
ηsdYs, t ⩾ 0,

and f a C2(R) function, we have the Itô formula

f(Xt) = f(X0) +
w t

0
vsf

′(Xs)ds+
w t

0
usf

′(Xs)dBs +
1
2
w t

0
f ′′(Xs)|us|2ds

+
w t

0
(f(Xs) − f(Xs-))dNs, t ⩾ 0. (20.24)

Proof. By combining the Itô formula for Brownian motion with the Itô
formula for the compound Poisson process of Proposition 20.14, we find

f(Xt) = f(X0) +
w t

0
usf

′(Xs)dBs +
1
2
w t

0
f ′′(Xs)|us|2ds+

w t
0
vsf

′(Xs)ds

+

NT∑
k=1

(
f
(
XT -

k
+ ηTk

Zk
)

− f
(
XT -

k

))
= f(X0) +

w t
0
usf

′(Xs)dBs +
1
2
w t

0
f ′′(Xs)|us|2ds+

w t
0
vsf

′(Xs)ds

+
w t

0
(f(Xs- + ηsZNs) − f(Xs-))dNs, t ⩾ 0,

which yields (20.24). □

The integral Itô formula (20.24) can be rewritten in differential notation as

df(Xt) = vtf
′(Xt)dt+utf

′(Xt)dBt+
|ut|2

2 f ′′(Xt)dt+(f(Xt)−f(Xt-))dNt,
(20.25)

t ⩾ 0. For a stochastic process (Xt)t∈R+ given by

Xt =
w t

0
usdBs +

w t
0
vsds+

w t
0
ηsdNs, t ⩾ 0,

the Itô formula with jumps reads

f(Xt) = f(0) +
w t

0
usf

′(Xs)dBs +
1
2
w t

0
|us|2f ′′(Xs)dBs
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+
w t

0
vsf

′(Xs)ds+
w t

0
(f(Xs- + ηs) − f(Xs-))dNs

= f(0) +
w t

0
usf

′(Xs)dBs +
1
2
w t

0
|us|2f ′′(Xs)dBs

+
w t

0
vsf

′(Xs)ds+
w t

0
(f(Xs) − f(Xs-))dNs.

Itô multiplication table with jumps

Given two Itô processes (Xt)t∈R+ and (Yt)t∈R+ written in differential nota-
tion as

dXt = utdBt + vtdt+ ηtdNt, t ⩾ 0,

and
dYt = atdBt + btdt+ ctdNt, t ⩾ 0,

the Itô formula for jump processes can also be written as

d(XtYt) = Xt-dYt + Yt-dXt + dXt • dYt

where the product dXt • dYt is computed according to the following extension
of the Itô multiplication Table 4.1. The relation dBt • dNt = 0 is due to the
fact that (Nt)t∈R+ has finite variation on any finite interval.

• dt dBt dNt

dt 0 0 0
dBt 0 dt 0
dNt 0 0 dNt

Table 20.1: Itô multiplication table with jumps.

In other words, we have

dXt • dYt = (vtdt+ utdBt + ηtdNt)(btdt+ atdBt + ctdNt)

= vtbtdt • dt+ utbtdBt • dt+ ηtbtdNt • dt

vtatdt • dBt + utatdBt • dBt + ηtatdNt • dBt

+vtctdt • dNt + utctdBt • dNt + ηtctdNt • dNt

= +utatdBt • dBt + ηtctdNt • dNt

= utatdt+ ηtctdNt,

since
dNt • dNt = (dNt)

2 = dNt,

as ∆Nt ∈ {0, 1}. In particular, we have

(dXt)
2 = (vtdt+ utdBt + ηtdNt)

2 = u2
t dt+ η2

t dNt.
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Jump processes with infinite activity

Given η(s), s ∈ R+, a deterministic function of time and (Xt)t∈R+ an Itô
process of the form

Xt := X0 +
w t

0
vsds+

w t
0
usdBs +

w t
0
η(s)dYt, t ⩾ 0,

the Itô formula with jumps (20.24) can be rewritten as

f(Xt) = f(X0) +
w t

0
vsf

′(Xs)ds+
w t

0
usf

′(Xs)dBs +
1
2
w t

0
f ′′(Xs)|us|2ds

+
w t

0
(f(Xs- + η(s)∆Ys) − f(Xs-)) dNs − λ

w t
0

E
[
f(x+ η(s)Z) − f(x)

]
|x=Xs-ds

+ λ
w t

0

w ∞

−∞
(f(Xs- + η(s)y) − f(Xs-)) ν(dy)ds, t ⩾ 0,

using the compensated martingale
w t

0
(f(Xs) − f(Xs-)) dNs − λ

w t
0

E
[
f(x+ η(s)Z) − f(x)

]
|x=Xs-ds

=
w t

0
(f(Xs- + η(s)∆Ys) − f(Xs-)) dNs

−λ
w t

0

w ∞

−∞
(f(Xs- + η(s)y) − f(Xs)) ν(dy)ds, (20.26)

with the relation dXs = ηs∆Ys. We note that from the relation

E[Z] =
w ∞

−∞
yν(dy),

the above compensator term (20.26) rewrites as

λ
w t

0

w ∞

−∞
(f(Xs- + η(s)y) − f(Xs-)) ν(dy)ds

= λ
w t

0

w ∞

−∞

(
f(Xs- + η(s)y) − f(Xs-) − η(s)yf ′(Xs-)

)
ν(dy)ds (20.27)

+λE[Z]
w t

0
η(s)f ′(Xs-)ds.

