Chapter 10
Maximum of Brownian Motion

The probability distribution of the maximum of Brownian motion on a given
interval can be computed in closed form using the reflection principle. As
a consequence, the expected value of the running maximum of Brownian
motion can also be computed explicitly. Those properties will be applied in
the next Chapters 11 and 12 to the pricing of barrier and lookback options,
whose payoffs may depend on extrema of the underlying asset price process
(St)tefo,r): as well as on its terminal value St.
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10.1 Running Maximum of Brownian Motion

Figure 10.1 represents the running maximum process

X§ = Max Ws, t>0,
se(0,t]

of Brownian motion (W;)ieR, -
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Fig. 10.1: Brownian motion (W¢);er, and its running maximum (X{)ser, .

Note that Brownian motion admits (almost surely) no “point of increase”.
More precisely, there does not exist ¢ > 0 and £ > 0 such that

Max Wy, < Wy < min Wy,
s€(t—e,t) s€(t,t+e)

see, e.g., Dvoretzky et al. (1961) and Burdzy (1990). This property is illus-
trated in Figure 10.2, see also (10.4)-(10.5) below.
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Fig. 10.2: Running maximum of Brownian motion.*

Related properties can be observed with the zeroes of Brownian motion which
form an uncountable set (see e.g. Theorem 2.28 page 48 of Morters and Peres
(2010)) which has zero measure IP-almost surely, as we have

* The animation works in Acrobat Reader on the entire pdf file.
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E UO“X’ Il(WLZO}dt} - jom E[Lw,—oy)dt = fo“’ P(W, = 0)dt = 0,

see Figure 10.3.
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Fig. 10.3: Zeroes of Brownian motion.*

See also the Cantor function presented in the next Figure 10.4, which is
continuous on [0,1] and flat (with a vanishing derivative) everywhere except
on the Cantor set, which is an uncountable set of zero measure in [0, 1].
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Fig. 10.4: Graph of the Cantor function.’

Examples of deterministic functions having no “last point of increase” can be
built for some € € (0,1) as

f)=0=2)> " M ey () +1pa)(t), 20,

n=1

* The animation works in Acrobat Reader on the entire pdf file.
 The animation works in Acrobat Reader on the entire pdf file.
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which admits no “last” point of increase before t = 1, as illustrated in Fig-
ure 10.5 with e = 3/4.

12 T T T T T

-
fy 08
0.6 -
0.4

0.2

Fig. 10.5: A function with no last point of increase before ¢t = 1.

10.2 The Reflection Principle

Let (W;)icr. denote the standard Brownian motion started at Wy = 0.
While it is well-known that Wy ~ A(0,T), computing the distribution of
the maximum
XJ = Max W,
te[0,T]

might seem a difficult problem. However, this is not the case, due to the
reflection principle.

Note that since Wy = 0, we have
X = Max Wi >0,
almost surely, i.e. with probability one. Given a > Wy = 0, let
To=nf{t >0 : Wy =a}

denote the first time (W;).er, hits the level a > 0. Due to the spatial sym-
metry of Brownian motion we note the identity

1
]P(WT2(1‘7}1QT):]P(WT>G|TQ§T):P(WT<a|Ta<T):5.
In addition, due to the relation
{X{ >a} ={ra < T}, (10.1)
we have
390 O
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P(rq < T) =P(7, < T and W > a) +P(1, < T and Wr < a)
= 2P (7, < T and Wy > a)
= 2]P(Xg >a and Wp > a)
=2P(Wrp > a)
= ]P(WT > a) + ]P(WT < 7&)
=P(|Wr| > a),

where we used the fact that
{WTZa}C{XgZaandWT2a}C{WT2a}.

Figure 10.6 shows a graph of Brownian motion and its reflected path, with
0<b<a<2a—b
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Fig. 10.6: Reflected Brownian motion with a = 1.07.*

As a consequence of the equality
P(r, <T) =P(|Wr| > a), a>0, (10.2)

the maximum Xg of Brownian motion has same distribution as the absolute
value |Wp| of Wp, which is a folded normal distribution, see Figure 10.7.
Precisely, XOT is a nonnegative random variable with cumulative distribution
function given by

P(X{ <a) =P(r, > T)
=P(Wr| <a)

* The animation works in Acrobat Reader on the entire pdf file.
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1 a 2
_ —22/(2T)
V2rT La ¢ e

Hdz, a>0,

- LJ o—2/(27)
v2rT J0

2 -
PO <a) = o f7 e/ e az0,

and probability density function

dP(X{ < a) 2 —a2/21)]

pxrla) = ———— =/ (000)(@), a€R, (10.3)

which vanishes over a € (—o0, 0] because XOT > 0 almost surely.

Gaussian density function of Wt
Density function of X§ =~ ==

%‘ 0.6 \,
& o4 \
0.2 / \\

Fig. 10.7: Probability density of the maximum X§ of Brownian motion over [0,1].

