
Chapter 19
Pricing of Interest Rate Derivatives

Interest rate derivatives are option contracts whose payoffs can be based on
fixed-income securities such as bonds, or on cash flows exchanged in e.g.
interest rate swaps. In this chapter we consider the pricing and hedging of
interest rate and fixed income derivatives such as bond options, caplets, caps
and swaptions, using the change of numéraire technique and forward mea-
sures.
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19.1 Forward Measures and Tenor Structure

The maturity dates are arranged according to a discrete tenor structure

{0 = T0 < T1 < T2 < · · · < Tn}.

A sample of forward interest rate curve data is given in Table 19.1, which con-
tains the values of (T1,T2, . . . ,T23) and of {f(t, t+ Ti, t+ Ti + δ)}i=1,2,...,23,
with t = 07/05/2003 and δ = six months.

Maturity 2D 1W 1M 2M 3M 1Y 2Y 3Y 4Y 5Y 6Y 7Y
Rate (%) 2.55 2.53 2.56 2.52 2.48 2.34 2.49 2.79 3.07 3.31 3.52 3.71
Maturity 8Y 9Y 10Y 11Y 12Y 13Y 14Y 15Y 20Y 25Y 30Y
Rate (%) 3.88 4.02 4.14 4.23 4.33 4.40 4.47 4.54 4.74 4.83 4.86

Table 19.1: Forward rates arranged according to a tenor structure.

" 685

This version: May 3, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html


N. Privault

Recall that by definition of P (t,Ti) and absence of arbitrage the discounted
bond price process

t 7→ e−
r t

0 rsdsP (t,Ti), 0 ⩽ t ⩽ Ti,

is an Ft-martingale under the probability measure P∗ = P, hence it satisfies
the Assumption (A) on page 568 for i = 1, 2, . . . ,n. As a consequence the
bond price process can be taken as a numéraire

N
(i)
t := P (t,Ti), 0 ⩽ t ⩽ Ti,

in the definition
dP̂i

dP∗ =
1

P (0,Ti)
e−

r Ti
0 rsds (19.1)

of the forward measure P̂i, see Definition 16.1. The following proposition will
allow us to price contingent claims using the forward measure P̂i, it is a direct
consequence of Proposition 16.5, noting that here we have P (Ti,Ti) = 1.
Proposition 19.1. For all sufficiently integrable random variables C we
have

E∗
[
C e−

r Ti
t rsds

∣∣∣Ft] = P (t,Ti)Êi[C | Ft], 0 ⩽ t ⩽ Ti, i = 1, 2, . . . ,n.

(19.2)
Recall that by Proposition 16.4, the deflated process

t 7→
P (t,Tj)
P (t,Ti)

, 0 ⩽ t ⩽ min(Ti,Tj),

is an Ft-martingale under P̂i for all Ti,Tj ⩾ 0, i, j = 1, 2, . . . ,n.
In the sequel we assume as in (17.26) that the dynamics of the bond price

P (t,Ti) is given by

dP (t,Ti)
P (t,Ti)

= rtdt+ ζi(t)dWt, i = 1, 2, . . . ,n, (19.3)

see e.g. (17.29) in the Vasicek case, where (Wt)t∈R+ is a standard Brownian
motion under P∗ and (rt)t∈R+ and (ζi(t))t∈R+ are adapted processes with
respect to the filtration (Ft)t∈R+ generated by (Wt)t∈R+ , i.e.

P (t,Ti) = P (0,Ti) exp
(w t

0
rsds+

w t
0
ζi(s)dWs − 1

2
w t

0
|ζi(s)|2ds

)
,

0 ⩽ t ⩽ Ti, i = 1, 2, . . . ,n.
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Forward Brownian motions

Proposition 19.2. For all i = 1, 2, . . . ,n, the process

Ŵ
(i)
t := Wt −

w t
0
ζi(s)ds, 0 ⩽ t ⩽ Ti, (19.4)

is a standard Brownian motion under the forward measure P̂i.

Proof. The Girsanov Proposition 16.7 applied to the numéraire

N
(i)
t := P (t,Ti), 0 ⩽ t ⩽ Ti,

as in (16.13), shows that

dŴ
(i)
t := dWt − 1

N
(i)
t

dN
(i)
t

• dWt

= dWt − 1
P (t,Ti)

dP (t,Ti) • dWt

= dWt − 1
P (t,Ti)

(P (t,Ti)rtdt+ ζi(t)P (t,Ti)dWt) • dWt

= dWt − ζi(t)dt,

is a standard Brownian motion under the forward measure P̂i for all i =
1, 2, . . . ,n. □

We have
dŴ

(i)
t = dWt − ζi(t)dt, i = 1, 2, . . . ,n, (19.5)

and

dŴ
(j)
t = dWt − ζj(t)dt = dŴ

(i)
t + (ζi(t) − ζj(t))dt, i, j = 1, 2, . . . ,n,

which shows that (Ŵ
(j)
t )t∈R+ has drift (ζi(t) − ζj(t))t∈R+ under P̂i.

Bond price dynamics under the forward measure

In order to apply Proposition 19.1 and to compute the price

E∗
[

e−
r Ti

t rsdsC
∣∣∣Ft] = P (t,Ti)Êi[C | Ft],
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of a random claim payoff C, it can be useful to determine the dynamics of the
underlying variables rt, f(t,T ,S), and P (t,T ) via their stochastic differential
equations written under the forward measure P̂i.

As a consequence of Proposition 19.2 and (19.3), the dynamics of t 7→ P (t,Tj)
under P̂i is given by

dP (t,Tj)
P (t,Tj)

= rtdt+ ζi(t)ζj(t)dt+ ζj(t)dŴ
(i)
t , i, j = 1, 2, . . . ,n, (19.6)

where (Ŵ
(i)
t )t∈R+ is a standard Brownian motion under P̂i, and we have

P (t,Tj)

= P (0,Tj) exp
(w t

0
rsds+

w t
0
ζj(s)dWs − 1

2
w t

0
|ζj(s)|2ds

)
[under P∗]

= P (0,Tj) exp
(w t

0
rsds+

w t
0
ζj(s)dŴ

(j)
s +

1
2
w t

0
|ζj(s)|2ds

)
[under P̂j ]

= P (0,Tj) exp
(w t

0
rsds+

w t
0
ζj(s)dŴ

(i)
s +

w t
0
ζj(s)ζi(s)ds− 1

2
w t

0
|ζj(s)|2ds

)
[under P̂i]

= P (0,Tj) exp
(w t

0
rsds+

w t
0
ζj(s)dŴ

(i)
s − 1

2
w t

0
|ζj(s) − ζi(s)|2ds+

1
2
w t

0
|ζi(s)|2ds

)
,

t ∈ [0,Tj ], i, j = 1, 2, . . . ,n. Consequently, the forward price P (t,Tj)/P (t,Ti)
can be written as

P (t,Tj)
P (t,Ti)

=
P (0,Tj)
P (0,Ti)

exp
(w t

0
(ζj(s) − ζi(s))dŴ

(j)
s +

1
2
w t

0
|ζj(s) − ζi(s)|2ds

)
, [under P̂j ]

=
P (0,Tj)
P (0,Ti)

exp
(w t

0
(ζj(s) − ζi(s))dŴ

(i)
s − 1

2
w t

0
|ζi(s) − ζj(s)|2ds

)
, [under P̂i]

(19.7)

t ∈ [0, min(Ti,Tj)], i, j = 1, 2, . . . ,n, which also follows from Proposi-
tion 16.8.

Short rate dynamics under the forward measure

In case the short rate process (rt)t∈R+ is given as the (Markovian) solution
to the stochastic differential equation

drt = µ(t, rt)dt+ σ(t, rt)dWt,

by (19.5) its dynamics will be given under P̂i by
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drt = µ(t, rt)dt+ σ(t, rt)
(
ζi(t)dt+ dŴ

(i)
t

)
= µ(t, rt)dt+ σ(t, rt)ζi(t)dt+ σ(t, rt)dŴ (i)

t . (19.8)

In the case of the Vašíček (1977) model, by (17.29) we have

drt = (a− brt)dt+ σdWt,

and
ζi(t) = −σ

b

(
1 − e−b(Ti−t)), 0 ⩽ t ⩽ Ti,

hence from (19.8) we have

dŴ
(i)
t = dWt − ζi(t)dt = dWt +

σ

b

(
1 − e−b(Ti−t))dt, (19.9)

and
drt = (a− brt)dt− σ2

b

(
1 − e−b(Ti−t))dt+ σdŴ

(i)
t (19.10)

and we obtain

dP (t,Ti)
P (t,Ti)

= rtdt+
σ2

b2
(
1 − e−b(Ti−t))2dt− σ

b

(
1 − e−b(Ti−t))dŴ (i)

t ,

from (17.29).

19.2 Bond Options

The next proposition can be obtained as an application of the Margrabe for-
mula (16.30) of Proposition 16.15 by taking Xt = P (t,Tj), N (i)

t = P (t,Ti),
and X̂t = Xt/N

(i)
t = P (t,Tj)/P (t,Ti). In the Vasicek model, this formula

has been first obtained in Jamshidian (1989).

We work with a standard Brownian motion (Wt)t∈R+ under P∗, generating
the filtration (Ft)t∈R+ , and an (Ft)t∈R+ -adapted short rate process (rt)t∈R+ .

Proposition 19.3. Let 0 ⩽ Ti ⩽ Tj and assume as in (17.26) that the
dynamics of the bond prices P (t,Ti), P (t,Tj) under P∗ are given by

dP (t,Ti)
P (t,Ti)

= rtdt+ ζi(t)dWt,
dP (t,Tj)
P (t,Tj)

= rtdt+ ζj(t)dWt,

where (ζi(t))t∈R+ and (ζj(t))t∈R+ are deterministic volatility functions.
Then, the price of a bond call option on P (Ti,Tj) with payoff

C := (P (Ti,Tj) − κ)+

can be written as
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E∗
[

e−
r Ti

t rsds(P (Ti,Tj) − κ)+
∣∣∣Ft] (19.11)

= P (t,Tj)Φ
(
v(t,Ti)

2 +
1

v(t,Ti)
log P (t,Tj)

κP (t,Ti)

)
−κP (t,Ti)Φ

(
−v(t,Ti)

2 +
1

v(t,Ti)
log P (t,Tj)

κP (t,Ti)

)
,

where v2(t,Ti) :=
w Ti

t
|ζi(s) − ζj(s)|2ds and

Φ(x) :=
1√
2π

w x
−∞

e−y2/2dy, x ∈ R,

is the Gaussian cumulative distribution function.