The expression (20.27) above is at the basis of the extension of Itô’s formula
to Lévy processes with an infinite number of jumps on any interval under the
conditions w

|y|⩽1
y2ν(dy) < ∞ and ν([−1, 1]c) < ∞,

using the bound

|f(x+ y) − f(x) − yf ′(x)| ⩽ Cy2, y ∈ [−1, 1],

that follows from Taylor’s theorem for f a C2(R) function. This yields
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f(Xt) = f(X0) +
w t

0
vsf

′(Xs)ds+
w t

0
usf

′(Xs)dBs +
1
2
w t

0
f ′′(Xs)|us|2ds

+
w t

0
(f(Xs- + η(s)∆Ys) − f(Xs-)) dNs − λ

w t
0

E
[
f(x+ η(s)Z) − f(x)

]
|x=Xs-ds

+ λ
w t

0

w ∞

−∞

(
f(Xs- + η(s)y) − f(Xs-) − η(s)yf ′(Xs-)

)
ν(dy)ds

+ λE[Z]
w t

0
η(s)f ′(Xs-)ds, t ⩾ 0,

see e.g. Theorem 1.16 in Øksendal and Sulem (2005) and Theorem 4.4.7 in
Applebaum (2009) in the setting of Poisson random measures.

By construction, compound Poisson processes only have a finite number of
jumps on any interval. They belong to the family of Lévy processes which may
have an infinite number of jumps on any finite time interval, see e.g. § 4.4.1
of Cont and Tankov (2004). Such processes, also called “infinite activity Lévy
processes” are also useful in financial modeling, cf. Cont and Tankov (2004),
and include the gamma process, stable processes, variance gamma processes,
inverse Gaussian processes, etc, as in the following illustrations.

1. Gamma process.

0

t

Fig. 20.8: Sample trajectories of a gamma process.

The next code can be used to generate the gamma process paths of
Figure 20.8.

1 N=2000; t <- 0:N; dt <- 1.0/N; nsim <- 6; alpha=20.0
X = matrix(0, nsim, N)

3 for (i in 1:nsim){X[i,]=rgamma(N,alpha*dt);}
X <- cbind(rep(0, nsim), t(apply(X, 1, cumsum)))

5 plot(t, X[1, ], xlab = "time", type = "l", ylim = c(0, 2*N*alpha*dt), col = 0)
for (i in 1:nsim){points(t, X[i, ], xlab = "time", type = "p", pch=20, cex =0.02, col = i)}
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2. Variance gamma process.

0

t

Fig. 20.9: Sample trajectories of a variance gamma process.

3. Inverse Gaussian process.

0

t

Fig. 20.10: Sample trajectories of an inverse Gaussian process.

4. Negative Inverse Gaussian process.

0

t

Fig. 20.11: Sample trajectories of a negative inverse Gaussian process.
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5. Stable process.

0

t

Fig. 20.12: Sample trajectories of a stable process.

The above sample paths of a stable process can be compared to the US-
D/CNY exchange rate over the year 2015, according to the date retrieved
using the following code.

1 library(quantmod);myPars <- chart_pars();myPars$cex<-1.5
2 getSymbols("USDCNY=X",from="2015-01-01",to="2015-12-06",src="yahoo")

rate=Ad(`USDCNY=X`);myTheme <- chart_theme();myTheme$col$line.col <- "blue"
4 myTheme$rylab <- FALSE;chart_Series(rate, pars=myPars, theme = myTheme,

name="USDCNY=X")
getSymbols("EURCHF=X",from="2013-12-30",to="2016-01-01",src="yahoo")

6 rate=Ad(`EURCHF=X`);chart_Series(rate, pars=myPars, theme = myTheme)

The adjusted close price Ad() is the closing price after adjustments for ap-
plicable splits and dividend distributions.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Jan 01
2015

Feb 02
2015

Mar 02
2015

Apr 01
2015

May 01
2015

Jun 01
2015

Jul 01
2015

Aug 03
2015

Sep 01
2015

Oct 01
2015

Nov 02
2015

Dec 01
2015

USDCNY=X 2015−01−01 / 2015−12−04

6.18
6.20
6.22
6.24
6.26
6.28
6.30
6.32
6.34
6.36
6.38
6.40

Fig. 20.13: USD/CNY Exchange rate data.

Cumulants of stochastic integrals with jumps

Using the stochastic integral of a deterministic function f(t) with respect to
(Yt)t∈R+ defined as

w T
0
f(t)dYt =

NT∑
k=1

Zkf(Tk),
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Relation (20.11) can be used to show that, more generally, the moment gen-
erating function of

r T
0 f(t)dYt is given by

E

[
exp

(w T
0
f(t)dYt

)]
= exp

(
λ
w T

0

w ∞

−∞

(
eyf (t) − 1

)
ν(dy)dt

)
= exp

(
λ
w T

0

(
E
[
ef (t)Z

]
− 1
)
dt

)
.

We also have

log E

[
exp

(w T
0
f(t)dYt

)]
= λ

w T
0

w

R

(
eyf (t) − 1

)
ν(dy)dt

= λ
∞∑
n=1

1
n!

w T
0

w

R
ynfn(t)ν(dy)dt

= λ
∞∑
n=1

1
n!