We note that, as a consequence of the existence of the probability density
function (10.3), we have

0
P(W; <0, Vi€ [0,e]) =P(X5=0) = 0 @Xg(a)ds =0, (10.4)

for all € > 0. Similarly, by a symmetry argument, for all ¢ > 0 we find
P(W; >0, Vt € [0,¢]) =0, (10.5)

and similarly

P(W: <0, Vit €[0,¢]) =0.
Using the probability density function of XOT , we can price an option with
payoff ¢(Xg), as
—rTy* T —rT [ T
= <z
B [p(X7)] = e T (a)dP(X] <7)
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T \/; f /2T) g

Proposition 10.1. Let ¢ > 0 and (St)seo,r] = (So eJWt)tE[O 7 The prob-
ability density function of the mazimum

M{ == Max S;
tel0,T)

of (St)iejo,r) over the time interval [0, T] is given by the truncated lognormal
probability density function

1 2 1
oarg ) = Usyo0 (0) oo 20 (= g Qo (0/50)%) . >0

see Figure 10.8.

Proof. Since o > 0, we have

MT = Max S
O 7 o

= Sy Max et
te[0,T]

=Sy e MaxtE[O)T] Wi
=50 eUXO
Hence ME = h(XT) with h(z) = Spe°®, and
/ ox —1 1 Y
W (z) =0Spe’, z€R, and h™'(y) = = log 5 ) y >0,
o 0

hence

enp ) = g et 0 W)

My

V2 1)
= Ljgoo) (h ™ (y D i ) VaT ))\F o= (T w)2/(27)

Ls5,00) ( Uiy\/T < 2527 (o8 (y/50)) ) . y>0.
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Fig. 10.8: Density of the maximum M{ = Max; (o, 1) St of geometric Brownian motion
with S = 1.

When the claim payoff takes the form C' = (b(]WOT), where Sp = Spe?Wr,
we have

C = ¢(MI) = ¢(Spe”X0),
hence
e_TTIE*[C} — e—rT]E* [(Z)(SO ean")}
=T 7 g(Spe)dP(X] < )

— 2 (™ oxy ,—a2/(2T)
= e [ o(Spem) e

=\ e T [T o) exp (*ﬁ (log (y/So))2> %y,

wo?T

after the change of variable y = Spe”® with dz = dy/(oy).

The above computation is however not sufficient for practical applications as
it imposes the condition r = ¢2/2. In order to do away with this condition
we need to consider the maximum of drifted Brownian motion, and for this
we have to compute the joint probability density function of XOT and Wrp.

10.3 Maximum of Drifted Brownian Motion

The reflection principle also allows us to compute the joint probability density

function of Brownian motion Wy and its maximum X() = N[Iax] Wt. Recall
te[0,T]

that the probability density function ¢ XT Wy CAL be recovered from the joint
cumulative distribution function

(xy)»—)FXTW(zq): P(XJ <z and Wr < y)

Jxoo Juoo PxT wy (8, )dsdt,
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and
o0 00
(w,y) — P(X{ > 2 and Wr > y) = L fy PXT W (s, t)dsdt,
as
92
exrwp (T y) = axay X7 wy (€,9) (10.6)
3x8yj " oxr g (s, t)dsdt (10.7)
92

(oo} o0
- ML L, pxrwp (s, t)dsdt,  zy €R.

The probability densities ¢y : R — Ry and gw; : R — Ry of X7 and
Wy are called the marginal densities of (XOT s WT), and are given by

pxr(z f exTwr (@ y)dy,  TER,

and

owr (Y f PXT Wy (z,y)dz, y€R.

Fig. 10.9: Probability P((X,Y) € [-0.5,1] x [—0.5,1]) computed as a volume integral.
In order to compute the joint probability density function of Brownian motion
W and its maximum XOT = tlé/{g% Wy by the reflection principle, we note
that for any b < a we have

PWr <b|1a<T)=PWr>a+(a—b)|1a<T)
as shown in Figure 10.10, i.e.

P(Wp <band 7, <T)=P(Wr >2a—band 7, <T),

or, by (10.1),
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]P(XOT >aand Wr <b) = ]P(Xg > aand Wr > 2a —b).

1.2 : hwm ‘ A J\'ﬁZa b
: mmmwﬂv)\ T
°~§W’W WW\MW k

EJ

Fig. 10.10: Reflected Brownian motion with a = 1.07.*

Hence, since 2a — b > a we have

P(Xd > aand Wr < b) = P(X{ > a and Wr > 2a—b) = P(Wr > 2a—b),

(10.8)
where we used the fact that
{Wr > 2a—b} € {X{ >2a—band Wy > 2a—b}
c {x¥ > aand Wr > 2a—b} C {Wr > 2a—b},
which shows that
{Wr > 2a— }—{Xo aand Wp > 2a—b}.
Consequently, by (10.8) we find
P(X{ > aand Wy <b) = P(XJ > aand Wr < b)
]P(W1 > 2a— b)
/(2T)
ﬁ La ,© dr,  (10.9)
* The animation works in Acrobat Reader on the entire pdf file.
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0 < b < a, which yields the joint probability density function
22 T
PxT W (a,b) = MIP(XO < aand Wy <b)
32
= Badb
dP(X{ > a and Wr < b)

= dadb s a,beR.

