
Chapter 12
Lookback Options

Lookback call (resp. put) options are financial derivatives that allow their
holders to exercise the option by setting the strike price at the minimum
(resp. maximum) of the underlying asset price process (St)t∈[0,T ] over the
time interval [0,T ]. Lookback options can be priced by PDE arguments or
by computing the discounted expected values of their claim payoff C, namely
C = ST − min

0⩽t⩽T
St in the case of call options, and C = Max

0⩽t⩽T
St − ST in the

case of put options.
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12.1 The Lookback Put Option

The standard lookback put option gives its holder the right to sell the un-
derlying asset at its historically highest price. In this case, the floating strike
price is MT

0 and the payoff is given by the terminal value

C =MT
0 − ST

of the drawdown process (M t
0 − St)t∈[0,T ]. The following pricing formula for

lookback put options is a direct consequence of Proposition 10.9.

Proposition 12.1. The price at time t ∈ [0,T ] of the lookback put option
with payoff MT

0 − ST is given by
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where δT±(s) is defined in (11.6).
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□

Figure 12.1 represents the lookback put option price as a function of St and
M t

0, for different values of the time to maturity T − t.

Fig. 12.1: Graph of the lookback put option price (3D).∗
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Notes on Stochastic Finance

From Figures 12.1 and 12.2, we make the following observations.

i) Close to maturity, if the underlying asset price St is close to M t
0 then an

increase in the value St can result into a higher put option price, as in
this case a variation of St may increase the value of M t

0.
ii) When the underlying asset price St is far from M t

0, an increase in St is
less likely to affect the value of M t

0 when time t is close to maturity T ,
and this results into a lower option price.
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Fig. 12.2: Graph of lookback put option prices.

Figures 12.2 and 12.3 show accordingly that, from the Delta hedging strategy
for lookback put options, see Proposition 12.2 below, one should short the
underlying asset when St is far from M t

0, and long this asset when St becomes
closer to M t

0.
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(b) Lookback put prices for fixed St.

Fig. 12.3: Graph of lookback put option prices (2D).

∗ The animation works in Acrobat Reader on the entire pdf file.
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12.2 PDE Method

Since the couple (St,M t
0) is a Markov process, the price of the lookback put

option at time t ∈ [0,T ] can be written as a function

f
(
t,St,M t

0
)
= e−(T−t)rE∗[ϕ(ST ,MT

0
) ∣∣Ft] (12.1)

= e−(T−t)rE∗[ϕ(ST ,MT
0
) ∣∣St, M t

0
]

of St and M t
0, 0 ⩽ t ⩽ T .

Black-Scholes PDE for lookback put option prices

In the next proposition we derive the partial differential equation (PDE) for
the pricing function f(t,x, y) of a self-financing portfolio hedging a lookback
put option. See Exercise 12.5 for the verification of the boundary conditions
(12.3a)-(12.3c).

Proposition 12.2. The function f(t,x, y) defined by

f(t,x, y) = e−(T−t)rE∗[MT
0 − ST

∣∣ St = x, MT
0 = y

]
, t ∈ [0,T ], x, y > 0,

is C2((0,T ) × (0, ∞)2) and satisfies the Black-Scholes PDE

rf(t,x, y) = ∂f

∂t
(t,x, y) + rx

∂f

∂x
(t,x, y) + 1

2x
2σ2 ∂

2f

∂x2 (t,x, y), (12.2)

0 ⩽ t ⩽ T , x, y > 0, subject to the boundary conditions
f(t, 0+, y) = e−(T−t)ry, 0 ⩽ t ⩽ T , y ⩾ 0,
∂f

∂y
(t,x, y)|y=x = 0, 0 ⩽ t ⩽ T , y > 0,

f(T ,x, y) = y− x, 0 ⩽ x ⩽ y.