E[Zn]
w T

0
fn(t)dt,

hence the cumulant of order n ⩾ 1 of
w T

0
f(t)dYt, see Definition 21.1, is given

by
κn = λE[Zn]

w T
0
fn(t)dt,

which recovers (20.12) and (20.13) by taking f(t) := 1[0,T ](t) when n = 1, 2.

20.4 Stochastic Differential Equations with Jumps

In the continuous asset price model, the returns of the riskless asset price
process (At)t∈R+ and of the risky asset price process (St)t∈R+ are modeled
as

dAt
At

= rdt and dSt
St

= µdt+ σdBt.

In this section we are interested in using jump processes in order to model
an asset price process (St)t∈R+ .

i) Constant market return η > −1.

In the case of discontinuous asset prices, let us start with the simplest
example of a constant market return η written as

η :=
St − St-

St-
, (20.28)

assuming the presence of a jump at time t > 0, i.e., ∆Nt = 1. Using the
identity ∆St = St − St- , Relation (20.28) rewrites as
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η∆Nt =
St − St-

St-
=

∆St
St-

, (20.29)

or
dSt = ηSt-dNt, (20.30)

which is a stochastic differential equation with respect to the standard
Poisson process, with constant volatility η ∈ R. Note that the left limit
St- in (20.30) occurs naturally from the definition (20.29) of market
returns when dividing by the previous index value St- .

In the presence of a jump at time t, i.e. when dNt = 1, the equation
(20.29) also reads

St = (1 + η)St- , dNt = 1,

which can be applied by induction at the successive jump times T1,T2, . . . ,TNt

until time t, to derive the solution

St = S0(1 + η)Nt , t ⩾ 0,

of (20.30).

The use of the left limit St- turns out to be necessary when computing
pathwise solutions by solving for St from St- .

ii) Time-dependent market returns ηt > −1, t ⩾ 0.

Next, consider the case where ηt is time-dependent, i.e.,

dSt = ηtSt-dNt. (20.31)

At each jump time Tk, Relation (20.31) reads

dSTk
= STk

− ST -
k
= ηTk

ST -
k
,

i.e.,
STk

= (1 + ηTk
)ST -

k
,

and repeating this argument for all k = 1, 2, . . . ,Nt yields the product
solution

St = S0

Nt∏
k=1

(1 + ηTk
)

= S0
∏

∆Ns=1
0⩽s⩽t

(1 + ηs)

= S0
∏

0⩽s⩽t
(1 + ηs∆Ns), t ⩾ 0.
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By a similar argument, we obtain the following proposition.

Proposition 20.16. The stochastic differential equation with jumps

dSt = µtStdt+ ηtSt-(dNt − λdt), (20.32)

admits the solution

St = S0 exp
(w t

0
µsds− λ

w t
0
ηsds

) Nt∏
k=1

(1 + ηTk
), t ⩾ 0.

Note that the equations

dSt = µtSt-dt+ ηtSt-(dNt − λdt)

and
dSt = µtStdt+ ηtSt-(dNt − λdt)

are equivalent because St-dt = Stdt as the set {Tk}k⩾1 of jump times has
zero measure of length.

A random simulation of the numerical solution of the above equation (20.32)
is given in Figure 20.14 for η = 1.29 and constant µ = µt, t ⩾ 0.

Fig. 20.14: Geometric Poisson process.∗

The above simulation can be compared to the real sales ranking data of
Figure 20.15.
∗ The animation works in Acrobat Reader on the entire pdf file.
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Fig. 20.15: Ranking data.

Next, consider the equation

dSt = µtStdt+ ηtSt-(dYt − λE[Z]dt)

driven by the compensated compound Poisson process (Yt − λE[Z]t)t∈R+ ,
also written as

dSt = µtStdt+ ηtSt-(ZNtdNt − λE[Z]dt),

with solution

St = S0 exp
(w t

0
µsds− λE[Z]

w t
0
ηsds

) Nt∏
k=1

(1 + ηTk
Zk) t ⩾ 0. (20.33)

A random simulation of the geometric compound Poisson process (20.33) is
given in Figure 20.16.

Fig. 20.16: Geometric compound Poisson process.∗
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In the case of a jump-diffusion stochastic differential equation of the form

dSt = µtStdt+ ηtSt-(dYt − λE[Z]dt) + σtStdBt,

we get

St = S0 exp
(w t

0
µsds− λE[Z]

w t
0
ηsds+

w t
0
σsdBs − 1

2
w t

0
|σs|2ds

)
×

Nt∏
k=1

(1 + ηTk
Zk), t ⩾ 0.

A random simulation of the geometric Brownian motion with compound Pois-
son jumps is given in Figure 20.17.

Fig. 20.17: Geometric Brownian motion with compound Poisson jumps.∗

By rewriting St as

St = S0 exp
(w t

0
µsds+

w t
0
ηs(dYs − λE[Z]ds) +

w t
0
σsdBs − 1

2
w t

0
|σs|2ds

)
×

Nt∏
k=1

(
(1 + ηTk

Zk) e−ηTk
Zk
)
,

t ⩾ 0, one can extend this jump model to processes with an infinite number
of jumps on any finite time interval, cf. Cont and Tankov (2004). The next
Figure 20.18 shows a number of downward and upward jumps occurring in
the SMRT historical share price data, with a typical geometric Brownian
behavior in between jumps.
∗ The animation works in Acrobat Reader on the entire pdf file.
∗ The animation works in Acrobat Reader on the entire pdf file.
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Fig. 20.18: SMRT Share price.