(P(Wr < b) —P(X{ > a and Wy < b))

By (10.9), we obtain the following proposition.
Proposition 10.2. The joint probability density function OXT of Brow-

nian motion Wr and its mazimum Xg = N{ax] Wi is given by
te[0,T]

2(20-b) (3 p2
oxg,wr(a:b) = \/;(Trsi/z)e Co OO ovaxp0y (10.10)

\/E% e~(20-0)2/(2T) o5 Max(b,0),

0, a < Max(b,0).

Fig. 10.11: Joint probability density of Wi and the maximum X¢ over [0,1].

Figure 10.12 presents the heat map of Figure 10.11, as viewed from above.
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Fig. 10.12: Heat map of the joint density of W) and its maximum X¢ over [0,1].

See Relation (4.44) in Borodin (2017) for the joint distribution of the min-

imum min Wi, the maximum Max W; and the endpoint W; of Brownian
te[0,7) te[0,7)
motion.

Maximum of drifted Brownian motion

Using the Girsanov Theorem, it is even possible to compute the probability
density function of the maximum

X := Max W, = Max (W, + ut)
t€[0,T7] t€[0,T]

of drifted Brownian motion Wt = Wi+ ut over t € [0,T], for any u € R.
Proposition 10.3. The joint probability density function (p)?()T,VT/T of the
drifted Brownian motion WT = Wr + uT and its mazimum )?g = tlé/[lg% Wt
is given by

1 2 (90 _b)2 2
PRT iy (00) = LazMax(v,0)) 7|/ T(2a—b)e“b (2a=b)%/(21) =T /2
(10.11)

%1/ %(2@ —b) 67“2T/2+“b7(2“7b)2/(2T), a > Max(b,0),

0, a < Max(b,0).
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Proof. The arguments previously applied to the standard Brownian motion
(Wt)te[0¢T] cannot be directly applied to (Wt)/,e[O ) because drifted Brow-
nian motion is no longer symmetric in space when p # 0. On the other

hand, the drifted process (Wt) teR, is a standard Brownian motion under

the probability measure P defined from the Radon-Nikodym density

dP 2
—— 1= e HWr—pT/2 10.12
and the joint probability density function of ()A(OT , WT) under P is given by
(10.10). Now, using the probability density function (10.12) and the relation
Wy := Wi + put, we get

. — 3 ~ -
P(Xy <aand Wpr <b) =E {11{)((?@ and W<t}

a 1{;?5@ and VT/Tgb}d]P

dP ~

- IQ ﬁﬂ{fgga and VT/Tgb}dIP
~ [dIP
=E {ﬁl{ﬁ?@ and VT/Tgb}}

i {OuWTﬂFT/Z]l

{XT<a and VN[/Tgb}}

_ | auWr—p2T /2y -
=E {e Il{X[,Tga and WTgb}:|

2 ra b 2 2z — —(22—)2
T o W TN OO P m%e (20-)%/(21) gy 1.

0 < b < a, which yields the joint probability density function (10.11) from
the differentiation

AP(X{ < a and Wy < D)

(a,b) = dadb

¢Xg"1W1‘

The following proposition is consistent with (10.3) in case p = 0.

Proposition 10.4. The cumulative distribution function of the maximum

XI= Max W; = Max (W; + put)
t€[0,T7] t€[0,T]

of drifted Brownian motion Wt = Wi + ut over t € [0,T] is given by
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- —uT —a—uT
P(X[,Tga):cp(“\/; )—02“a¢<%>, a>0, (10.13)

and the probability density function Ogr of )A(g satisfies
0

2 (e —a—pT
—5e (a ILT)Q/(2T)_2/L62H(I® <TM>’ a>0. (10.14)

Proof. Letting a Vb := Max(a,b), a,b € R, since the condition (y <  and
0 < z < a) is equivalent to the condition (y V0 < z < a), we have

2 ra (oo 2 20 —Y) _(9g—u)?
- 1/ﬁf0 Loo 1 0] (y) €™V /2 . )e (2e=9)*/ (1) gy g
=4 /% foa fz Hy—H>T/2 (21’; y) e*(zz’y)Q/(ZT)dydx
—o0

2 e a a (22-Y) _(op_y)?
_ A uPT)2 Hy (2z—y)?/(2T)
- e fioo e L\/O T e dxdy.