(12.3a)

(12.3b)

(12.3c)

The replicating portfolio of the lookback put option is given by

ξt =
∂f

∂x

(
t,St,M t

0
)
, t ∈ [0,T ]. (12.4)

Proof. The existence of f(t,x, y) follows from the Markov property, more
precisely, from the time homogeneity of the asset price process (St)t∈R+ the
function f(t,x, y) satisfies

f(t,x, y) = e−(T−t)rE∗[ϕ(ST ,MT
0
) ∣∣St = x, M t

0 = y
]

= e−(T−t)rE∗
[
ϕ

(
x
ST
St

, Max
(
y,MT

t

))]
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= e−(T−t)rE∗
[
ϕ

(
x
ST−t
S0

, Max
(
y,MT−t

0
))]

, t ∈ [0,T ].

Applying the change of variable formula to the discounted portfolio value

f̃(t,x, y) := e−rtf(t,x, y) = e−rTE∗[ϕ(ST ,MT
0 )
∣∣St = x, M t

0 = y
]

which is a martingale indexed by t ∈ [0,T ] under P∗, we have
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(
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0
)
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0
)
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0
)
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0
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0
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0
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0
)
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0
)
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0, (12.5)

according to the following extension of the Itô multiplication table 12.1.

• dt dBt dMt
0

dt 0 0 0
dBt 0 dt 0
dMt

0 0 0 0

Table 12.1: Extended Itô multiplication table.

Since
(
f̃
(
t,St,M t

0
))
t∈[0,T ] =

(
e−rTE∗[ϕ(ST ,MT

0 )
∣∣Ft])t∈[0,T ] is a martingale

under P and
(
M t

0
)
t∈[0,T ] has finite variation (it is in fact a non-decreasing

process), (12.5) yields:
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0
)
= σSt

∂f̃
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(
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0
)
dBt, t ∈ [0,T ], (12.6)

and the function f(t,x, y) satisfies the equation

∂f

∂t
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0
)
dt+ rSt
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which implies
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∂t
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0
)
+ rSt
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+

1
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,

which is (12.2), and
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∂f

∂y

(
t,St,M t

0
)
dM t

0 = 0.

Indeed, M t
0 increases only on a set of zero Lebesgue measure (which has no

isolated points), therefore the Lebesgue measure dt and the measure dM t
0

are mutually singular, hence by the Lebesgue decomposition theorem, both
components in dt and dM t

0 should vanish in (12.7) if the sum vanishes, see
also the Cantor function. This implies

∂f

∂y

(
t,St,M t

0
)
= 0,

when dM t
0 > 0, hence since

{St =M t
0} ⇐⇒ dM t

0 > 0

and
{St < M t

0} ⇐⇒ dM t
0 = 0,

we have
∂f

∂y
(t,St,St) =

∂f

∂y
(t,x, y)x=St, y=St = 0,

since M t
0 hits St, i.e. M t

0 = St, only when M t
0 increases at time t, and this

shows the boundary condition (12.3b).

On the other hand, (12.6) shows that

ϕ(ST ,MT
0 ) = E∗[ϕ(ST ,MT

0 )] + σ
w T

0
St
∂f

∂x

(
t,x,M t

0
)

|x=St
dBt,

0 ⩽ t ⩽ T , which implies (12.4) as in the proof of Propositions 6.1 or 11.3.
□

In other words, the price of the lookback put option takes the form

f
(
t,St,M t

0
)
= e−(T−t)rE∗[MT

0 − ST
∣∣Ft],

where the function f(t,x, y) is given from Proposition 12.1 as

f(t,x, y) = y e−(T−t)rΦ
(

− δT−t
− (x/y)

)
+ x

(
1 + σ2

2r

)
Φ
(
δT−t
+ (x/y)

)
−xσ

2

2r e−(T−t)r
(y
x

)2r/σ2

Φ
(

−δT−t
− (y/x)

)
− x.

