Chapter 19

Pricing of Interest Rate Derivatives

Interest rate derivatives are option contracts whose payoffs can be based on fixed-income securities such as bonds, or on cash flows exchanged in e.g. interest rate swaps. In this chapter we consider the pricing and hedging of interest rate and fixed income derivatives such as bond options, caplets, caps and swaptions, using the change of numéraire technique and forward measures.
19.1 Forward Measures and Tenor Structure 685
19.2 Bond Options 689
19.3 Caplet Pricing 691
19.4 Forward Swap Measures 698
19.5 Swaption Pricing. 699
Exercises 709

19.1 Forward Measures and Tenor Structure

The maturity dates are arranged according to a discrete tenor structure

$$
\left\{0=T_{0}<T_{1}<T_{2}<\cdots<T_{n}\right\} .
$$

A sample of forward interest rate curve data is given in Table 19.1, which contains the values of $\left(T_{1}, T_{2}, \ldots, T_{23}\right)$ and of $\left\{f\left(t, t+T_{i}, t+T_{i}+\delta\right)\right\}_{i=1,2, \ldots, 23}$, with $t=07 / 05 / 2003$ and $\delta=$ six months.

(2D	1W	1M	21	3M	1Y	2Y	3 Y	4Y	5 Y	6 Y	7Y
Rate (\%)	2.55	2.53	2.56	2.52	2.48	2.3	2.49	2.79	3.07	3.31	3.52	3.71
Maturity	8Y	9Y	10Y	11Y	12Y	13Y	14Y	15 Y	20Y	25 Y	30 Y	
Rate (\%)	3.88	4.02	4.14	4.23	4.33	4.40	4.47	4.54	4.74	4.83	4.86	

Table 19.1: Forward rates arranged according to a tenor structure.

Recall that by definition of $P\left(t, T_{i}\right)$ and absence of arbitrage the discounted bond price process

$$
t \mapsto \mathrm{e}^{-\int_{0}^{t} r_{s} d s} P\left(t, T_{i}\right), \quad 0 \leqslant t \leqslant T_{i}
$$

is an \mathcal{F}_{t}-martingale under the probability measure $\mathbb{P}^{*}=\mathbb{P}$, hence it satisfies the Assumption (A) on page 568 for $i=1,2, \ldots, n$. As a consequence the bond price process can be taken as a numéraire

$$
N_{t}^{(i)}:=P\left(t, T_{i}\right), \quad 0 \leqslant t \leqslant T_{i}
$$

in the definition

$$
\begin{equation*}
\frac{\mathrm{d} \widehat{\mathbb{P}}_{i}}{\mathrm{~d} \mathbb{P}^{*}}=\frac{1}{P\left(0, T_{i}\right)} \mathrm{e}^{-\int_{0}^{T_{i}} r_{s} d s} \tag{19.1}
\end{equation*}
$$

of the forward measure $\widehat{\mathbb{P}}_{i}$, see Definition 16.1. The following proposition will allow us to price contingent claims using the forward measure $\widehat{\mathbb{P}}_{i}$, it is a direct consequence of Proposition 16.5, noting that here we have $P\left(T_{i}, T_{i}\right)=1$.

Proposition 19.1. For all sufficiently integrable random variables C we have

$$
\begin{equation*}
\mathbb{E}^{*}\left[C \mathrm{e}^{-\int_{t}^{T_{i}} r_{s} d s} \mid \mathcal{F}_{t}\right]=P\left(t, T_{i}\right) \widehat{\mathbb{E}}_{i}\left[C \mid \mathcal{F}_{t}\right], \quad 0 \leqslant t \leqslant T_{i}, \quad i=1,2, \ldots, n \tag{19.2}
\end{equation*}
$$

Recall that by Proposition 16.4, the deflated process

$$
t \mapsto \frac{P\left(t, T_{j}\right)}{P\left(t, T_{i}\right)}, \quad 0 \leqslant t \leqslant \min \left(T_{i}, T_{j}\right)
$$

is an \mathcal{F}_{t}-martingale under $\widehat{\mathbb{P}}_{i}$ for all $T_{i}, T_{j} \geqslant 0, i, j=1,2, \ldots, n$.
In the sequel we assume as in (17.26) that the dynamics of the bond price $P\left(t, T_{i}\right)$ is given by

$$
\begin{equation*}
\frac{d P\left(t, T_{i}\right)}{P\left(t, T_{i}\right)}=r_{t} d t+\zeta_{i}(t) d W_{t}, \quad i=1,2, \ldots, n \tag{19.3}
\end{equation*}
$$

see e.g. (17.29) in the Vasicek case, where $\left(W_{t}\right)_{t \in \mathbb{R}_{+}}$is a standard Brownian motion under \mathbb{P}^{*} and $\left(r_{t}\right)_{t \in \mathbb{R}_{+}}$and $\left(\zeta_{i}(t)\right)_{t \in \mathbb{R}_{+}}$are adapted processes with respect to the filtration $\left(\mathcal{F}_{t}\right)_{t \in \mathbb{R}_{+}}$generated by $\left(W_{t}\right)_{t \in \mathbb{R}_{+}}$, i.e.

$$
P\left(t, T_{i}\right)=P\left(0, T_{i}\right) \exp \left(\int_{0}^{t} r_{s} d s+\int_{0}^{t} \zeta_{i}(s) d W_{s}-\frac{1}{2} \int_{0}^{t}\left|\zeta_{i}(s)\right|^{2} d s\right)
$$

$0 \leqslant t \leqslant T_{i}, i=1,2, \ldots, n$.

Forward Brownian motions

Proposition 19.2. For all $i=1,2, \ldots, n$, the process

$$
\begin{equation*}
\widehat{W}_{t}^{(i)}:=W_{t}-\int_{0}^{t} \zeta_{i}(s) d s, \quad 0 \leqslant t \leqslant T_{i} \tag{19.4}
\end{equation*}
$$

is a standard Brownian motion under the forward measure $\widehat{\mathbb{P}}_{i}$.

Proof. The Girsanov Proposition 16.7 applied to the numéraire

$$
N_{t}^{(i)}:=P\left(t, T_{i}\right), \quad 0 \leqslant t \leqslant T_{i}
$$

as in (16.13), shows that

$$
\begin{aligned}
d \widehat{W}_{t}^{(i)} & :=d W_{t}-\frac{1}{N_{t}^{(i)}} d N_{t}^{(i)} \cdot d W_{t} \\
& =d W_{t}-\frac{1}{P\left(t, T_{i}\right)} d P\left(t, T_{i}\right) \cdot d W_{t} \\
& =d W_{t}-\frac{1}{P\left(t, T_{i}\right)}\left(P\left(t, T_{i}\right) r_{t} d t+\zeta_{i}(t) P\left(t, T_{i}\right) d W_{t}\right) \cdot d W_{t} \\
& =d W_{t}-\zeta_{i}(t) d t
\end{aligned}
$$

is a standard Brownian motion under the forward measure $\widehat{\mathbb{P}}_{i}$ for all $i=$ $1,2, \ldots, n$.

We have

$$
\begin{equation*}
d \widehat{W}_{t}^{(i)}=d W_{t}-\zeta_{i}(t) d t, \quad i=1,2, \ldots, n \tag{19.5}
\end{equation*}
$$

and

$$
d \widehat{W}_{t}^{(j)}=d W_{t}-\zeta_{j}(t) d t=d \widehat{W}_{t}^{(i)}+\left(\zeta_{i}(t)-\zeta_{j}(t)\right) d t, \quad i, j=1,2, \ldots, n
$$

which shows that $\left(\widehat{W}_{t}^{(j)}\right)_{t \in \mathbb{R}_{+}}$has drift $\left(\zeta_{i}(t)-\zeta_{j}(t)\right)_{t \in \mathbb{R}_{+}}$under $\widehat{\mathbb{P}}_{i}$.

Bond price dynamics under the forward measure

In order to apply Proposition 19.1 and to compute the price

$$
\mathbb{E}^{*}\left[\mathrm{e}^{-\int_{t}^{T_{i}} r_{s} d s} C \mid \mathcal{F}_{t}\right]=P\left(t, T_{i}\right) \widehat{\mathbb{E}}_{i}\left[C \mid \mathcal{F}_{t}\right]
$$

of a random claim payoff C, it can be useful to determine the dynamics of the underlying variables $r_{t}, f(t, T, S)$, and $P(t, T)$ via their stochastic differential equations written under the forward measure $\widehat{\mathbb{P}}_{i}$.

As a consequence of Proposition 19.2 and (19.3), the dynamics of $t \mapsto P\left(t, T_{j}\right)$ under $\widehat{\mathbb{P}}_{i}$ is given by

$$
\begin{equation*}
\frac{d P\left(t, T_{j}\right)}{P\left(t, T_{j}\right)}=r_{t} d t+\zeta_{i}(t) \zeta_{j}(t) d t+\zeta_{j}(t) d \widehat{W}_{t}^{(i)}, \quad i, j=1,2, \ldots, n \tag{19.6}
\end{equation*}
$$

where $\left(\widehat{W}_{t}^{(i)}\right)_{t \in \mathbb{R}_{+}}$is a standard Brownian motion under $\widehat{\mathbb{P}}_{i}$, and we have $P\left(t, T_{j}\right)$
$=P\left(0, T_{j}\right) \exp \left(\int_{0}^{t} r_{s} d s+\int_{0}^{t} \zeta_{j}(s) d W_{s}-\frac{1}{2} \int_{0}^{t}\left|\zeta_{j}(s)\right|^{2} d s\right) \quad\left[\right.$ under $\left.\mathbb{P}^{*}\right]$
$=P\left(0, T_{j}\right) \exp \left(\int_{0}^{t} r_{s} d s+\int_{0}^{t} \zeta_{j}(s) d \widehat{W}_{s}^{(j)}+\frac{1}{2} \int_{0}^{t}\left|\zeta_{j}(s)\right|^{2} d s\right) \quad\left[\right.$ under $\left.\widehat{\mathbb{P}}_{j}\right]$
$=P\left(0, T_{j}\right) \exp \left(\int_{0}^{t} r_{s} d s+\int_{0}^{t} \zeta_{j}(s) d \widehat{W}_{s}^{(i)}+\int_{0}^{t} \zeta_{j}(s) \zeta_{i}(s) d s-\frac{1}{2} \int_{0}^{t}\left|\zeta_{j}(s)\right|^{2} d s\right) \quad\left[\right.$ under $\left.\widehat{\mathbb{P}}_{i}\right]$
$=P\left(0, T_{j}\right) \exp \left(\int_{0}^{t} r_{s} d s+\int_{0}^{t} \zeta_{j}(s) d \widehat{W}_{s}^{(i)}-\frac{1}{2} \int_{0}^{t}\left|\zeta_{j}(s)-\zeta_{i}(s)\right|^{2} d s+\frac{1}{2} \int_{0}^{t}\left|\zeta_{i}(s)\right|^{2} d s\right)$,
$t \in\left[0, T_{j}\right], i, j=1,2, \ldots, n$. Consequently, the forward price $P\left(t, T_{j}\right) / P\left(t, T_{i}\right)$ can be written as
$\frac{P\left(t, T_{j}\right)}{P\left(t, T_{i}\right)}$
$=\frac{P\left(0, T_{j}\right)}{P\left(0, T_{i}\right)} \exp \left(\int_{0}^{t}\left(\zeta_{j}(s)-\zeta_{i}(s)\right) d \widehat{W}_{s}^{(j)}+\frac{1}{2} \int_{0}^{t}\left|\zeta_{j}(s)-\zeta_{i}(s)\right|^{2} d s\right) \quad\left[\right.$ under $\widehat{\mathbb{P}}_{j}$]
$=\frac{P\left(0, T_{j}\right)}{P\left(0, T_{i}\right)} \exp \left(\int_{0}^{t}\left(\zeta_{j}(s)-\zeta_{i}(s)\right) d \widehat{W}_{s}^{(i)}-\frac{1}{2} \int_{0}^{t}\left|\zeta_{i}(s)-\zeta_{j}(s)\right|^{2} d s\right), \quad\left[\right.$ under $\left.\widehat{\mathbb{P}}_{i}\right]$
$t \in\left[0, \min \left(T_{i}, T_{j}\right)\right], i, j=1,2, \ldots, n$, which also follows from Proposition 16.8.

Short rate dynamics under the forward measure

In case the short rate process $\left(r_{t}\right)_{t \in \mathbb{R}_{+}}$is given as the (Markovian) solution to the stochastic differential equation

$$
d r_{t}=\mu\left(t, r_{t}\right) d t+\sigma\left(t, r_{t}\right) d W_{t}
$$

by (19.5) its dynamics will be given under $\widehat{\mathbb{P}}_{i}$ by

$$
\begin{align*}
d r_{t} & =\mu\left(t, r_{t}\right) d t+\sigma\left(t, r_{t}\right)\left(\zeta_{i}(t) d t+d \widehat{W}_{t}^{(i)}\right) \\
& =\mu\left(t, r_{t}\right) d t+\sigma\left(t, r_{t}\right) \zeta_{i}(t) d t+\sigma\left(t, r_{t}\right) d \widehat{W}_{t}^{(i)} \tag{19.8}
\end{align*}
$$

In the case of the Vašíček (1977) model, by (17.29) we have

$$
d r_{t}=\left(a-b r_{t}\right) d t+\sigma d W_{t}
$$

and

$$
\zeta_{i}(t)=-\frac{\sigma}{b}\left(1-\mathrm{e}^{-b\left(T_{i}-t\right)}\right), \quad 0 \leqslant t \leqslant T_{i}
$$

hence from (19.8) we have

$$
\begin{equation*}
d \widehat{W}_{t}^{(i)}=d W_{t}-\zeta_{i}(t) d t=d W_{t}+\frac{\sigma}{b}\left(1-\mathrm{e}^{-b\left(T_{i}-t\right)}\right) d t \tag{19.9}
\end{equation*}
$$

and

$$
\begin{equation*}
d r_{t}=\left(a-b r_{t}\right) d t-\frac{\sigma^{2}}{b}\left(1-\mathrm{e}^{-b\left(T_{i}-t\right)}\right) d t+\sigma d \widehat{W}_{t}^{(i)} \tag{19.10}
\end{equation*}
$$

and we obtain

$$
\frac{d P\left(t, T_{i}\right)}{P\left(t, T_{i}\right)}=r_{t} d t+\frac{\sigma^{2}}{b^{2}}\left(1-\mathrm{e}^{-b\left(T_{i}-t\right)}\right)^{2} d t-\frac{\sigma}{b}\left(1-\mathrm{e}^{-b\left(T_{i}-t\right)}\right) d \widehat{W}_{t}^{(i)}
$$

from (17.29).

19.2 Bond Options

The next proposition can be obtained as an application of the Margrabe formula (16.30) of Proposition 16.15 by taking $X_{t}=P\left(t, T_{j}\right), N_{t}^{(i)}=P\left(t, T_{i}\right)$, and $\widehat{X}_{t}=X_{t} / N_{t}^{(i)}=P\left(t, T_{j}\right) / P\left(t, T_{i}\right)$. In the Vasicek model, this formula has been first obtained in Jamshidian (1989).