Proof. First, we note that using N
(i)
t := P (t,Ti) as a numéraire the price

of a bond call option on P (Ti,Tj) with payoff F = (P (Ti,Tj) − κ)+ can be
written from Proposition 16.5 using the forward measure P̂i, or directly by
(16.9), as

E∗
[

e−
r Ti

t rsds(P (Ti,Tj) − κ)+
∣∣∣Ft] = P (t,Ti)Êi

[
(P (Ti,Tj) − κ)+

∣∣Ft].
(19.12)

Next, by (19.7) or by solving (16.15) in Proposition 16.8 we can write
P (Ti,Tj) as the geometric Brownian motion

P (Ti,Tj) =
P (Ti,Tj)
P (Ti,Ti)

=
P (t,Tj)
P (t,Ti)

exp
(w Ti

t
(ζj(s) − ζi(s))dŴ

(i)
s − 1

2
w Ti

t
|ζi(s) − ζj(s)|2ds

)
,

under the forward measure P̂i, and rewrite (19.12) as

E∗
[

e−
r Ti

t rsds(P (Ti,Tj) − κ)+
∣∣∣Ft]

= P (t,Ti)Êi

[(
P (t,Tj)
P (t,Ti)

e
r Ti

t (ζj (s)−ζi(s))dŴ
(i)
s − 1

2
r Ti

t |ζi(s)−ζj (s)|2ds − κ

)+ ∣∣∣∣Ft
]

= Êi

[(
P (t,Tj) e

r Ti
t (ζj (s)−ζi(s))dŴ

(i)
s − 1

2
r Ti

t |ζi(s)−ζj (s)|2ds − κP (t,Ti)
)+ ∣∣∣∣Ft

]
.

690 "

This version: May 3, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html


Notes on Stochastic Finance

Since (ζi(s))s∈[0,Ti] and (ζj(s))s∈[0,Tj ] in (19.3) are deterministic volatility
functions, P (Ti,Tj) is a lognormal random variable given Ft under P̂i, and
as in Proposition 16.15 we can use Lemma 7.7 to price the bond option by
the zero-rate Black-Scholes formula

Bl
(
P (t,Tj),κP (t,Ti), v(t,Ti)/

√
Ti − t, 0,Ti − t

)
with underlying asset price P (t,Tj), strike level κP (t,Ti), volatility param-
eter

v(t,Ti)√
Ti − t

=

√r Ti
t |ζi(s) − ζj(s)|2ds

Ti − t
,

time to maturity Ti − t, and zero interest rate, which yields (19.11). □

Note that from Corollary 16.17 the decomposition (19.11) gives the self-
financing portfolio in the assets P (t,Ti) and P (t,Tj) for the claim with payoff
(P (Ti,Tj) − κ)+.

In the Vasicek case the above bond option price could also be computed
from the joint distribution of

(
rT ,

r T
t rsds

)
, which is Gaussian, or from the

dynamics (19.6)-(19.10) of P (t,T ) and rt under P̂i, see Kim (2002) and § 8.3
of Privault (2021b).

19.3 Caplet Pricing

An interest rate caplet is an option contract that offers protection against the
fluctuations of a variable (or floating) rate with respect to a fixed rate κ. The
payoff of a LIBOR caplet on the yield (or spot forward rate) L(Ti,Ti,Ti+1)
with strike level κ can be written as

(L(Ti,Ti,Ti+1) − κ)+,

and priced at time t ∈ [0,Ti] from Proposition 16.5 using the forward measure
P̂i+1 as

E∗
[

e−
r Ti+1

t rsds(L(Ti,Ti,Ti+1) − κ)+
∣∣∣Ft] (19.13)

= P (t,Ti+1)Êi+1
[
(L(Ti,Ti,Ti+1) − κ)+ | Ft

]
,

by taking N (i+1)
t = P (t,Ti+1) as a numéraire.

Proposition 19.4. The LIBOR rate

L(t,Ti,Ti+1) :=
1

Ti+1 − Ti

(
P (t,Ti)
P (t,Ti+1)

− 1
)

, 0 ⩽ t ⩽ Ti < Ti+1,
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is a martingale under the forward measure P̂i+1 defined in (19.1).

Proof. The LIBOR rate L(t,Ti,Ti+1) is a deflated process according to
the forward numéraire process (P (t,Ti+1))t∈[0,Ti+1]. Therefore, by Propo-
sition 16.4 it is a martingale under P̂i+1. □

The caplet on L(Ti,Ti,Ti+1) can be priced at time t ∈ [0,Ti] using the
discounted expected value of its payoff under P∗, as

E∗
[

e−
r Ti+1

t rsds(L(Ti,Ti,Ti+1) − κ)+
∣∣∣∣Ft] (19.14)

= E∗
[

e−
r Ti+1

t rsds

(
1

Ti+1 − Ti

(
P (t,Ti)
P (t,Ti+1)

− 1
)

− κ

)+ ∣∣∣∣Ft
]

,

where the discount factor is counted from the settlement date Ti+1. The
next pricing formula (19.16) allows us to price and hedge a caplet using a
portfolio based on the bonds P (t,Ti) and P (t,Ti+1), cf. (19.20) below, when
L(t,Ti,Ti+1) is modeled in the BGM model of Section 18.6.

Proposition 19.5. (Black LIBOR caplet formula). Assume that L(t,Ti,Ti+1)
is modeled in the BGM model as

dL(t,Ti,Ti+1)

L(t,Ti,Ti+1)
= γi(t)dŴ

i+1
t , (19.15)

0 ⩽ t ⩽ Ti, i = 1, 2, . . . ,n − 1, where γi(t) is a deterministic volatility
function of time t ∈ [0,Ti], i = 1, 2, . . . ,n− 1. The caplet on L(Ti,Ti,Ti+1)
with strike level κ is priced at time t ∈ [0,Ti] as

(Ti+1 − Ti)E
∗
[

e−
r Ti+1

t rsds(L(Ti,Ti,Ti+1) − κ)+
∣∣∣Ft] (19.16)

= (P (t,Ti) − P (t,Ti+1))Φ(d+(t,Ti)) − κ(Ti+1 − Ti)P (t,Ti+1)Φ(d−(t,Ti)),

0 ⩽ t ⩽ Ti, where

d+(t,Ti) =
log(L(t,Ti,Ti+1)/κ) + (Ti − t)σ2

i (t,Ti)/2
σi(t,Ti)

√
Ti − t

, (19.17)

and

d−(t,Ti) =
log(L(t,Ti,Ti+1)/κ) − (Ti − t)σ2

i (t,Ti)/2
σi(t,Ti)

√
Ti − t

, (19.18)

and
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|σi(t,Ti)|2 =
1

Ti − t

w Ti

t
|γi|2(s)ds. (19.19)

Proof. Taking P (t,Ti+1) as a numéraire, the forward price

X̂t :=
P (t,Ti)
P (t,Ti+1)

= 1 + (Ti+1 − Ti)L(Ti,Ti,Ti+1)

and the forward LIBOR rate process (L(t,Ti,Ti+1)t∈[0,Ti] are martingales
under P̂i+1 by Proposition 19.4, i = 1, 2, . . . ,n− 1. More precisely, by (19.15)
we have

L(Ti,Ti,Ti+1) = L(t,Ti,Ti+1) exp
(w Ti

t
γi(s)dŴ

i+1
s − 1

2
w Ti

t
|γi(s)|2ds

)
,

0 ⩽ t ⩽ Ti, i.e. t 7→ L(t,Ti,Ti+1) is a geometric Brownian motion with time-
dependent volatility γi(t) under P̂i+1. Hence by (19.13), since N (i+1)

Ti+1
= 1,

as in Proposition 16.15 we have

E∗
[

e−
r Ti+1

t rsds(L(Ti,Ti,Ti+1) − κ)+
∣∣∣Ft]

= P (t,Ti+1)Êi+1
[
(L(Ti,Ti,Ti+1) − κ)+

∣∣Ft]
= P (t,Ti+1) (L(t,Ti,Ti+1)Φ(d+(t,Ti)) − κΦ(d−(t,Ti)))
= P (t,Ti+1)Bl(L(t,Ti,Ti+1),κ,σi(t,Ti), 0,Ti − t), t ∈ [0,Ti],

where
Bl(x,κ,σ, 0, τ ) = xΦ(d+(t,Ti)) − κΦ(d−(t,Ti))

is the zero-interest rate Black-Scholes function, with

|σi(t,Ti)|2 =
1

Ti − t

w Ti

t
|γi|2(s)ds.

Therefore, we obtain

(Ti+1 − Ti)E
∗
[

e−
r Ti+1

t rsds(L(Ti,Ti,Ti+1) − κ)+
∣∣∣Ft]

= (Ti+1 − Ti)P (t,Ti+1)L(t,Ti,Ti+1)Φ(d+(t,Ti)) − (Ti+1 − Ti)κP (t,Ti+1)Φ(d−(t,Ti))

= P (t,Ti+1)

(
P (t,Ti)
P (t,Ti+1)

− 1
)

Φ(d+(t,Ti))

−κ(Ti+1 − Ti)P (t,Ti+1)Φ(d−(t,Ti)),

which yields (19.16). □

In addition, from Corollary 16.17 we obtain the self-financing portfolio strat-
egy

" 693

This version: May 3, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html


N. Privault

(Φ(d+(t,Ti)), −Φ(d+(t,Ti)) − κ(Ti+1 − Ti)Φ(d−(t,Ti))) (19.20)

in the bonds priced (P (t,Ti),P (t,Ti+1)) with maturities Ti and Ti+1, cf.
Corollary 16.18 and Privault and Teng (2012).

The formula (19.16) can be applied to options on underlying futures or
forward contracts on commodities whose prices are modeled according to
(19.15), as in the next corollary.

Corollary 19.6. (Black (1976) formula). Let L(t,Ti,Ti+1) be modeled as in
(19.15) and let the bond price P (t,Ti+1) be given as P (t,Ti+1) = e−(Ti+1−t)r.
Then, (19.16) becomes

e−(Ti+1−t)rL(t,Ti,Ti+1)Φ(d+(t,Ti)) − κ e−(Ti+1−t)rΦ(d−(t,Ti)),

0 ⩽ t ⩽ Ti.

Floorlet pricing

The floorlet on L(Ti,Ti,Ti+1) with strike level κ is a contract with payoff (κ−
L(Ti,Ti,Ti+1))+. Floorlets are analog to put options and can be similarly
priced by the call/put parity in the Black-Scholes formula.

Proposition 19.7. Assume that L(t,Ti,Ti+1) is modeled in the BGM model
as in (19.15). The floorlet on L(Ti,Ti,Ti+1) with strike level κ is priced at
time t ∈ [0,Ti] as

(Ti+1 − Ti)E
∗
[

e−
r Ti+1

t rsds(κ−L(Ti,Ti,Ti+1))
+
∣∣∣Ft] (19.21)

= κ(Ti+1 − Ti)P (t,Ti+1)Φ
(

− d−(t,Ti)
)

− (P (t,Ti) − P (t,Ti+1))Φ
(

− d+(t,Ti)
)
,

0 ⩽ t ⩽ Ti, where d+(t,Ti), d−(t,Ti) and |σi(t,Ti)|2 are defined in (19.17)-
(19.19).