(12.8)

Remark 12.3. We have
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f(t,x,x) = xC(T − t),

with

C(τ ) = e−rτΦ (−δτ−(1)) +
(

1 + σ2

2r

)
Φ (δτ+ (1)) − σ2

2r e−rτΦ (−δτ− (1)) − 1

= e−rτΦ
(

−r− σ2/2
σ

√
τ

)
+

(
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2r

)
Φ
(
r+ σ2/2

σ

√
τ

)
−σ2

2r e−rτΦ
(

−r− σ2/2
σ

√
τ

)
− 1, τ > 0,

hence
∂f

∂x
(t,x,x) = C(T − t), t ∈ [0,T ].

Scaling property of lookback put option prices

From (12.8) and the following argument we note the scaling property

f(t,x, y) = e−(T−t)rE∗[MT
0 − ST

∣∣St = x, M t
0 = y

]
= e−(T−t)rE∗[Max

(
M t

0,MT
t

)
− ST

∣∣St = x, M t
0 = y

]
= e−(T−t)rxE∗

[
Max

(
M t

0
St

, M
T
t

St

)
− ST
St

∣∣∣∣St = x, M t
0 = y

]
= e−(T−t)rxE∗

[
Max

(
y

x
, M

T
t

x

)
− ST

x

∣∣∣∣St = x, M t
0 = y

]
= e−(T−t)rxE∗

[
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(
M t

0,MT
t

)
− ST

∣∣∣∣St = 1, M t
0 =

y

x

]
= e−(T−t)rxE∗

[
MT

0 − ST

∣∣∣∣St = 1, M t
0 =

y

x

]
= xf(t, 1, y/x)
= xg(T − t,x/y),

where we let

g(τ , z) :=

1
z

e−rτΦ (−δτ−(z)) +
(

1 + σ2

2r

)
Φ (δτ+ (z)) − σ2

2r e−rτ
(

1
z

)2r/σ2

Φ
(

−δτ−
(

1
z

))
− 1,

with the boundary condition
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∂g

∂z
(τ , 1) = 0, τ > 0,

g(0, z) = 1
z

− 1, z ∈ (0, 1].

(12.9a)

(12.9b)

The next Figure 12.4 shows a graph of the function g(τ , z).
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Fig. 12.4: Graph of the normalized lookback put option price.

Black-Scholes approximation of lookback put option prices

Letting

Blp(x,K, r,σ, τ ) := K e−rτΦ
(

−δτ−
( x
K

))
− xΦ

(
−δτ+

( x
K

))
denote the standard Black-Scholes formula for the price of the European put
option.

Proposition 12.4. The lookback put option price can be rewritten as

e−(T−t)rE∗[MT
0 − ST

∣∣Ft] = Blp(St,M t
0, r,σ,T − t) (12.10)

+St
σ2

2r

(
Φ
(
δT−t
+

(
St
M t

0

))
− e−(T−t)r

(
M t

0
St

)2r/σ2

Φ
(

−δT−t
−

(
M t

0
St

)))
.

In other words, we have

e−(T−t)rE∗[MT
0 − ST

∣∣Ft] = Blp(St,M t
0, r,σ,T − t) + Sthp

(
T − t, St

M t
0

)
where the function

hp(τ , z) = σ2

2rΦ (δτ+ (z)) − σ2

2r e−rτz−2r/σ2
Φ
(

−δτ−
(

1
z

))
, (12.11)
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depends only on time τ and z = St/M t
0. In other words, due to the relation

Blp(x, y, r,σ, τ ) = y e−rτΦ
(

−δτ−
(
x

y

))
− xΦ

(
−δτ+

(
x

y

))
= xBlp(1, y/x, r,σ, τ )

for the standard Black-Scholes put option price formula, we observe that
f(t,x, y) satisfies

f(t,x, y) = xBlp
(

1, y
x

, r,σ,T − t
)
+ xh

(
T − t, x

y

)
,

i.e.
f(t,x, y) = xg

(
T − t, x

y

)
,

with
g(τ , z) = Blp

(
1, 1
z

, r,σ, τ
)
+ hp(τ , z), (12.12)

where the function hp(τ , z) is a correction term given by (12.11) which is
small when z = x/y or τ become small.