We work with a standard Brownian motion $\left(W_{t}\right)_{t \in \mathbb{R}_{+}}$under \mathbb{P}^{*}, generating

Proposition 19.3. Let $0 \leqslant T_{i} \leqslant T_{j}$ and assume as in (17.26) that the dynamics of the bond prices $P\left(t, T_{i}\right), P\left(t, T_{j}\right)$ under \mathbb{P}^{*} are given by

$$
\frac{d P\left(t, T_{i}\right)}{P\left(t, T_{i}\right)}=r_{t} d t+\zeta_{i}(t) d W_{t}, \quad \frac{d P\left(t, T_{j}\right)}{P\left(t, T_{j}\right)}=r_{t} d t+\zeta_{j}(t) d W_{t}
$$

where $\left(\zeta_{i}(t)\right)_{t \in \mathbb{R}_{+}}$and $\left(\zeta_{j}(t)\right)_{t \in \mathbb{R}_{+}}$are deterministic volatility functions. Then, the price of a bond call option on $P\left(T_{i}, T_{j}\right)$ with payoff

$$
C:=\left(P\left(T_{i}, T_{j}\right)-\kappa\right)^{+}
$$

can be written as

$$
\begin{align*}
\mathbb{E}^{*} & {\left[\mathrm{e}^{-\int_{t}^{T_{i}} r_{s} d s}\left(P\left(T_{i}, T_{j}\right)-\kappa\right)^{+} \mid \mathcal{F}_{t}\right] } \tag{19.11}\\
= & P\left(t, T_{j}\right) \Phi\left(\frac{v\left(t, T_{i}\right)}{2}+\frac{1}{v\left(t, T_{i}\right)} \log \frac{P\left(t, T_{j}\right)}{\kappa P\left(t, T_{i}\right)}\right) \\
& -\kappa P\left(t, T_{i}\right) \Phi\left(-\frac{v\left(t, T_{i}\right)}{2}+\frac{1}{v\left(t, T_{i}\right)} \log \frac{P\left(t, T_{j}\right)}{\kappa P\left(t, T_{i}\right)}\right)
\end{align*}
$$

where $v^{2}\left(t, T_{i}\right):=\int_{t}^{T_{i}}\left|\zeta_{i}(s)-\zeta_{j}(s)\right|^{2} d s$ and

$$
\Phi(x):=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} \mathrm{e}^{-y^{2} / 2} d y, \quad x \in \mathbb{R}
$$

is the Gaussian cumulative distribution function.
Proof. First, we note that using $N_{t}^{(i)}:=P\left(t, T_{i}\right)$ as a numéraire the price of a bond call option on $P\left(T_{i}, T_{j}\right)$ with payoff $F=\left(P\left(T_{i}, T_{j}\right)-\kappa\right)^{+}$can be written from Proposition 16.5 using the forward measure $\widehat{\mathbb{P}}_{i}$, or directly by (16.9), as

$$
\begin{equation*}
\mathbb{E}^{*}\left[\mathrm{e}^{-\int_{t}^{T_{i}} r_{s} d s}\left(P\left(T_{i}, T_{j}\right)-\kappa\right)^{+} \mid \mathcal{F}_{t}\right]=P\left(t, T_{i}\right) \widehat{\mathbb{E}}_{i}\left[\left(P\left(T_{i}, T_{j}\right)-\kappa\right)^{+} \mid \mathcal{F}_{t}\right] \tag{19.12}
\end{equation*}
$$

Next, by (19.7) or by solving (16.15) in Proposition 16.8 we can write $P\left(T_{i}, T_{j}\right)$ as the geometric Brownian motion

$$
\begin{aligned}
P\left(T_{i}, T_{j}\right) & =\frac{P\left(T_{i}, T_{j}\right)}{P\left(T_{i}, T_{i}\right)} \\
& =\frac{P\left(t, T_{j}\right)}{P\left(t, T_{i}\right)} \exp \left(\int_{t}^{T_{i}}\left(\zeta_{j}(s)-\zeta_{i}(s)\right) d \widehat{W}_{s}^{(i)}-\frac{1}{2} \int_{t}^{T_{i}}\left|\zeta_{i}(s)-\zeta_{j}(s)\right|^{2} d s\right),
\end{aligned}
$$

under the forward measure $\widehat{\mathbb{P}}_{i}$, and rewrite (19.12) as

$$
\begin{aligned}
& \mathbb{E}^{*}\left[\mathrm{e}^{-\int_{t}^{T_{i}} r_{s} d s}\left(P\left(T_{i}, T_{j}\right)-\kappa\right)^{+} \mid \mathcal{F}_{t}\right] \\
& =P\left(t, T_{i}\right) \widehat{\mathbb{E}}_{i}\left[\left.\left(\frac{P\left(t, T_{j}\right)}{P\left(t, T_{i}\right)} \mathrm{e}_{t}^{\int_{i}\left(\zeta_{j}(s)-\zeta_{i}(s)\right) d \widehat{W}_{s}^{(i)}-\frac{1}{2} \int_{t}^{T_{i}}\left|\zeta_{i}(s)-\zeta_{j}(s)\right|^{2} d s}-\kappa\right)^{+} \right\rvert\, \mathcal{F}_{t}\right] \\
& =\widehat{\mathbb{E}}_{i}\left[\left.\left(P\left(t, T_{j}\right) \mathrm{e}^{\int_{t}^{T_{i}}\left(\zeta_{j}(s)-\zeta_{i}(s)\right) d \widehat{W}_{s}^{(i)}-\frac{1}{2} \int_{t}^{T_{i}}\left|\zeta_{i}(s)-\zeta_{j}(s)\right|^{2} d s}-\kappa P\left(t, T_{i}\right)\right)^{+} \right\rvert\, \mathcal{F}_{t}\right]
\end{aligned}
$$

Since $\left(\zeta_{i}(s)\right)_{s \in\left[0, T_{i}\right]}$ and $\left(\zeta_{j}(s)\right)_{s \in\left[0, T_{j}\right]}$ in (19.3) are deterministic volatility functions, $P\left(T_{i}, T_{j}\right)$ is a lognormal random variable given \mathcal{F}_{t} under $\widehat{\mathbb{P}}_{i}$, and as in Proposition 16.15 we can use Lemma 7.7 to price the bond option by the zero-rate Black-Scholes formula

$$
\operatorname{Bl}\left(P\left(t, T_{j}\right), \kappa P\left(t, T_{i}\right), v\left(t, T_{i}\right) / \sqrt{T_{i}-t}, 0, T_{i}-t\right)
$$

with underlying asset price $P\left(t, T_{j}\right)$, strike level $\kappa P\left(t, T_{i}\right)$, volatility parameter

$$
\frac{v\left(t, T_{i}\right)}{\sqrt{T_{i}-t}}=\sqrt{\frac{\int_{t}^{T_{i}}\left|\zeta_{i}(s)-\zeta_{j}(s)\right|^{2} d s}{T_{i}-t}},
$$

time to maturity $T_{i}-t$, and zero interest rate, which yields (19.11).
Note that from Corollary 16.17 the decomposition (19.11) gives the selffinancing portfolio in the assets $P\left(t, T_{i}\right)$ and $P\left(t, T_{j}\right)$ for the claim with payoff $\left(P\left(T_{i}, T_{j}\right)-\kappa\right)^{+}$.
In the Vasicek case the above bond option price could also be computed from the joint distribution of $\left(r_{T}, \int_{t}^{T} r_{s} d s\right)$, which is Gaussian, or from the dynamics (19.6)-(19.10) of $P(t, T)$ and r_{t} under $\widehat{\mathbb{P}}_{i}$, see Kim (2002) and § 8.3 of Privault (2021b).

19.3 Caplet Pricing

An interest rate caplet is an option contract that offers protection against the fluctuations of a variable (or floating) rate with respect to a fixed rate κ. The payoff of a LIBOR caplet on the yield (or spot forward rate) $L\left(T_{i}, T_{i}, T_{i+1}\right)$ with strike level κ can be written as

$$
\left(L\left(T_{i}, T_{i}, T_{i+1}\right)-\kappa\right)^{+},
$$

and priced at time $t \in\left[0, T_{i}\right]$ from Proposition 16.5 using the forward measure $\widehat{\mathbb{P}}_{i+1}$ as

$$
\begin{align*}
& \mathbb{E}^{*}\left[\mathrm{e}^{-\int_{t}^{T_{i+1}} r_{s} d s}\left(L\left(T_{i}, T_{i}, T_{i+1}\right)-\kappa\right)^{+} \mid \mathcal{F}_{t}\right] \tag{19.13}\\
& \quad=P\left(t, T_{i+1}\right) \widehat{\mathbb{E}}_{i+1}\left[\left(L\left(T_{i}, T_{i}, T_{i+1}\right)-\kappa\right)^{+} \mid \mathcal{F}_{t}\right]
\end{align*}
$$

by taking $N_{t}^{(i+1)}=P\left(t, T_{i+1}\right)$ as a numéraire.
Proposition 19.4. The LIBOR rate

$$
L\left(t, T_{i}, T_{i+1}\right):=\frac{1}{T_{i+1}-T_{i}}\left(\frac{P\left(t, T_{i}\right)}{P\left(t, T_{i+1}\right)}-1\right), \quad 0 \leqslant t \leqslant T_{i}<T_{i+1},
$$

N. Privault

is a martingale under the forward measure $\widehat{\mathbb{P}}_{i+1}$ defined in (19.1).
Proof. The LIBOR rate $L\left(t, T_{i}, T_{i+1}\right)$ is a deflated process according to the forward numéraire process $\left(P\left(t, T_{i+1}\right)\right)_{t \in\left[0, T_{i+1}\right]}$. Therefore, by Proposition 16.4 it is a martingale under $\widehat{\mathbb{P}}_{i+1}$.
The caplet on $L\left(T_{i}, T_{i}, T_{i+1}\right)$ can be priced at time $t \in\left[0, T_{i}\right]$ using the discounted expected value of its payoff under \mathbb{P}^{*}, as

$$
\begin{align*}
& \mathbb{E}^{*}\left[\mathrm{e}^{-\int_{t}^{T_{i+1}} r_{s} d s}\left(L\left(T_{i}, T_{i}, T_{i+1}\right)-\kappa\right)^{+} \mid \mathcal{F}_{t}\right] \tag{19.14}\\
& =\mathbb{E}^{*}\left[\left.\mathrm{e}^{-\int_{t}^{T_{i+1}} r_{s} d s}\left(\frac{1}{T_{i+1}-T_{i}}\left(\frac{P\left(t, T_{i}\right)}{P\left(t, T_{i+1}\right)}-1\right)-\kappa\right)^{+} \right\rvert\, \mathcal{F}_{t}\right]
\end{align*}
$$

where the discount factor is counted from the settlement date T_{i+1}. The next pricing formula (19.16) allows us to price and hedge a caplet using a portfolio based on the bonds $P\left(t, T_{i}\right)$ and $P\left(t, T_{i+1}\right)$, cf. (19.20) below, when $L\left(t, T_{i}, T_{i+1}\right)$ is modeled in the BGM model of Section 18.6.

Proposition 19.5. (Black LIBOR caplet formula). Assume that $L\left(t, T_{i}, T_{i+1}\right)$ is modeled in the BGM model as

$$
\begin{equation*}
\frac{d L\left(t, T_{i}, T_{i+1}\right)}{L\left(t, T_{i}, T_{i+1}\right)}=\gamma_{i}(t) d \widehat{W}_{t}^{i+1} \tag{19.15}
\end{equation*}
$$

$0 \leqslant t \leqslant T_{i}, i=1,2, \ldots, n-1$, where $\gamma_{i}(t)$ is a deterministic volatility function of time $t \in\left[0, T_{i}\right], i=1,2, \ldots, n-1$. The caplet on $L\left(T_{i}, T_{i}, T_{i+1}\right)$ with strike level κ is priced at time $t \in\left[0, T_{i}\right]$ as

$$
\begin{aligned}
& \left(T_{i+1}-T_{i}\right) \mathbb{E}^{*}\left[\mathrm{e}^{-\int_{t}^{T_{i+1}} r_{s} d s}\left(L\left(T_{i}, T_{i}, T_{i+1}\right)-\kappa\right)^{+} \mid \mathcal{F}_{t}\right] \\
& =\left(P\left(t, T_{i}\right)-P\left(t, T_{i+1}\right)\right) \Phi\left(d_{+}\left(t, T_{i}\right)\right)-\kappa\left(T_{i+1}-T_{i}\right) P\left(t, T_{i+1}\right) \Phi\left(d_{-}\left(t, T_{i}\right)\right)
\end{aligned}
$$

$0 \leqslant t \leqslant T_{i}$, where

$$
\begin{equation*}
d_{+}\left(t, T_{i}\right)=\frac{\log \left(L\left(t, T_{i}, T_{i+1}\right) / \kappa\right)+\left(T_{i}-t\right) \sigma_{i}^{2}\left(t, T_{i}\right) / 2}{\sigma_{i}\left(t, T_{i}\right) \sqrt{T_{i}-t}} \tag{19.17}
\end{equation*}
$$

and

$$
\begin{equation*}
d_{-}\left(t, T_{i}\right)=\frac{\log \left(L\left(t, T_{i}, T_{i+1}\right) / \kappa\right)-\left(T_{i}-t\right) \sigma_{i}^{2}\left(t, T_{i}\right) / 2}{\sigma_{i}\left(t, T_{i}\right) \sqrt{T_{i}-t}} \tag{19.18}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\sigma_{i}\left(t, T_{i}\right)\right|^{2}=\frac{1}{T_{i}-t} \int_{t}^{T_{i}}\left|\gamma_{i}\right|^{2}(s) d s \tag{19.19}
\end{equation*}
$$

Proof. Taking $P\left(t, T_{i+1}\right)$ as a numéraire, the forward price

$$
\widehat{X}_{t}:=\frac{P\left(t, T_{i}\right)}{P\left(t, T_{i+1}\right)}=1+\left(T_{i+1}-T_{i}\right) L\left(T_{i}, T_{i}, T_{i+1}\right)
$$

and the forward LIBOR rate process $\left(L\left(t, T_{i}, T_{i+1}\right)_{t \in\left[0, T_{i}\right]}\right.$ are martingales under $\widehat{\mathbb{P}}_{i+1}$ by Proposition $19.4, i=1,2, \ldots, n-1$. More precisely, by (19.15) we have

$$
L\left(T_{i}, T_{i}, T_{i+1}\right)=L\left(t, T_{i}, T_{i+1}\right) \exp \left(\int_{t}^{T_{i}} \gamma_{i}(s) d \widehat{W}_{s}^{i+1}-\frac{1}{2} \int_{t}^{T_{i}}\left|\gamma_{i}(s)\right|^{2} d s\right)
$$

$0 \leqslant t \leqslant T_{i}$, i.e. $t \mapsto L\left(t, T_{i}, T_{i+1}\right)$ is a geometric Brownian motion with timedependent volatility $\gamma_{i}(t)$ under $\widehat{\mathbb{P}}_{i+1}$. Hence by (19.13), since $N_{T_{i+1}}^{(i+1)}=1$, as in Proposition 16.15 we have

$$
\begin{aligned}
& \mathbb{E}^{*}\left[\mathrm{e}^{-\int_{t}^{T_{i+1}} r_{s} d s}\left(L\left(T_{i}, T_{i}, T_{i+1}\right)-\kappa\right)^{+} \mid \mathcal{F}_{t}\right] \\
& =P\left(t, T_{i+1}\right) \widehat{\mathbb{E}}_{i+1}\left[\left(L\left(T_{i}, T_{i}, T_{i+1}\right)-\kappa\right)^{+} \mid \mathcal{F}_{t}\right] \\
& =P\left(t, T_{i+1}\right)\left(L\left(t, T_{i}, T_{i+1}\right) \Phi\left(d_{+}\left(t, T_{i}\right)\right)-\kappa \Phi\left(d_{-}\left(t, T_{i}\right)\right)\right) \\
& =P\left(t, T_{i+1}\right) \operatorname{Bl}\left(L\left(t, T_{i}, T_{i+1}\right), \kappa, \sigma_{i}\left(t, T_{i}\right), 0, T_{i}-t\right), \quad t \in\left[0, T_{i}\right]
\end{aligned}
$$

where

$$
\operatorname{Bl}(x, \kappa, \sigma, 0, \tau)=x \Phi\left(d_{+}\left(t, T_{i}\right)\right)-\kappa \Phi\left(d_{-}\left(t, T_{i}\right)\right)
$$

is the zero-interest rate Black-Scholes function, with

$$
\left|\sigma_{i}\left(t, T_{i}\right)\right|^{2}=\frac{1}{T_{i}-t} \int_{t}^{T_{i}}\left|\gamma_{i}\right|^{2}(s) d s
$$

Therefore, we obtain

$$
\begin{aligned}
& \left(T_{i+1}-T_{i}\right) \mathbb{E}^{*}\left[\mathrm{e}^{-\int_{t}^{T_{i+1}} r_{s} d s}\left(L\left(T_{i}, T_{i}, T_{i+1}\right)-\kappa\right)^{+} \mid \mathcal{F}_{t}\right] \\
& =\left(T_{i+1}-T_{i}\right) P\left(t, T_{i+1}\right) L\left(t, T_{i}, T_{i+1}\right) \Phi\left(d_{+}\left(t, T_{i}\right)\right)-\left(T_{i+1}-T_{i}\right) \kappa P\left(t, T_{i+1}\right) \Phi\left(d_{-}\left(t, T_{i}\right)\right) \\
& =P\left(t, T_{i+1}\right)\left(\frac{P\left(t, T_{i}\right)}{P\left(t, T_{i+1}\right)}-1\right) \Phi\left(d_{+}\left(t, T_{i}\right)\right) \\
& \quad-\kappa\left(T_{i+1}-T_{i}\right) P\left(t, T_{i+1}\right) \Phi\left(d_{-}\left(t, T_{i}\right)\right)
\end{aligned}
$$

which yields (19.16).
In addition, from Corollary 16.17 we obtain the self-financing portfolio strategy

$$
\begin{equation*}
\left(\Phi\left(d_{+}\left(t, T_{i}\right)\right),-\Phi\left(d_{+}\left(t, T_{i}\right)\right)-\kappa\left(T_{i+1}-T_{i}\right) \Phi\left(d_{-}\left(t, T_{i}\right)\right)\right) \tag{19.20}
\end{equation*}
$$

in the bonds priced $\left(P\left(t, T_{i}\right), P\left(t, T_{i+1}\right)\right)$ with maturities T_{i} and T_{i+1}, cf. Corollary 16.18 and Privault and Teng (2012).

The formula (19.16) can be applied to options on underlying futures or forward contracts on commodities whose prices are modeled according to (19.15), as in the next corollary.

Corollary 19.6. (Black (1976) formula). Let $L\left(t, T_{i}, T_{i+1}\right)$ be modeled as in (19.15) and let the bond price $P\left(t, T_{i+1}\right)$ be given as $P\left(t, T_{i+1}\right)=\mathrm{e}^{-\left(T_{i+1}-t\right) r}$. Then, (19.16) becomes

$$
\mathrm{e}^{-\left(T_{i+1}-t\right) r} L\left(t, T_{i}, T_{i+1}\right) \Phi\left(d_{+}\left(t, T_{i}\right)\right)-\kappa \mathrm{e}^{-\left(T_{i+1}-t\right) r} \Phi\left(d_{-}\left(t, T_{i}\right)\right)
$$

$0 \leqslant t \leqslant T_{i}$.

Floorlet pricing

The floorlet on $L\left(T_{i}, T_{i}, T_{i+1}\right)$ with strike level κ is a contract with payoff ($\kappa-$ $\left.L\left(T_{i}, T_{i}, T_{i+1}\right)\right)^{+}$. Floorlets are analog to put options and can be similarly priced by the call/put parity in the Black-Scholes formula.