20.5 Girsanov Theorem for Jump Processes

Recall that in its simplest form, cf. Section 7.2, the Girsanov Theorem 7.3
for Brownian motion states the following.

Let µ ∈ R. Under the probability measure P̃−µ defined by the
Radon-Nikodym density

dP̃−µ
dP

:= e−µBT −µ2T/2,

the random variable BT +µT has the centered Gaussian distribution
N (0,T ).

This fact follows from the calculation

Ẽ−µ[f(BT + µT )] = E[f(BT + µT ) e−µBT −µ2T/2]

=
1√
2πT

w ∞

−∞
f(x+ µT ) e−µx−µ2T/2 e−x2/(2T )dx

=
1√
2πT

w ∞

−∞
f(x+ µT ) e−(x+µT )2/(2T )dx

=
1√
2πT

w ∞

−∞
f(y) e−y2/(2T )dy

= E[f(BT )], (20.34)

for any bounded measurable function f on R, which shows that BT + µT is
a centered Gaussian random variable under P̃−µ.

More generally, the Girsanov Theorem states that (Bt + µt)t∈[0,T ] is a stan-
dard Brownian motion under P̃−µ.
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When Brownian motion is replaced with a standard Poisson process (Nt)t∈[0,T ],
a spatial shift of the type

Bt 7−→ Bt + µt

can no longer be used because Nt+µt cannot be a Poisson process, whatever
the change of probability applied, since by construction, the paths of the
standard Poisson process has jumps of unit size and remain constant between
jump times.

The correct way to extend the Girsanov Theorem to the Poisson case is
to replace the space shift with a shift of the intensity of the Poisson process
as in the following statement.

Proposition 20.17. Consider a random variable NT having the Poisson dis-
tribution P(λT ) with parameter λT under Pλ. Under the probability measure
P̃λ̃ defined by the Radon-Nikodym density

dP̃λ̃

dPλ
:= e−(λ̃−λ)T

(
λ̃

λ

)NT

,

the random variable NT has a Poisson distribution with intensity λ̃T . As a
consequence, the compensated process

(
Nt − λ̃t

)
t∈[0,T ] is a martingale under

P̃λ̃.

Proof. This follows from the relation

P̃λ̃(NT = k) = e−(λ̃−λ)T
(
λ̃

λ

)k
Pλ(NT = k)

= e−(λ̃−λ)T
(
λ̃

λ

)k
e−λT (λT )

k

k!

= e−λ̃T (λ̃T )
k

k!
, k ⩾ 0.

□

Assume now that (Nt)t∈[0,T ] is a standard Poisson process with intensity λ
under a probability measure Pλ. In order to extend (20.34) to the Poisson
case we can replace the space shift with a time contraction (or dilation)

Nt 7−→ N(1+c)t

by a factor 1 + c, where

c := −1 + λ̃

λ
> −1,

or λ̃ = (1 + c)λ. We note that
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Pλ

(
N(1+c)T = k

)
=

(λ(1 + c)T )k

k!
e−λ(1+c)T

= (1 + c)k e−λcTPλ(NT = k)

= P̃λ̃(NT = k), k ⩾ 0,

hence
dP̃λ̃

dPλ
:= (1 + c)NT e−λcT ,

and by analogy with (20.34) we have

Eλ

[
f(N(1+c)T )

]
=
∑
k⩾0

f(k)Pλ

(
N(1+c)T = k

)
(20.35)

= e−λcT
∑
k⩾0

f(k)(1 + c)kPλ(NT = k)

= e−λcTEλ

[
f(NT )(1 + c)NT

]
= Eλ

[
f(NT )

dP̃λ̃

dPλ

]
= Ẽλ̃[f(NT )],

for any bounded function f on N. In other words, taking f(x) := 1{x⩽n},
we have

Pλ

(
N(1+c)T ⩽ n

)
= P̃λ̃(NT ⩽ n), n ⩾ 0,

or
P̃λ̃(NT/(1+c) ⩽ n) = Pλ

(
NT ⩽ n

)
, n ⩾ 0.

As a consequence, we have the following proposition.
Proposition 20.18. Let λ, λ̃ > 0, and set

c := −1 + λ̃

λ
> −1.

The process
(
Nt/(1+c)

)
t∈[0,T ] is a standard Poisson process with intensity λ

under the probability measure P̃λ̃ defined by the Radon-Nikodym density

dP̃λ̃

dPλ
:= e−(λ̃−λ)T

(
λ̃

λ

)NT

= e−cλT (1 + c)NT .

In particular, the compensated Poisson processes

Nt/(1+c) − λt and Nt − λ̃t, 0 ⩽ t ⩽ T ,

are martingales under P̃λ̃.

" 759

This version: May 3, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html


N. Privault

Proof. As in (20.35), we have

Eλ[f(NT )] = Ẽλ̃

[
f
(
NT/(1+c)

)]
,

i.e., under P̃λ̃ the distribution of NT/(1+c) is that of a standard Poisson
random variable with parameter λT . Since

(
Nt/(1+c)

)
t∈[0,T ] has independent

increments,
(
Nt/(1+c)

)
t∈[0,T ] is a standard Poisson process with intensity λ

under P̃λ̃, and the compensated process (Nt/(1+c) −λt)t∈[0,T ] is a martingale
under P̃λ̃ by (7.2). Similarly, the compensated process

(Nt − (1 + c)λt)t∈[0,T ] =
(
Nt − λ̃t

)
t∈[0,T ]

has independent increments and is a martingale under P̃λ̃. □

We also have

Nt/(1+c) =
∑
n⩾1

1[Tn,∞)

(
t

1 + c

)
=
∑
n⩾1

1[(1+c)Tn,∞)(t), t ⩾ 0,

which shows that the jump times ((1 + c)Tn)n⩾1 of
(
Nt/(1+c)

)
t∈[0,T ] are

distributed under P̃λ̃ as the jump times of a Poisson process with intensity
λ.