Note that (x, y) 7−→ xhp(T − t,x/y) also satisfies the Black-Scholes PDE
(12.2), in particular (τ , z) 7−→ Blp(1, 1/z, r,σ, τ ) and hp(τ , z) both satisfy
the PDE

∂hp
∂τ

(τ , z) = z
(
r+ σ2) ∂hp

∂z
(τ , z) + 1

2σ
2z2 ∂

2hp
∂z2 (τ , z), (12.13)

τ ∈ [0,T ], z ∈ [0, 1], subject to the boundary condition

hp(0, z) = 0, 0 ⩽ z ⩽ 1.

The next Figure 12.5b illustrates the decomposition (12.12) of the normalized
lookback put option price g(τ , z) in Figure 12.4 into the Black-Scholes put
price function Blp(1, 1/z, r,σ, τ ) and hp(τ , z).
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(a) Lookback put price.
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(b) Correction term hp(τ , z).

Fig. 12.5: Normalized Black-Scholes put price and correction term in (12.12).

Note that in Figure 12.5b the condition hp(0, z) = 0 is not fully respected
as z tends to 1, due to numerical instabilities in the approximation of the
function Φ.

12.3 The Lookback Call Option

The standard Lookback call option gives the right to buy the underlying asset
at its historically lowest price. In this case, the floating strike price is mT

0 and
the payoff is

C = ST −mT
0 .

The following result gives the price of the lookback call option, cf. e.g. Propo-
sition 9.5.1, page 270 of Dana and Jeanblanc (2007).
Proposition 12.5. The price at time t ∈ [0,T ] of the lookback call option
with payoff ST −mT

0 is given by

e−(T−t)rE∗[ST −mT
0
∣∣Ft]

= StΦ
(
δT−t
+

(
St
mt

0

))
−mt

0 e−(T−t)rΦ
(
δT−t

−

(
St
mt

0

))

+ e−(T−t)rSt
σ2

2r

(
mt

0
St

)2r/σ2

Φ
(
δT−t

−

(
mt

0
St

))
− St

σ2

2rΦ
(

−δT−t
+

(
St
mt

0

))
.

Proof. By Proposition 10.10 we have

e−(T−t)rE∗[ST −mT
0
∣∣Ft] = St − e−(T−t)rE∗[mT

0
∣∣Ft]

= StΦ
(
δT−t
+

(
St
mt

0

))
− e−(T−t)rmt

0Φ
(
δT−t

−

(
St
mt

0

))

+ e−(T−t)r Stσ
2

2r

((
mt

0
St

)2r/σ2

Φ
(
δT−t

−

(
mt

0
St

))
− e(T−t)rΦ

(
−δT−t

+

(
St
mt

0

)))
.
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□

Figure 12.6 represents the price of the lookback call option as a function of
mt

0 and St for different values of the time to maturity T − t.

Fig. 12.6: Graph of the lookback call option price.∗

From Figures 12.6 and 12.7, we note the following.

i) When the underlying asset price St is far from mt
0, an increase in the

value St clearly results into a higher call option price.
ii) When the underlying asset price St is close to mt

0, a decrease in St could
lead to a decrease in the value of mt

0, however on average this appears
insufficient to increase the average option payoff.
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Fig. 12.7: Graph of lookback call option prices.

Figures 12.7 and 12.8 show accordingly that, from the Delta hedging strategy
for lookback call options, see Propositions 12.6 and 12.8, one should long the
underlying asset in order to hedge a lookback call option.
∗ The animation works in Acrobat Reader on the entire pdf file.
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(b) Lookback call prices for fixed St.

Fig. 12.8: Graphs of lookback call option prices (2D).