Proof. Using the Black-Scholes formula for put options, we have

(Ti+1 − Ti)E
∗
[

e−
r Ti+1

t rsds(κ−L(Ti,Ti,Ti+1))
+
∣∣∣Ft]

= (Ti+1 − Ti)P (t,Ti+1)Êi+1
[
(κ−L(Ti,Ti,Ti+1))

+ | Ft
]

= (Ti+1 − Ti)P (t,Ti+1)
(
κΦ
(

− d−(t,Ti)
)

−L(t,Ti,Ti+1)Φ
(

− d+(t,Ti)
))

= (Ti+1 − Ti)P (t,Ti+1)κΦ
(

− d−(t,Ti)
)

− (P (t,Ti) − P (t,Ti+1))Φ
(

− d+(t,Ti)
)
,

0 ⩽ t ⩽ Ti. □
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Cap pricing

More generally, one can consider interest rate caps that are relative to a given
tenor structure {T1,T2, . . . ,Tn}, with discounted payoff

j−1∑
k=i

(Tk+1 − Tk) e−
r Tk+1

t rsds(L(Tk,Tk,Tk+1) − κ)+.

Pricing formulas for interest rate caps are easily deduced from analog formulas
for caplets, since the payoff of a cap can be decomposed into a sum of caplet
payoffs. Thus, the cap price at time t ∈ [0,Ti] is given by

E∗
[
j−1∑
k=i

(Tk+1 − Tk) e−
r Tk+1

t rsds(L(Tk,Tk,Tk+1) − κ)+
∣∣∣∣Ft
]

=

j−1∑
k=i

(Tk+1 − Tk)E
∗
[

e−
r Tk+1

t rsds(L(Tk,Tk,Tk+1) − κ)+
∣∣∣∣Ft]

=

j−1∑
k=i

(Tk+1 − Tk)P (t,Tk+1)Êk+1
[
(L(Tk,Tk,Tk+1) − κ)+

∣∣Ft].
(19.22)

In the BGM model (19.15) the interest rate cap with payoff

j−1∑
k=i

(Tk+1 − Tk)(L(Tk,Tk,Tk+1) − κ)+

can be priced at time t ∈ [0,T1] by the Black formula

j−1∑
k=i

(Tk+1 − Tk)P (t,Tk+1)Bl(L(t,Tk,Tk+1),κ,σk(t,Tk), 0,Tk − t),

where
|σk(t,Tk)|2 =

1
Tk − t

w Tk

t
|γk|2(s)ds.

SOFR Caplets

The backward-looking SOFR caplet has payoff (R(S,T ,S) −K)+, which is
known only at time S. By the Jensen (1906) inequality we note the relation

ES [(R(S,T ,S) −K)+ | Ft] = ES [ES [(R(S,T ,S) −K)+ | FT ] | Ft]
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⩾ ES [(ES [R(S,T ,S) | FT ] −K)+ | Ft]
= ES [(R(T ,T ,S) −K)+ | Ft]
= ES [(L(T ,T ,S) −K)+ | Ft],

hence the backward-looking SOFR caplet is more expensive than the forward-
looking LIBOR caplet.

Proposition 19.8. The SOFR rate

R(t,Ti,Ti+1) :=
1

Ti+1 − Ti

(
P (t,Ti)
P (t,Ti+1)

− 1
)

, 0 ⩽ Ti ⩽ t ⩽ Ti+1,

is a martingale under the forward measure P̂i+1.

Proof. The SOFR rate R(t,Ti,Ti+1) is a deflated process according to the
forward numéraire process (P (t,Ti+1))t∈[0,Ti+1]. Therefore, it is a martingale
under P̂i+1 by Proposition 16.4. □

The caplet on the SOFR rateR(Ti+1,Ti,Ti+1) with payoff (R(Ti+1,Ti,Ti+1)−
κ)+ and strike level κ can be priced at time t ∈ [0,Ti] with a discount factor
counted from the settlement date Ti+1 from Proposition 16.5 as

E∗
[

e−
r Ti+1

t rsds(R(Ti+1,Ti,Ti+1) − κ)+
∣∣∣Ft] (19.23)

= E∗
[

e−
r Ti+1

t rsds

(
1

Ti+1 − Ti

(
P (t,Ti)
P (t,Ti+1)

− 1
)

− κ

)+ ∣∣∣∣Ft
]

= P (t,Ti+1)Êi+1
[
(R(Ti+1,Ti,Ti+1) − κ)+ | Ft

]
,

by taking N (i+1)
t := P (t,Ti+1) as a numéraire and using the forward measure

P̂i+1.

The next pricing formula (19.25) allows us to price and hedge a caplet using a
portfolio based on the bonds P (t,Ti) and P (t,Ti+1), cf. (19.26) below, when
R(t,Ti,Ti+1) is modeled in the BGM model.

Proposition 19.9. (Black SOFR caplet formula). Assume that R(t,Ti,Ti+1)
is modeled in the BGM model as

dR(t,Ti,Ti+1)

R(t,Ti,Ti+1)
= γi(t)dŴ

i+1
t , (19.24)

0 ⩽ t ⩽ Ti+1, i = 1, 2, . . . ,n− 1, where γi(t) is a deterministic volatility func-
tion of time t ∈ [0,Ti+1], i = 1, 2, . . . ,n− 1. The caplet on R(Ti+1,Ti,Ti+1)
with strike level κ > 0 is priced at time t ∈ [0,Ti+1] as
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(Ti+1 − Ti)E
∗
[

e−
r Ti+1

t rsds(R(Ti+1,Ti,Ti+1) − κ)+
∣∣∣Ft] (19.25)

= (P (t,Ti) − P (t,Ti+1))Φ(d+(t,Ti+1)) − κ(Ti+1 − Ti)P (t,Ti+1)Φ(d−(t,Ti+1)),

0 ⩽ t ⩽ Ti+1, where

d+(t,Ti+1) =
log(R(t,Ti,Ti+1)/κ) + (Ti+1 − t)σ2

i (t,Ti+1)/2
σi(t,Ti+1)

√
Ti+1 − t

,

and

d−(t,Ti+1) =
log(R(t,Ti,Ti+1)/κ) − (Ti+1 − t)σ2

i (t,Ti+1)/2
σi(t,Ti+1)

√
Ti+1 − t

,

and
|σi(t,Ti+1)|2 =

1
Ti+1 − t

w Ti+1

t
|γi|2(s)ds.

Proof. The forward price

X̂t :=
P (t,Ti)
P (t,Ti+1)

= 1 + (Ti+1 − Ti)R(Ti+1,Ti,Ti+1)

and the SOFR rate process (R(t,Ti,Ti+1)t∈[0,Ti+1] are martingales under
P̂i+1 by Proposition 19.8, i = 1, 2, . . . ,n− 1, and

R(Ti+1,Ti,Ti+1) = R(t,Ti,Ti+1) exp
(w Ti+1

t
γi(s)dŴ

i+1
s − 1

2
w Ti+1

t
|γi(s)|2ds

)
,

0 ⩽ t ⩽ Ti+1, where t 7→ R(t,Ti,Ti+1) is a geometric Brownian motion under
P̂i+1 (19.24). Hence by (19.23) we have

E∗
[

e−
r Ti+1

t rsds(R(Ti+1,Ti,Ti+1) − κ)+
∣∣∣Ft]

= P (t,Ti+1)Êi+1
[
(R(Ti+1,Ti,Ti+1) − κ)+

∣∣Ft]
= P (t,Ti+1) (R(t,Ti,Ti+1)Φ(d+(t,Ti+1)) − κΦ(d−(t,Ti+1)))

= P (t,Ti+1)Bl(R(t,Ti,Ti+1),κ,σi(t,Ti+1), 0,Ti+1 − t),

t ∈ [0,Ti+1], with

|σi(t,Ti+1)|2 =
1

Ti+1 − t

w Ti+1

t
|γi|2(s)ds.
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□

In addition, we obtain the self-financing portfolio strategy

(Φ(d+(t,Ti+1)), −Φ(d+(t,Ti+1)) − κ(Ti+1 − Ti)Φ(d−(t,Ti+1))) (19.26)

in the bonds priced (P (t,Ti),P (t,Ti+1)), t ∈ [0,Ti+1], with maturities Ti
and Ti+1.

19.4 Forward Swap Measures

In this section we introduce the forward swap (or annuity) measures, or an-
nuity measures, to be used for the pricing of swaptions, and we study their
properties. We start with the definition of the annuity numéraire

N
(i,j)
t := P (t,Ti,Tj) =

j−1∑
k=i

(Tk+1 − Tk)P (t,Tk+1), 0 ⩽ t ⩽ Ti, (19.27)

with in particular, when j = i+ 1,

P (t,Ti,Ti+1) = (Ti+1 − Ti)P (t,Ti+1), 0 ⩽ t ⩽ Ti.

1 ⩽ i < n. The annuity numéraire can be also used to price a bond ladder. It
satisfies the following martingale property, which can be proved by linearity
and the fact that t 7→ e−

r t
0 rsdsP (t,Tk) is a martingale for all k = 1, 2, . . . ,n,

under Assumption (A).

Remark 19.10. The discounted annuity numéraire

t 7→ e−
r t

0 rsdsP (t,Ti,Tj) = e−
r t

0 rsds
j−1∑
k=i

(Tk+1 −Tk)P (t,Tk+1), 0 ⩽ t ⩽ Ti,

is a martingale under P∗.

The forward swap measure P̂i,j is defined, according to Definition 16.1, by

dP̂i,j
dP∗ := e−

r Ti
0 rsds

N
(i,j)
Ti

N
(i,j)
0

= e−
r Ti

0 rsdsP (Ti,Ti,Tj)
P (0,Ti,Tj)

, (19.28)

1 ⩽ i < j ⩽ n.

Remark 19.11. By (16.2) we have

E∗
[

dP̂i,j
dP∗

∣∣∣∣Ft
]
=

1
P (0,Ti,Tj)

E∗
[

e−
r Ti

0 rsdsP (Ti,Ti,Tj)
∣∣∣Ft]
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=
1

P (0,Ti,Tj)
E∗
[

e−
r Ti

0 rsds
j−1∑
k=i

(Tk+1 − Tk)P (Ti,Tk+1)

∣∣∣∣Ft
]

=
1

P (0,Ti,Tj)

j−1∑
k=i

(Tk+1 − Tk)E
∗
[

e−
r Ti

0 rsdsP (Ti,Tk+1)
∣∣∣Ft]

=
1

P (0,Ti,Tj)
e−

r t
0 rsds

j−1∑
k=i

(Tk+1 − Tk)P (t,Tk+1)

= e−
r t

0 rsds P (t,Ti,Tj)
P (0,Ti,Tj)

,

0 ⩽ t ⩽ Ti, see Remark 19.10, and

dP̂i,j|Ft

dP∗
|Ft

= e−
r Ti

t rsdsP (Ti,Ti,Tj)
P (t,Ti,Tj)

, 0 ⩽ t ⩽ Ti+1, (19.29)

by Relation (16.3) in Lemma 16.2.
Proposition 19.12. The LIBOR swap rate

S(t,Ti,Tj) =
P (t,Ti) − P (t,Tj)

P (t,Ti,Tj)
, 0 ⩽ t ⩽ Ti,

see Corollary 18.12, is a martingale under the forward swap measure P̂i,j .
Proof. We use the fact that the deflated process

t 7→ P (t,Tk)
P (t,Ti,Tj)

, i, j, k = 1, 2, . . . ,n,

is an Ft-martingale under P̂i,j by Proposition 16.4. □

The following pricing formula is then stated for a given integrable claim with
payoff of the form P (Ti,Ti,Tj)F , using the forward swap measure P̂i,j :

E∗
[

e−
r Ti

t rsdsP (Ti,Ti,Tj)F
∣∣∣∣Ft] = P (t,Ti,Tj)E∗

[
F

dP̂i,j|Ft

dP∗
|Ft

∣∣∣∣Ft
]

= P (t,Ti,Tj)Êi,j [F | Ft], (19.30)

after applying (19.28) and (19.29) on the last line, or Proposition 16.5.