The next code shows that the compensated Poisson process (Nt/(1+c) −
λt)t∈[0,T ], remains a martingale after the Poisson process interjump times
(τk)k⩾1 have been generated using exponential random variables with pa-
rameter λ̃ > 0.

1 lambda = 0.5;lambdat=2;c=-1+lambdat/lambda;n = 20;Z<-cumsum(c(0,rep(1,n)))
2 for (k in 1:n){tau_k <- rexp(n,rate=lambdat); Tn <- cumsum(tau_k)}

N <- function(t) {return(stepfun(Tn,Z)(t))};t <- seq(0,10,0.01)
4 plot(t,N(t/(1+c))-lambda*t,xlim = c(0,10),ylim =

c(-2,2),xlab="t",ylab="Nt-t",type="l",lwd=2,col="blue",main="", xaxs = "i", yaxs = "i",
xaxs = "i", yaxs = "i");abline(h = 0, col="black", lwd =2)

points(Tn*(1+c),N(Tn)-lambda*Tn*(1+c),pch=1,cex=0.8,col="blue",lwd=2)

When µ ̸= r, the discounted price process (S̃t)t∈R+ = ( e−rtSt)t∈R+ written
as

dS̃t

S̃t-
= (µ− r)dt+ σ(dNt − λdt) (20.36)

is not a martingale under Pλ. However, we can rewrite (20.36) as

dS̃t

S̃t-
= σ

(
dNt −

(
λ− µ− r

σ

)
dt

)
and letting
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λ̃ := λ− µ− r

σ
= (1 + c)λ

with
c := −µ− r

σλ
,

we have
dS̃t

S̃t-
= σ

(
dNt − λ̃dt

)
hence the discounted price process (S̃t)t∈R+ is martingale under the proba-
bility measure P̃λ̃ defined by the Radon-Nikodym density

dP̃λ̃

dPλ
:= e−λcT (1 + c)NT = e(µ−r)/σ

(
1 − µ− r

σλ

)NT

.

We note that if
µ− r ⩽ σλ

then the risk-neutral probability measure P̃λ̃ exists and is unique, therefore
by Theorems 5.7 and 5.11 the market is without arbitrage and complete.
If µ − r > σλ then the discounted asset price process (S̃t)t∈R+ is always
increasing, and arbitrage becomes possible by borrowing from the savings
account and investing on the risky underlying asset.

Girsanov Theorem for compound Poisson processes

In the case of compound Poisson processes, the Girsanov Theorem can be
extended to variations in jump sizes in addition to time variations, and we
have the following more general result.

Theorem 20.19. Let (Yt)t⩾0 be a compound Poisson process with intensity
λ > 0 and jump size distribution ν(dx). Consider another intensity parameter
λ̃ > 0 and jump size distribution ν̃(dx), and let

ψ(x) :=
λ̃

λ

ν̃(dx)

ν(dx)
− 1, x ∈ R. (20.37)

Then,
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under the probability measure P̃λ̃,ν̃ defined by the Radon-Nikodym density

dP̃λ̃,ν̃

dP̃λ,ν
:= e−(λ̃−λ)T

NT∏
k=1

(1 + ψ(Zk)),

the process

Yt :=
Nt∑
k=1

Zk, t ⩾ 0,

is a compound Poisson process with

- modified intensity λ̃ > 0, and

- modified jump size distribution ν̃(dx).

Proof. For any bounded measurable function f on R, we extend (20.35) to
the following change of variable

Eλ̃,ν̃ [f(YT )] = e−(λ̃−λ)TEλ,ν

f(YT ) NT∏
i=1

(1 + ψ(Zi))


= e−(λ̃−λ)T

∑
k⩾0

Eλ,ν

[
f

(
k∑
i=1

Zi

)
k∏
i=1

(1 + ψ(Zi))
∣∣∣ NT = k

]
Pλ(NT = k)

= e−λ̃T
∑
k⩾0

(λT )k

k!
Eλ,ν

[
f

(
k∑
i=1

Zi

)
k∏
i=1

(1 + ψ(Zi))

]

= e−λ̃T
∑
k⩾0

(λT )k

k!

w ∞

−∞
· · ·

w ∞

−∞
f(z1 + · · · + zk)

k∏
i=1

(1 + ψ(zi))ν(dz1) · · · ν(dzk)

= e−λ̃T
∑
k⩾0

(
λ̃T
)k

k!

w ∞

−∞
· · ·

w ∞

−∞
f(z1 + · · · + zk)

(
k∏
i=1

ν̃(dzi)

ν(dzi)

)
ν(dz1) · · · ν(dzk)

= e−λ̃T
∑
k⩾0

(
λ̃T
)k

k!

w ∞

−∞
· · ·

w ∞

−∞
f(z1 + · · · + zk)ν̃(dz1) · · · ν̃(dzk).