Black-Scholes PDE for lookback call option prices

Since the couple (St,mt
0) is also a Markov process, the price of the lookback

call option at time t ∈ [0,T ] can be written as a function

f
(
t,St,mt

0
)
= e−(T−t)rE∗[ϕ(ST ,mT

0
) ∣∣Ft]

= e−(T−t)rE∗[ϕ(ST ,mT
0
) ∣∣St, mt

0
]

of St and mt
0, 0 ⩽ t ⩽ T . By the same argument as in the proof of Proposi-

tion 12.2, we obtain the following result.

Proposition 12.6. The function f(t,x, y) defined by

f(t,x, y) = e−(T−t)rE∗[ST −mT
0
∣∣ St = x, mt

0 = y
]
, t ∈ [0,T ], x, y > 0,

is C2((0,T ) × (0, ∞)2) and satisfies the Black-Scholes PDE

rf(t,x, y) = ∂f

∂t
(t,x, y) + rx

∂f

∂x
(t,x, y) + 1

2x
2σ2 ∂

2f

∂x2 (t,x, y),

0 ⩽ t ⩽ T , x > 0, subject to the boundary conditions
lim
y↘0

f(t,x, y) = x, 0 ⩽ t ⩽ T , x > 0,

∂f

∂y
(t,x, y)y=x = 0, 0 ⩽ t ⩽ T , y > 0,

f(T ,x, y) = x− y, 0 < y ⩽ x,

(12.14a)

(12.14b)

(12.14c)

and the corresponding self-financing hedging strategy is given by

ξt =
∂f

∂x

(
t,St,mt

0
)
, t ∈ [0,T ], (12.15)
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which represents the quantity of the risky asset St to be held at time t in the
hedging portfolio.

In other words, the price of the lookback call option takes the form

f(t,St,mt) = e−(T−t)rE∗[ST −mT
0
∣∣Ft],

where the function f(t,x, y) is given by

f(t,x, y) = xΦ
(
δT−t
+

(
x

y

))
− e−(T−t)ryΦ

(
δT−t

−

(
x

y

))
(12.16)

+ e−(T−t)rx
σ2

2r

((y
x

)2r/σ2

Φ
(
δT−t

−

(y
x

))
− e(T−t)rΦ

(
−δT−t

+

(
x

y

)))
= x− y e−(T−t)rΦ

(
δT−t

−

(
x

y

))
− x

(
1 + σ2

2r

)
Φ
(

−δT−t
+

(
x

y

))
+x e−(T−t)r σ

2

2r

(y
x

)2r/σ2

Φ
(
δT−t

−

(y
x

))
.

Scaling property of lookback call option prices

We note the scaling property

f(t,x, y) = e−(T−t)rE∗[ST −mT
0
∣∣St = x, mt

0 = y
]

= e−(T−t)rE∗[ST − min
(
mt

0,mT
t

) ∣∣St = x, mt
0 = y

]
= e−(T−t)rxE∗

[
ST
St

− min
(
mt

0
St

, m
T
t

St

) ∣∣∣∣St = x, mt
0 = y

]
= e−(T−t)rxE∗

[
ST
x

− min
(
y

x
, m

T
t

x

) ∣∣∣∣St = x, mt
0 = y

]
= e−(T−t)rxE∗

[
ST − min

(
mt

0,mT
t

) ∣∣∣∣St = 1, mt
0 =

y

x

]
= e−(T−t)rxE∗

[
ST −mT

0

∣∣∣∣St = 1, mt
0 =

y

x

]
= xf(t, 1, y/x)

= xg

(
T − t, 1

z

)
,

where

g(τ , z) :=
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1 − 1
z

e−rτΦ (δτ− (z)) −
(

1 + σ2

2r

)
Φ (−δτ+ (z)) +

σ2

2r e−rτz−2r/σ2
Φ
(
δτ−

(
1
z

))
,

with g(τ , 1) = C(T − t), and

f(t,x, y) = xg

(
T − t, x

y

)
and the boundary condition

∂g

∂z
(τ , 1) = 0, τ > 0,

g(0, z) = 1 − 1
z

, z ⩾ 1.