50)?3' (a) =

Next, since

9 2x0-—y=-y, y<qO,
2yVv o) —y=
Y-y =y, y =0,
and using the “completion of the square” identity
(2a—y)* ¥’T 1 2
- - — =2au— ——(y— (uT +2
1y 5T 5 ap = 5z (y = (W1 + 2a))

and a standard changes of variables, we have

/ /Ay*uzTﬂ (22 -y) —o-y2/eD) 44,
XO < a ﬂ'Tf f e T e dydx

o—H2T/2 ny—(2(yv0)—y)2/(2T) _ uy—(2a—y)?/(27T)
(e e )d
—00

\/ 27T 4

=

ja (e#y*yQ/(QT)*#QTﬂ _ e#y*(Qa*y)Z/(QT)*MQT/Z)dy

2 . [ —(y-uT)2/(2T) _ e—(y—(/ﬂ”r?a))z/(2'1‘)+2fm)dy
\V ZaT

T)?/(2T) gy, — T+2a))?/(2T) g,
—(y—1 dy — 2 \/7; —(w dy

a—puT
e~V (2T) g
)

a—ul 9 <7a7uT>
- Zetmag (ZOTHIY s,
( ﬁ) VT -

400 @)

Y

This version: May 3, 2024
https://personal.ntu.edu.sg/nprivault/indext.html


https://personal.ntu.edu.sg/nprivault/indext.html

Notes on Stochastic Finance

cf. Corollary 7.2.2 and pages 297-299 of Shreve (2004) for another derivation.
O

See Profeta et al. (2010) for interpretations of (10.13) and (10.15) in terms
of the Black-Scholes formula.

14 p=

1? \ u=0.
N\

0.8

Density

0.6

0.4 ‘\\
0.2 \

0 —————
1 o 1 2 3 4
X

Fig. 10.13: Probability density of the maximum )?g of drifted Brownian motion.

We note from Figure 10.13 that small values of the maximum are more likely
to occur when p takes large negative values. As T tends to infinity, Propo-
sition 10.4 also shows that when p < 0, the maximum of drifted Brownian
motion (W/, ) = (Wi + pt)ier,. over all time has an exponential distri-

teRy
bution with parameter 2|u|, i.e.
P (@) =2p[e”Ha>0.
0

Relation (10.13), resp. Relation (10.16) below, will be used for the pricing
of lookback call, resp. put options in Section 10.4. See also Exercise 10.8 for
the joint probability density function of geometric Brownian motion St :=
So eWrH(r=o®/2)T 41 its maximum MOT = tl\%oa% S;.

€lo,

Corollary 10.5. The cumulative distribution function of the maximum

M{ = Max S, = Sy Max e?Wet(r=o*/2)t
(0,7 t€[0,T7]

of geometric Brownian motion over t € [0,T] is given by

—(r—02/2)T +1log(z/So)
P(MT <=z :<I>< (r—o ) 10.15
( 0 ) 0'\/T ( )
1-2r/0? (2 _
B (@) ¢< (r—o®/2)T 1og<x/s0)> sk
X U\/T
and the probability density function v of ]\/[g satisfies
O 401
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1 —(r—02/2)T +1log(z/Sp))>
o (@) = ox\2nT P <7( L ;UQT ol ) >
1 So\ 17 ((r —0?/2)T +log(x/Sp))?
+m <7> op (7 202T )

. So\ 172/ —(r —02%/2)T —log(x/Sp)
+ML<17F> <7> (b( oVT > e

Proof. Taking

—~ 1 0.2
Wy=Wi+put=Wy+—(r—— |t
o
with p:=r/o —0/2, by (10.13) we find
]P(]Wg < .L) =P <0‘7)A(T < —)

So
or 1 T
=P(Xy < glogs—

- < pT+a ! lOg(x/SU)> o2uo ™ log(z/S0) g (7,uT —o ! lOg(E/SO)>
VT
—uT +o~ 1log(aL/SO) x \ e —uT — o~ Vlog(x/Sp)
=0 (o
So VT
—® < r —02/2 T+1og(1/50)>
VT
(50>1 or/o® < (T—UZ/Z)T—log(z/SU)>
z a\/T ’
d

Minimum of drifted Brownian motion
Proposition 10.6. The joint probability density function @ of the

XT Wy
minimum of the drifted Brownian motion Wy := Wy + ut and its value Wrp
at time T is given by
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2 (912 2
W}gyﬁ,’r (avb) = ﬂ{uénlin(bﬁ)}? =T (biZa) et (2a=b)%/(21) =T /2

%\/ lT(b —2a) cf“zT/Z'*'“b*(z“*b)z/@T), a < min(b,0),
™

0, a > min(b,0).

Proof. We use the relations

in W, = — Max (—W,),
i W= — Max (=W7)

and
K= iy
= tén[(Ji,T] (Wi + pt)
= - 5, (-7
= Moo (=Wi = ut)
— Maxc (We — ),

1R

where the last equality “~” follows from the identity in distribution of

(Wi)ier, and (=Wi)ser, , and we conclude by applying the change of vari-
ables (a,b, p) — (—a, —b, —p) to (10.11). O

Similarly to the above, the following proposition holds for the minimum
drifted Brownian motion, and Relation (10.17) below can be obtained by
changing the signs of both a and p in Proposition 10.4.