Proposition 19.7. Assume that $L\left(t, T_{i}, T_{i+1}\right)$ is modeled in the BGM model as in (19.15). The floorlet on $L\left(T_{i}, T_{i}, T_{i+1}\right)$ with strike level κ is priced at time $t \in\left[0, T_{i}\right]$ as

$$
\begin{aligned}
& \left(T_{i+1}-T_{i}\right) \mathbb{E}^{*}\left[\mathrm{e}^{-\int_{t}^{T_{i+1}} r_{s} d s}\left(\kappa-L\left(T_{i}, T_{i}, T_{i+1}\right)\right)^{+} \mid \mathcal{F}_{t}\right] \\
& =\kappa\left(T_{i+1}-T_{i}\right) P\left(t, T_{i+1}\right) \Phi\left(-d_{-}\left(t, T_{i}\right)\right)-\left(P\left(t, T_{i}\right)-P\left(t, T_{i+1}\right)\right) \Phi\left(-d_{+}\left(t, T_{i}\right)\right)
\end{aligned}
$$

$0 \leqslant t \leqslant T_{i}$, where $d_{+}\left(t, T_{i}\right), d_{-}\left(t, T_{i}\right)$ and $\left|\sigma_{i}\left(t, T_{i}\right)\right|^{2}$ are defined in (19.17)(19.19).

Proof. Using the Black-Scholes formula for put options, we have

$$
\begin{aligned}
& \left(T_{i+1}-T_{i}\right) \mathbb{E}^{*}\left[\mathrm{e}^{-\int_{t}^{T_{i+1}} r_{s} d s}\left(\kappa-L\left(T_{i}, T_{i}, T_{i+1}\right)\right)^{+} \mid \mathcal{F}_{t}\right] \\
& =\left(T_{i+1}-T_{i}\right) P\left(t, T_{i+1}\right) \widehat{\mathbb{E}}_{i+1}\left[\left(\kappa-L\left(T_{i}, T_{i}, T_{i+1}\right)\right)^{+} \mid \mathcal{F}_{t}\right] \\
& =\left(T_{i+1}-T_{i}\right) P\left(t, T_{i+1}\right)\left(\kappa \Phi\left(-d_{-}\left(t, T_{i}\right)\right)-L\left(t, T_{i}, T_{i+1}\right) \Phi\left(-d_{+}\left(t, T_{i}\right)\right)\right) \\
& =\left(T_{i+1}-T_{i}\right) P\left(t, T_{i+1}\right) \kappa \Phi\left(-d_{-}\left(t, T_{i}\right)\right)-\left(P\left(t, T_{i}\right)-P\left(t, T_{i+1}\right)\right) \Phi\left(-d_{+}\left(t, T_{i}\right)\right)
\end{aligned}
$$

$$
0 \leqslant t \leqslant T_{i}
$$

Cap pricing

More generally, one can consider interest rate caps that are relative to a given tenor structure $\left\{T_{1}, T_{2}, \ldots, T_{n}\right\}$, with discounted payoff

$$
\sum_{k=i}^{j-1}\left(T_{k+1}-T_{k}\right) \mathrm{e}^{-\int_{t}^{T_{k+1}} r_{s} d s}\left(L\left(T_{k}, T_{k}, T_{k+1}\right)-\kappa\right)^{+}
$$

Pricing formulas for interest rate caps are easily deduced from analog formulas for caplets, since the payoff of a cap can be decomposed into a sum of caplet payoffs. Thus, the cap price at time $t \in\left[0, T_{i}\right]$ is given by

$$
\begin{align*}
& \mathbb{E}^{*}\left[\sum_{k=i}^{j-1}\left(T_{k+1}-T_{k}\right) \mathrm{e}^{-\int_{t}^{T_{k+1}} r_{s} d s}\left(L\left(T_{k}, T_{k}, T_{k+1}\right)-\kappa\right)^{+} \mid \mathcal{F}_{t}\right] \\
& =\sum_{k=i}^{j-1}\left(T_{k+1}-T_{k}\right) \mathbb{E}^{*}\left[\mathrm{e}^{-\int_{t}^{T_{k+1}} r_{s} d s}\left(L\left(T_{k}, T_{k}, T_{k+1}\right)-\kappa\right)^{+} \mid \mathcal{F}_{t}\right] \\
& =\sum_{k=i}^{j-1}\left(T_{k+1}-T_{k}\right) P\left(t, T_{k+1}\right) \widehat{\mathbb{E}}_{k+1}\left[\left(L\left(T_{k}, T_{k}, T_{k+1}\right)-\kappa\right)^{+} \mid \mathcal{F}_{t}\right] \tag{19.22}
\end{align*}
$$

In the BGM model (19.15) the interest rate cap with payoff

$$
\sum_{k=i}^{j-1}\left(T_{k+1}-T_{k}\right)\left(L\left(T_{k}, T_{k}, T_{k+1}\right)-\kappa\right)^{+}
$$

can be priced at time $t \in\left[0, T_{1}\right]$ by the Black formula

$$
\sum_{k=i}^{j-1}\left(T_{k+1}-T_{k}\right) P\left(t, T_{k+1}\right) \operatorname{Bl}\left(L\left(t, T_{k}, T_{k+1}\right), \kappa, \sigma_{k}\left(t, T_{k}\right), 0, T_{k}-t\right)
$$

where

$$
\left|\sigma_{k}\left(t, T_{k}\right)\right|^{2}=\frac{1}{T_{k}-t} \int_{t}^{T_{k}}\left|\gamma_{k}\right|^{2}(s) d s
$$

SOFR Caplets

The backward-looking SOFR caplet has payoff $(R(S, T, S)-K)^{+}$, which is known only at time S. By the Jensen (1906) inequality we note the relation

$$
\mathbb{E}_{S}\left[(R(S, T, S)-K)^{+} \mid \mathcal{F}_{t}\right]=\mathbb{E}_{S}\left[\mathbb{E}_{S}\left[(R(S, T, S)-K)^{+} \mid \mathcal{F}_{T}\right] \mid \mathcal{F}_{t}\right]
$$

$$
\begin{aligned}
& \geqslant \mathbb{E}_{S}\left[\left(\mathbb{E}_{S}\left[R(S, T, S) \mid \mathcal{F}_{T}\right]-K\right)^{+} \mid \mathcal{F}_{t}\right] \\
& =\mathbb{E}_{S}\left[(R(T, T, S)-K)^{+} \mid \mathcal{F}_{t}\right] \\
& =\mathbb{E}_{S}\left[(L(T, T, S)-K)^{+} \mid \mathcal{F}_{t}\right],
\end{aligned}
$$

hence the backward-looking SOFR caplet is more expensive than the forwardlooking LIBOR caplet.

Proposition 19.8. The $S O F R$ rate

$$
R\left(t, T_{i}, T_{i+1}\right):=\frac{1}{T_{i+1}-T_{i}}\left(\frac{P\left(t, T_{i}\right)}{P\left(t, T_{i+1}\right)}-1\right), \quad 0 \leqslant T_{i} \leqslant t \leqslant T_{i+1}
$$

is a martingale under the forward measure $\widehat{\mathbb{P}}_{i+1}$.
Proof. The SOFR rate $R\left(t, T_{i}, T_{i+1}\right)$ is a deflated process according to the forward numéraire process $\left(P\left(t, T_{i+1}\right)\right)_{t \in\left[0, T_{i+1}\right]}$. Therefore, it is a martingale under $\widehat{\mathbb{P}}_{i+1}$ by Proposition 16.4.

The caplet on the SOFR rate $R\left(T_{i+1}, T_{i}, T_{i+1}\right)$ with payoff $\left(R\left(T_{i+1}, T_{i}, T_{i+1}\right)\right.$ $\kappa)^{+}$and strike level κ can be priced at time $t \in\left[0, T_{i}\right]$ with a discount factor counted from the settlement date T_{i+1} from Proposition 16.5 as

$$
\begin{align*}
& \mathbb{E}^{*}\left[\mathrm{e}^{-\int_{t}^{T_{i+1}} r_{s} d s}\left(R\left(T_{i+1}, T_{i}, T_{i+1}\right)-\kappa\right)^{+} \mid \mathcal{F}_{t}\right] \tag{19.23}\\
& =\mathbb{E}^{*}\left[\left.\mathrm{e}^{-\int_{t}^{T_{i+1}} r_{s} d s}\left(\frac{1}{T_{i+1}-T_{i}}\left(\frac{P\left(t, T_{i}\right)}{P\left(t, T_{i+1}\right)}-1\right)-\kappa\right)^{+} \right\rvert\, \mathcal{F}_{t}\right] \\
& =P\left(t, T_{i+1}\right) \widehat{\mathbb{E}}_{i+1}\left[\left(R\left(T_{i+1}, T_{i}, T_{i+1}\right)-\kappa\right)^{+} \mid \mathcal{F}_{t}\right]
\end{align*}
$$

by taking $N_{t}^{(i+1)}:=P\left(t, T_{i+1}\right)$ as a numéraire and using the forward measure $\widehat{\mathbb{P}}_{i+1}$.

The next pricing formula (19.25) allows us to price and hedge a caplet using a portfolio based on the bonds $P\left(t, T_{i}\right)$ and $P\left(t, T_{i+1}\right)$, cf. (19.26) below, when $R\left(t, T_{i}, T_{i+1}\right)$ is modeled in the BGM model.
Proposition 19.9. (Black SOFR caplet formula). Assume that $R\left(t, T_{i}, T_{i+1}\right)$ is modeled in the BGM model as

$$
\begin{equation*}
\frac{d R\left(t, T_{i}, T_{i+1}\right)}{R\left(t, T_{i}, T_{i+1}\right)}=\gamma_{i}(t) d \widehat{W}_{t}^{i+1} \tag{19.24}
\end{equation*}
$$

$0 \leqslant t \leqslant T_{i+1}, i=1,2, \ldots, n-1$, where $\gamma_{i}(t)$ is a deterministic volatility function of time $t \in\left[0, T_{i+1}\right], i=1,2, \ldots, n-1$. The caplet on $R\left(T_{i+1}, T_{i}, T_{i+1}\right)$ with strike level $\kappa>0$ is priced at time $t \in\left[0, T_{i+1}\right]$ as

$$
\begin{aligned}
& \left(T_{i+1}-T_{i}\right) \mathbb{E}^{*}\left[\mathrm{e}^{-\int_{t}^{T_{i+1}} r_{s} d s}\left(R\left(T_{i+1}, T_{i}, T_{i+1}\right)-\kappa\right)^{+} \mid \mathcal{F}_{t}\right] \\
& =\left(P\left(t, T_{i}\right)-P\left(t, T_{i+1}\right)\right) \Phi\left(d_{+}\left(t, T_{i+1}\right)\right)-\kappa\left(T_{i+1}-T_{i}\right) P\left(t, T_{i+1}\right) \Phi\left(d_{-}\left(t, T_{i+1}\right)\right)
\end{aligned}
$$

$0 \leqslant t \leqslant T_{i+1}$, where

$$
d_{+}\left(t, T_{i+1}\right)=\frac{\log \left(R\left(t, T_{i}, T_{i+1}\right) / \kappa\right)+\left(T_{i+1}-t\right) \sigma_{i}^{2}\left(t, T_{i+1}\right) / 2}{\sigma_{i}\left(t, T_{i+1}\right) \sqrt{T_{i+1}-t}}
$$

and

$$
d_{-}\left(t, T_{i+1}\right)=\frac{\log \left(R\left(t, T_{i}, T_{i+1}\right) / \kappa\right)-\left(T_{i+1}-t\right) \sigma_{i}^{2}\left(t, T_{i+1}\right) / 2}{\sigma_{i}\left(t, T_{i+1}\right) \sqrt{\overline{T_{i+1}-t}}}
$$

and

$$
\left|\sigma_{i}\left(t, T_{i+1}\right)\right|^{2}=\frac{1}{T_{i+1}-t} \int_{t}^{T_{i+1}}\left|\gamma_{i}\right|^{2}(s) d s
$$

Proof. The forward price

$$
\widehat{X}_{t}:=\frac{P\left(t, T_{i}\right)}{P\left(t, T_{i+1}\right)}=1+\left(T_{i+1}-T_{i}\right) R\left(T_{i+1}, T_{i}, T_{i+1}\right)
$$

and the SOFR rate process $\left(R\left(t, T_{i}, T_{i+1}\right)_{t \in\left[0, T_{i+1}\right]}\right.$ are martingales under $\widehat{\mathbb{P}}_{i+1}$ by Proposition $19.8, i=1,2, \ldots, n-1$, and
$R\left(T_{i+1}, T_{i}, T_{i+1}\right)=R\left(t, T_{i}, T_{i+1}\right) \exp \left(\int_{t}^{T_{i+1}} \gamma_{i}(s) d \widehat{W}_{s}^{i+1}-\frac{1}{2} \int_{t}^{T_{i+1}}\left|\gamma_{i}(s)\right|^{2} d s\right)$,
$0 \leqslant t \leqslant T_{i+1}$, where $t \mapsto R\left(t, T_{i}, T_{i+1}\right)$ is a geometric Brownian motion under $\widehat{\mathbb{P}}_{i+1}$ (19.24). Hence by (19.23) we have

$$
\begin{aligned}
& \mathbb{E}^{*}\left[\mathrm{e}^{-\int_{t}^{T_{i+1}} r_{s} d s}\left(R\left(T_{i+1}, T_{i}, T_{i+1}\right)-\kappa\right)^{+} \mid \mathcal{F}_{t}\right] \\
& =P\left(t, T_{i+1}\right) \widehat{\mathbb{E}}_{i+1}\left[\left(R\left(T_{i+1}, T_{i}, T_{i+1}\right)-\kappa\right)^{+} \mid \mathcal{F}_{t}\right] \\
& =P\left(t, T_{i+1}\right)\left(R\left(t, T_{i}, T_{i+1}\right) \Phi\left(d_{+}\left(t, T_{i+1}\right)\right)-\kappa \Phi\left(d_{-}\left(t, T_{i+1}\right)\right)\right) \\
& =P\left(t, T_{i+1}\right) \operatorname{Bl}\left(R\left(t, T_{i}, T_{i+1}\right), \kappa, \sigma_{i}\left(t, T_{i+1}\right), 0, T_{i+1}-t\right)
\end{aligned}
$$

$t \in\left[0, T_{i+1}\right]$, with

$$
\left|\sigma_{i}\left(t, T_{i+1}\right)\right|^{2}=\frac{1}{T_{i+1}-t} \int_{t}^{T_{i+1}}\left|\gamma_{i}\right|^{2}(s) d s
$$

In addition, we obtain the self-financing portfolio strategy

$$
\begin{equation*}
\left(\Phi\left(d_{+}\left(t, T_{i+1}\right)\right),-\Phi\left(d_{+}\left(t, T_{i+1}\right)\right)-\kappa\left(T_{i+1}-T_{i}\right) \Phi\left(d_{-}\left(t, T_{i+1}\right)\right)\right) \tag{19.26}
\end{equation*}
$$

in the bonds priced $\left(P\left(t, T_{i}\right), P\left(t, T_{i+1}\right)\right), t \in\left[0, T_{i+1}\right]$, with maturities T_{i} and T_{i+1}.

19.4 Forward Swap Measures

In this section we introduce the forward swap (or annuity) measures, or annuity measures, to be used for the pricing of swaptions, and we study their properties. We start with the definition of the annuity numéraire

$$
\begin{equation*}
N_{t}^{(i, j)}:=P\left(t, T_{i}, T_{j}\right)=\sum_{k=i}^{j-1}\left(T_{k+1}-T_{k}\right) P\left(t, T_{k+1}\right), \quad 0 \leqslant t \leqslant T_{i} \tag{19.27}
\end{equation*}
$$

with in particular, when $j=i+1$,

$$
P\left(t, T_{i}, T_{i+1}\right)=\left(T_{i+1}-T_{i}\right) P\left(t, T_{i+1}\right), \quad 0 \leqslant t \leqslant T_{i}
$$

$1 \leqslant i<n$. The annuity numéraire can be also used to price a bond ladder. It satisfies the following martingale property, which can be proved by linearity and the fact that $t \mapsto \mathrm{e}^{-\int_{0}^{t} r_{s} d s} P\left(t, T_{k}\right)$ is a martingale for all $k=1,2, \ldots, n$, under Assumption (A).