(12.17a)

(12.17b)

The next Figure 12.9 shows a graph of the function g(τ , z).
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Fig. 12.9: Normalized lookback call option price.

The next Figure 12.10 represents the path of the underlying asset price used
in Figure 12.9.

Fig. 12.10: Graph of underlying asset prices.

462 "

This version: May 3, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html


Notes on Stochastic Finance

The next Figure 12.11 represents the corresponding underlying asset price
and its running minimum.
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Fig. 12.11: Running minimum of the underlying asset price.

Next, we represent the option price as a function of time, together with the
process

(
St −mt

0
)
t∈R+

.
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t

option price path
St-m0

t

Fig. 12.12: Graph of the lookback call option price.

Black-Scholes approximation of lookback call option prices

Let
Blc(S,K, r,σ, τ ) = SΦ

(
δτ+

(
S

K

))
−K e−rτΦ

(
δτ−

(
S

K

))
denote the standard Black-Scholes formula for the price of the European call
option.

Proposition 12.7. The lookback call option price can be rewritten as

e−(T−t)rE∗[ST −mT
0
∣∣Ft] = Blc(St,mt

0, r,σ,T − t) (12.18)

" 463

This version: May 3, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html


N. Privault

−St
σ2

2r

(
Φ
(

−δT−t
+

(
St
mt

0

))
− e−(T−t)r

(
mt

0
St

)2r/σ2

Φ
(
δT−t

−

(
mt

0
St

)))
.

In other words, we have

e−(T−t)rE∗[ST −mT
0
∣∣Ft] := Blc(St,mt

0, r,σ,T − t) + Sthc

(
T − t, St

mt
0

)
where the correction term

hc(τ , z) = −σ2

2r

(
Φ (−δτ+ (z)) − e−rτz−2r/σ2

Φ
(
δτ−

(
1
z

)))
, (12.19)

is small when z = St/mt
0 becomes large or τ becomes small. In addition,

hp(τ , z) is linked to hc(τ , z) by the relation

hc(τ , z) = hp(τ , z) − σ2

2r

(
1 − e−rτz−2r/σ2

)
, τ ⩾ 0, z ⩾ 0,

where (z, τ ) 7−→ e−rτz−2r/σ2 also solves the PDE (12.13). Due to the relation

Blc(x, y, r,σ, τ ) = xΦ
(
δτ+

(
x

y

))
− y e−rτΦ

(
δτ−

(
x

y

))
= xBlc

(
1, y
x

, r,σ, τ
)

for the standard Black-Scholes call price formula, recall that from Proposi-
tion 12.7, f(t,x, y) can be decomposed as

f(t,x, y) = xBlc
(

1, y
x

, r,σ,T − t
)
+ xhc

(
T − t, x

y

)
,

where hc(τ , z) is the function given by (12.19), i.e.

f(t,x, y) = xg

(
T − t, x

y

)
,

with
g(τ , z) = Blc

(
1, 1
z

, r,σ, τ
)
+ hc(τ , z), (12.20)

where (x, y) 7−→ xhc(T − t,x/y) also satisfies the Black-Scholes PDE (12.2),
i.e. (τ , z) 7−→ Blc(1, 1/z, r,σ, τ ) and hc(τ , z) both satisfy the PDE (12.13)
subject to the boundary condition

hc(0, z) = 0, z ⩾ 1.
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The next Figures 12.13a and 12.13b show the decomposition of g(t, z) in
(12.20) and Figures 12.9-12.10 into the sum of the Black-Scholes call price
function Blc(1, 1/z, r,σ, τ ) and h(t, z).
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(a) Lookback call price g(τ , z).

 1
 1.5

 2
 2.5

 3

 0
 50

 100
 150

 200

 0

 0.2

 0.4

 0.6

z
t

(b) Correction term hc(τ , z).

Fig. 12.13: Normalized Black-Scholes call price and correction term in (12.20).