This shows that under Pλ̃,ν̃ , YT has the distribution of a compound Poisson
process with intensity λ̃ and jump size distribution ν̃. We refer to Propo-
sition 9.6 of Cont and Tankov (2004) for the independence of increments of
(Yt)t∈R+ under P̃λ̃,ν̃ . □

Example. In case ν ≃ N (α,σ2) and ν̃ ≃ N (β, η2), we have
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ν(dx) =
dx√
2πσ2

exp
(

− 1
2σ2 (x− α)2

)
, ν̃(dx) =

dx√
2πη2

exp
(

− 1
2η2 (x− β)2

)
,

x ∈ R, hence

ν̃(dx)

ν(dx)
=
η

σ
exp

(
1

2η2 (x− β)2 − 1
2σ2 (x− α)2

)
,

and ψ(x) in (20.37) is given by

1 + ψ(x) =
λ̃

λ

ν̃(dx)

ν(dx)
=
λ̃η

λσ
exp

(
1

2η2 (x− β)2 − 1
2σ2 (x− α)2

)
, x ∈ R.

Note that the compound Poisson process with intensity λ̃ > 0 and jump size
distribution ν̃ can be built as

Xt :=
Nλ̃t/λ∑
k=1

h(Zk),

provided that ν̃ is the pushforward measure of ν by the function h : R → R,
i.e.,

P(h(Zk) ∈ A) = P(Zk ∈ h−1(A)) = ν(h−1(A)) = ν̃(A),

for all (measurable) subsets A of R. As a consequence of Theorem 20.19 we
have the following proposition.

Proposition 20.20. The compensated process

Yt − λ̃tEν̃ [Z]

is a martingale under the probability measure P̃λ̃,ν̃ defined by the Radon-
Nikodym density

dP̃λ̃,ν̃

dP̃λ,ν
= e−(λ̃−λ)T

NT∏
k=1

(1 + ψ(Zk)).

Finally, the Girsanov Theorem can be extended to the linear combination
of a standard Brownian motion (Bt)t∈R+ and a compound Poisson process
(Yt)t∈R+ independent of (Bt)t∈R+ , as in the following result which is a par-
ticular case of Theorem 33.2 of Sato (1999).

Theorem 20.21. Let (Yt)t⩾0 be a compound Poisson process with intensity
λ > 0 and jump size distribution ν(dx). Consider another jump size distri-
bution ν̃(dx) and intensity parameter λ̃ > 0, and let

ψ(x) :=
λ̃

λ

dν̃

dν
(x) − 1, x ∈ R,
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and let (ut)t∈R+ be a bounded adapted process. Then, the process(
Bt +

w t
0
usds+ Yt − λ̃Eν̃ [Z]t

)
t∈R+

is a martingale under the probability measure P̃u,λ̃,ν̃ defined by the Radon-
Nikodym density

dP̃u,λ̃,ν̃

dP̃λ,ν
= exp

(
−
(
λ̃− λ

)
T −

w T
0
usdBs − 1

2
w T

0
|us|2ds

) NT∏
k=1

(1 + ψ(Zk)).

(20.38)

As a consequence of Theorem 20.21, if

Bt +
w t

0
vsds+ Yt (20.39)

is not a martingale under P̃λ,ν , it will become a martingale under P̃u,λ̃,ν̃
provided that u, λ̃ and ν̃ are chosen in such a way that

vs = us − λ̃Eν̃ [Z], s ∈ R, (20.40)

in which case (20.39) can be rewritten into the martingale decomposition

dBt + utdt+ dYt − λ̃Eν̃ [Z]dt,

in which both
(
Bt +

w t
0
usds

)
t∈R+

and
(
Yt − λ̃tEν̃ [Z]

)
t∈R+

are martingales

under P̃u,λ̃,ν̃

The following remarks will be of importance for arbitrage-free pricing in jump
models in Chapter 21.

a) When λ̃ = λ = 0, Theorem 20.21 coincides with the usual Girsanov
Theorem for Brownian motion, in which case (20.40) admits only one
solution given by u = v and there is uniqueness of P̃u,0,0.

b) Uniqueness also occurs when u = 0 in the absence of Brownian motion,
and with Poisson jumps of fixed size a (i.e., ν̃(dx) = ν(dx) = δa(dx))
since in this case (20.40) also admits only one solution λ̃ = v and there is
uniqueness of P̃0,λ̃,δa

.

When µ ̸= r, the discounted price process (S̃t)t∈R+ = ( e−rtSt)t∈R+ defined
by

dS̃t

S̃t-
= (µ− r)dt+ σdBt + η(dYt − λtEν [Z])

is not martingale under Pλ,ν , however we can rewrite the equation as
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dS̃t

S̃t-
= σ(udt+ dBt) + η

(
dYt −

(
uσ

η
+ λEν [Z] − µ− r

η

)
dt

)
and choosing u, ν̃, and λ̃ such that

λ̃Eν̃ [Z] =
uσ

η
+ λEν [Z] − µ− r

η
, (20.41)

we have
dS̃t

S̃t-
= σ(udt+ dBt) + η

(
dYt − λ̃Eν̃ [Z]dt

)
.

Hence the discounted price process (S̃t)t∈R+ is martingale under the proba-
bility measure P̃u,λ̃,ν̃ , and the market is without arbitrage by Theorem 5.7
and the existence of a risk-neutral probability measure P̃u,λ̃,ν̃ . However, the
market is not complete due to the non uniqueness of solutions

(
u, ν̃, λ̃

)
to

(20.41), and Theorem 5.11 does not apply in this situation.