19.5 Swaption Pricing

Definition 19.13. A payer (or call) swaption gives the option, but not the
obligation, to enter an interest rate swap as payer of a fixed rate κ and as
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receiver of floating LIBOR rates L(Ti,Tk,Tk+1) at time Tk+1, k = i, . . . , j −
1, and has the payoff(

j−1∑
k=i

(Tk+1 − Tk)E
∗
[

e−
r Tk+1

Ti
rsds

∣∣∣∣FTi

]
(L(Ti,Tk,Tk+1) − κ)

)+

=

(
j−1∑
k=i

(Tk+1 − Tk)P (Ti,Tk+1)(L(Ti,Tk,Tk+1) − κ)

)+

(19.31)

at time Ti.

This swaption can be priced at time t ∈ [0,Ti] under the risk-neutral proba-
bility measure P∗ as

E∗

 e−
r Ti

t rsds

(
j−1∑
k=i

(Tk+1 − Tk)P (Ti,Tk+1)(L(Ti,Tk,Tk+1) − κ)

)+ ∣∣∣∣Ft
 ,

(19.32)
t ∈ [0,Ti]. When j = i+ 1, the swaption price (19.32) coincides with the
price at time t of a caplet on [Ti,Ti+1] up to a factor δi := Ti+1 − Ti, since

E∗
[

e−
r Ti

t rsds ((Ti+1 − Ti)P (Ti,Ti+1)(L(Ti,Ti,Ti+1) − κ))+
∣∣∣Ft]

= (Ti+1 − Ti)E
∗
[

e−
r Ti

t rsdsP (Ti,Ti+1) (L(Ti,Ti,Ti+1) − κ)+
∣∣∣Ft]

= (Ti+1 − Ti)E
∗
[

e−
r Ti

t rsdsE∗
[

e−
r Ti+1

Ti
rsds

∣∣∣ FTi

]
(L(Ti,Ti,Ti+1) − κ)+

∣∣∣Ft]
= (Ti+1 − Ti)E

∗
[

E∗
[

e−
r Ti

t rsds e−
r Ti+1

Ti
rsds

(L(Ti,Ti,Ti+1) − κ)+
∣∣∣FTi

] ∣∣∣ Ft
]

= (Ti+1 − Ti)E
∗
[

e−
r Ti+1

t rsds (L(Ti,Ti,Ti+1) − κ)+
∣∣∣Ft] , (19.33)

0 ⩽ t ⩽ Ti, which coincides with the caplet price (19.13) up to the factor
Ti+1 − Ti. Unlike in the case of interest rate caps, the sum in (19.32) cannot
be taken out of the positive part. Nevertheless, the price of the swaption can
be bounded as in the next proposition.

Proposition 19.14. The payer swaption price (19.32) can be upper bounded
by the interest rate cap price (19.22) as

E∗

 e−
r Ti

t rsds

(
j−1∑
k=i

(Tk+1 − Tk)P (Ti,Tk+1)(L(Ti,Tk,Tk+1) − κ)

)+ ∣∣∣∣Ft

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⩽
j−1∑
k=i

(Tk+1 − Tk)E
∗
[

e−
r Tk+1

t rsds (L(Ti,Tk,Tk+1) − κ)+
∣∣∣∣Ft] ,

0 ⩽ t ⩽ Ti.

Proof. Due to the inequality

(x1 + x2 + · · · + xm)
+ ⩽ x+1 + x+2 + · · · + x+m, x1,x2, . . . ,xm ∈ R,

we have

E∗

 e−
r Ti

t rsds

(
j−1∑
k=i

(Tk+1 − Tk)P (Ti,Tk+1)(L(Ti,Tk,Tk+1) − κ)

)+ ∣∣∣∣Ft


⩽ E∗
[

e−
r Ti

t rsds
j−1∑
k=i

(Tk+1 − Tk)P (Ti,Tk+1) (L(Ti,Tk,Tk+1) − κ)+
∣∣∣∣Ft
]

=

j−1∑
k=i

(Tk+1 − Tk)E
∗
[

e−
r Ti

t rsdsP (Ti,Tk+1) (L(Ti,Tk,Tk+1) − κ)+
∣∣∣Ft]

=

j−1∑
k=i

(Tk+1 − Tk)E
∗
[

e−
r Ti

t rsdsE∗
[

e−
r Tk+1

Ti
rsds

∣∣∣ FTi

]
(L(Ti,Tk,Tk+1) − κ)+

∣∣∣Ft]

=

j−1∑
k=i

(Tk+1 − Tk)E
∗
[

E∗
[

e−
r Tk+1

t rsds (L(Ti,Tk,Tk+1) − κ)+
∣∣∣FTi

] ∣∣∣∣Ft]

=

j−1∑
k=i

(Tk+1 − Tk)E
∗
[

e−
r Tk+1

t rsds (L(Ti,Tk,Tk+1) − κ)+
∣∣∣Ft]

= E∗
[
j−1∑
k=i

(Tk+1 − Tk) e−
r Tk+1

t rsds (L(Ti,Tk,Tk+1) − κ)+
∣∣∣∣Ft
]

,

0 ⩽ t ⩽ Ti. □

The payoff of the payer swaption can be rewritten as in the following lemma
which is a direct consequence of the definition of the swap rate S(Ti,Ti,Tj),
see Proposition 18.11 and Corollary 18.12.

Lemma 19.15. The payer swaption payoff (19.31) at time Ti with swap rate
κ = S(t,Tj ,Tj) can be rewritten as(

j−1∑
k=i

(Tk+1 − Tk)P (Ti,Tk+1)(L(Ti,Tk,Tk+1) − κ)

)+

= (P (Ti,Ti) − P (Ti,Tj) − κP (Ti,Ti,Tj))+ (19.34)
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= P (Ti,Ti,Tj) (S(Ti,Ti,Tj) − κ)+ . (19.35)

Proof. The relation

j−1∑
k=i

(Tk+1 − Tk)P (t,Tk+1)(L(t,Tk,Tk+1) − S(t,Ti,Tj)) = 0

that defines the forward swap rate S(t,Ti,Tj) shows that

j−1∑
k=i

(Tk+1 − Tk)P (t,Tk+1)L(t,Tk,Tk+1)

= S(t,Ti,Tj)
j−1∑
k=i

(Tk+1 − Tk)P (t,Tk+1)

= P (t,Ti,Tj)S(t,Ti,Tj)
= P (t,Ti) − P (t,Tj)

as in the proof of Corollary 18.12, hence by the definition (19.27) of P (t,Ti,Tj)
we have

j−1∑
k=i

(Tk+1 − Tk)P (t,Tk+1)(L(t,Tk,Tk+1) − κ)

= P (t,Ti) − P (t,Tj) − κP (t,Ti,Tj)
= P (t,Ti,Tj) (S(t,Ti,Tj) − κ) ,

and for t = Ti we get(
j−1∑
k=i

(Tk+1 − Tk)P (Ti,Tk+1)(L(Ti,Tk,Tk+1) − κ)

)+

= P (Ti,Ti,Tj) (S(Ti,Ti,Tj) − κ)+ .

□

The next proposition simply states that a payer swaption on the LIBOR rate
can be priced as a European call option on the swap rate S(Ti,Ti,Tj) under
the forward swap measure P̂i,j .

Proposition 19.16. The price (19.32) of the payer swaption with payoff(
j−1∑
k=i

(Tk+1 − Tk)P (Ti,Tk+1)(L(Ti,Tk,Tk+1) − κ)

)+

(19.36)
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on the LIBOR market can be written under the forward swap measure P̂i,j
as the European call price

P (t,Ti,Tj)Êi,j
[
(S(Ti,Ti,Tj) − κ)+

∣∣Ft], 0 ⩽ t ⩽ Ti,

on the swap rate S(Ti,Ti,Tj).

Proof. As a consequence of (19.30) and Lemma 19.15, we find

E∗

 e−
r Ti

t rsds

(
j−1∑
k=i

(Tk+1 − Tk)P (Ti,Tk+1)(L(Ti,Tk,Tk+1) − κ)

)+ ∣∣∣∣Ft


= E∗
[

e−
r Ti

t rsds(P (Ti,Ti) − P (Ti,Tj) − κP (Ti,Ti,Tj))+
∣∣∣Ft] (19.37)

= E∗
[

e−
r Ti

t rsdsP (Ti,Ti,Tj) (S(Ti,Ti,Tj) − κ)+
∣∣∣Ft]

= P (t,Ti,Tj)E∗
[

dP̂i,j|Ft

dP∗
|Ft

(S(Ti,Ti,Tj) − κ)+
∣∣∣Ft]

= P (t,Ti,Tj)Êi,j
[(
S(Ti,Ti,Tj) − κ

)+ ∣∣Ft]. (19.38)

□

In the next Proposition 19.17 we price the payer swaption with payoff (19.36)
or equivalently (19.35), by modeling the swap rate (S(t,Ti,Tj))0⩽t⩽Ti

using
standard Brownian motion (Ŵ i,j

t )0⩽t⩽Ti
under the swap forward measure

P̂i,j . See Exercise 19 for swaption pricing without the Black-Scholes formula.