We also note that

E∗[MT
0 −mT

0
∣∣S0 = x

]
= x− x e−(T−t)rΦ

(
δT−t

− (1)
)

−x
(

1 + σ2

2r

)
Φ
(

− δT−t
+ (1)

)
+ x e−(T−t)r σ

2

2rΦ
(
δT−t

− (1)
)

+x e−(T−t)rΦ
(

− δT−t
− (1)

)
+ x

(
1 + σ2

2r

)
Φ
(
δT−t
+ (1)

)
−xσ

2

2r e−(T−t)rΦ
(

− δT−t
− (1)

)
− x

= x

(
1 + σ2

2r

)(
Φ
(
δT−t
+ (1)

)
− Φ

(
− δT−t

+ (1)
))

+x e−(T−t)r
(
σ2

2r − 1
)(

Φ
(
δT−t

− (1)
)

− Φ
(

− δT−t
− (1)

))
.

12.4 Delta Hedging for Lookback Options

In this section we compute hedging strategies for lookback call and put op-
tions by application of the Delta hedging formula (12.15). See Bermin (1998),
§ 2.6.1, page 29, for another approach to the following result using the Clark-
Ocone formula. Here we use (12.15) instead, cf. Proposition 4.6 of El Khatib
and Privault (2003).

Proposition 12.8. The Delta hedging strategy of the lookback call option is
given by

ξt = 1 −
(

1 + σ2

2r

)
Φ
(

−δT−t
+

(
St
mt

0

))
(12.21)

" 465

This version: May 3, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html


N. Privault

+ e−(T−t)r
(
mt

0
St

)2r/σ2 (
σ2

2r − 1
)

Φ
(
δT−t

−

(
mt

0
St

))
, 0 ⩽ t ⩽ T .

Proof. By (12.15) and (12.18), we need to differentiate

f(t,x, y) = Blc(x, y, r,σ,T − t) + xhc

(
T − t, x

y

)
with respect to the variable x, where

hc(τ , z) = −σ2

2r

(
Φ (−δτ+ (z)) − e−rτz−2r/σ2

Φ
(
δτ−

(
1
z

)))
is given by (12.19) First, we note that the relation

∂

∂x
Blc(x, y, r,σ, τ ) = Φ

(
δτ+

(
x

y

))
is known, cf. Propositions 6.4 and 7.13. Next, we have

∂

∂x

(
xhc

(
τ , x
y

))
= hc

(
τ , x
y

)
+
x

y

∂hc
∂z

(
τ , x
y

)
,

and

∂hc
∂z

(τ , z) = −σ2

2r

(
∂

∂z
(Φ (−δτ+(z))) − e−rτz−2r/σ2 ∂

∂z

(
Φ
(
δτ−

(
1
z

))))
− σ2

2r

(
2r
σ2 e−rτz−1−2r/σ2

Φ
(
δτ−

(
1
z

)))
=

σ

2rz
√

2πτ
exp

(
−1

2 (δ
τ
+(z))

2
)

− e−rτz−2r/σ2 σ

2rz
√

2πτ
exp

(
−1

2

(
δτ−

(
1
z

))2
)

− 2r
σ2 e−rτz−1−2r/σ2

Φ
(
δτ−

(
1
z

))
.

Next, we note that

e−(δτ
−(1/z))2/2 = exp

(
−1

2 (δτ+(z))
2 − 1

2

(
4r2

σ2 τ − 4r
σ
δτ+(z)

√
τ

))
= e−(δτ

+(z))
2/2 exp

(
−1

2

(
4r2

σ2 τ − 4r
σ2

(
log z +

(
r+

1
2σ

2
)
τ

)))
= e−(δτ

+(z))
2/2 exp

(
−2r2

σ2 τ +
2r
σ2 log z + 2r2

σ2 τ + rτ

)
= erτz2r/σ2 e−(δτ

+(z))
2/2 (12.22)

as in the proof of Proposition 6.4, hence
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∂hc
∂z

(
τ , x
y

)
= − e−rτz−1−2r/σ2

Φ
(
δτ−

(
1
z

))
,

and

∂

∂x

(
xhc

(
τ , x
y

))
= hc

(
τ , x
y

)
− e−rτ

(y
x

)2r/σ2

Φ
(
δτ−

(y
x

))
,

which concludes the proof. □

We note that ξt = 1 > 0 as T tends to infinity, and that at maturity t = T ,
the delta hedging strategy satisfies

ξT =


1 if mT

0 < ST ,

1 − 1
2

(
1 + σ2

2r

)
+

1
2

(
σ2

2r − 1
)
= 0 if mT

0 = ST .