Remark 19.10. The discounted annuity numéraire
$t \mapsto \mathrm{e}^{-\int_{0}^{t} r_{s} d s} P\left(t, T_{i}, T_{j}\right)=\mathrm{e}^{-\int_{0}^{t} r_{s} d s} \sum_{k=i}^{j-1}\left(T_{k+1}-T_{k}\right) P\left(t, T_{k+1}\right), \quad 0 \leqslant t \leqslant T_{i}$,
is a martingale under \mathbb{P}^{*}.
The forward swap measure $\widehat{\mathbb{P}}_{i, j}$ is defined, according to Definition 16.1, by

$$
\begin{equation*}
\frac{\mathrm{d} \widehat{\mathbb{P}}_{i, j}}{\mathrm{~d} \mathbb{P}^{*}}:=\mathrm{e}^{-\int_{0}^{T_{i}} r_{s} d s} \frac{N_{T_{i}}^{(i, j)}}{N_{0}^{(i, j)}}=\mathrm{e}^{-\int_{0}^{T_{i}} r_{s} d s} \frac{P\left(T_{i}, T_{i}, T_{j}\right)}{P\left(0, T_{i}, T_{j}\right)} \tag{19.28}
\end{equation*}
$$

$1 \leqslant i<j \leqslant n$.
Remark 19.11. By (16.2) we have
$\mathbb{E}^{*}\left[\left.\frac{\mathrm{~d} \widehat{\mathbb{P}}_{i, j}}{\mathrm{~d} \mathbb{P}^{*}} \right\rvert\, \mathcal{F}_{t}\right]=\frac{1}{P\left(0, T_{i}, T_{j}\right)} \mathbb{E}^{*}\left[\mathrm{e}^{-\int_{0}^{T_{i}} r_{s} d s} P\left(T_{i}, T_{i}, T_{j}\right) \mid \mathcal{F}_{t}\right]$

$$
\begin{aligned}
& =\frac{1}{P\left(0, T_{i}, T_{j}\right)} \mathbb{E}^{*}\left[\mathrm{e}^{-\int_{0}^{T_{i}} r_{s} d s} \sum_{k=i}^{j-1}\left(T_{k+1}-T_{k}\right) P\left(T_{i}, T_{k+1}\right) \mid \mathcal{F}_{t}\right] \\
& =\frac{1}{P\left(0, T_{i}, T_{j}\right)} \sum_{k=i}^{j-1}\left(T_{k+1}-T_{k}\right) \mathbb{E}^{*}\left[\mathrm{e}^{-\int_{0}^{T_{i}} r_{s} d s} P\left(T_{i}, T_{k+1}\right) \mid \mathcal{F}_{t}\right] \\
& =\frac{1}{P\left(0, T_{i}, T_{j}\right)} \mathrm{e}^{-\int_{0}^{t} r_{s} d s} \sum_{k=i}^{j-1}\left(T_{k+1}-T_{k}\right) P\left(t, T_{k+1}\right) \\
& =\mathrm{e}^{-\int_{0}^{t} r_{s} d s} \frac{P\left(t, T_{i}, T_{j}\right)}{P\left(0, T_{i}, T_{j}\right)}
\end{aligned}
$$

$0 \leqslant t \leqslant T_{i}$, see Remark 19.10, and

$$
\begin{equation*}
\frac{\mathrm{d} \widehat{\mathbb{P}}_{i, j \mid \mathcal{F}_{t}}}{\mathrm{~d} \mathbb{P}_{\mid \mathcal{F}_{t}}^{*}}=\mathrm{e}^{-\int_{t}^{T_{i}} r_{s} d s} \frac{P\left(T_{i}, T_{i}, T_{j}\right)}{P\left(t, T_{i}, T_{j}\right)}, \quad 0 \leqslant t \leqslant T_{i+1} \tag{19.29}
\end{equation*}
$$

by Relation (16.3) in Lemma 16.2.
Proposition 19.12. The LIBOR swap rate

$$
S\left(t, T_{i}, T_{j}\right)=\frac{P\left(t, T_{i}\right)-P\left(t, T_{j}\right)}{P\left(t, T_{i}, T_{j}\right)}, \quad 0 \leqslant t \leqslant T_{i}
$$

see Corollary 18.12, is a martingale under the forward swap measure $\widehat{\mathbb{P}}_{i, j}$. Proof. We use the fact that the deflated process

$$
t \mapsto \frac{P\left(t, T_{k}\right)}{P\left(t, T_{i}, T_{j}\right)}, \quad i, j, k=1,2, \ldots, n
$$

is an \mathcal{F}_{t}-martingale under $\widehat{\mathbb{P}}_{i, j}$ by Proposition 16.4.
The following pricing formula is then stated for a given integrable claim with payoff of the form $P\left(T_{i}, T_{i}, T_{j}\right) F$, using the forward swap measure $\widehat{\mathbb{P}}_{i, j}$:

$$
\begin{align*}
\mathbb{E}^{*}\left[\mathrm{e}^{-\int_{t}^{T_{i}} r_{s} d s} P\left(T_{i}, T_{i}, T_{j}\right) F \mid \mathcal{F}_{t}\right] & =P\left(t, T_{i}, T_{j}\right) \mathbb{E}^{*}\left[\left.F \frac{\mathrm{~d} \widehat{\mathbb{P}}_{i, j \mid \mathcal{F}_{t}}}{\mathrm{~d} \mathbb{P}_{\mid \mathcal{F}_{t}}^{*}} \right\rvert\, \mathcal{F}_{t}\right] \\
& =P\left(t, T_{i}, T_{j}\right) \widehat{\mathbb{E}}_{i, j}\left[F \mid \mathcal{F}_{t}\right] \tag{19.30}
\end{align*}
$$

after applying (19.28) and (19.29) on the last line, or Proposition 16.5.

19.5 Swaption Pricing

Definition 19.13. A payer (or call) swaption gives the option, but not the obligation, to enter an interest rate swap as payer of a fixed rate κ and as
receiver of floating LIBOR rates $L\left(T_{i}, T_{k}, T_{k+1}\right)$ at time $T_{k+1}, k=i, \ldots, j-$ 1, and has the payoff

$$
\begin{gather*}
\left(\sum_{k=i}^{j-1}\left(T_{k+1}-T_{k}\right) \mathbb{E}^{*}\left[\mathrm{e}^{-\int_{T_{i}}^{T_{k+1}} r_{s} d s} \mid \mathcal{F}_{T_{i}}\right]\left(L\left(T_{i}, T_{k}, T_{k+1}\right)-\kappa\right)\right)^{+} \\
=\left(\sum_{k=i}^{j-1}\left(T_{k+1}-T_{k}\right) P\left(T_{i}, T_{k+1}\right)\left(L\left(T_{i}, T_{k}, T_{k+1}\right)-\kappa\right)\right)^{+} \tag{19.31}
\end{gather*}
$$

at time T_{i}.
This swaption can be priced at time $t \in\left[0, T_{i}\right]$ under the risk-neutral probability measure \mathbb{P}^{*} as

$$
\begin{equation*}
\mathbb{E}^{*}\left[\mathrm{e}^{-\int_{t}^{T_{i}} r_{s} d s}\left(\sum_{k=i}^{j-1}\left(T_{k+1}-T_{k}\right) P\left(T_{i}, T_{k+1}\right)\left(L\left(T_{i}, T_{k}, T_{k+1}\right)-\kappa\right)\right)^{+} \mid \mathcal{F}_{t}\right] \tag{19.32}
\end{equation*}
$$

$t \in\left[0, T_{i}\right]$. When $j=i+1$, the swaption price (19.32) coincides with the price at time t of a caplet on $\left[T_{i}, T_{i+1}\right]$ up to a factor $\delta_{i}:=T_{i+1}-T_{i}$, since

$$
\begin{align*}
& \mathbb{E}^{*}\left[\mathrm{e}^{-\int_{t}^{T_{i}} r_{s} d s}\left(\left(T_{i+1}-T_{i}\right) P\left(T_{i}, T_{i+1}\right)\left(L\left(T_{i}, T_{i}, T_{i+1}\right)-\kappa\right)\right)^{+} \mid \mathcal{F}_{t}\right] \\
& =\left(T_{i+1}-T_{i}\right) \mathbb{E}^{*}\left[\mathrm{e}^{-\int_{t}^{T_{i}} r_{s} d s} P\left(T_{i}, T_{i+1}\right)\left(L\left(T_{i}, T_{i}, T_{i+1}\right)-\kappa\right)^{+} \mid \mathcal{F}_{t}\right] \\
& =\left(T_{i+1}-T_{i}\right) \mathbb{E}^{*}\left[\mathrm{e}^{-\int_{t}^{T_{i}} r_{s} d s} \mathbb{E}^{*}\left[\mathrm{e}^{-\int_{T_{i}}^{T_{i+1}} r_{s} d s} \mid \mathcal{F}_{T_{i}}\right]\left(L\left(T_{i}, T_{i}, T_{i+1}\right)-\kappa\right)^{+} \mid \mathcal{F}_{t}\right] \\
& =\left(T_{i+1}-T_{i}\right) \mathbb{E}^{*}\left[\mathbb{E}^{*}\left[\mathrm{e}^{-\int_{t}^{T_{i}} r_{s} d s} \mathrm{e}^{-\int_{T_{i}}^{T_{i+1}} r_{s} d s}\left(L\left(T_{i}, T_{i}, T_{i+1}\right)-\kappa\right)^{+} \mid \mathcal{F}_{T_{i}}\right] \mid \mathcal{F}_{t}\right] \\
& =\left(T_{i+1}-T_{i}\right) \mathbb{E}^{*}\left[\mathrm{e}^{-\int_{t}^{T_{i+1}} r_{s} d s}\left(L\left(T_{i}, T_{i}, T_{i+1}\right)-\kappa\right)^{+} \mid \mathcal{F}_{t}\right], \tag{19.33}
\end{align*}
$$

$0 \leqslant t \leqslant T_{i}$, which coincides with the caplet price (19.13) up to the factor $T_{i+1}-T_{i}$. Unlike in the case of interest rate caps, the sum in (19.32) cannot be taken out of the positive part. Nevertheless, the price of the swaption can be bounded as in the next proposition.

Proposition 19.14. The payer swaption price (19.32) can be upper bounded by the interest rate cap price (19.22) as

$$
\mathbb{E}^{*}\left[\mathrm{e}^{-\int_{t}^{T_{i}} r_{s} d s}\left(\sum_{k=i}^{j-1}\left(T_{k+1}-T_{k}\right) P\left(T_{i}, T_{k+1}\right)\left(L\left(T_{i}, T_{k}, T_{k+1}\right)-\kappa\right)\right)^{+} \mid \mathcal{F}_{t}\right]
$$

Notes on Stochastic Finance

$$
\leqslant \sum_{k=i}^{j-1}\left(T_{k+1}-T_{k}\right) \mathbb{E}^{*}\left[\mathrm{e}^{-\int_{t}^{T_{k+1}} r_{s} d s}\left(L\left(T_{i}, T_{k}, T_{k+1}\right)-\kappa\right)^{+} \mid \mathcal{F}_{t}\right]
$$

$0 \leqslant t \leqslant T_{i}$.
Proof. Due to the inequality

$$
\left(x_{1}+x_{2}+\cdots+x_{m}\right)^{+} \leqslant x_{1}^{+}+x_{2}^{+}+\cdots+x_{m}^{+}, \quad x_{1}, x_{2}, \ldots, x_{m} \in \mathbb{R}
$$

we have

$$
\begin{aligned}
& \mathbb{E}^{*}\left[\mathrm{e}^{-\int_{t}^{T_{i}} r_{s} d s}\left(\sum_{k=i}^{j-1}\left(T_{k+1}-T_{k}\right) P\left(T_{i}, T_{k+1}\right)\left(L\left(T_{i}, T_{k}, T_{k+1}\right)-\kappa\right)\right)^{+} \mid \mathcal{F}_{t}\right] \\
& \leqslant \mathbb{E}^{*}\left[\mathrm{e}^{-\int_{t}^{T_{i}} r_{s} d s} \sum_{k=i}^{j-1}\left(T_{k+1}-T_{k}\right) P\left(T_{i}, T_{k+1}\right)\left(L\left(T_{i}, T_{k}, T_{k+1}\right)-\kappa\right)^{+} \mid \mathcal{F}_{t}\right] \\
& =\sum_{k=i}^{j-1}\left(T_{k+1}-T_{k}\right) \mathbb{E}^{*}\left[\mathrm{e}^{-\int_{t}^{T_{i}} r_{s} d s} P\left(T_{i}, T_{k+1}\right)\left(L\left(T_{i}, T_{k}, T_{k+1}\right)-\kappa\right)^{+} \mid \mathcal{F}_{t}\right] \\
& =\sum_{k=i}^{j-1}\left(T_{k+1}-T_{k}\right) \mathbb{E}^{*}\left[\mathrm{e}^{-\int_{t}^{T_{i}} r_{s} d s} \mathbb{E}^{*}\left[\mathrm{e}^{-\int_{T_{i}}^{T_{k+1}} r_{s} d s} \mid \mathcal{F}_{T_{i}}\right]\left(L\left(T_{i}, T_{k}, T_{k+1}\right)-\kappa\right)^{+} \mid \mathcal{F}_{t}\right] \\
& =\sum_{k=i}^{j-1}\left(T_{k+1}-T_{k}\right) \mathbb{E}^{*}\left[\mathbb{E}^{*}\left[\mathrm{e}^{-\int_{t}^{T_{k+1}} r_{s} d s}\left(L\left(T_{i}, T_{k}, T_{k+1}\right)-\kappa\right)^{+} \mid \mathcal{F}_{T_{i}}\right] \mid \mathcal{F}_{t}\right] \\
& =\sum_{k=i}^{j-1}\left(T_{k+1}-T_{k}\right) \mathbb{E}^{*}\left[\mathrm{e}^{-\int_{t}^{T_{k+1}} r_{s} d s}\left(L\left(T_{i}, T_{k}, T_{k+1}\right)-\kappa\right)^{+} \mid \mathcal{F}_{t}\right] \\
& =\mathbb{E}^{*}\left[\sum_{k=i}^{j-1}\left(T_{k+1}-T_{k}\right) \mathrm{e}^{-\int_{t}^{T_{k+1}} r_{s} d s}\left(L\left(T_{i}, T_{k}, T_{k+1}\right)-\kappa\right)^{+} \mid \mathcal{F}_{t}\right]
\end{aligned}
$$

$0 \leqslant t \leqslant T_{i}$.
The payoff of the payer swaption can be rewritten as in the following lemma which is a direct consequence of the definition of the swap rate $S\left(T_{i}, T_{i}, T_{j}\right)$, see Proposition 18.11 and Corollary 18.12.

Lemma 19.15. The payer swaption payoff (19.31) at time T_{i} with swap rate $\kappa=S\left(t, T_{j}, T_{j}\right)$ can be rewritten as

$$
\begin{align*}
\left(\sum_{k=i}^{j-1}\left(T_{k+1}-T_{k}\right)\right. & \left.P\left(T_{i}, T_{k+1}\right)\left(L\left(T_{i}, T_{k}, T_{k+1}\right)-\kappa\right)\right)^{+} \\
= & \left(P\left(T_{i}, T_{i}\right)-P\left(T_{i}, T_{j}\right)-\kappa P\left(T_{i}, T_{i}, T_{j}\right)\right)^{+} \tag{19.34}
\end{align*}
$$

$$
\begin{equation*}
=P\left(T_{i}, T_{i}, T_{j}\right)\left(S\left(T_{i}, T_{i}, T_{j}\right)-\kappa\right)^{+} \tag{19.35}
\end{equation*}
$$

Proof. The relation

$$
\sum_{k=i}^{j-1}\left(T_{k+1}-T_{k}\right) P\left(t, T_{k+1}\right)\left(L\left(t, T_{k}, T_{k+1}\right)-S\left(t, T_{i}, T_{j}\right)\right)=0
$$

that defines the forward swap rate $S\left(t, T_{i}, T_{j}\right)$ shows that

$$
\begin{aligned}
& \sum_{k=i}^{j-1}\left(T_{k+1}-T_{k}\right) P\left(t, T_{k+1}\right) L\left(t, T_{k}, T_{k+1}\right) \\
& \quad=S\left(t, T_{i}, T_{j}\right) \sum_{k=i}^{j-1}\left(T_{k+1}-T_{k}\right) P\left(t, T_{k+1}\right) \\
& \quad=P\left(t, T_{i}, T_{j}\right) S\left(t, T_{i}, T_{j}\right) \\
& \quad=P\left(t, T_{i}\right)-P\left(t, T_{j}\right)
\end{aligned}
$$

as in the proof of Corollary 18.12, hence by the definition (19.27) of $P\left(t, T_{i}, T_{j}\right)$ we have

$$
\begin{aligned}
\sum_{k=i}^{j-1}\left(T_{k+1}\right. & \left.-T_{k}\right) P\left(t, T_{k+1}\right)\left(L\left(t, T_{k}, T_{k+1}\right)-\kappa\right) \\
& =P\left(t, T_{i}\right)-P\left(t, T_{j}\right)-\kappa P\left(t, T_{i}, T_{j}\right) \\
& =P\left(t, T_{i}, T_{j}\right)\left(S\left(t, T_{i}, T_{j}\right)-\kappa\right)
\end{aligned}
$$

and for $t=T_{i}$ we get

$$
\begin{aligned}
& \left(\sum_{k=i}^{j-1}\left(T_{k+1}-T_{k}\right) P\left(T_{i}, T_{k+1}\right)\left(L\left(T_{i}, T_{k}, T_{k+1}\right)-\kappa\right)\right)^{+} \\
& \quad=P\left(T_{i}, T_{i}, T_{j}\right)\left(S\left(T_{i}, T_{i}, T_{j}\right)-\kappa\right)^{+}
\end{aligned}
$$

The next proposition simply states that a payer swaption on the LIBOR rate can be priced as a European call option on the swap rate $S\left(T_{i}, T_{i}, T_{j}\right)$ under the forward swap measure $\widehat{\mathbb{P}}_{i, j}$.
Proposition 19.16. The price (19.32) of the payer swaption with payoff

$$
\begin{equation*}
\left(\sum_{k=i}^{j-1}\left(T_{k+1}-T_{k}\right) P\left(T_{i}, T_{k+1}\right)\left(L\left(T_{i}, T_{k}, T_{k+1}\right)-\kappa\right)\right)^{+} \tag{19.36}
\end{equation*}
$$

on the LIBOR market can be written under the forward swap measure $\widehat{\mathbb{P}}_{i, j}$ as the European call price

$$
P\left(t, T_{i}, T_{j}\right) \widehat{\mathbb{E}}_{i, j}\left[\left(S\left(T_{i}, T_{i}, T_{j}\right)-\kappa\right)^{+} \mid \mathcal{F}_{t}\right], \quad 0 \leqslant t \leqslant T_{i}
$$

on the swap rate $S\left(T_{i}, T_{i}, T_{j}\right)$.
Proof. As a consequence of (19.30) and Lemma 19.15, we find

$$
\begin{align*}
& \mathbb{E}^{*}\left[\mathrm{e}^{-\int_{t}^{T_{i}} r_{s} d s}\left(\sum_{k=i}^{j-1}\left(T_{k+1}-T_{k}\right) P\left(T_{i}, T_{k+1}\right)\left(L\left(T_{i}, T_{k}, T_{k+1}\right)-\kappa\right)\right)^{+} \mid \mathcal{F}_{t}\right] \\
& =\mathbb{E}^{*}\left[\mathrm{e}^{-\int_{t}^{T_{i}} r_{s} d s}\left(P\left(T_{i}, T_{i}\right)-P\left(T_{i}, T_{j}\right)-\kappa P\left(T_{i}, T_{i}, T_{j}\right)\right)^{+} \mid \mathcal{F}_{t}\right] \tag{19.37}\\
& =\mathbb{E}^{*}\left[\mathrm{e}^{-\int_{t}^{T_{i}} r_{s} d s} P\left(T_{i}, T_{i}, T_{j}\right)\left(S\left(T_{i}, T_{i}, T_{j}\right)-\kappa\right)^{+} \mid \mathcal{F}_{t}\right] \\
& =P\left(t, T_{i}, T_{j}\right) \mathbb{E}^{*}\left[\left.\frac{\mathrm{~d} \widehat{\mathbb{P}}_{i, j \mid \mathcal{F}_{t}}}{\mathrm{~d} \mathbb{P}_{\mid \mathcal{F}_{t}}^{*}}\left(S\left(T_{i}, T_{i}, T_{j}\right)-\kappa\right)^{+} \right\rvert\, \mathcal{F}_{t}\right] \\
& =P\left(t, T_{i}, T_{j}\right) \widehat{\mathbb{E}}_{i, j}\left[\left(S\left(T_{i}, T_{i}, T_{j}\right)-\kappa\right)^{+} \mid \mathcal{F}_{t}\right] . \tag{19.38}
\end{align*}
$$

In the next Proposition 19.17 we price the payer swaption with payoff (19.36) or equivalently (19.35), by modeling the swap rate $\left(S\left(t, T_{i}, T_{j}\right)\right)_{0 \leqslant t \leqslant T_{i}}$ using standard Brownian motion $\left(\widehat{W}_{t}^{i, j}\right)_{0 \leqslant t \leqslant T_{i}}$ under the swap forward measure $\widehat{\mathbb{P}}_{i, j}$. See Exercise 19 for swaption pricing without the Black-Scholes formula.