Proposition 19.17. (Black swaption formula for payer swaptions). Assume
that the LIBOR swap rate (18.21) is modeled as a geometric Brownian motion
under P̂i,j , i.e.

dS(t,Ti,Tj) = S(t,Ti,Tj)σ̂i,j(t)dŴ i,j
t , (19.39)

where
(
σ̂i,j(t)

)
t∈R+

is a deterministic volatility function of time. Then, the
payer swaption with payoff

(P (T ,Ti) − P (T ,Tj) − κP (Ti,Ti,Tj))+ = P (Ti,Ti,Tj) (S(Ti,Ti,Tj) − κ)+

can be priced using the Black-Scholes call formula as

E∗
[

e−
r Ti

t rsdsP (Ti,Ti,Tj) (S(Ti,Ti,Tj) − κ)+
∣∣∣Ft]

= (P (t,Ti) − P (t,Tj))Φ(d+(t,Ti))
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−κΦ(d−(t,Ti))
j−1∑
k=i

(Tk+1 − Tk)P (t,Tk+1),

t ∈ [0,Ti], where

d+(t,Ti) =
log(S(t,Ti,Tj)/κ) + σ2

i,j(t,Ti)(Ti − t)/2
σi,j(t,Ti)

√
Ti − t

, (19.40)

and

d−(t,Ti) =
log(S(t,Ti,Tj)/κ) − σ2

i,j(t,Ti)(Ti − t)/2
σi,j(t,Ti)

√
Ti − t

, (19.41)

and

|σi,j(t,Ti)|2 =
1

Ti − t

w Ti

t
|σ̂i,j(s)|2ds, 0 ⩽ t ⩽ Ti. (19.42)

Proof. Since S(t,Ti,Tj) is a geometric Brownian motion with volatility func-
tion (σ̂(t))t∈R+ under P̂i,j , by (19.34)-(19.35) in Lemma 19.15 or (19.37)-
(19.38) we have

E∗
[

e−
r Ti

t rsdsP (Ti,Ti,Tj) (S(Ti,Ti,Tj) − κ)+
∣∣∣Ft]

= E∗
[

e−
r T

t
rsds(P (T ,Ti) − P (T ,Tj) − κP (Ti,Ti,Tj))+

∣∣∣ Ft
]

= P (t,Ti,Tj)Êi,j
[
(S(Ti,Ti,Tj) − κ)+

∣∣Ft]
= P (t,Ti,Tj)Bl(S(t,Ti,Tj),κ,σi,j(t,Ti), 0,Ti − t)

= P (t,Ti,Tj) (S(t,Ti,Tj)Φ+(t,S(t,Ti,Tj)) − κΦ−(t,S(t,Ti,Tj)))
=
(
P (t,Ti) − P (t,Tj)

)
Φ+(t,S(t,Ti,Tj)) − κP (t,Ti,Tj)Φ−(t,S(t,Ti,Tj))

=
(
P (t,Ti) − P (t,Tj)

)
Φ+(t,S(t,Ti,Tj))

−κΦ−(t,S(t,Ti,Tj))
j−1∑
k=i

(Tk+1 − Tk)P (t,Tk+1).

□

In addition, the hedging strategy

(Φ+(t,S(t,Ti,Tj)), −κΦ−(t,S(t,Ti,Tj))(Ti+1 − Ti), . . .
. . . , −κΦ−(t,S(t,Ti,Tj))(Tj−1 − Tj−2), −Φ+(t,S(t,Ti,Tj)))

based on the assets (P (t,Ti), . . . ,P (t,Tj)) is self-financing by Corollary 16.18,
see also Privault and Teng (2012). Similarly to the above, a receiver (or put)
swaption gives the option, but not the obligation, to enter an interest rate
swap as receiver of a fixed rate κ and as payer of floating LIBOR rates
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L(Ti,Tk,Tk+1) at times Ti+1, . . . ,Tj , and can be priced as in the next propo-
sition.

Proposition 19.18. (Black swaption formula for receiver swaptions). As-
sume that the LIBOR swap rate (18.21) is modeled as the geometric Brown-
ian motion (19.39) under the forward swap measure P̂i,j . Then, the receiver
swaption with payoff(
κP (Ti,Ti,Tj)−

(
P (T ,Ti)−P (T ,Tj)

))+
= P (Ti,Ti,Tj) (κ− S(Ti,Ti,Tj))+

can be priced using the Black-Scholes put formula as

E∗
[

e−
r Ti

t rsdsP (Ti,Ti,Tj) (κ− S(Ti,Ti,Tj))+
∣∣∣Ft]

= κΦ(−d−(t,Ti))
j−1∑
k=i

(Tk+1 − Tk)P (t,Tk+1)

−(P (t,Ti) − P (t,Tj))Φ(−d+(t,Ti)),

where d+(t,Ti), and d−(t,Ti) and |σi,j(t,Ti)|2 are defined in (19.40)-(19.42).

When the SOFR swap rate (18.25) is modeled as a geometric Brownian mo-
tion under P̂i,j as in (19.39), SOFR swaptions are priced in the same way as
LIBOR swaptions.

Swaption prices can also be computed by an approximation formula, from the
exact dynamics of the swap rate S(t,Ti,Tj) under the forward swap measure
P̂i,j , based on the bond price dynamics of the form (19.3), cf. Schoenmakers
(2005), page 17.

Swaption volatilities can be estimated from swaption prices as implied
volatilities from the Black pricing formula:

 0  1  2  3  4  5  6  7  8  9j
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Fig. 19.1: Implied swaption volatilities.
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Implied swaption volatilities can then be used to calibrate the BGM model, cf.
Schoenmakers (2005), Privault and Wei (2009), or § 9.5 of Privault (2021b).

LIBOR-SOFR Swaps

We consider the swap contract with payoff

j−1∑
k=i

(Tk+1 − Tk)(R(Tk+1,Tk,Tk+1) −L(Tk,Tk,Tk+1)),

for the exchange of a backward-looking SOFR rate R(Tk+1,Tk,Tk+1) with
the forward-looking LIBOR rate L(Tk,Tk,Tk+1) over the time period [Tk,Tk+1].
The price of this interest rate swap vanishes at any time t ∈ [0,T1], as

(Tk+1 − Tk)E

[
e−

r Tk+1
t rsds(R(Tk+1,Tk,Tk+1) −L(Tk,Tk,Tk+1))

∣∣∣Ft]
= (Tk+1 − Tk)P (t,Tk+1)Ek+1[R(Tk+1,Tk,Tk+1) −L(Tk,Tk,Tk+1) | Ft]
= (Tk+1 − Tk)P (t,Tk+1)(R(t,Tk,Tk+1) −L(t,Tk,Tk+1)

= 0, 0 ⩽ t ⩽ Tk.

see Mercurio (2018). On the other hand, for any i = 1, . . . ,n, we also have

(Tk+1 − Tk)E

[
e−

r Tk+1
t rsds(R(Tk+1,Tk,Tk+1) −L(Tk,Tk,Tk+1))

∣∣∣FTi

]
= (Tk+1 − Tk)P (Ti,Tk+1)Ek+1[R(Tk+1,Tk,Tk+1) −L(Tk,Tk,Tk+1) | FTk

]

= (Tk+1 − Tk)P (Ti,Tk+1)(R(Ti,Tk,Tk+1) −L(Ti,Tk,Tk+1)

= 0.

Bermudan swaption pricing in Quantlib

The Bermudan swaption on the tenor structure {Ti, . . . ,Tj} is priced as the
supremum

Sup
l∈{i,...,j−1}

E∗

 e−
r Tl

t rsds

(
j−1∑
k=l

δkP (Tl,Tk+1)(L(Tl,Tk,Tk+1) − κ)

)+ ∣∣∣∣Ft


= Sup
l∈{i,...,j−1}

E∗
[

e−
r Tl

t rsds (P (Tl,Tl) − P (Tl,Tj) − κP (Tl,Tl,Tj))+
∣∣∣Ft]

= Sup
l∈{i,...,j−1}

E∗
[

e−
r Tl

t rsdsP (Tl,Tl,Tj)(S(Tl,Tl,Tj) − κ)+
∣∣∣Ft] ,

where the supremum is over all stopping times taking values in {Ti, . . . ,Tj}.
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Bermudan swaptions can be priced using this ∗ in (R)quantlib, with
the following output:

Summary of pricing results for Bermudan Swaption

Price (in bp) of Bermudan swaption is 24.92137
Strike is NULL (ATM strike is 0.05 )
Model used is: Hull-White using analytic formulas
Calibrated model parameters are:
a = 0.04641
sigma = 0.005869

This modified † can be used in particular the pricing of ordinary swap-
tions, with the output:

Summary of pricing results for Bermudan Swaption

Price (in bp) of Bermudan swaption is 22.45436
Strike is NULL (ATM strike is 0.05 )
Model used is: Hull-White using analytic formulas
Calibrated model parameters are:
a = 0.07107
sigma = 0.006018

Table 19.2 summarizes some possible uses of change of numéraire in option
pricing.

∗ Click to open or download.
† Click to open or download.

" 707

This version: May 3, 2024
https://personal.ntu.edu.sg/nprivault/indext.html


# https://cran.r-project.org/web/packages/RQuantLib/RQuantLib.pdf
install.packages("RQuantLib")
library(RQuantLib)
params <- list(tradeDate=as.Date('2002-2-15'),
settleDate=as.Date('2002-2-19'),
startDate=as.Date('2003-2-19'),
maturity=as.Date('2008-2-19'),
dt=.25,
payFixed=TRUE,
strike=.05,
method="HWAnalytic",
interpWhat="discount",
interpHow="loglinear")
setEvaluationDate(as.Date('2002-2-15'))
tsQuotes <- list(d1w =0.05,
s3y =0.05,
s5y =0.05,  
s10y =0.05,
s15y =0.05)
times=seq(0,14.75,.25)
swcurve=DiscountCurve(params,tsQuotes,times)
swaptionMaturities <- c(1,2,3,4,5)
swapTenors <- c(1,2,3,4,5)
volMatrix <- matrix(
c(0.1490, 0.1340, 0.1228, 0.1189, 0.1148,
0.1290, 0.1201, 0.1146, 0.1108, 0.1040,
0.1149, 0.1112, 0.1070, 0.1010, 0.0957,
0.1047, 0.1021, 0.0980, 0.0951, 0.1270,
0.1000, 0.0950, 0.0900, 0.1230, 0.1160),
ncol=5, byrow=TRUE)
volMatrix <- matrix(
c(rep(.20,25)),
ncol=5, byrow=TRUE)
pricing <- BermudanSwaption(params, ts=.05,swaptionMaturities, swapTenors, volMatrix)
summary(pricing)


install.packages("RQuantLib")
library(RQuantLib)
freq <- "monthly"
delta_t <- 1/12
params <- list(tradeDate=as.Date('2002-2-15'),
               settleDate=as.Date('2002-2-19'),
               payFixed=TRUE,
               dt=delta_t,
               strike=.06,
               method="HWAnalytic",
               interpWhat="zero",
               interpHow= "spline")
tsQuotes <- list(s2y = 0.037125,s3y =0.0398) 
swaptionMaturities <- c(1,2)
swapTenors <- c(1,2)
volMatrix <- matrix(
  c(0.1490, 0.1340,0.1000, 0.0950),ncol=2, byrow=TRUE)
pricing <- BermudanSwaption(params, tsQuotes,
                            swaptionMaturities, swapTenors, volMatrix)
summary(pricing)
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Application
Assetprice

Numéraireprocess
Option

payoff
Forward

measure
P̂

Deflated
process

Option
price

Changeofnuméraireformula

Risk-neutralpricing
S
t

N
t
=

e r
t0
r

s ds
C

d
P̂

d
P

∗
=

1
S̃
t
=

e −
r

t0
r

s dsS
t

E
∗ [e −

r
Tt
r

s dsC ∣∣∣ F
t ]

e r
t0
r

s dsE
∗ [e −

r
T0
r

s dsC ∣∣∣ F
t ]

Exchangeoption
S
t

N
t

(S
T

−
κN

T
) +

d
P̂

d
P

∗
=

e −
r

T0
r

s ds N
T

N
0
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t
=

S
t

N
t

E
∗ [e −

r
Tt
r

s ds(S
T
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κN

T
) + ∣∣∣ F

t ]
N
t Ê [(X̂

T
−
κ )+ ∣∣F

t ]