Proposition 10.7. The cumulative distribution function and probability den-
sity function of the minimum

XT.= min W, = min (W, + ut
0 te[0,T t r,e[O,T]( t H)

of the drifted Brownian motion f/f/t = Wi+ ut overt € [0,T] are given by

P(X} <a) =@ <”’;;T> + o2 <“%T> . a<0, (10.16)
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2 —(a—uT)?/ (2T 2 a+pT
gp)v(OT(a) =\ 7 (a=nT)*/(2T) 4 9y 0210 vk a<0. (10.17)
Proof. From (10.13), the cumulative distribution function of the minimum
of drifted Brownian motion can be expressed as

a):]l’(mirylwwtéa)

P(X7
( 0 te[0,77]

N

=P ( min (W; + ut) < a)
te[0,7]

o v )

= IP( Max (W; —

te(0,T] )

= M.
<te[(? %] (Wt

=1- < -
1 “’(tléﬁ?i‘](wt <o)

—a+,u,T> 2 <a+,uT>
=1-®( —— | + "D | ———
< JT e JT

a—puT 2a a+uT>
) +e”¢'< , a <0,
<\/T> VT

where we used the identity in distribution of (W;);er. and (—Wy)er, , hence
the probability density function of the minimum of drifted Brownian motion
is given by (10.17). O

From (10.16), we also have

P(X] >a) =@ (“i%“) — 2 <“7:/;“> , a<o.

If 4 > 0, letting T tend to infinity we find that the minimum of the positively
drifted Brownian motion (Wl)te]lLr = (Wi + pt)ier. over all time has an

exponential distribution with parameter 2 on R_, i.e.

Pyo (a) = 2ue?a, a<0.
0

In addition, as in Corollary 10.5, we have the following result.

Corollary 10.8. The cumulative distribution function of the minimum

404 @)
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. . g2
md = min S, = S min e"Wetlr=o*/2)t

t€[0,T] te[0,T]

of geometric Brownian motion over t € [0,T] is given by

2
Pl < o) = —(r—o /2)T+log(x/50)> 10.1
(my < z) < oVT e
So\ 12/ (r—a2/2)T +log(x/So)
N <7> ® < T ) , 0<z< S,

and the probability density function 2 of mOT satisfies

(2) = LI (7(7(7’702/2)T+10g(x/50))2>
Pmg ooy P 202T
L1 (@)Hr/“z . <7((r702/2)T+10g(x/So))2>
oxV2nT P 202T
1/2r So 1-2r/o? (r—o2/2)T +log(z/So) -
S(E)(2) o T ) o<e<s
Proof. From (10.16) we have
IP(mO < :r)
( wr+o~ 110g(r/50)> + e2ua’llog(z/50)¢ (/J,T+O’71]Og(x/50)>
VT
q)( /JTJr(r’llog(ir/Sg)) n <l>2“/d¢ (/LT+0’1log(m/So)>
S VT
q)( r—a%/2) T+log(x/50)>
VT
So\"F7 ((r—0?/2)T +log(x/So)
() (e e

with g := r/0 — 0 /2. The probability density function 2 is computed
from

0
gamg(x):%]l’(mgéx), 0<x< S

g

10.4 Average of Geometric Brownian Extrema

Let

mi = min S, and M!= Max S,
u€(s,t u€ls,t]
¢ 405

This version: May 3, 2024
https://personal.ntu.edu.sg/nprivault/indext.html


https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

0<s<t<T,and let M. be either m! or M!. In the lookback option case
the payoff </>(ST, MOT) depends not only on the price of the underlying asset
at maturity but it also depends on all price values of the underlying asset
over the period which starts from the initial time and ends at maturity.

The payoff of such of an option is of the form ¢(Sp, M7) with ¢(z,y) =
z —y in the case of lookback call options, and ¢(z,y) = y — x in the case of
lookback put options. We let
eI [ (S7, M{) | 7]

denote the price at time ¢ € [0,T] of such an option.

Maximum selling price over [0, T]

In the next proposition we start by computing the average of the maximum
selling price M{ := h/%ax] St of (St)efo,r) over the time interval [0, T]. We
telo,T ’

denote
d (S) = og s+ (r+=o U 3 s>0 (10 19)
C\/7 2

Proposition 10.9. The average mazimum value of (St)te[(),T] over [0,T] is
given by

E*[M{ | 7] (10.20)

S, o? S,
— At _sT—t [ Pt (T—t)r g T—t t
i (-4 () ) s (1 5 ) (57 (55))
o? (ME\F' oy (M
g (5) e ()

where 517’5 is defined in (10.19).

When t = 0 we have Sy = M’g, and given that

oL = Ti%:z/?ﬁ (10.21)
the formula (10.20) simplifies to
E* M)
=S <1 - ‘2’;) @ <@ﬁ> +Spe’T <1 + 3—72) @ <@ﬁ> ,
406 o
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with

2
E* [MT] = 25 (1 + %@ (ﬂf)) 4 oS /21 0?8
Y

when r = 0, cf. Exercise 12.2.