Proposition 19.17. (Black swaption formula for payer swaptions). Assume that the LIBOR swap rate (18.21) is modeled as a geometric Brownian motion under $\widehat{\mathbb{P}}_{i, j}$, i.e.

$$
\begin{equation*}
d S\left(t, T_{i}, T_{j}\right)=S\left(t, T_{i}, T_{j}\right) \widehat{\sigma}_{i, j}(t) d \widehat{W}_{t}^{i, j} \tag{19.39}
\end{equation*}
$$

where $\left(\widehat{\sigma}_{i, j}(t)\right)_{t \in \mathbb{R}_{+}}$is a deterministic volatility function of time. Then, the payer swaption with payoff

$$
\left(P\left(T, T_{i}\right)-P\left(T, T_{j}\right)-\kappa P\left(T_{i}, T_{i}, T_{j}\right)\right)^{+}=P\left(T_{i}, T_{i}, T_{j}\right)\left(S\left(T_{i}, T_{i}, T_{j}\right)-\kappa\right)^{+}
$$

can be priced using the Black-Scholes call formula as

$$
\begin{gathered}
\mathbb{E}^{*}\left[\mathrm{e}^{-\int_{t}^{T_{i}} r_{s} d s} P\left(T_{i}, T_{i}, T_{j}\right)\left(S\left(T_{i}, T_{i}, T_{j}\right)-\kappa\right)^{+} \mid \mathcal{F}_{t}\right] \\
=\left(P\left(t, T_{i}\right)-P\left(t, T_{j}\right)\right) \Phi\left(d_{+}\left(t, T_{i}\right)\right)
\end{gathered}
$$

$$
-\kappa \Phi\left(d_{-}\left(t, T_{i}\right)\right) \sum_{k=i}^{j-1}\left(T_{k+1}-T_{k}\right) P\left(t, T_{k+1}\right)
$$

$t \in\left[0, T_{i}\right]$, where

$$
\begin{equation*}
d_{+}\left(t, T_{i}\right)=\frac{\log \left(S\left(t, T_{i}, T_{j}\right) / \kappa\right)+\sigma_{i, j}^{2}\left(t, T_{i}\right)\left(T_{i}-t\right) / 2}{\sigma_{i, j}\left(t, T_{i}\right) \sqrt{T_{i}-t}} \tag{19.40}
\end{equation*}
$$

and

$$
\begin{equation*}
d_{-}\left(t, T_{i}\right)=\frac{\log \left(S\left(t, T_{i}, T_{j}\right) / \kappa\right)-\sigma_{i, j}^{2}\left(t, T_{i}\right)\left(T_{i}-t\right) / 2}{\sigma_{i, j}\left(t, T_{i}\right) \sqrt{T_{i}-t}} \tag{19.41}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\sigma_{i, j}\left(t, T_{i}\right)\right|^{2}=\frac{1}{T_{i}-t} \int_{t}^{T_{i}}\left|\widehat{\sigma}_{i, j}(s)\right|^{2} d s, \quad 0 \leqslant t \leqslant T_{i} \tag{19.42}
\end{equation*}
$$

Proof. Since $S\left(t, T_{i}, T_{j}\right)$ is a geometric Brownian motion with volatility function $(\widehat{\sigma}(t))_{t \in \mathbb{R}_{+}}$under $\widehat{\mathbb{P}}_{i, j}$, by (19.34)-(19.35) in Lemma 19.15 or (19.37)(19.38) we have

$$
\begin{aligned}
& \mathbb{E}^{*} {\left[\mathrm{e}^{-\int_{t}^{T_{i}} r_{s} d s} P\left(T_{i}, T_{i}, T_{j}\right)\left(S\left(T_{i}, T_{i}, T_{j}\right)-\kappa\right)^{+} \mid \mathcal{F}_{t}\right] } \\
&= \mathbb{E}^{*}\left[\mathrm{e}^{-\int_{t}^{T} r_{s} d s}\left(P\left(T, T_{i}\right)-P\left(T, T_{j}\right)-\kappa P\left(T_{i}, T_{i}, T_{j}\right)\right)^{+} \mid \mathcal{F}_{t}\right] \\
&= P\left(t, T_{i}, T_{j}\right) \widehat{\mathbb{E}}_{i, j}\left[\left(S\left(T_{i}, T_{i}, T_{j}\right)-\kappa\right)^{+} \mid \mathcal{F}_{t}\right] \\
&=P\left(t, T_{i}, T_{j}\right) \operatorname{Bl}\left(S\left(t, T_{i}, T_{j}\right), \kappa, \sigma_{i, j}\left(t, T_{i}\right), 0, T_{i}-t\right) \\
&=P\left(t, T_{i}, T_{j}\right)\left(S\left(t, T_{i}, T_{j}\right) \Phi_{+}\left(t, S\left(t, T_{i}, T_{j}\right)\right)-\kappa \Phi_{-}\left(t, S\left(t, T_{i}, T_{j}\right)\right)\right) \\
&=\left(P\left(t, T_{i}\right)-P\left(t, T_{j}\right)\right) \Phi_{+}\left(t, S\left(t, T_{i}, T_{j}\right)\right)-\kappa P\left(t, T_{i}, T_{j}\right) \Phi_{-}\left(t, S\left(t, T_{i}, T_{j}\right)\right) \\
&=\left(P\left(t, T_{i}\right)-P\left(t, T_{j}\right)\right) \Phi_{+}\left(t, S\left(t, T_{i}, T_{j}\right)\right) \\
&-\kappa \Phi_{-}\left(t, S\left(t, T_{i}, T_{j}\right)\right) \sum_{k=i}^{j-1}\left(T_{k+1}-T_{k}\right) P\left(t, T_{k+1}\right) .
\end{aligned}
$$

In addition, the hedging strategy

$$
\begin{aligned}
& \left(\Phi_{+}\left(t, S\left(t, T_{i}, T_{j}\right)\right),-\kappa \Phi_{-}\left(t, S\left(t, T_{i}, T_{j}\right)\right)\left(T_{i+1}-T_{i}\right), \ldots\right. \\
& \left.\quad \ldots,-\kappa \Phi_{-}\left(t, S\left(t, T_{i}, T_{j}\right)\right)\left(T_{j-1}-T_{j-2}\right),-\Phi_{+}\left(t, S\left(t, T_{i}, T_{j}\right)\right)\right)
\end{aligned}
$$

based on the assets $\left(P\left(t, T_{i}\right), \ldots, P\left(t, T_{j}\right)\right)$ is self-financing by Corollary 16.18, see also Privault and Teng (2012). Similarly to the above, a receiver (or put) swaption gives the option, but not the obligation, to enter an interest rate swap as receiver of a fixed rate κ and as payer of floating LIBOR rates
$L\left(T_{i}, T_{k}, T_{k+1}\right)$ at times T_{i+1}, \ldots, T_{j}, and can be priced as in the next proposition.

Proposition 19.18. (Black swaption formula for receiver swaptions). Assume that the LIBOR swap rate (18.21) is modeled as the geometric Brownian motion (19.39) under the forward swap measure $\widehat{\mathbb{P}}_{i, j}$. Then, the receiver swaption with payoff
$\left(\kappa P\left(T_{i}, T_{i}, T_{j}\right)-\left(P\left(T, T_{i}\right)-P\left(T, T_{j}\right)\right)\right)^{+}=P\left(T_{i}, T_{i}, T_{j}\right)\left(\kappa-S\left(T_{i}, T_{i}, T_{j}\right)\right)^{+}$ can be priced using the Black-Scholes put formula as

$$
\begin{gathered}
\mathbb{E}^{*}\left[\mathrm{e}^{-\int_{t}^{T_{i}} r_{s} d s} P\left(T_{i}, T_{i}, T_{j}\right)\left(\kappa-S\left(T_{i}, T_{i}, T_{j}\right)\right)^{+} \mid \mathcal{F}_{t}\right] \\
=\kappa \Phi\left(-d_{-}\left(t, T_{i}\right)\right) \sum_{k=i}^{j-1}\left(T_{k+1}-T_{k}\right) P\left(t, T_{k+1}\right) \\
\quad-\left(P\left(t, T_{i}\right)-P\left(t, T_{j}\right)\right) \Phi\left(-d_{+}\left(t, T_{i}\right)\right)
\end{gathered}
$$

where $d_{+}\left(t, T_{i}\right)$, and $d_{-}\left(t, T_{i}\right)$ and $\left|\sigma_{i, j}\left(t, T_{i}\right)\right|^{2}$ are defined in (19.40)-(19.42).
When the SOFR swap rate (18.25) is modeled as a geometric Brownian motion under $\widehat{\mathbb{P}}_{i, j}$ as in (19.39), SOFR swaptions are priced in the same way as LIBOR swaptions.

Swaption prices can also be computed by an approximation formula, from the exact dynamics of the swap rate $S\left(t, T_{i}, T_{j}\right)$ under the forward swap measure $\widehat{\mathbb{P}}_{i, j}$, based on the bond price dynamics of the form (19.3), cf. Schoenmakers (2005), page 17.

Swaption volatilities can be estimated from swaption prices as implied volatilities from the Black pricing formula:

Fig. 19.1: Implied swaption volatilities.

Implied swaption volatilities can then be used to calibrate the BGM model, cf. Schoenmakers (2005), Privault and Wei (2009), or § 9.5 of Privault (2021b).

LIBOR-SOFR Swaps

We consider the swap contract with payoff

$$
\sum_{k=i}^{j-1}\left(T_{k+1}-T_{k}\right)\left(R\left(T_{k+1}, T_{k}, T_{k+1}\right)-L\left(T_{k}, T_{k}, T_{k+1}\right)\right)
$$

for the exchange of a backward-looking SOFR rate $R\left(T_{k+1}, T_{k}, T_{k+1}\right)$ with the forward-looking LIBOR rate $L\left(T_{k}, T_{k}, T_{k+1}\right)$ over the time period [T_{k}, T_{k+1}]. The price of this interest rate swap vanishes at any time $t \in\left[0, T_{1}\right]$, as

$$
\begin{aligned}
& \left(T_{k+1}-T_{k}\right) \mathbb{E}\left[\mathrm{e}^{-\int_{t}^{T_{k+1}} r_{s} d s}\left(R\left(T_{k+1}, T_{k}, T_{k+1}\right)-L\left(T_{k}, T_{k}, T_{k+1}\right)\right) \mid \mathcal{F}_{t}\right] \\
& =\left(T_{k+1}-T_{k}\right) P\left(t, T_{k+1}\right) \mathbb{E}_{k+1}\left[R\left(T_{k+1}, T_{k}, T_{k+1}\right)-L\left(T_{k}, T_{k}, T_{k+1}\right) \mid \mathcal{F}_{t}\right] \\
& =\left(T_{k+1}-T_{k}\right) P\left(t, T_{k+1}\right)\left(R\left(t, T_{k}, T_{k+1}\right)-L\left(t, T_{k}, T_{k+1}\right)\right. \\
& =0, \quad 0 \leqslant t \leqslant T_{k}
\end{aligned}
$$

see Mercurio (2018). On the other hand, for any $i=1, \ldots, n$, we also have

$$
\begin{aligned}
& \left(T_{k+1}-T_{k}\right) \mathbb{E}\left[\mathrm{e}^{-\int_{t}^{T_{k+1}} r_{s} d s}\left(R\left(T_{k+1}, T_{k}, T_{k+1}\right)-L\left(T_{k}, T_{k}, T_{k+1}\right)\right) \mid \mathcal{F}_{T_{i}}\right] \\
& =\left(T_{k+1}-T_{k}\right) P\left(T_{i}, T_{k+1}\right) \mathbb{E}_{k+1}\left[R\left(T_{k+1}, T_{k}, T_{k+1}\right)-L\left(T_{k}, T_{k}, T_{k+1}\right) \mid \mathcal{F}_{T_{k}}\right] \\
& =\left(T_{k+1}-T_{k}\right) P\left(T_{i}, T_{k+1}\right)\left(R\left(T_{i}, T_{k}, T_{k+1}\right)-L\left(T_{i}, T_{k}, T_{k+1}\right)\right. \\
& =0
\end{aligned}
$$

Bermudan swaption pricing in Quantlib

The Bermudan swaption on the tenor structure $\left\{T_{i}, \ldots, T_{j}\right\}$ is priced as the supremum

$$
\left.\left.\left.\begin{array}{rl}
& \operatorname{Sup}_{l \in\{i, \ldots, j-1\}} \mathbb{E}^{*}
\end{array} \mathrm{e}^{-\int_{t}^{T_{l}} r_{s} d s}\left(\sum_{k=l}^{j-1} \delta_{k} P\left(T_{l}, T_{k+1}\right)\left(L\left(T_{l}, T_{k}, T_{k+1}\right)-\kappa\right)\right)^{+} \right\rvert\, \mathcal{F}_{t}\right], \operatorname{Sup}_{l \in\{i, \ldots, j-1\}} \mathbb{E}^{*}\left[\mathrm{e}^{-\int_{t}^{T_{l}} r_{s} d s}\left(P\left(T_{l}, T_{l}\right)-P\left(T_{l}, T_{j}\right)-\kappa P\left(T_{l}, T_{l}, T_{j}\right)\right)^{+} \mid \mathcal{F}_{t}\right]\right] .
$$

where the supremum is over all stopping times taking values in $\left\{T_{i}, \ldots, T_{j}\right\}$.

Bermudan swaptions can be priced using this Rcode* in (R)quantlib, with the following output:

Summary of pricing results for Bermudan Swaption
Price (in bp) of Bermudan swaption is 24.92137
Strike is NULL (ATM strike is 0.05)
Model used is: Hull-White using analytic formulas
Calibrated model parameters are:
$\mathrm{a}=0.04641$
sigma $=0.005869$
This modified code ${ }^{\dagger}$ can be used in particular the pricing of ordinary swaptions, with the output:

Summary of pricing results for Bermudan Swaption

Price (in bp) of Bermudan swaption is 22.45436
Strike is NULL (ATM strike is 0.05)
Model used is: Hull-White using analytic formulas
Calibrated model parameters are:
$\mathrm{a}=0.07107$
sigma $=0.006018$
Table 19.2 summarizes some possible uses of change of numéraire in option pricing.