Exotic
S
t
=
S0 e

rt+
σ
W

t −
σ 2t/2

N
t
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S
t

S
T
(S
T

−
K
) +

d
P̂

d
P

∗
=

e −
(T−

t)r S
T

S0
X̂
t
=

1
E

∗ [e −
(T−

t)rS
T (S

T
−
K )+ ∣∣F

t ]
S
t Ê

[(S
T

−
K
) +

|F
t ]

Foreign
exchange

e
r ftR

t
N
t
=

e
r ftR

t
(R

T
−
κ) +

d
P̂

d
P

∗
=

e
(r f−

r)T
R
T

R
0

X̂
t
=

1
e
r fT

E
∗ [e −

(T−
t)r(R

T
−
κ)|F
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e
r ftR

t Ê [(1−
κR
T )

+ ∣∣∣∣ R
t ]

Bond
option

P
(t,S

)
N
t
=
P
(t,T

)
(P

(T,S
)−

K
) +

d
P̂
T

d
P

∗
=

e −
r

T0
r

s ds

P
(0,T

)
X̂
t
=
P
(t,S

)

P
(t,T

)
E
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r

Tt
r

s ds(P
(T,S
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K
) + ∣∣∣ F

t ]
P
(t,T

)Ê
T
[(P

(T,S
)−

K
) +

|F
t ]

Capletsand
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P
(t,T

)
N
t
=
P
(t,S

)
(S

−
T
)(L

(T,T,S
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κ) +
d

P̂
S

d
P

∗
=

e −
r

S0
r
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P
(0,S

)
L
(t,T,S

)
=

1
S

−
T (

P
(t,T

)

P
(t,S
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1 )

(S
−
T
)E

∗ [e −
r

St
r

s ds(L
(T,T,S
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K
) + ∣∣∣ F

t ]
(S

−
T
)P

(t,S
)Ê

S [(L
(T,T,S

)−
K
) +

|F
t ]

Swaption
P
(t,T1 ),

P
(t,T

n )
N
t
=
P
(t,T1 ,T

n )
(P

(T1 ,T1 )−
P
(T1 ,T

n )−
κP

(T1 ,T1 ,T
n )) +

d
P̂

1,n
d

P
∗

=
e −

r
T1
0

r
s ds P

(T1 ,T1 ,T
n )

P
(0,T1 ,T

n )
S
(t,T1 ,T

n )
=
P
(t,T1 )−

P
(t,T

n )

P
(t,T1 ,T

n )
E
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r

T1
t

r
s ds(P

(T1 ,T1 )−
P
(T1 ,T

n )−
κP

(T1 ,T1 ,T
n )) + ∣∣∣ F

t ]
P
(t,T1 ,T

n )Ê
1,n [(S

(T1 ,T1 ,T
n )−
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t ]

Poweroptions
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S0 e
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S
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Table
19.2:

A
list

ofnum
éraire

processes
and

their
applications.
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Exercises

Exercise 19.1 Consider a floorlet on a three-month LIBOR rate in nine
month’s time, with a notional principal amount of $10, 000 per interest
rate percentage point. The term structure is flat at 3.95% per year with
continuous-time compounding, the volatility of the forward LIBOR rate in
nine months is 10%, and the floor rate is 4.5%.

a) What are the key assumptions on the LIBOR rate in nine month in order
to apply Black’s formula to price this floorlet?

b) Compute the price of this floorlet using Black’s formula as an application
of Proposition 19.7 and (19.21), using the functions Φ(d+) and Φ(d−).

Exercise 19.2 Consider a payer swaption giving its holder the right, but not
the obligation, to enter into a 3-year annual pay swap in four years, where a
fixed rate of 5% will be paid and the LIBOR rate will be received. Assume
that the yield curve is flat at 5% with continuous annual compounding and
the volatility of the swap rate is 20%. The notional principal is $100,000 per
interest rate percentage point.

a) What are the key assumptions in order to apply Black’s formula to value
this swaption?

b) Compute the price of this swaption using Black’s formula for payer swap-
tions, see Proposition 19.17.

Exercise 19.3 Consider a receiver swaption which is giving its holder the
right, but not the obligation, to enter into a 2-year annual pay swap in three
years, where a fixed rate of 5% will be received and the LIBOR rate will be
paid. Assume that the yield curve is flat at 2% with continuous annual com-
pounding and the volatility of the swap rate is 10%. The notional principal is
$10,000 per percentage points. Write down the expression of the price of this
swaption using Black’s formula for receiver swaptions, see Proposition 19.18.

Exercise 19.4 Consider two bonds with maturities T1 and T2, T1 < T2, which
follow the stochastic differential equations

dP (t,T1) = rtP (t,T1)dt+ ζ1(t)P (t,T1)dWt

and
dP (t,T2) = rtP (t,T2)dt+ ζ2(t)P (t,T2)dWt.

a) Using Itô calculus, show that the forward process P (t,T2)/P (t,T1) is
a driftless geometric Brownian motion driven by dŴt := dWt − ζ1(t)dt

under the T1-forward measure P̂.
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b) Compute the price E∗
[

e−
r T1

t rsds(K − P (T1,T2))
+
∣∣∣ Ft

]
of a bond put

option at time t ∈ [0,T1] using change of numéraire and the Black-Scholes
formula.

Hint: Given X a Gaussian random variable with mean m and variance v2

given Ft, we have:

E
[(
κ− eX

)+ | Ft
]
= κΦ

(
−1
v
(m− log κ)

)
(19.43)

− em+v2/2Φ
(

−1
v
(m+ v2 − log κ)

)
.

Exercise 19.5 Given two bonds with maturities T , S and prices P (t,T ),
P (t,S), consider the LIBOR rate

L(t,T ,S) :=
P (t,T ) − P (t,S)
(S − T )P (t,S)

at time t ∈ [0,T ], modeled as

dL(t,T ,S) = µtL(t,T ,S)dt+ σL(t,T ,S)dWt, 0 ⩽ t ⩽ T , (19.44)

where (Wt)t∈[0,T ] is a standard Brownian motion under the risk-neutral prob-
ability measure P∗, σ > 0 is a constant, and (µt)t∈[0,T ] is an adapted process.
Let

F (t) := E∗
[

e−
r S

t
rsds(κ−L(T ,T ,S))+

∣∣∣ Ft
]

denote the price at time t of a floorlet option with strike level κ, maturity T ,
and payment date S.
a) Rewrite the value of F (t) using the forward measure P̂S with maturity S.
b) What is the dynamics of L(t,T ,S) under the forward measure P̂S?
c) Write down the value of F (t) using the Black-Scholes formula.

Hint: Given X a centered Gaussian random variable with variance v2, we
have

E∗[(κ− em+X )+] = κΦ(−(m− log κ)/v)− em+v2/2Φ(−v− (m− log κ)/v),

where Φ denotes the Gaussian cumulative distribution function.

Exercise 19.6 Jamshidian’s trick (Jamshidian (1989)). Consider a family
(P (t,Tl))l=i,...,j of bond prices defined from a short rate process (rt)t∈R+ .
We assume that the bond prices are functions P (Ti,Tl+1) = Fl+1(Ti, rTi

) of
rTi

that are increasing in the variable rTi
, for all l = i, i+ 1, . . . , j − 1.
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a) Compute the price P (t,Ti,Tj) of the annuity numéraire paying coupons
ci+1, . . . , cj at times Ti+1, . . . ,Tj in terms of the bond prices

P (t,Ti+1), . . . ,P (t,Tj).

b) Show that the payoff(
P (Ti,Ti) − P (Ti,Tj) − κP (Ti,Ti,Tj)

)+
of a European swaption can be rewrittten as(

1 − κ

j−1∑
l=i

c̃l+1P (Ti,Tl+1)

)+

,

by writing c̃l in terms of cl, l = i+ 1, . . . , j.
c) Assuming that the bond prices are functions P (Ti,Tl+1) = Fl+1(Ti, rTi

)
of rTi

that are increasing in the variable rTi
, for all l = i, . . . , j − 1, show,

choosing γκ such that

κ

j−1∑
l=i

c̃l+1Fl+1(Ti, γκ) = 1,

that the European swaption with payoff

(
P (Ti,Ti)−P (Ti,Tj)−κP (Ti,Ti,Tj)

)+
=

(
1 − κ

j−1∑
l=i

c̃l+1P (Ti,Tl+1)

)+

,

where c̃j contains the final coupon payment, can be priced as a weighted
sum of bond put options under the forward measure P̂i with numéraire
N

(i)
t := P (t,Ti).

Exercise 19.7 Path freezing. Consider n bonds with prices (P (t,Ti))i=1,...,n
and the bond option with payoff(

n∑
i=2

ciP (T0,Ti) − κP (T0,T1)

)+

= P (T0,T1) (XT0 − κ)+ ,

where Nt := P (t,T1) is taken as numéraire and

Xt :=
1

P (t,T1)

n∑
i=2

ciP (t,Ti) =
n∑
i=2

ciP̂ (t,Ti), 0 ⩽ t ⩽ T1.

with P̂ (t,Ti) := P (t,Ti)/P (t,T1), i = 2, 3, . . . ,n.
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a) Assuming that the deflated bond price (P̂ (t,Ti))t∈[0,Ti] has the (martin-
gale) dynamics dP̂ (t,Ti) = σi(t)P̂ (t,Ti)dŴt under the forward measure
P̂1, where (σi(t))t∈R+ is a deterministic function, write down the dynam-
ics of Xt as dXt = σtXtdŴt, where σt is to be computed explicitly.

b) Approximating (P̂ (t,Ti))t∈[0,Ti] by P̂ (0,Ti) and (P (t,T2,Tn))t∈[0,T2] by
P (0,T2,Tn), find a deterministic approximation σ̂(t) of σt, and deduce an
expression of the option price

E∗
[

e−
r T1

0 rsds

(
n∑
i=2

ciP (T0,Ti) − κP (T0,T1)

)+]
= P (0,T1)Ê

[
(XT0 −κ)+

]
using the Black-Scholes formula.

Hint: Given X a centered Gaussian random variable with variance v2, we
have:

E
[(
x eX−v2/2 −κ

)+]
= xΦ(v/2+(log(x/κ))/v)−κΦ(−v/2+(log(x/κ))/v).

Exercise 19.8 (Exercise 17.5 continued). We work in the short rate model

drt = σdBt,

where (Bt)t∈R+ is a standard Brownian motion under P∗, and P̂2 is the
forward measure defined by

dP̂2
dP∗ =

1
P (0,T2)

e−
r T2

0 rsds.

a) State the expressions of ζ1(t) and ζ2(t) in

dP (t,Ti)
P (t,Ti)

= rtdt+ ζi(t)dBt, i = 1, 2,

and the dynamics of the P (t,T1)/P (t,T2) under P̂2, where P (t,T1) and
P (t,T2) are bond prices with maturities T1 and T2.
Hint: Use Exercise 17.5 and the relation (17.26).

b) State the expression of the forward rate f(t,T1,T2).
c) Compute the dynamics of f(t,T1,T2) under the forward measure P̂2 with

dP̂2
dP∗ =

1
P (0,T2)

e−
r T2

0 rsds.

d) Compute the price
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(T2 − T1)E
∗
[

e−
r T2

t rsds(f(T1,T1,T2) − κ)+
∣∣∣ Ft

]
of an interest rate cap at time t ∈ [0,T1], using the expectation under the
forward measure P̂2.

e) Compute the dynamics of the swap rate process

S(t,T1,T2) =
P (t,T1) − P (t,T2)

(T2 − T1)P (t,T2)
, t ∈ [0,T1],

under P̂2.
f) Using (19.33), compute the swaption price

(T2 − T1)E
∗
[

e−
r T1

t rsdsP (T1,T2)(S(T1,T1,T2) − κ)+
∣∣∣ Ft

]
on the swap rate S(T1,T1,T2) using the expectation under the forward
swap measure P̂1,2.