In general, when T tends to infinity we find that

0.2
E*[M{ | 7] 1+ — ifr>0,
= 2r

lim ————— =
T—oo E*[Sp | F r—0

see Exercise 10.3-(d) in the case 7 = ¢2/2.
Proof of Proposition 10.9. We have
E*[M{ | 7] = E*[Max (M§, M]) | 7]
=E [Mé]l{M(g>MtT} | 7] +E* []th]l{MtT>M(§} | 7]
= MEE" [Lypesapry | )+ B (M Lyprs ypey | 7]
= MGP(M§ > M| F) + E*[M{ 1m0 | Fil.

7)
MF

oo o)
S x:Mé/St

Alet
=P < 0 < .L) .
S t
x=M§/ St

On the other hand, letting p := r/o — o /2, from (10.13) or (10.15) in Corol-
lary 10.5 we have

Next, we have

My MF

P(My > M{|FR) =P <E > 5

r <% < z) =P (Max eoWitrt—o®t/2 < x)
So t€(0,7]

=P ( Max eWetut)o o x)

te[0,7]

=P (Max CUW‘ < x)

P(e” 0<x)

@) 407
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=P <XT < l1ogz>
o

> <_NT +o7! lOgI) _ e?lm’l logz g, <_NT -0t 10g73>
VT VT

O )]

Hence, we have

Myt
P(M§ > M| F) = ( 2 <m>
So ,
x=M! /St

- r/o?
— 5T t St _ ]\’I(t] e o} 75T7t %(t]
]\/[t St - St ’

Next, we have

MT
E* {]\/It {MT>ME} ‘ft] = SE* { {MT/Sg>Mf/St} }—t]
= StIE* |:1{Max Su/S¢>x} Max & ft:|
ElLT] 2w 2t el 1) Sy e=ML/S,
= SE* {]l Max &]
=5t {Max, g0, 7—¢) Su/So>x} welo.T—) So o Mt/5t7
and by Proposition 10.4 we have
* Sl-
E [ {Max,,c(o0.7) Su/So>z} M[ax]s—;} (10.22)

=E*|1 Max e"Wu
|: {Max, g [0,7] e"”u>z} u€l0,T] }

_ o NIaXuE[O,T] Wu =N
=E |:e l{NIaXuE[U,T] Wy>o~1logx}

_ o [ oX N
=E [e T]l{XT>0*110gz}}

= joo e fs (2)dz
o~llogax X7

_ [ oz i —(2—uT)?/(2T) _ 2uz —z—pT
= J‘gfllogxe (”WTQ 2uet*P T dz
/ oa=(e=pT)2/(2T) gy _ 9, [ (o+2m)zq (2T
JO' llogz dz 2”Jafllogz ¢ @ < \/T dz.

By a standard “completion of the square” argument, we find

408 @)
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ad oz—(2—uT)?/(2T)
V2 fd’l log z ¢ dz
J (224 u2T2=2(p+0)T. 2)/(2T) g,
\/ onT Jo=! 108;1
__ L o 2tper —(2—(ut+0)T)2/(2T)
= Vol j—uogz ¢ dz
_ 1 erTj 722/(2T)d2
27T —(p+o)T+o~logz

()

since po + 02/2 = 7. The second integral

ad (o+2p)z —z—uT
fd’l log z ¢ @ \/T dz

can be computed by integration by parts using the identity

joo v (2)u(2)dz = u(4+o00)v(+00) — ula)v(a) — foo v(2)d (2)dz,

a a
with a 1= o~ logz. We let
—z—pT ’ (o+2p)z
uz) =0 ——— and v'(z) =e H
()=o) (2

which satisfy
u’(z) _ 1 ef(zﬁ»uT)Q/(ZT) and ’U(Z) _ 1 e(aJrQ,u)z7
27T o+2u

and using the completion of square identity

gl o (25 (4577
(10.23)

for b = +o0, we find

Loo NCENERS <L\/T{1T> dz = LOO v (2)u(z)dz
= u(+00)v(+00) — u(a)v(a) — J:c v(2)u(2)dz

_ 1 ea(o+2u)q) <_(l - /I’T>
o+ 2/L VT

elot+2u)z —(z+uT) /(2T) g,

+(0’+2M \/2TTI
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1 a(o+2u) <_a — /LT>
- Foy
o+ 2u ¢ VT

1 2,2 00 2
= (T(etw)P=pPT)/2 —(2=T(o+p))*/(2T) 4
+(U+u)\/27rTe L ¢ z
1 aorow <*a - HT>
S o (2
otou’ JT
1 2_ 2 00 2
= (Tlotn)P=pPT)/2 -z%/2g
+(U+ 2pu)V2m ¢ J(a—T(rr+u)>/ﬁ ¢ &
1 a(o+2pu) <7(l - PLT>
S oy
otou’ JT
1 g 2 2m *a+T(0+u)>
(T(o+p)?-p?T)/2q ( ZO T LT T 1)
Tt < VT
2r  or/o? <—(”‘/0'—0/2)T—U_110gw>
=L@
" (2) ol
+ﬁ ooT(o+20)/2g <T(T/0 +0/2) -0 'log x)
g \/T

_ 9 T T l T 2r/0? ST
T @ <5+ <L>> o q>( o= (x)),

cf. pages 317-319 of Shreve (2004) for a different derivation using double
integrals. Hence we have