[^0]
N. Privault

						$z / /^{\rho-1} M^{\rho+1} \mu^{00_{S}}={ }^{1} S$	${ }_{\text {suolndo }} \mathrm{Iam}_{\mathrm{d}}$
		$\left.\frac{\left(L^{4} L^{4} L^{4}\right) d}{\left(L^{4} L^{4} L^{\prime} L^{\prime}-\left(L^{\prime} L^{\prime}\right) d\right.}=\left({ }^{4} L^{4} L^{4} L^{\prime}\right\rangle\right) S$		$\left.+\left({ }^{4} L^{4} L^{4} L t\right) d^{y}-\left({ }^{4} L^{4} L t\right) d-\left(L^{4} L L\right) d\right)$	$\left({ }^{4} L^{\prime} L^{4} L^{\prime}\right) d={ }^{1} N$	$\left.{ }^{(4} L^{4}\right) d^{\prime}\left(L^{4} L^{4}\right) d$	uondrus
		$\left\lvert\,\left(1-\frac{\left.\left(S^{\prime}\right)^{\prime}\right) d}{\left(L^{\prime}\right) d}\right) \frac{L^{-S}}{\mathrm{I}}=\left(S^{\prime} L^{\prime} L^{\prime}\right) \tau\right.$		$+^{\left(*-\left(S^{\prime} L^{\prime} L\right) T\right)\left(L^{-S}\right)}$	$\left(S^{\prime}\right){ }^{\prime}={ }^{1} \mathrm{~N}$	$\left(L^{\prime}\right)^{\prime}{ }^{\text {d }}$	stro prie spiplio
		$\frac{\left(L^{\prime}\right)_{d}}{\left.\left(S^{\prime}\right)\right)_{d}}={ }^{\prime} X$		$+\left(Y-\left(S^{\prime} L\right) d\right)$	$\left(L^{\prime}\right)^{\prime}=^{\prime} N$	${ }^{(S t)}{ }^{\text {d }}$	mondo puog
$\left[\left.y\right\|_{+}\left(\frac{x_{y}}{y}-1\right)\right]^{\left[1 / y_{1, ~}{ }^{2}\right.}$		$1={ }^{\prime} \times$		$+^{(y-L-L y)}$		${ }^{1} h_{1,4}{ }^{\text {a }}$	2surpxa uifond
		$1={ }^{\prime}$ X		$+\left(y-L_{S}\right)^{L_{S}}$	'S $=^{\text {' }}$ N	$z / h^{\rho-1 / m o t \mu^{0}{ }^{0} S}=^{1} S$	गпохх木
		$\frac{i^{N}}{I_{S}}={ }^{2} X$		$+\left(L^{(}{ }^{y}-\nu_{S}\right)$	N	'S	moydo asumpxa
			$\mathrm{t}=\frac{\text { dil }}{\text { d }}$	\bigcirc	$\operatorname{sp}^{2}, g^{\circ}={ }^{\prime} N$	'S	9upud [uman-swy
	opud noydo	sesoard puppra		Hasied nopdo		mpud pesy	

Exercises

Exercise 19.1 Consider a floorlet on a three-month LIBOR rate in nine month's time, with a notional principal amount of $\$ 10,000$ per interest rate percentage point. The term structure is flat at 3.95% per year with continuous-time compounding, the volatility of the forward LIBOR rate in nine months is 10%, and the floor rate is 4.5%.
a) What are the key assumptions on the LIBOR rate in nine month in order to apply Black's formula to price this floorlet?
b) Compute the price of this floorlet using Black's formula as an application of Proposition 19.7 and (19.21), using the functions $\Phi\left(d_{+}\right)$and $\Phi\left(d_{-}\right)$.

Exercise 19.2 Consider a payer swaption giving its holder the right, but not the obligation, to enter into a 3 -year annual pay swap in four years, where a fixed rate of 5% will be paid and the LIBOR rate will be received. Assume that the yield curve is flat at 5% with continuous annual compounding and the volatility of the swap rate is 20%. The notional principal is $\$ 100,000$ per interest rate percentage point.
a) What are the key assumptions in order to apply Black's formula to value this swaption?
b) Compute the price of this swaption using Black's formula for payer swaptions, see Proposition 19.17.

Exercise 19.3 Consider a receiver swaption which is giving its holder the right, but not the obligation, to enter into a 2-year annual pay swap in three years, where a fixed rate of 5% will be received and the LIBOR rate will be paid. Assume that the yield curve is flat at 2% with continuous annual compounding and the volatility of the swap rate is 10%. The notional principal is $\$ 10,000$ per percentage points. Write down the expression of the price of this swaption using Black's formula for receiver swaptions, see Proposition 19.18.

Exercise 19.4 Consider two bonds with maturities T_{1} and $T_{2}, T_{1}<T_{2}$, which follow the stochastic differential equations

$$
d P\left(t, T_{1}\right)=r_{t} P\left(t, T_{1}\right) d t+\zeta_{1}(t) P\left(t, T_{1}\right) d W_{t}
$$

and

$$
d P\left(t, T_{2}\right)=r_{t} P\left(t, T_{2}\right) d t+\zeta_{2}(t) P\left(t, T_{2}\right) d W_{t}
$$

a) Using Itô calculus, show that the forward process $P\left(t, T_{2}\right) / P\left(t, T_{1}\right)$ is a driftless geometric Brownian motion driven by $d \widehat{W}_{t}:=d W_{t}-\zeta_{1}(t) d t$ under the T_{1}-forward measure $\widehat{\mathbb{P}}$.
b) Compute the price $\mathbb{E}^{*}\left[\mathrm{e}^{-\int_{t}^{T_{1}} r_{s} d s}\left(K-P\left(T_{1}, T_{2}\right)\right)^{+} \mid \mathcal{F}_{t}\right]$ of a bond put option at time $t \in\left[0, T_{1}\right]$ using change of numéraire and the Black-Scholes formula.

Hint: Given X a Gaussian random variable with mean m and variance v^{2} given \mathcal{F}_{t}, we have:

$$
\begin{align*}
\mathbb{E}\left[\left(\kappa-\mathrm{e}^{X}\right)^{+} \mid \mathcal{F}_{t}\right]= & \kappa \Phi\left(-\frac{1}{v}(m-\log \kappa)\right) \tag{19.43}\\
& -\mathrm{e}^{m+v^{2} / 2} \Phi\left(-\frac{1}{v}\left(m+v^{2}-\log \kappa\right)\right)
\end{align*}
$$

Exercise 19.5 Given two bonds with maturities T, S and prices $P(t, T)$, $P(t, S)$, consider the LIBOR rate

$$
L(t, T, S):=\frac{P(t, T)-P(t, S)}{(S-T) P(t, S)}
$$

at time $t \in[0, T]$, modeled as

$$
\begin{equation*}
d L(t, T, S)=\mu_{t} L(t, T, S) d t+\sigma L(t, T, S) d W_{t}, \quad 0 \leqslant t \leqslant T \tag{19.44}
\end{equation*}
$$

where $\left(W_{t}\right)_{t \in[0, T]}$ is a standard Brownian motion under the risk-neutral probability measure $\mathbb{P}^{*}, \sigma>0$ is a constant, and $\left(\mu_{t}\right)_{t \in[0, T]}$ is an adapted process. Let

$$
F(t):=\mathbb{E}^{*}\left[\mathrm{e}^{-\int_{t}^{S} r_{s} d s}(\kappa-L(T, T, S))^{+} \mid \mathcal{F}_{t}\right]
$$

denote the price at time t of a floorlet option with strike level κ, maturity T, and payment date S.
a) Rewrite the value of $F(t)$ using the forward measure $\widehat{\mathbb{P}}_{S}$ with maturity S.
b) What is the dynamics of $L(t, T, S)$ under the forward measure $\widehat{\mathbb{P}}_{S}$?
c) Write down the value of $F(t)$ using the Black-Scholes formula.

Hint: Given X a centered Gaussian random variable with variance v^{2}, we have

$$
\mathbb{E}^{*}\left[\left(\kappa-\mathrm{e}^{m+X}\right)^{+}\right]=\kappa \Phi(-(m-\log \kappa) / v)-\mathrm{e}^{m+v^{2} / 2} \Phi(-v-(m-\log \kappa) / v)
$$

where Φ denotes the Gaussian cumulative distribution function.
Exercise 19.6 Jamshidian's trick (Jamshidian (1989)). Consider a family $\left(P\left(t, T_{l}\right)\right)_{l=i, \ldots, j}$ of bond prices defined from a short rate process $\left(r_{t}\right)_{t \in \mathbb{R}_{+}}$. We assume that the bond prices are functions $P\left(T_{i}, T_{l+1}\right)=F_{l+1}\left(T_{i}, r_{T_{i}}\right)$ of $r_{T_{i}}$ that are increasing in the variable $r_{T_{i}}$, for all $l=i, i+1, \ldots, j-1$.
a) Compute the price $P\left(t, T_{i}, T_{j}\right)$ of the annuity numéraire paying coupons c_{i+1}, \ldots, c_{j} at times T_{i+1}, \ldots, T_{j} in terms of the bond prices

$$
P\left(t, T_{i+1}\right), \ldots, P\left(t, T_{j}\right)
$$

b) Show that the payoff

$$
\left(P\left(T_{i}, T_{i}\right)-P\left(T_{i}, T_{j}\right)-\kappa P\left(T_{i}, T_{i}, T_{j}\right)\right)^{+}
$$

of a European swaption can be rewrittten as

$$
\left(1-\kappa \sum_{l=i}^{j-1} \tilde{c}_{l+1} P\left(T_{i}, T_{l+1}\right)\right)^{+}
$$

by writing \tilde{c}_{l} in terms of $c_{l}, l=i+1, \ldots, j$.
c) Assuming that the bond prices are functions $P\left(T_{i}, T_{l+1}\right)=F_{l+1}\left(T_{i}, r_{T_{i}}\right)$ of $r_{T_{i}}$ that are increasing in the variable $r_{T_{i}}$, for all $l=i, \ldots, j-1$, show, choosing γ_{κ} such that

$$
\kappa \sum_{l=i}^{j-1} \tilde{c}_{l+1} F_{l+1}\left(T_{i}, \gamma_{\kappa}\right)=1
$$

that the European swaption with payoff

$$
\left(P\left(T_{i}, T_{i}\right)-P\left(T_{i}, T_{j}\right)-\kappa P\left(T_{i}, T_{i}, T_{j}\right)\right)^{+}=\left(1-\kappa \sum_{l=i}^{j-1} \tilde{c}_{l+1} P\left(T_{i}, T_{l+1}\right)\right)^{+}
$$

where \tilde{c}_{j} contains the final coupon payment, can be priced as a weighted sum of bond put options under the forward measure $\widehat{\mathbb{P}}_{i}$ with numéraire $N_{t}^{(i)}:=P\left(t, T_{i}\right)$.

Exercise 19.7 Path freezing. Consider n bonds with prices $\left(P\left(t, T_{i}\right)\right)_{i=1, \ldots, n}$ and the bond option with payoff

$$
\left(\sum_{i=2}^{n} c_{i} P\left(T_{0}, T_{i}\right)-\kappa P\left(T_{0}, T_{1}\right)\right)^{+}=P\left(T_{0}, T_{1}\right)\left(X_{T_{0}}-\kappa\right)^{+}
$$

where $N_{t}:=P\left(t, T_{1}\right)$ is taken as numéraire and

$$
X_{t}:=\frac{1}{P\left(t, T_{1}\right)} \sum_{i=2}^{n} c_{i} P\left(t, T_{i}\right)=\sum_{i=2}^{n} c_{i} \widehat{P}\left(t, T_{i}\right), \quad 0 \leqslant t \leqslant T_{1}
$$

with $\widehat{P}\left(t, T_{i}\right):=P\left(t, T_{i}\right) / P\left(t, T_{1}\right), i=2,3, \ldots, n$.
a) Assuming that the deflated bond price $\left(\widehat{P}\left(t, T_{i}\right)\right)_{t \in\left[0, T_{i}\right]}$ has the (martingale) dynamics $d \widehat{P}\left(t, T_{i}\right)=\sigma_{i}(t) \widehat{P}\left(t, T_{i}\right) d \widehat{W}_{t}$ under the forward measure $\widehat{\mathbb{P}}_{1}$, where $\left(\sigma_{i}(t)\right)_{t \in \mathbb{R}_{+}}$is a deterministic function, write down the dynamics of X_{t} as $d X_{t}=\sigma_{t} X_{t} d \widehat{W}_{t}$, where σ_{t} is to be computed explicitly.
b) Approximating $\left(\widehat{P}\left(t, T_{i}\right)\right)_{t \in\left[0, T_{i}\right]}$ by $\widehat{P}\left(0, T_{i}\right)$ and $\left(P\left(t, T_{2}, T_{n}\right)\right)_{t \in\left[0, T_{2}\right]}$ by $P\left(0, T_{2}, T_{n}\right)$, find a deterministic approximation $\widehat{\sigma}(t)$ of σ_{t}, and deduce an expression of the option price

$$
\mathbb{E}^{*}\left[\mathrm{e}^{-\int_{0}^{T_{1}} r_{s} d s}\left(\sum_{i=2}^{n} c_{i} P\left(T_{0}, T_{i}\right)-\kappa P\left(T_{0}, T_{1}\right)\right)^{+}\right]=P\left(0, T_{1}\right) \widehat{\mathbb{E}}\left[\left(X_{T_{0}}-\kappa\right)^{+}\right]
$$

using the Black-Scholes formula.
Hint: Given X a centered Gaussian random variable with variance v^{2}, we have:

$$
\mathbb{E}\left[\left(x \mathrm{e}^{X-v^{2} / 2}-\kappa\right)^{+}\right]=x \Phi(v / 2+(\log (x / \kappa)) / v)-\kappa \Phi(-v / 2+(\log (x / \kappa)) / v)
$$

Exercise 19.8 (Exercise 17.5 continued). We work in the short rate model

$$
d r_{t}=\sigma d B_{t}
$$

where $\left(B_{t}\right)_{t \in \mathbb{R}_{+}}$is a standard Brownian motion under \mathbb{P}^{*}, and $\widehat{\mathbb{P}}_{2}$ is the forward measure defined by

$$
\frac{\mathrm{d} \widehat{\mathbb{P}}_{2}}{\mathrm{~d} \mathbb{P}^{*}}=\frac{1}{P\left(0, T_{2}\right)} \mathrm{e}^{-\int_{0}^{T_{2}} r_{s} d s}
$$

a) State the expressions of $\zeta_{1}(t)$ and $\zeta_{2}(t)$ in

$$
\frac{d P\left(t, T_{i}\right)}{P\left(t, T_{i}\right)}=r_{t} d t+\zeta_{i}(t) d B_{t}, \quad i=1,2
$$

and the dynamics of the $P\left(t, T_{1}\right) / P\left(t, T_{2}\right)$ under $\widehat{\mathbb{P}}_{2}$, where $P\left(t, T_{1}\right)$ and $P\left(t, T_{2}\right)$ are bond prices with maturities T_{1} and T_{2}.
Hint: Use Exercise 17.5 and the relation (17.26).
b) State the expression of the forward rate $f\left(t, T_{1}, T_{2}\right)$.
c) Compute the dynamics of $f\left(t, T_{1}, T_{2}\right)$ under the forward measure $\widehat{\mathbb{P}}_{2}$ with

$$
\frac{\mathrm{d} \widehat{\mathbb{P}}_{2}}{\mathrm{~d} \mathbb{P}^{*}}=\frac{1}{P\left(0, T_{2}\right)} \mathrm{e}^{-\int_{0}^{T_{2}} r_{s} d s}
$$

d) Compute the price

$$
\left(T_{2}-T_{1}\right) \mathbb{E}^{*}\left[\mathrm{e}^{-\int_{t}^{T_{2}} r_{s} d s}\left(f\left(T_{1}, T_{1}, T_{2}\right)-\kappa\right)^{+} \mid \mathcal{F}_{t}\right]
$$

of an interest rate cap at time $t \in\left[0, T_{1}\right]$, using the expectation under the forward measure $\widehat{\mathbb{P}}_{2}$.
e) Compute the dynamics of the swap rate process

$$
S\left(t, T_{1}, T_{2}\right)=\frac{P\left(t, T_{1}\right)-P\left(t, T_{2}\right)}{\left(T_{2}-T_{1}\right) P\left(t, T_{2}\right)}, \quad t \in\left[0, T_{1}\right]
$$

under $\widehat{\mathbb{P}}_{2}$.
f) Using (19.33), compute the swaption price

$$
\left(T_{2}-T_{1}\right) \mathbb{E}^{*}\left[\mathrm{e}^{-\int_{t}^{T_{1}} r_{s} d s} P\left(T_{1}, T_{2}\right)\left(S\left(T_{1}, T_{1}, T_{2}\right)-\kappa\right)^{+} \mid \mathcal{F}_{t}\right]
$$

on the swap rate $S\left(T_{1}, T_{1}, T_{2}\right)$ using the expectation under the forward swap measure $\widehat{\mathbb{P}}_{1,2}$.