Exercise 19.9 Consider three zero-coupon bonds P (t,T1), P (t,T2) and
P (t,T3) with maturities T1 = δ, T2 = 2δ and T3 = 3δ respectively, and
the forward LIBOR L(t,T1,T2) and L(t,T2,T3) defined by

L(t,Ti,Ti+1) =
1
δ

(
P (t,Ti)
P (t,Ti+1)

− 1
)

, i = 1, 2.

Assume that L(t,T1,T2) and L(t,T2,T3) are modeled in the BGM model by

dL(t,T1,T2)

L(t,T1,T2)
= e−atdŴ

(2)
t , 0 ⩽ t ⩽ T1, (19.45)

and L(t,T2,T3) = b, 0 ⩽ t ⩽ T2, for some constants a, b > 0, where Ŵ (2)
t is

a standard Brownian motion under the forward measure P̂2 defined by

dP̂2
dP∗ =

e−
r T2

0 rsds

P (0,T2)
.

a) Compute L(t,T1,T2), 0 ⩽ t ⩽ T2 by solving Equation (19.45).
b) Show that the price at time t ∈ [0,T1] of the caplet with strike level κ can

be written as

E∗
[

e−
r T2

t rsds(L(T1,T1,T2) − κ)+
∣∣∣ Ft

]
= P (t,T2)Ê2

[
(L(T1,T1,T2) − κ)+ | Ft

]
,

where Ê2 denotes the expectation under the forward measure P̂2.
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c) Using the hint below, compute the price at time t of the caplet with strike
level κ on L(T1,T1,T2).

d) Compute

P (t,T1)

P (t,T1,T3)
, 0 ⩽ t ⩽ T1, and P (t,T3)

P (t,T1,T3)
, 0 ⩽ t ⩽ T2,

in terms of b and L(t,T1,T2), where P (t,T1,T3) is the annuity numéraire

P (t,T1,T3) = δP (t,T2) + δP (t,T3), 0 ⩽ t ⩽ T2.

e) Compute the dynamics of the swap rate

t 7→ S(t,T1,T3) =
P (t,T1) − P (t,T3)

P (t,T1,T3)
, 0 ⩽ t ⩽ T1,

i.e. show that we have

dS(t,T1,T3) = σ1,3(t)S(t,T1,T3)dŴ
(2)
t ,

where σ1,3(t) is a stochastic process to be determined.
f) Using the Black-Scholes formula, compute an approximation of the swap-

tion price

E∗
[

e−
r T1

t rsdsP (T1,T1,T3)(S(T1,T1,T3) − κ)+
∣∣∣ Ft

]
= P (t,T1,T3)Ê2

[
(S(T1,T1,T3) − κ)+ | Ft

]
,

at time t ∈ [0,T1]. You will need to approximate σ1,3(s), s ⩾ t, by “freez-
ing” all random terms at time t.

Hint: Given X a centered Gaussian random variable with variance v2, we
have

E∗[( em+X −κ)+
]
= em+v2/2Φ(v+(m− log κ)/v)−κΦ((m− log κ)/v),

where Φ denotes the Gaussian cumulative distribution function.

Exercise 19.10 Bond option hedging. Consider a portfolio allocation (ξTt , ξSt )t∈[0,T ]
made of two bonds with maturities T , S, and value

Vt = ξTt P (t,T ) + ξSt P (t,S), 0 ⩽ t ⩽ T ,

at time t. We assume that the portfolio is self-financing, i.e.

dVt = ξTt dP (t,T ) + ξSt dP (t,S), 0 ⩽ t ⩽ T , (19.46)
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and that it hedges the claim payoff (P (T ,S) − κ)+, so that

Vt = E∗
[

e−
r T

t
rsds(P (T ,S) − κ)+

∣∣ Ft
]

= P (t,T )ET

[
(P (T ,S) − κ)+

∣∣Ft], 0 ⩽ t ⩽ T .

a) Show that we have

E∗
[

e−
r T

t
rsds(P (T ,S) −K)+

∣∣∣ Ft
]

= P (0,T )ET

[
(P (T ,S) −K)+

]
+

w t
0
ξTs dP (s,T ) +

w t
0
ξSs dP (s,S).

b) Show that under the self-financing condition (19.46), the deflated portfolio
value Ṽt = e−

r t
0 rsdsVt satisfies

dṼt = ξTt dP̃ (t,T ) + ξSt dP̃ (t,S),

where
P̃ (t,T ) := e−

r t
0 rsdsP (t,T ), t ∈ [0,T ],

and
P̃ (t,S) := e−

r t
0 rsdsP (t,S), t ∈ [0,S],

denote the discounted bond prices.
c) From now on we work in the framework of Proposition 19.3, and we let

the function C(x, v) be defined by

C(Xt, v(t,T )) := ET

[
(P (T ,S) −K)+

∣∣Ft],
where Xt is the forward price Xt := P (t,S)/P (t,T ), t ∈ [0,T ], and

v2(t,T ) :=
w T
t

∣∣σSs − σTs
∣∣2ds.

Show that

ET

[
(P (T ,S) −K)+

∣∣Ft] = ET

[
(P (T ,S) −K)+

]
+
w t

0
∂C

∂x
(Xu, v(u,T ))dXu, t ⩾ 0.

Hint: Use the martingale property and the Itô formula.
d) Show that the deflated portfolio value V̂t = Vt/P (t,T ) satisfies

dV̂t =
∂C

∂x
(Xt, v(t,T ))dXt

=
P (t,S)
P (t,T )

∂C

∂x
(Xt, v(t,T ))(σSt − σTt )dB̂

T
t .
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e) Show that

dVt = P (t,S)∂C
∂x

(Xt, v(t,T ))(σSt − σTt )dBt + V̂tdP (t,T ).

f) Show that

dṼt = P̃ (t,S)∂C
∂x

(Xt, v(t,T ))(σSt − σTt )dBt + V̂tdP̃ (t,T ).

g) Compute the hedging strategy (ξTt , ξSt )t∈[0,T ] of this bond option.
h) Show that

∂C

∂x
(x, v) = Φ

(
log(x/K) + τv2/2√

τv

)
,

and compute the hedging strategy (ξTt , ξSt )t∈[0,T ] in terms of the normal
cumulative distribution function Φ.

Exercise 19.11 Consider a LIBOR rate L(t,T ,S), t ∈ [0,T ], modeled
as dL(t,T ,S) = µtL(t,T ,S)dt + σ(t)L(t,T ,S)dWt, 0 ⩽ t ⩽ T , where
(Wt)t∈[0,T ] is a standard Brownian motion under the risk-neutral probability
measure P∗, (µt)t∈[0,T ] is an adapted process, and σ(t) > 0 is a deterministic
volatility function of time t.
a) What is the dynamics of L(t,T ,S) under the forward measure P̂ with

numéraire Nt := P (t,S)?
b) Rewrite the price

E∗
[

e−
r S

t
rsdsϕ(L(T ,T ,S))

∣∣Ft] (19.47)

at time t ∈ [0,T ] of an option with payoff function ϕ using the forward
measure P̂.

c) Write down the above option price (19.47) using an integral.

Exercise 19.12 Given n bonds with maturities T1,T2, . . . ,Tn, consider the
annuity numéraire

P (t,Ti,Tj) =
j−1∑
k=i

(Tk+1 − Tk)P (t,Tk+1)

and the swap rate

S(t,Ti,Tj) =
P (t,Ti) − P (t,Tj)

P (t,Ti,Tj)

at time t ∈ [0,Ti], modeled as
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dS(t,Ti,Tj) = µtS(t,Ti,Tj)dt+ σS(t,Ti,Tj)dWt, 0 ⩽ t ⩽ Ti, (19.48)

where (Wt)t∈[0,Ti] is a standard Brownian motion under the risk-neutral prob-
ability measure P∗, (µt)t∈[0,T ] is an adapted process and σ > 0 is a constant.
Let

E∗
[

e−
r Ti

t rsdsP (Ti,Ti,Tj)ϕ(S(Ti,Ti,Tj))
∣∣∣ Ft

]
(19.49)

at time t ∈ [0,Ti] of an option with payoff function ϕ.

a) Rewrite the option price (19.49) at time t ∈ [0,Ti] using the forward swap
measure P̂i,j defined from the annuity numéraire P (t,Ti,Tj).

b) What is the dynamics of S(t,Ti,Tj) under the forward swap measure P̂i,j?
c) Write down the above option price (19.47) using a Gaussian integral.
d) Apply the above to the computation at time t ∈ [0,Ti] of the put swaption

price
E∗
[

e−
r Ti

t rsdsP (Ti,Ti,Tj)(κ− S(Ti,Ti,Tj))+
∣∣∣Ft]

with strike level κ, using the Black-Scholes formula.

Hint: Given X a centered Gaussian random variable with variance v2, we
have

E[(κ− em+X )+] = κΦ(−(m− log κ)/v)− em+v2/2Φ(−v− (m− log κ)/v),

where Φ denotes the Gaussian cumulative distribution function.

Exercise 19.13 Consider a bond market with two bonds with maturities T1,
T2, whose prices P (t,T1),P (t,T2) at time t are given by

dP (t,T1)

P (t,T1)
= rtdt+ ζ1(t)dBt,

dP (t,T2)

P (t,T2)
= rtdt+ ζ2(t)dBt,

where (rt)t∈R+ is a short-term interest rate process, (Bt)t∈R+ is a standard
Brownian motion generating a filtration (Ft)t∈R+ , and ζ1(t), ζ2(t) are volatil-
ity processes. The LIBOR rate L(t,T1,T2) is defined by

L(t,T1,T2) =
P (t,T1) − P (t,T2)

P (t,T2)
.

Recall that a caplet on the LIBOR market can be priced at time t ∈ [0,T1]
as

E

[
e−

r T2
t rsds (L(T1,T1,T2) − κ)+

∣∣∣Ft] (19.50)

= P (t,T2)Ê
[(
L(T1,T1,T2) − κ

)+ ∣∣ Ft
]
,
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under the forward measure P̂ defined by

dP̂

dP∗ = e−
r T1

0 rsdsP (T1,T2)

P (0,T2)
,

under which
B̂t := Bt −

w t
0
ζ2(s)ds, t ∈ R+, (19.51)

is a standard Brownian motion.