S,
* (agT = * 1 o
E {Mt ]I{MLT>M6} ft} SE |:]1{1\/Iaxu6m,'1‘,q Su/So>x} ug%?it] So ] e=ML/S,

oo () e (3)
0 0

2r/o? t
po (Mg _sm—t (Mg
+St . <St (o] ot S, s

and consequently this yields, since po/r = 1—o2/(2r),
E*[M{ | 7] = E*[ Mg | M{]
= MGP (Mg > M| MG) +B* [M 157 a0y | M)

S M\ M
=M@ (0Tt (25 ) ) -8 (L Lol el (et
0 < - (Mé 5\ s, - s
- S.
(T—t)r T—t t
+25;€ @ <§+ <Mé)>

o? 5 S
_ _ 9 (T—t)r T—t [ Pt
s (1-5) e (1 ()
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o2\ (M P oy (ML
s (-5) (5) e (- ()
S o? S
— Mt _sT—t [ Pt (T=t)yr (142 T—t [ Pt
[0d>< 0T (Mg +Spe +5) e (0 (5
o (MNP oy (M
g (w) o (5):

This concludes the proof of Proposition 10.9. a

Minimum buying price over [0, T

In the next proposition we compute the average of the minimum buying price

mg = n[nn] St of (St)sefo,r) over the time interval [0,7]. In particular,
tel0,T ’
this extends Exercise 10.6-(a) for the computation of the average minimum

E* [mg] = E* {minte[oj] S{} .

Proposition 10.10. The average minimum value of (St);c[o,r over [0,T]
is given by

E*[m{ | F] (10.24)
t 7t [ St o? mf) /e T—t m6
=mpo (74 (26)) -5, () o (7 ()

2
(T—t)r o Tt i
et (14 ) (a1 ().

where 6174 is defined in (10.19).

We note a certain symmetry between the expressions (10.20) and (10.24).

When ¢ = 0 we have Sy = m$, and given (10.21) the formula (10.24) simplifies
to

_ g2 2 _
E*[md] = Sy <7’” Z /2ﬁ> —so%eb <7’" Z ”ﬁ)
2 2
+Spe'T (1+ ‘L) ® @ﬁﬁ)
2r o

with

2 2
w1 -5 (157 (22 o T
a

when r = 0, cf. Exercise 12.1.

@) 411
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In general, when T tends to infinity we find that

lim [mO |7:t]
T—=oo E*[ST | ft]

=0, r

WV
o

see Exercise 10.3-(f) in the case r = 02/2.
Proof of Proposition 10.10. We have
E*[m{ | 7] = " [min (mg, m{) | Fi]
=E [mo]l{m temTy | Ft] +E [mtT]l{mg>mT} | 7]
= moE* L oy | Fi] + E* [mtTl{mg>mtT}|ft}
= moP (m < mf [ Fo) + B [m{ Ly | Fi]-

By (10.17) we find the cumulative distribution function

- —142r/0?
) ol () (e (8
0 z=mB/Sg Mo t t

of the minimum mOT”f of (S¢)ier, over the time interval [0, T —t], hence

]P(m0<m, |.7-'t = <—<— ﬁ)
Sy
(=<5 1%)
S z:mé/st
—t
>

t
<
0
( So w) w=mi /S,
o (E)-() o ()
- mo St - St

Next, by integration with respect to the probability density function (10.16)
as in (10.22) in the proof of Proposition 10.9, we find

my  mi

S
x
m

=P
=P

S
E*[ml1, . Fi| = SiE* |1 min =%
[ t {m6>m;r}| t} t {mb /Si>mT /S; welt,T] St R

S,
= S, E* {]1 ; min —u]
{minuefe.r) Su/St<Z} €ltT] St z=m} /St

= SE* |1, min
' { {minuejo.r—g Su/So<ed eo 7oy SO]T —
412 e

This version: May 3, 2024
https://personal.ntu.edu.sg/nprivault/indext.html


https://personal.ntu.edu.sg/nprivault/indext.html

Notes on Stochastic Finance

ot (i (1)) e (0 ()
0 0
t 2r/c? :
po [y T—t [ My
—\\ < (ORI — .
+Str<St> (* <3t>>

Given the relation po/r = 1 —a?/(2r), this yields

T—1
m,
]E*[mOT‘]:t] mé]l’( g >z>
0 z:m[LJ/SL

+St]E* |:]].{m1n 0,71 Su/§0<z} [0 ln 4 Sz

:|JL mg L/S

. et S, L (mh 142r/02 - m6
=my® (07" — — [N I
e (i () (5) el (5))
_ _ St _ no _ St
428, T (6Tt (2L )) = G0 [ 5Tt [ 2L
) + m r + m
s - St
( St )) + Ste(T_t>T <1
mj
_Soj % /02q> 6T t mo
t2r t - St '

Exercises

Exercise 10.1  Let (W)er, be standard Brownian motion, and let a >
Wy = 0.

a) Using the equality (10.2), find the probability density function ¢, of the
first time
=inf{t >0 : Wy =a}
that (W;)ier, hits the level a > 0.

b) Let p € R. By Proposition 10.4, find the probability density function ¢,
of the first time

=inf{t>0 : W, =a}

that the drifted Brownian motion (W)

t)ter, T (Wi + pt)ier, hits the
level a > 0.