Exercises

Exercise 20.1 Analysis of user login activity to the DBX digibank app showed
that the times elapsed between two logons are independent and exponentially
distributed with mean 1/λ. Find the CDF of the time T −TNT

elapsed since
the last logon before time T , given that the user has logged on at least once.

Hint: The number of logins until time t > 0 can be modeled by a standard
Poisson process (Nt)t∈[0,T ] with intensity λ.

Exercise 20.2 Consider a standard Poisson process (Nt)t∈R+ with intensity
λ > 0, started at N0 = 0.

a) Solve the stochastic differential equation

dSt = ηSt-dNt − ηλStdt = ηSt-(dNt − λdt).

b) Using the first Poisson jump time T1, solve the stochastic differential equa-
tion

dSt = −ληStdt+ dNt, t ∈ (0,T2).

Exercise 20.3 Consider (Bt)t∈R+ a standard Brownian motion and (Nt)t∈R+

a standard Poisson process with intensity λ > 0, and the stochastic differen-
tial equation

dXt = αXtdt+ σdBt + ηdNt.

a) Write down the Itô formula for df(Xt).
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b) Write down the Itô formula for d(X2
t ).

Exercise 20.4 Consider an asset price process (St)t∈R+ given by the stochas-
tic differential equation dSt = µStdt+ σStdBt + ηSt-dYt, i.e.

St = S0 + µ
w t

0
Ssds+ σ

w t
0
SsdBs + η

w t
0
Ss-dYs, t ⩾ 0, (20.42)

where S0 > 0, µ ∈ R, σ ⩾ 0, η ⩾ 0 are constants, and (Yt)t∈R+ is a compound
Poisson process with intensity λ ⩾ 0 and i.i.d. jump sizes Zk, k ⩾ 1.

a) Write a differential equation satisfied by u(t) := E[St], t ⩾ 0.
Hint: Use the smoothing lemma Proposition 6.9.

b) Find the value of E[St], t ⩾ 0, in terms of S0, µ, η, λ and E[Z].

Exercise 20.5 Consider a standard Poisson process (Nt)t∈R+ with intensity
λ > 0.

a) Solve the stochastic differential equation dXt = αXtdt+ σdNt over the
time intervals [0,T1), [T1,T2), [T2,T3), [T3,T4), where X0 = 1.

b) Write a differential equation for f(t) := E[Xt], and solve it for t ∈ R+.

Exercise 20.6 Consider a standard Poisson process (Nt)t∈R+ with intensity
λ > 0.

a) Solve the stochastic differential equation dXt = σXt-dNt for (Xt)t∈R+ ,
where σ > 0 and X0 = 1.

b) Show that the solution (St)t∈R+ of the stochastic differential equation

dSt = rdt+ σSt-dNt,

is given by St = S0Xt + rXt

w t
0
X−1
s ds.

c) Compute E[Xt] and E[Xt/Xs], 0 ⩽ s ⩽ t.
d) Compute E[St], t ⩾ 0.

Exercise 20.7 Let (Nt)t∈R+ be a standard Poisson process with intensity
λ > 0, started at N0 = 0.

a) Is the process t 7→ Nt − 2λt a submartingale, a martingale, or a su-
permartingale?

b) Let r > 0. Solve the stochastic differential equation

dSt = rStdt+ σSt-(dNt − λdt).

c) Is the process t 7→ St of Question (b) a submartingale, a martingale, or a
supermartingale?
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d) Compute the price at time 0 of the European call option with strike price
K = S0 e(r−λσ)T , where σ > 0.

Exercise 20.8 Affine stochastic differential equation with jumps. Consider a
standard Poisson process (Nt)t∈R+ with intensity λ > 0.

a) Solve the stochastic differential equation dXt = adNt + σXt-dNt, where
σ > 0, and a ∈ R.

b) Compute E[Xt] for t ∈ R+.

Exercise 20.9 Consider the compound Poisson process Yt :=
Nt∑
k=1

Zk, where

(Nt)t∈R+ is a standard Poisson process with intensity λ > 0, and (Zk)k⩾1 is
an i.i.d. sequence of N (0, 1) Gaussian random variables. Solve the stochastic
differential equation

dSt = rStdt+ ηSt-dYt,

where η, r ∈ R.

Exercise 20.10 Show, by direct computation or using the moment generating
function (20.10), that the variance of the compound Poisson process Yt with
intensity λ > 0 satisfies

Var [Yt] = λtE
[
|Z|2

]
= λt

w ∞

−∞
x2ν(dx).

Exercise 20.11 Consider an exponential compound Poisson process of the
form

St = S0 eµt+σBt+Yt , t ⩾ 0,

where (Yt)t∈R+ is a compound Poisson process of the form (20.8).

a) Derive the stochastic differential equation with jumps satisfied by (St)t∈R+ .
b) Let r > 0. Find a family

(
P̃u,λ̃,ν̃

)
of probability measures under which the

discounted asset price e−rtSt is a martingale.

Exercise 20.12 Consider (Nt)t∈R+ a standard Poisson process with inten-
sity λ > 0 under a probability measure P. Let (St)t∈R+ be defined by the
stochastic differential equation

dSt = µStdt+ ZNtSt-dNt, (20.43)

where (Zk)k⩾1 is an i.i.d. sequence of random variables of the form

Zk = eXk − 1, where Xk ≃ N (0,σ2), k ⩾ 1.