In what follows we let Lt = L(t,T1,T2) for simplicity of notation.

a) Using Itô calculus, show that the LIBOR rate satisfies

dLt = Ltσ(t)dB̂t, 0 ⩽ t ⩽ T1, (19.52)

where the LIBOR rate volatility is given by

σ(t) =
P (t,T1)(ζ1(t) − ζ2(t))

P (t,T1) − P (t,T2)
.

b) Solve the equation (19.52) on the interval [t,T1], and compute LT1 from
the initial condition Lt.

c) Assuming that σ(t) in (19.52) is a deterministic volatility function of time
t ∈ [0,T1], show that the price

P (t,T2)Ê
[
(LT1 − κ)+

∣∣Ft]
of the caplet can be written as P (t,T2)C(Lt, v(t,T1)), where v2(t,T1) =w T1

t
|σ(s)|2ds, and C(t, v(t,T1)) is a function of Lt and v(t,T1).

d) Consider a portfolio allocation (ξ
(1)
t , ξ(2)t )t∈[0,T1] made of bonds with ma-

turities T1,T2 and value

Vt = ξ
(1)
t P (t,T1) + ξ

(2)
t P (t,T2),

at time t ∈ [0,T1]. We assume that the portfolio is self-financing, i.e.

dVt = ξ
(1)
t dP (t,T1) + ξ

(2)
t dP (t,T2), 0 ⩽ t ⩽ T1, (19.53)

and that it hedges the claim payoff (LT1 − κ)+, so that

Vt = E

[
e−

r T1
t rsds(P (T1,T2)(LT1 − κ))+

∣∣∣Ft]
= P (t,T2)Ê

[
(LT1 − κ)+

∣∣ Ft
]
,

0 ⩽ t ⩽ T1. Show that we have
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E

[
e−

r T1
t rsds

(
P (T1,T2)(LT1 − κ)

)+ ∣∣∣Ft]
= P (0,T2)Ê

[(
LT1 − κ

)+]
+

w t
0
ξ
(1)
s dP (s,T1) +

w t
0
ξ
(2)
s dP (s,T1),

0 ⩽ t ⩽ T1.
e) Show that under the self-financing condition (19.53), the discounted port-

folio value Ṽt = e−
r t

0 rsdsVt satisfies

dṼt = ξ
(1)
t dP̃ (t,T1) + ξ

(2)
t dP̃ (t,T2),

where P̃ (t,T1) := e−
r t

0 rsdsP (t,T1) and P̃ (t,T2) := e−
r t

0 rsdsP (t,T2)
denote the discounted bond prices.

f) Show that

Ê
[(
LT1 − κ

)+ ∣∣ Ft
]
= Ê

[(
LT1 − κ

)+]
+

w t
0
∂C

∂x
(Lu, v(u,T1))dLu,

and that the deflated portfolio value V̂t = Vt/P (t,T2) satisfies

dV̂t =
∂C

∂x
(Lt, v(t,T1))dLt = σ(t)Lt

∂C

∂x
(Lt, v(t,T1))dB̂t.

Hint: use the martingale property and the Itô formula.
g) Show that

dVt = (P (t,T1) − P (t,T2))
∂C

∂x
(Lt, v(t,T1))σ(t)dBt + V̂tdP (t,T2).

h) Show that

dṼt =
∂C

∂x
(Lt, v(t,T1))d(P̃ (t,T1) − P̃ (t,T2))

+

(
V̂t −Lt

∂C

∂x
(Lt, v(t,T1))

)
dP̃ (t,T2),

and deduce the values of the hedging portfolio allocation (ξ
(1)
t , ξ(2)t )t∈R+ .

Problem 19.14 Consider a bond market with tenor structure {Ti, . . . ,Tj} and
j − i+ 1 bonds with maturities Ti, . . . ,Tj , whose prices P (t,Ti), . . . P (t,Tj)
at time t are given by

dP (t,Tk)
P (t,Tk)

= rtdt+ ζk(t)dBt, k = i, . . . , j,
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where (rt)t∈R+ is a short-term interest rate process and (Bt)t∈R+ de-
notes a standard Brownian motion generating a filtration (Ft)t∈R+ , and
ζi(t), . . . , ζj(t) are volatility processes.

The swap rate S(t,Ti,Tj) is defined by

S(t,Ti,Tj) =
P (t,Ti) − P (t,Tj)

P (t,Ti,Tj)
,

where

P (t,Ti,Tj) =
j−1∑
k=i

(Tk+1 − Tk)P (t,Tk+1)

is the annuity numéraire. Recall that a swaption on the LIBOR market can
be priced at time t ∈ [0,Ti] as

E∗

 e−
r Ti

t rsds

(
j−1∑
k=i

(Tk+1 − Tk)P (Ti,Tk+1)(S(Ti,Tk,Tk+1) − κ)

)+ ∣∣∣∣∣Ft


= P (t,Ti,Tj)Ei,j
[
(S(Ti,Ti,Tj) − κ)+

∣∣Ft], (19.54)

under the forward swap measure P̂i,j defined by

dP̂i,j
dP∗ = e−

r Ti
0 rsdsP (Ti,Ti,Tj)

P (0,Ti,Tj)
, 1 ⩽ i < j ⩽ n,

under which

B̂i,jt := Bt −
j−1∑
k=i

(Tk+1 − Tk)
P (t,Tk+1)

P (t,Ti,Tj)
ζk+1(t)dt (19.55)

is a standard Brownian motion. Recall that the swap rate can be modeled as

dS(t,Ti,Tj) = S(t,Ti,Tj)σi,j(t)dB̂i,jt , 0 ⩽ t ⩽ Ti, (19.56)

where the swap rate volatilities are given by

σi,j(t) =
j−1∑
l=i

(Tl+1 − Tl)
P (t,Tl+1)

P (t,Ti,Tj)
(ζi(t) − ζl+1(t)) (19.57)

+
P (t,Tj)

P (t,Ti) − P (t,Tj)
(ζi(t) − ζj(t))

1 ⩽ i, j ⩽ n, cf. e.g. Proposition 8.12 in Privault (2021b). In what follows we
denote St = S(t,Ti,Tj) for simplicity of notation.
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a) Solve the equation (19.56) on the interval [t,Ti], and compute S(Ti,Ti,Tj)
from the initial condition S(t,Ti,Tj).

b) Assuming that σi,j(t) is a deterministic volatility function of time t ∈
[0,Ti] for 1 ⩽ i, j ⩽ n, show that the price (19.38) of the swaption can be
written as

P (t,Ti,Tj)C(St, v(t,Ti)),

where
v2(t,Ti) :=

w Ti

t
|σi,j(s)|2ds,

and C(x, v) is a function to be specified using the Black-Scholes formula
Bl(x,K,σ, r, τ ), with the relation

E[(x em+X −K)+] = Φ(v+(m+ log(x/K))/v)−KΦ((m+ log(x/K))/v),

where X is a centered Gaussian random variable with variance v2.
c) Consider a portfolio allocation (ξ

(i)
t , . . . , ξ(j)t )t∈[0,Ti] made of bonds with

maturities Ti, . . . ,Tj and value

Vt =

j∑
k=i

ξ
(k)
t P (t,Tk),

at time t ∈ [0,Ti]. We assume that the portfolio is self-financing, i.e.

dVt =

j∑
k=i

ξ
(k)
t dP (t,Tk), 0 ⩽ t ⩽ Ti, (19.58)

and that it hedges the claim payoff (S(Ti,Ti,Tj) − κ)+, so that

Vt = E∗

 e−
r Ti

t rsds

(
j−1∑
k=i

(Tk+1 − Tk)P (Ti,Tk+1)(L(Ti,Tk,Tk+1) − κ)

)+ ∣∣∣∣∣Ft


= P (t,Ti,Tj)Ei,j
[
(S(Ti,Ti,Tj) − κ)+

∣∣Ft],
0 ⩽ t ⩽ Ti. Show that

E∗

 e−
r Ti

t rsds

(
j−1∑
k=i

(Tk+1 − Tk)P (Ti,Tk+1)(L(Ti,Tk,Tk+1) − κ)

)+ ∣∣∣∣∣Ft


= P (0,Ti,Tj)Ei,j
[
(S(Ti,Ti,Tj) − κ)+

]
+

j∑
k=i

w t
0
ξ
(k)
s dP (s,Ti),

0 ⩽ t ⩽ Ti.
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d) Show that under the self-financing condition (19.58), the discounted port-
folio value Ṽt = e−

r t
0 rsdsVt satisfies

dṼt =

j∑
k=i

ξ
(k)
t dP̃ (t,Tk),

where P̃ (t,Tk) = e−
r t

0 rsdsP (t,Tk), k = i, i + 1 . . . , j, denote the dis-
counted bond prices.

e) Show that

Ei,j
[
(S(Ti,Ti,Tj) − κ)+

∣∣Ft]
= Ei,j

[
(S(Ti,Ti,Tj) − κ)+

]
+

w t
0
∂C

∂x
(Su, v(u,Ti))dSu.

Hint: use the martingale property and the Itô formula.
f) Show that the deflated portfolio value V̂t = Vt/P (t,Ti,Tj) satisfies

dV̂t =
∂C

∂x
(St, v(t,Ti))dSt = St

∂C

∂x
(St, v(t,Ti))σi,jt dB̂i,jt .

g) Show that

dVt = (P (t,Ti) − P (t,Tj))
∂C

∂x
(St, v(t,Ti))σi,jt dBt + V̂tdP (t,Ti,Tj).

h) Show that

dVt = Stζi(t)
∂C

∂x
(St, v(t,Ti))

j−1∑
k=i

(Tk+1 − Tk)P (t,Tk+1)dBt

+(V̂t − St
∂C

∂x
(St, v(t,Ti)))

j−1∑
k=i

(Tk+1 − Tk)P (t,Tk+1)ζk+1(t)dBt

+
∂C

∂x
(St, v(t,Ti))P (t,Tj)(ζi(t) − ζj(t))dBt.

i) Show that

dṼt =
∂C

∂x
(St, v(t,Ti))d(P̃ (t,Ti) − P̃ (t,Tj))

+(V̂t − St
∂C

∂x
(St, v(t,Ti)))dP̃ (t,Ti,Tj).

j) Show that

∂C

∂x
(x, v(t,Ti)) = Φ

(
log(x/K)

v(t,Ti)
+
v(t,Ti)

2

)
.
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k) Show that we have

dṼt = Φ
(

log(St/K)

v(t,Ti)
+
v(t,Ti)

2

)
d(P̃ (t,Ti) − P̃ (t,Tj))

−κΦ
(

log(St/K)

v(t,Ti)
− v(t,Ti)

2

)
dP̃ (t,Ti,Tj).

l) Show that the hedging strategy is given by

ξ
(i)
t = Φ

(
log(St/K)

v(t,Ti)
+
v(t,Ti)

2

)
,

ξ
(j)
t = −Φ

(
log(St/K)

v(t,Ti)
+
v(t,Ti)

2

)
−κ(Tj −Tj−1)Φ

(
log(St/K)

v(t,Ti)
− v(t,Ti)

2

)
,

and

ξ
(k)
t = −κ(Tk+1 − Tk)Φ

(
log(St/K)

v(t,Ti)
− v(t,Ti)

2

)
, i ⩽ k ⩽ j − 2.
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