@) 413
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¢) Let 0 > 0 and r € R. By Corollary 10.5, find the probability density
function ¢, of the first time
For=nf{t >0 : Sy =a}
that the geometric Brownian motion (St)ier, = (e"w‘*’”*“zt/?)
hits the level a > 0.

teRy

Exercise 10.2

a) Compute the mean value

E {Max Wt} =E { Max (cWy + ,ut)}
t€[0,7) t€[0,T]

of the maximum of drifted Brownian motion W; = W} + ut over t € [0,T7,
for 0 > 0 and p € R. The probability density function of the maximum
is given in (10.14).

b

=

Compute the mean value E [minte[O,T] Wz] =E [minte[o,T] (eWi + ,u,t)} of

the minimum of drifted Brownian motion Wy = oW} + ut over ¢ € [0, T,
for o > 0 and i € R. The probability density function of the minimum is
given in (10.17).

Exercise 10.3 Consider a risky asset whose price Sy is given by

2
Sy = oS, dW; + %Stdt, (10.25)

where (W;)er., is a standard Brownian motion.

a) Solve the stochastic differential equation (10.25).
b) Compute the expected stock price value E*[Sp] at time 7.

¢) What is the probability distribution of the maximum l\r%ax] Wy over the
te(0,T"

interval [0, T]?

d) Compute the expected value E* []\13 | of the maximum

=

M{ := Max Sy = Sp Max et = Syexp (0 Max Wt) )
t€[0,T] te[0,T] t€[0,T]

of the stock price over the interval [0,T].

What is the probability distribution of the minimum n[lin] Wy over the
e[0T

[«
=

interval [0, T?

f) Compute the expected value E* [mﬂ of the minimum

=

414 @)
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)

md == min S; = Sy min eVt = Syexp (o min W, | .
te[0,T] t€[0,T] te[0,T]

of the stock price over the interval [0, T].

Exercise 10.4 Arcsine law. Let 7 denote the first time a standard Brownian
motion (Bt)e[o,r) reaches its maximum over [0, T7].

a) Write down IP(7 < t) using two independent Gaussian random variables
Zy ~N(0,t) and Zo ~ N(0,T —t).
Hint: By (10.3), Max,¢[o 4 Bs has same distribution as |Z1].

b) Write down IP(7 < t) as an integral.

Hint: Use Answer 2 on https://math.stackexchange.com/questions/3534598/let-
x-y-be-independent-normally-distributed-random-variables-find-the-density.

Exercise 10.5  (Exercise 10.3 continued).

a) Compute the “optimal call option” prices IE[(]MOT — K)Jr} estimated by
optimally exercising at the maximum value M{ of (St)tejo,r) before ma-
turity 7.

b) Compute the “optimal put option” prices ]E[(K - m0T)+] estimated by
optimally exercising at the minimum value m{ of (St)tejo,r) before ma-
turity 7.

Exercise 10.6  (Exercise 10.5 continued). Consider an asset price S; given
by Si = SperttoBi—o’t/2 4 > (0 where (Bt)ier.. is a standard Brownian
motion, with 7 > 0 and o > 0.

a) Compute the average lE*[mOT} of the minimum mOT = minge[o ) St of

(St)iefo,r) over [0,T].

+
b) Compute the expected payoff ]E[(K — n[lolr%] St) ] for r > 0. Using a
teo,

finite expiration American put option pricer, compare the American put
option price to the above expected payoff.

+
¢) Compute the expected payoff E [(K - II[lOiI%] St) } for r = 0.
telo,

Exercise 10.7 Recall that the maximum X§ := Max,e[ Ws over [0,] of
standard Brownian motion (Ws),c[o has the probability density function

2 2
sﬂxg(l’) Ve v /(zt)» 2= 0.
O 415
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a) Let 7, = inf{s > 0 : W, = a} denote the first hitting time of a > 0
by (Ws)ser, - Using the relation between {7, <t} and {X(t) > a}, write
down the probability IP(7, < ¢) as an integral from a to oco.

b) Using integration by parts on [a,o0), compute the probability density
function of 7.

Hint: the derivative of e—*>/(2) with respect to z is —x =22/ (2t) /¢
¢) Compute the mean value E*[(7,) 2] of 1/72.

Exercise 10.8  From Relation (10.11) in Proposition 10.3 and the Jacobian
change of variable formula, see e.g. https://online.stat.psu.edu/stat414/
lesson/23/23.1, and assuming Sp > 0, compute the joint probability den-
sity function of geometric Brownian motion Sp := Sy eoWrH(r=o®/2)T ypq
its maximum

]V[OT = Max Sy = Sy Max e”W‘HT*‘#/z)t.
te[0,7] te[0,T7]

416 @)
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