Exercise 19.9 Consider three zero-coupon bonds $P\left(t, T_{1}\right), P\left(t, T_{2}\right)$ and $P\left(t, T_{3}\right)$ with maturities $T_{1}=\delta, T_{2}=2 \delta$ and $T_{3}=3 \delta$ respectively, and the forward LIBOR $L\left(t, T_{1}, T_{2}\right)$ and $L\left(t, T_{2}, T_{3}\right)$ defined by

$$
L\left(t, T_{i}, T_{i+1}\right)=\frac{1}{\delta}\left(\frac{P\left(t, T_{i}\right)}{P\left(t, T_{i+1}\right)}-1\right), \quad i=1,2
$$

Assume that $L\left(t, T_{1}, T_{2}\right)$ and $L\left(t, T_{2}, T_{3}\right)$ are modeled in the BGM model by

$$
\begin{equation*}
\frac{d L\left(t, T_{1}, T_{2}\right)}{L\left(t, T_{1}, T_{2}\right)}=\mathrm{e}^{-a t} d \widehat{W}_{t}^{(2)}, \quad 0 \leqslant t \leqslant T_{1} \tag{19.45}
\end{equation*}
$$

and $L\left(t, T_{2}, T_{3}\right)=b, 0 \leqslant t \leqslant T_{2}$, for some constants $a, b>0$, where $\widehat{W}_{t}^{(2)}$ is a standard Brownian motion under the forward measure $\widehat{\mathbb{P}}_{2}$ defined by

$$
\frac{\mathrm{d} \widehat{\mathbb{P}}_{2}}{\mathrm{~d} \mathbb{P}^{*}}=\frac{\mathrm{e}^{-\int_{0}^{T_{2}} r_{s} d s}}{P\left(0, T_{2}\right)}
$$

a) Compute $L\left(t, T_{1}, T_{2}\right), 0 \leqslant t \leqslant T_{2}$ by solving Equation (19.45).
b) Show that the price at time $t \in\left[0, T_{1}\right]$ of the caplet with strike level κ can be written as
$\mathbb{E}^{*}\left[\mathrm{e}^{-\int_{t}^{T_{2}} r_{s} d s}\left(L\left(T_{1}, T_{1}, T_{2}\right)-\kappa\right)^{+} \mid \mathcal{F}_{t}\right]=P\left(t, T_{2}\right) \widehat{\mathbb{E}}_{2}\left[\left(L\left(T_{1}, T_{1}, T_{2}\right)-\kappa\right)^{+} \mid \mathcal{F}_{t}\right]$,
where $\widehat{\mathbb{E}}_{2}$ denotes the expectation under the forward measure $\widehat{\mathbb{P}}_{2}$.
c) Using the hint below, compute the price at time t of the caplet with strike level κ on $L\left(T_{1}, T_{1}, T_{2}\right)$.
d) Compute

$$
\frac{P\left(t, T_{1}\right)}{P\left(t, T_{1}, T_{3}\right)}, \quad 0 \leqslant t \leqslant T_{1}, \quad \text { and } \quad \frac{P\left(t, T_{3}\right)}{P\left(t, T_{1}, T_{3}\right)}, \quad 0 \leqslant t \leqslant T_{2}
$$

in terms of b and $L\left(t, T_{1}, T_{2}\right)$, where $P\left(t, T_{1}, T_{3}\right)$ is the annuity numéraire

$$
P\left(t, T_{1}, T_{3}\right)=\delta P\left(t, T_{2}\right)+\delta P\left(t, T_{3}\right), \quad 0 \leqslant t \leqslant T_{2}
$$

e) Compute the dynamics of the swap rate

$$
t \mapsto S\left(t, T_{1}, T_{3}\right)=\frac{P\left(t, T_{1}\right)-P\left(t, T_{3}\right)}{P\left(t, T_{1}, T_{3}\right)}, \quad 0 \leqslant t \leqslant T_{1}
$$

i.e. show that we have

$$
d S\left(t, T_{1}, T_{3}\right)=\sigma_{1,3}(t) S\left(t, T_{1}, T_{3}\right) d \widehat{W}_{t}^{(2)}
$$

where $\sigma_{1,3}(t)$ is a stochastic process to be determined.
f) Using the Black-Scholes formula, compute an approximation of the swaption price

$$
\begin{gathered}
\mathbb{E}^{*}\left[\mathrm{e}^{-\int_{t}^{T_{1}} r_{s} d s} P\left(T_{1}, T_{1}, T_{3}\right)\left(S\left(T_{1}, T_{1}, T_{3}\right)-\kappa\right)^{+} \mid \mathcal{F}_{t}\right] \\
=P\left(t, T_{1}, T_{3}\right) \widehat{\mathbb{E}}_{2}\left[\left(S\left(T_{1}, T_{1}, T_{3}\right)-\kappa\right)^{+} \mid \mathcal{F}_{t}\right]
\end{gathered}
$$

at time $t \in\left[0, T_{1}\right]$. You will need to approximate $\sigma_{1,3}(s), s \geqslant t$, by "freezing" all random terms at time t.

Hint: Given X a centered Gaussian random variable with variance v^{2}, we have

$$
\mathbb{E}^{*}\left[\left(\mathrm{e}^{m+X}-\kappa\right)^{+}\right]=\mathrm{e}^{m+v^{2} / 2} \Phi(v+(m-\log \kappa) / v)-\kappa \Phi((m-\log \kappa) / v)
$$

where Φ denotes the Gaussian cumulative distribution function.

Exercise 19.10 Bond option hedging. Consider a portfolio allocation $\left(\xi_{t}^{T}, \xi_{t}^{S}\right)_{t \in[0, T]}$ made of two bonds with maturities T, S, and value

$$
V_{t}=\xi_{t}^{T} P(t, T)+\xi_{t}^{S} P(t, S), \quad 0 \leqslant t \leqslant T
$$

at time t. We assume that the portfolio is self-financing, i.e.

$$
\begin{equation*}
d V_{t}=\xi_{t}^{T} d P(t, T)+\xi_{t}^{S} d P(t, S), \quad 0 \leqslant t \leqslant T \tag{19.46}
\end{equation*}
$$

and that it hedges the claim payoff $(P(T, S)-\kappa)^{+}$, so that

$$
\begin{aligned}
V_{t} & =\mathbb{E}^{*}\left[\mathrm{e}^{-\int_{t}^{T} r_{s} d s}(P(T, S)-\kappa)^{+} \mid \mathcal{F}_{t}\right] \\
& =P(t, T) \mathbb{E}_{T}\left[(P(T, S)-\kappa)^{+} \mid \mathcal{F}_{t}\right], \quad 0 \leqslant t \leqslant T
\end{aligned}
$$

a) Show that we have

$$
\begin{aligned}
& \mathbb{E}^{*}\left[\mathrm{e}^{-\int_{t}^{T} r_{s} d s}(P(T, S)-K)^{+} \mid \mathcal{F}_{t}\right] \\
& =P(0, T) \mathbb{E}_{T}\left[(P(T, S)-K)^{+}\right]+\int_{0}^{t} \xi_{s}^{T} d P(s, T)+\int_{0}^{t} \xi_{s}^{S} d P(s, S)
\end{aligned}
$$

b) Show that under the self-financing condition (19.46), the deflated portfolio value $\widetilde{V}_{t}=\mathrm{e}^{-\int_{0}^{t} r_{s} d s} V_{t}$ satisfies

$$
d \widetilde{V}_{t}=\xi_{t}^{T} d \widetilde{P}(t, T)+\xi_{t}^{S} d \widetilde{P}(t, S)
$$

where

$$
\widetilde{P}(t, T):=\mathrm{e}^{-\int_{0}^{t} r_{s} d s} P(t, T), \quad t \in[0, T]
$$

and

$$
\widetilde{P}(t, S):=\mathrm{e}^{-\int_{0}^{t} r_{s} d s} P(t, S), \quad t \in[0, S]
$$

denote the discounted bond prices.
c) From now on we work in the framework of Proposition 19.3, and we let the function $C(x, v)$ be defined by

$$
C\left(X_{t}, v(t, T)\right):=\mathbb{E}_{T}\left[(P(T, S)-K)^{+} \mid \mathcal{F}_{t}\right]
$$

where X_{t} is the forward price $X_{t}:=P(t, S) / P(t, T), t \in[0, T]$, and

$$
v^{2}(t, T):=\int_{t}^{T}\left|\sigma_{s}^{S}-\sigma_{s}^{T}\right|^{2} d s
$$

Show that

$$
\begin{aligned}
\mathbb{E}_{T}\left[(P(T, S)-K)^{+} \mid \mathcal{F}_{t}\right]= & \mathbb{E}_{T}\left[(P(T, S)-K)^{+}\right] \\
& +\int_{0}^{t} \frac{\partial C}{\partial x}\left(X_{u}, v(u, T)\right) d X_{u}, \quad t \geqslant 0
\end{aligned}
$$

Hint: Use the martingale property and the Itô formula.
d) Show that the deflated portfolio value $\widehat{V}_{t}=V_{t} / P(t, T)$ satisfies

$$
\begin{aligned}
d \widehat{V}_{t} & =\frac{\partial C}{\partial x}\left(X_{t}, v(t, T)\right) d X_{t} \\
& =\frac{P(t, S)}{P(t, T)} \frac{\partial C}{\partial x}\left(X_{t}, v(t, T)\right)\left(\sigma_{t}^{S}-\sigma_{t}^{T}\right) d \widehat{B}_{t}^{T}
\end{aligned}
$$

e) Show that

$$
d V_{t}=P(t, S) \frac{\partial C}{\partial x}\left(X_{t}, v(t, T)\right)\left(\sigma_{t}^{S}-\sigma_{t}^{T}\right) d B_{t}+\widehat{V}_{t} d P(t, T)
$$

f) Show that

$$
d \widetilde{V}_{t}=\widetilde{P}(t, S) \frac{\partial C}{\partial x}\left(X_{t}, v(t, T)\right)\left(\sigma_{t}^{S}-\sigma_{t}^{T}\right) d B_{t}+\widehat{V}_{t} d \widetilde{P}(t, T)
$$

g) Compute the hedging strategy $\left(\xi_{t}^{T}, \xi_{t}^{S}\right)_{t \in[0, T]}$ of this bond option.
h) Show that

$$
\frac{\partial C}{\partial x}(x, v)=\Phi\left(\frac{\log (x / K)+\tau v^{2} / 2}{\sqrt{\tau} v}\right)
$$

and compute the hedging strategy $\left(\xi_{t}^{T}, \xi_{t}^{S}\right)_{t \in[0, T]}$ in terms of the normal cumulative distribution function Φ.

Exercise 19.11 Consider a LIBOR rate $L(t, T, S), t \in[0, T]$, modeled as $d L(t, T, S)=\mu_{t} L(t, T, S) d t+\sigma(t) L(t, T, S) d W_{t}, 0 \leqslant t \leqslant T$, where $\left(W_{t}\right)_{t \in[0, T]}$ is a standard Brownian motion under the risk-neutral probability measure $\mathbb{P}^{*},\left(\mu_{t}\right)_{t \in[0, T]}$ is an adapted process, and $\sigma(t)>0$ is a deterministic volatility function of time t.
a) What is the dynamics of $L(t, T, S)$ under the forward measure $\widehat{\mathbb{P}}$ with numéraire $N_{t}:=P(t, S)$?
b) Rewrite the price

$$
\begin{equation*}
\mathbb{E}^{*}\left[\mathrm{e}^{-\int_{t}^{S} r_{s} d s} \phi(L(T, T, S)) \mid \mathcal{F}_{t}\right] \tag{19.47}
\end{equation*}
$$

at time $t \in[0, T]$ of an option with payoff function ϕ using the forward measure $\widehat{\mathbb{P}}$.
c) Write down the above option price (19.47) using an integral.

Exercise 19.12 Given n bonds with maturities $T_{1}, T_{2}, \ldots, T_{n}$, consider the annuity numéraire

$$
P\left(t, T_{i}, T_{j}\right)=\sum_{k=i}^{j-1}\left(T_{k+1}-T_{k}\right) P\left(t, T_{k+1}\right)
$$

and the swap rate

$$
S\left(t, T_{i}, T_{j}\right)=\frac{P\left(t, T_{i}\right)-P\left(t, T_{j}\right)}{P\left(t, T_{i}, T_{j}\right)}
$$

at time $t \in\left[0, T_{i}\right]$, modeled as

$$
\begin{equation*}
d S\left(t, T_{i}, T_{j}\right)=\mu_{t} S\left(t, T_{i}, T_{j}\right) d t+\sigma S\left(t, T_{i}, T_{j}\right) d W_{t}, \quad 0 \leqslant t \leqslant T_{i} \tag{19.48}
\end{equation*}
$$

where $\left(W_{t}\right)_{t \in\left[0, T_{i}\right]}$ is a standard Brownian motion under the risk-neutral probability measure $\mathbb{P}^{*},\left(\mu_{t}\right)_{t \in[0, T]}$ is an adapted process and $\sigma>0$ is a constant. Let

$$
\begin{equation*}
\mathbb{E}^{*}\left[\mathrm{e}^{-\int_{t}^{T_{i}} r_{s} d s} P\left(T_{i}, T_{i}, T_{j}\right) \phi\left(S\left(T_{i}, T_{i}, T_{j}\right)\right) \mid \mathcal{F}_{t}\right] \tag{19.49}
\end{equation*}
$$

at time $t \in\left[0, T_{i}\right]$ of an option with payoff function ϕ.
a) Rewrite the option price (19.49) at time $t \in\left[0, T_{i}\right]$ using the forward swap measure $\widehat{\mathbb{P}}_{i, j}$ defined from the annuity numéraire $P\left(t, T_{i}, T_{j}\right)$.
b) What is the dynamics of $S\left(t, T_{i}, T_{j}\right)$ under the forward swap measure $\widehat{\mathbb{P}}_{i, j}$?
c) Write down the above option price (19.47) using a Gaussian integral.
d) Apply the above to the computation at time $t \in\left[0, T_{i}\right]$ of the put swaption price

$$
\mathbb{E}^{*}\left[\mathrm{e}^{-\int_{t}^{T_{i}} r_{s} d s} P\left(T_{i}, T_{i}, T_{j}\right)\left(\kappa-S\left(T_{i}, T_{i}, T_{j}\right)\right)^{+} \mid \mathcal{F}_{t}\right]
$$

with strike level κ, using the Black-Scholes formula.
Hint: Given X a centered Gaussian random variable with variance v^{2}, we have

$$
\mathbb{E}\left[\left(\kappa-\mathrm{e}^{m+X}\right)^{+}\right]=\kappa \Phi(-(m-\log \kappa) / v)-\mathrm{e}^{m+v^{2} / 2} \Phi(-v-(m-\log \kappa) / v)
$$

where Φ denotes the Gaussian cumulative distribution function.

Exercise 19.13 Consider a bond market with two bonds with maturities T_{1}, T_{2}, whose prices $P\left(t, T_{1}\right), P\left(t, T_{2}\right)$ at time t are given by

$$
\frac{d P\left(t, T_{1}\right)}{P\left(t, T_{1}\right)}=r_{t} d t+\zeta_{1}(t) d B_{t}, \quad \frac{d P\left(t, T_{2}\right)}{P\left(t, T_{2}\right)}=r_{t} d t+\zeta_{2}(t) d B_{t}
$$

where $\left(r_{t}\right)_{t \in \mathbb{R}_{+}}$is a short-term interest rate process, $\left(B_{t}\right)_{t \in \mathbb{R}_{+}}$is a standard Brownian motion generating a filtration $\left(\mathcal{F}_{t}\right)_{t \in \mathbb{R}_{+}}$, and $\zeta_{1}(t), \zeta_{2}(t)$ are volatility processes. The LIBOR rate $L\left(t, T_{1}, T_{2}\right)$ is defined by

$$
L\left(t, T_{1}, T_{2}\right)=\frac{P\left(t, T_{1}\right)-P\left(t, T_{2}\right)}{P\left(t, T_{2}\right)}
$$

Recall that a caplet on the LIBOR market can be priced at time $t \in\left[0, T_{1}\right]$ as

$$
\begin{align*}
& \mathbb{E}\left[\mathrm{e}^{-\int_{t}^{T_{2}} r_{s} d s}\left(L\left(T_{1}, T_{1}, T_{2}\right)-\kappa\right)^{+} \mid \mathcal{F}_{t}\right] \tag{19.50}\\
& =P\left(t, T_{2}\right) \widehat{\mathbb{E}}\left[\left(L\left(T_{1}, T_{1}, T_{2}\right)-\kappa\right)^{+} \mid \mathcal{F}_{t}\right]
\end{align*}
$$

under the forward measure $\widehat{\mathbb{P}}$ defined by

$$
\frac{\mathrm{d} \widehat{\mathbb{P}}}{\mathrm{~d} \mathbb{P}^{*}}=\mathrm{e}^{-\int_{0}^{T_{1}} r_{s} d s} \frac{P\left(T_{1}, T_{2}\right)}{P\left(0, T_{2}\right)}
$$

under which

$$
\begin{equation*}
\widehat{B}_{t}:=B_{t}-\int_{0}^{t} \zeta_{2}(s) d s, \quad t \in \mathbb{R}_{+} \tag{19.51}
\end{equation*}
$$

is a standard Brownian motion.
In what follows we let $L_{t}=L\left(t, T_{1}, T_{2}\right)$ for simplicity of notation.
a) Using Itô calculus, show that the LIBOR rate satisfies

$$
\begin{equation*}
d L_{t}=L_{t} \sigma(t) d \widehat{B}_{t}, \quad 0 \leqslant t \leqslant T_{1} \tag{19.52}
\end{equation*}
$$

where the LIBOR rate volatility is given by

$$
\sigma(t)=\frac{P\left(t, T_{1}\right)\left(\zeta_{1}(t)-\zeta_{2}(t)\right)}{P\left(t, T_{1}\right)-P\left(t, T_{2}\right)}
$$

b) Solve the equation (19.52) on the interval $\left[t, T_{1}\right]$, and compute $L_{T_{1}}$ from the initial condition L_{t}.
c) Assuming that $\sigma(t)$ in (19.52) is a deterministic volatility function of time $t \in\left[0, T_{1}\right]$, show that the price

$$
P\left(t, T_{2}\right) \widehat{\mathbb{E}}\left[\left(L_{T_{1}}-\kappa\right)^{+} \mid \mathcal{F}_{t}\right]
$$

of the caplet can be written as $P\left(t, T_{2}\right) C\left(L_{t}, v\left(t, T_{1}\right)\right)$, where $v^{2}\left(t, T_{1}\right)=$ $\int_{t}^{T_{1}}|\sigma(s)|^{2} d s$, and $C\left(t, v\left(t, T_{1}\right)\right)$ is a function of L_{t} and $v\left(t, T_{1}\right)$.
d) Consider a portfolio allocation $\left(\xi_{t}^{(1)}, \xi_{t}^{(2)}\right)_{t \in\left[0, T_{1}\right]}$ made of bonds with maturities T_{1}, T_{2} and value

$$
V_{t}=\xi_{t}^{(1)} P\left(t, T_{1}\right)+\xi_{t}^{(2)} P\left(t, T_{2}\right)
$$

at time $t \in\left[0, T_{1}\right]$. We assume that the portfolio is self-financing, i.e.