" 767

This version: May 3, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html


N. Privault

a) Solve the equation (20.43).
b) We assume that µ and the risk-free interest rate r > 0 are chosen such

that the discounted process ( e−rtSt)t∈R+ is a martingale under P. What
relation does this impose on µ and r?

c) Under the relation of Question (b), compute the price at time t of the
European call option on ST with strike price κ and maturity T > 0, using
a series expansion of Black-Scholes functions.

Exercise 20.13 Consider a standard Poisson process (Nt)t∈R+ with intensity
λ > 0 under a probability measure P. Let (St)t∈R+ be the mean-reverting
process defined by the stochastic differential equation

dSt = −αStdt+ σ(dNt − βdt), (20.44)

where S0 > 0 and α,β > 0.

a) Solve the equation (20.44) for St.
b) Compute f(t) := E[St] for all t ∈ R+.
c) Under which condition on α, β, σ and λ does the process St become a

submartingale?
d) Propose a method for the calculation of expectations of the form E[ϕ(ST )]

where ϕ is a payoff function.

Exercise 20.14 Let (Nt)t∈[0,T ] be a standard Poisson process started at
N0 = 0, with intensity λ > 0 under the probability measure Pλ, and consider
the compound Poisson process (Yt)t∈[0,T ] with i.i.d. jump sizes (Zk)k⩾1 of
distribution ν(dx).

a) Under the probability measure Pλ, the process t 7→ Yt − λt(t+ E[Z]) is
a:

submartingale | martingale | supermartingale |

b) Consider the process (St)t∈[0,T ] given by

dSt = µStdt+ σSt-dYt.

Find λ̃ such that the discounted process (S̃t)t∈[0,T ] := (e−rtSt)t∈[0,T ] is
a martingale under the probability measure Pλ̃ defined by the Radon-
Nikodym density

dPλ̃

dPλ
:= e−(λ̃−λ)T

(
λ̃

λ

)NT

.

with respect to Pλ.
c) Price the forward contract with payoff ST − κ.
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Exercise 20.15 Consider (Yt)t∈R+ a compound Poisson process written as

Yt =
Nt∑
k=1

Zk, t ∈ R+,

where (Nt)t∈R+ a standard Poisson process with intensity λ > 0 and (Zk)k⩾1
is an i.i.d family of random variables with probability distribution ν(dx) on
R, under a probability measure P. Let (St)t∈R+ be defined by the stochastic
differential equation

dSt = µStdt+ St-dYt. (20.45)

a) Solve the equation (20.45).
b) We assume that µ, ν(dx) and the risk-free interest rate r > 0 are chosen

such that the discounted process ( e−rtSt)t∈R+ is a martingale under P.
What relation does this impose on µ, ν(dx) and r?

c) Under the relation of Question (b), compute the price at time t of the
European call option on ST with strike price κ and maturity T > 0, using
a series expansion of integrals.

Exercise 20.16 Consider a standard Poisson process (Nt)t∈[0,T ] with intensity
λ > 0 and a standard Brownian motion (Bt)t∈[0,T ] independent of (Nt)t∈[0,T ]
under the probability measure Pλ. Let also (Yt)t∈[0,T ] be a compound Poisson
process with i.i.d. jump sizes (Zk)k⩾1 of distribution ν(dx) under Pλ, and
consider the jump process (St)t∈[0,T ] solution of

dSt = rStdt+ σStdBt + ηSt-
(
dYt − λ̃E[Z1]dt

)
.

with r,σ, η,λ, λ̃ > 0.

a) Assume that λ̃ = λ. Under the probability measure Pλ, the discounted
price process ( e−rtSt)t∈[0,T ] is a:

submartingale | martingale | supermartingale |

b) Assume λ̃ > λ. Under the probability measure Pλ, the discounted price
process ( e−rtSt)t∈[0,T ] is a:

submartingale | martingale | supermartingale |

c) Assume λ̃ < λ. Under the probability measure Pλ, the discounted price
process ( e−rtSt)t∈[0,T ] is a:

submartingale | martingale | supermartingale |
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d) Consider the probability measure P̃λ̃ defined by its Radon-Nikodym den-
sity

dP̃λ̃

dPλ
:= e−(λ̃−λ)T

(
λ̃

λ

)NT

.

with respect to Pλ. Under the probability measure P̃λ̃, the discounted
price process ( e−rtSt)t∈[0,T ] is a:

submartingale | martingale | supermartingale |

Exercise 20.17 Let (Nt)t∈[0,T ] and (Bt)t∈[0,T ] be a standard Poisson process
with intensity λ > 0 and an independent standard Brownian motion under
a probability measure P. Let also (Yt)t∈[0,T ] be a compound Poisson process
with i.i.d. jump sizes (Zk)k⩾1 of distribution ν(dx) under P, and let µ,σ > 0.
Let also P̃ denote the probability measure defined by the density

dP̃

dP
:= e−(λ̃−λ)T−µBT /σ−µ2T/(2σ2)

(
λ̃

λ

)NT

with respect to P, where λ̃ > λ > 0. Which of the following processes are
martingales under P̃?

a) Bt,
b) µt/σ+Bt,
c) µt/σ−Bt,
d) −µt/σ+Bt,
e) Yt − λ̃E[Z1]t,
f) Yt − λE[Z1]t,
g) µt/σ+Bt + Yt − λ̃E[Z1]t,
h) µt/σ+Bt − (Yt − λ̃E[Z1]t),
i) −µt/σ+Bt + Yt − λ̃E[Z1]t,
j) µt/σ+Bt + Yt − λE[Z1]t.
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