$$
\begin{equation*}
d V_{t}=\xi_{t}^{(1)} d P\left(t, T_{1}\right)+\xi_{t}^{(2)} d P\left(t, T_{2}\right), \quad 0 \leqslant t \leqslant T_{1} \tag{19.53}
\end{equation*}
$$

and that it hedges the claim payoff $\left(L_{T_{1}}-\kappa\right)^{+}$, so that

$$
\begin{aligned}
V_{t} & =\mathbb{E}\left[\mathrm{e}^{-\int_{t}^{T_{1}} r_{s} d s}\left(P\left(T_{1}, T_{2}\right)\left(L_{T_{1}}-\kappa\right)\right)^{+} \mid \mathcal{F}_{t}\right] \\
& =P\left(t, T_{2}\right) \widehat{\mathbb{E}}\left[\left(L_{T_{1}}-\kappa\right)^{+} \mid \mathcal{F}_{t}\right]
\end{aligned}
$$

$0 \leqslant t \leqslant T_{1}$. Show that we have

$$
\begin{aligned}
& \mathbb{E}\left[\mathrm{e}^{-\int_{t}^{T_{1}} r_{s} d s}\left(P\left(T_{1}, T_{2}\right)\left(L_{T_{1}}-\kappa\right)\right)^{+} \mid \mathcal{F}_{t}\right] \\
& =P\left(0, T_{2}\right) \widehat{\mathbb{E}}\left[\left(L_{T_{1}}-\kappa\right)^{+}\right]+\int_{0}^{t} \xi_{s}^{(1)} d P\left(s, T_{1}\right)+\int_{0}^{t} \xi_{s}^{(2)} d P\left(s, T_{1}\right)
\end{aligned}
$$

$0 \leqslant t \leqslant T_{1}$.
e) Show that under the self-financing condition (19.53), the discounted portfolio value $\tilde{V}_{t}=\mathrm{e}^{-\int_{0}^{t} r_{s} d s} V_{t}$ satisfies

$$
d \widetilde{V}_{t}=\xi_{t}^{(1)} d \widetilde{P}\left(t, T_{1}\right)+\xi_{t}^{(2)} d \widetilde{P}\left(t, T_{2}\right)
$$

where $\widetilde{P}\left(t, T_{1}\right):=\mathrm{e}^{-\int_{0}^{t} r_{s} d s} P\left(t, T_{1}\right)$ and $\widetilde{P}\left(t, T_{2}\right):=\mathrm{e}^{-\int_{0}^{t} r_{s} d s} P\left(t, T_{2}\right)$ denote the discounted bond prices.
f) Show that

$$
\widehat{\mathbb{E}}\left[\left(L_{T_{1}}-\kappa\right)^{+} \mid \mathcal{F}_{t}\right]=\widehat{\mathbb{E}}\left[\left(L_{T_{1}}-\kappa\right)^{+}\right]+\int_{0}^{t} \frac{\partial C}{\partial x}\left(L_{u}, v\left(u, T_{1}\right)\right) d L_{u}
$$

and that the deflated portfolio value $\widehat{V}_{t}=V_{t} / P\left(t, T_{2}\right)$ satisfies

$$
d \widehat{V}_{t}=\frac{\partial C}{\partial x}\left(L_{t}, v\left(t, T_{1}\right)\right) d L_{t}=\sigma(t) L_{t} \frac{\partial C}{\partial x}\left(L_{t}, v\left(t, T_{1}\right)\right) d \widehat{B}_{t} .
$$

Hint: use the martingale property and the Itô formula.
g) Show that

$$
d V_{t}=\left(P\left(t, T_{1}\right)-P\left(t, T_{2}\right)\right) \frac{\partial C}{\partial x}\left(L_{t}, v\left(t, T_{1}\right)\right) \sigma(t) d B_{t}+\widehat{V}_{t} d P\left(t, T_{2}\right)
$$

h) Show that

$$
\begin{aligned}
d \widetilde{V}_{t}= & \frac{\partial C}{\partial x}\left(L_{t}, v\left(t, T_{1}\right)\right) d\left(\widetilde{P}\left(t, T_{1}\right)-\widetilde{P}\left(t, T_{2}\right)\right) \\
& +\left(\widehat{V}_{t}-L_{t} \frac{\partial C}{\partial x}\left(L_{t}, v\left(t, T_{1}\right)\right)\right) d \widetilde{P}\left(t, T_{2}\right)
\end{aligned}
$$

and deduce the values of the hedging portfolio allocation $\left(\xi_{t}^{(1)}, \xi_{t}^{(2)}\right)_{t \in \mathbb{R}_{+}}$.

Problem 19.14 Consider a bond market with tenor structure $\left\{T_{i}, \ldots, T_{j}\right\}$ and $j-i+1$ bonds with maturities T_{i}, \ldots, T_{j}, whose prices $P\left(t, T_{i}\right), \ldots P\left(t, T_{j}\right)$ at time t are given by

$$
\frac{d P\left(t, T_{k}\right)}{P\left(t, T_{k}\right)}=r_{t} d t+\zeta_{k}(t) d B_{t}, \quad k=i, \ldots, j
$$

where $\left(r_{t}\right)_{t \in \mathbb{R}_{+}}$is a short-term interest rate process and $\left(B_{t}\right)_{t \in \mathbb{R}_{+}}$denotes a standard Brownian motion generating a filtration $\left(\mathcal{F}_{t}\right)_{t \in \mathbb{R}_{+}}$, and $\zeta_{i}(t), \ldots, \zeta_{j}(t)$ are volatility processes.

The swap rate $S\left(t, T_{i}, T_{j}\right)$ is defined by

$$
S\left(t, T_{i}, T_{j}\right)=\frac{P\left(t, T_{i}\right)-P\left(t, T_{j}\right)}{P\left(t, T_{i}, T_{j}\right)}
$$

where

$$
P\left(t, T_{i}, T_{j}\right)=\sum_{k=i}^{j-1}\left(T_{k+1}-T_{k}\right) P\left(t, T_{k+1}\right)
$$

is the annuity numéraire. Recall that a swaption on the LIBOR market can be priced at time $t \in\left[0, T_{i}\right]$ as

$$
\begin{gather*}
\mathbb{E}^{*}\left[\mathrm{e}^{-\int_{t}^{T_{i}} r_{s} d s}\left(\sum_{k=i}^{j-1}\left(T_{k+1}-T_{k}\right) P\left(T_{i}, T_{k+1}\right)\left(S\left(T_{i}, T_{k}, T_{k+1}\right)-\kappa\right)\right)^{+} \mid \mathcal{F}_{t}\right] \\
=P\left(t, T_{i}, T_{j}\right) \mathbb{E}_{i, j}\left[\left(S\left(T_{i}, T_{i}, T_{j}\right)-\kappa\right)^{+} \mid \mathcal{F}_{t}\right] \tag{19.54}
\end{gather*}
$$

under the forward swap measure $\widehat{\mathbb{P}}_{i, j}$ defined by

$$
\frac{\mathrm{d} \widehat{\mathbb{P}}_{i, j}}{\mathrm{~d} \mathbb{P}^{*}}=\mathrm{e}^{-\int_{0}^{T_{i}} r_{s} d s} \frac{P\left(T_{i}, T_{i}, T_{j}\right)}{P\left(0, T_{i}, T_{j}\right)}, \quad 1 \leqslant i<j \leqslant n
$$

under which

$$
\begin{equation*}
\widehat{B}_{t}^{i, j}:=B_{t}-\sum_{k=i}^{j-1}\left(T_{k+1}-T_{k}\right) \frac{P\left(t, T_{k+1}\right)}{P\left(t, T_{i}, T_{j}\right)} \zeta_{k+1}(t) d t \tag{19.55}
\end{equation*}
$$

is a standard Brownian motion. Recall that the swap rate can be modeled as

$$
\begin{equation*}
d S\left(t, T_{i}, T_{j}\right)=S\left(t, T_{i}, T_{j}\right) \sigma_{i, j}(t) d \widehat{B}_{t}^{i, j}, \quad 0 \leqslant t \leqslant T_{i} \tag{19.56}
\end{equation*}
$$

where the swap rate volatilities are given by

$$
\begin{align*}
\sigma_{i, j}(t)= & \sum_{l=i}^{j-1}\left(T_{l+1}-T_{l}\right) \frac{P\left(t, T_{l+1}\right)}{P\left(t, T_{i}, T_{j}\right)}\left(\zeta_{i}(t)-\zeta_{l+1}(t)\right) \tag{19.57}\\
& +\frac{P\left(t, T_{j}\right)}{P\left(t, T_{i}\right)-P\left(t, T_{j}\right)}\left(\zeta_{i}(t)-\zeta_{j}(t)\right)
\end{align*}
$$

$1 \leqslant i, j \leqslant n$, cf. e.g. Proposition 8.12 in Privault (2021b). In what follows we denote $S_{t}=S\left(t, T_{i}, T_{j}\right)$ for simplicity of notation.
a) Solve the equation (19.56) on the interval $\left[t, T_{i}\right]$, and compute $S\left(T_{i}, T_{i}, T_{j}\right)$ from the initial condition $S\left(t, T_{i}, T_{j}\right)$.
b) Assuming that $\sigma_{i, j}(t)$ is a deterministic volatility function of time $t \in$ $\left[0, T_{i}\right]$ for $1 \leqslant i, j \leqslant n$, show that the price (19.38) of the swaption can be written as

$$
P\left(t, T_{i}, T_{j}\right) C\left(S_{t}, v\left(t, T_{i}\right)\right)
$$

where

$$
v^{2}\left(t, T_{i}\right):=\int_{t}^{T_{i}}\left|\sigma_{i, j}(s)\right|^{2} d s
$$

and $C(x, v)$ is a function to be specified using the Black-Scholes formula $\operatorname{Bl}(x, K, \sigma, r, \tau)$, with the relation
$\mathbb{E}\left[\left(x \mathrm{e}^{m+X}-K\right)^{+}\right]=\Phi(v+(m+\log (x / K)) / v)-K \Phi((m+\log (x / K)) / v)$, where X is a centered Gaussian random variable with variance v^{2}.
c) Consider a portfolio allocation $\left(\xi_{t}^{(i)}, \ldots, \xi_{t}^{(j)}\right)_{t \in\left[0, T_{i}\right]}$ made of bonds with maturities T_{i}, \ldots, T_{j} and value

$$
V_{t}=\sum_{k=i}^{j} \xi_{t}^{(k)} P\left(t, T_{k}\right)
$$

at time $t \in\left[0, T_{i}\right]$. We assume that the portfolio is self-financing, i.e.

$$
\begin{equation*}
d V_{t}=\sum_{k=i}^{j} \xi_{t}^{(k)} d P\left(t, T_{k}\right), \quad 0 \leqslant t \leqslant T_{i} \tag{19.58}
\end{equation*}
$$

and that it hedges the claim payoff $\left(S\left(T_{i}, T_{i}, T_{j}\right)-\kappa\right)^{+}$, so that

$$
\begin{gathered}
V_{t}=\mathbb{E}^{*}\left[\mathrm{e}^{-\int_{t}^{T_{i}} r_{s} d s}\left(\sum_{k=i}^{j-1}\left(T_{k+1}-T_{k}\right) P\left(T_{i}, T_{k+1}\right)\left(L\left(T_{i}, T_{k}, T_{k+1}\right)-\kappa\right)\right)^{+} \mid \mathcal{F}_{t}\right] \\
=P\left(t, T_{i}, T_{j}\right) \mathbb{E}_{i, j}\left[\left(S\left(T_{i}, T_{i}, T_{j}\right)-\kappa\right)^{+} \mid \mathcal{F}_{t}\right]
\end{gathered}
$$

$0 \leqslant t \leqslant T_{i}$. Show that
$\mathbb{E}^{*}\left[\mathrm{e}^{-\int_{t}^{T_{i}} r_{s} d s}\left(\sum_{k=i}^{j-1}\left(T_{k+1}-T_{k}\right) P\left(T_{i}, T_{k+1}\right)\left(L\left(T_{i}, T_{k}, T_{k+1}\right)-\kappa\right)\right)^{+} \mid \mathcal{F}_{t}\right]$

$$
=P\left(0, T_{i}, T_{j}\right) \mathbb{E}_{i, j}\left[\left(S\left(T_{i}, T_{i}, T_{j}\right)-\kappa\right)^{+}\right]+\sum_{k=i}^{j} \int_{0}^{t} \xi_{s}^{(k)} d P\left(s, T_{i}\right)
$$

$0 \leqslant t \leqslant T_{i}$.

N. Privault

d) Show that under the self-financing condition (19.58), the discounted portfolio value $\widetilde{V}_{t}=\mathrm{e}^{-\int_{0}^{t} r_{s} d s} V_{t}$ satisfies

$$
d \widetilde{V}_{t}=\sum_{k=i}^{j} \xi_{t}^{(k)} d \widetilde{P}\left(t, T_{k}\right)
$$

where $\widetilde{P}\left(t, T_{k}\right)=\mathrm{e}^{-\int_{0}^{t} r_{s} d s} P\left(t, T_{k}\right), k=i, i+1 \ldots, j$, denote the discounted bond prices.
e) Show that

$$
\begin{aligned}
& \mathbb{E}_{i, j}\left[\left(S\left(T_{i}, T_{i}, T_{j}\right)-\kappa\right)^{+} \mid \mathcal{F}_{t}\right] \\
& =\mathbb{E}_{i, j}\left[\left(S\left(T_{i}, T_{i}, T_{j}\right)-\kappa\right)^{+}\right]+\int_{0}^{t} \frac{\partial C}{\partial x}\left(S_{u}, v\left(u, T_{i}\right)\right) d S_{u}
\end{aligned}
$$

Hint: use the martingale property and the Itô formula.
f) Show that the deflated portfolio value $\widehat{V}_{t}=V_{t} / P\left(t, T_{i}, T_{j}\right)$ satisfies

$$
d \widehat{V}_{t}=\frac{\partial C}{\partial x}\left(S_{t}, v\left(t, T_{i}\right)\right) d S_{t}=S_{t} \frac{\partial C}{\partial x}\left(S_{t}, v\left(t, T_{i}\right)\right) \sigma_{t}^{i, j} d \widehat{B}_{t}^{i, j}
$$

g) Show that

$$
d V_{t}=\left(P\left(t, T_{i}\right)-P\left(t, T_{j}\right)\right) \frac{\partial C}{\partial x}\left(S_{t}, v\left(t, T_{i}\right)\right) \sigma_{t}^{i, j} d B_{t}+\widehat{V}_{t} d P\left(t, T_{i}, T_{j}\right)
$$

h) Show that

$$
\begin{aligned}
d V_{t}= & S_{t} \zeta_{i}(t) \frac{\partial C}{\partial x}\left(S_{t}, v\left(t, T_{i}\right)\right) \sum_{k=i}^{j-1}\left(T_{k+1}-T_{k}\right) P\left(t, T_{k+1}\right) d B_{t} \\
& +\left(\widehat{V}_{t}-S_{t} \frac{\partial C}{\partial x}\left(S_{t}, v\left(t, T_{i}\right)\right)\right) \sum_{k=i}^{j-1}\left(T_{k+1}-T_{k}\right) P\left(t, T_{k+1}\right) \zeta_{k+1}(t) d B_{t} \\
& +\frac{\partial C}{\partial x}\left(S_{t}, v\left(t, T_{i}\right)\right) P\left(t, T_{j}\right)\left(\zeta_{i}(t)-\zeta_{j}(t)\right) d B_{t}
\end{aligned}
$$

i) Show that

$$
\begin{aligned}
d \widetilde{V}_{t}= & \frac{\partial C}{\partial x}\left(S_{t}, v\left(t, T_{i}\right)\right) d\left(\widetilde{P}\left(t, T_{i}\right)-\widetilde{P}\left(t, T_{j}\right)\right) \\
& +\left(\widehat{V}_{t}-S_{t} \frac{\partial C}{\partial x}\left(S_{t}, v\left(t, T_{i}\right)\right)\right) d \widetilde{P}\left(t, T_{i}, T_{j}\right)
\end{aligned}
$$

j) Show that

$$
\frac{\partial C}{\partial x}\left(x, v\left(t, T_{i}\right)\right)=\Phi\left(\frac{\log (x / K)}{v\left(t, T_{i}\right)}+\frac{v\left(t, T_{i}\right)}{2}\right) .
$$

k) Show that we have

$$
\begin{aligned}
d \widetilde{V}_{t}= & \Phi\left(\frac{\log \left(S_{t} / K\right)}{v\left(t, T_{i}\right)}+\frac{v\left(t, T_{i}\right)}{2}\right) d\left(\widetilde{P}\left(t, T_{i}\right)-\widetilde{P}\left(t, T_{j}\right)\right) \\
& -\kappa \Phi\left(\frac{\log \left(S_{t} / K\right)}{v\left(t, T_{i}\right)}-\frac{v\left(t, T_{i}\right)}{2}\right) d \widetilde{P}\left(t, T_{i}, T_{j}\right)
\end{aligned}
$$

l) Show that the hedging strategy is given by

$$
\xi_{t}^{(i)}=\Phi\left(\frac{\log \left(S_{t} / K\right)}{v\left(t, T_{i}\right)}+\frac{v\left(t, T_{i}\right)}{2}\right)
$$

$\xi_{t}^{(j)}=-\Phi\left(\frac{\log \left(S_{t} / K\right)}{v\left(t, T_{i}\right)}+\frac{v\left(t, T_{i}\right)}{2}\right)-\kappa\left(T_{j}-T_{j-1}\right) \Phi\left(\frac{\log \left(S_{t} / K\right)}{v\left(t, T_{i}\right)}-\frac{v\left(t, T_{i}\right)}{2}\right)$,
and

$$
\xi_{t}^{(k)}=-\kappa\left(T_{k+1}-T_{k}\right) \Phi\left(\frac{\log \left(S_{t} / K\right)}{v\left(t, T_{i}\right)}-\frac{v\left(t, T_{i}\right)}{2}\right), \quad i \leqslant k \leqslant j-2
$$

[^0]: * Click to open or download.
 ${ }^{\dagger}$ Click to open or download.