In Figure 12.14 we represent the Delta of the lookback call option, as given
by (12.21).

Fig. 12.14: Delta of the lookback call option with r = 2% and σ = 0.41.∗

The above scaling procedure can be applied to the Delta of lookback call
options by noting that ξt can be written as

ξt = ζ

(
t, St
mt

0

)
,

where the function ζ(t, z) is given by

ζ(t, z) = Φ
(
δT−t
+ (z)

)
− σ2

2rΦ
(

−δT−t
+ (z)

)
(12.23)

∗ The animation works in Acrobat Reader on the entire pdf file.
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+ e−(T−t)rz−2r/σ2
(
σ2

2r − 1
)

Φ
(
δT−t

−

(
1
z

))
,

t ∈ [0,T ], z ∈ [0, 1]. The graph of the function (t, z) 7→ ζ(t, z) is given in
Figure 12.15.
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Fig. 12.15: Rescaled portfolio strategy for the lookback call option.

Similar calculations using (12.4) can be carried out for other types of look-
back options, such as options on extrema and partial lookback options, cf.
El Khatib (2003). As a consequence of Propositions 12.5 and 12.8, we have

e−(T−t)rE∗[ST −mT
0
∣∣Ft]

= StΦ
(
δT−t
+

(
St
mt

0

))
−mt

0 e−(T−t)rΦ
(
δT−t

−

(
St
mt

0

))

+ e−(T−t)rSt
σ2

2r

(
mt

0
St

)2r/σ2

Φ
(
δT−t

−

(
mt

0
St

))
− St

σ2

2rΦ
(

−δT−t
+

(
St
mt

0

))
= ξtSt +mt

0 e−(T−t)r
((

St
mt

0

)1−2r/σ2

Φ
(
δT−t

−

(
mt

0
St

))
− Φ

(
δT−t

−

(
St
mt

0

)))
,

and the quantity of the riskless asset ert in the portfolio is given by

ηt = mt
0 e−rT

((
St
mt

0

)1−2r/σ2

Φ
(
δT−t

−

(
mt

0
St

))
− Φ

(
δT−t

−

(
St
mt

0

)))
,

so that the portfolio value Vt at time t satisfies

Vt = ξtSt + ηt ert, t ⩾ 0.

Proposition 12.9. The Delta hedging strategy of the lookback put option is
given by

ξt =

(
1 + σ2

2r

)
Φ
(
δT−t
+

(
St
M t

0

))
(12.24)
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+ e−(T−t)r
(
M t

0
St

)2r/σ2 (
1 − σ2

2r

)
Φ
(

−δT−t
−

(
M t

0
St

))
− 1, 0 ⩽ t ⩽ T .

Proof. By (12.15) and (12.10), we need to differentiate

f(t,x, y) = Blp(x, y, r,σ,T − t) + xhp

(
T − t, x

y

)
where

hp(τ , z) = σ2

2rΦ (δτ+ (z)) − e−rτ σ
2

2r z
−2r/σ2

Φ
(

− δτ−(1/z)
)
,

and
δτ±(z) :=

1
σ

√
τ

(
log z +

(
r± 1

2σ
2
)
τ

)
, z > 0.

We have

∂hp
∂z

(τ , z) = σ2

2r δ
′τ
+ (z)φ (δτ+ (z)) + e−rτz−1−2r/σ2

Φ
(

−δτ−
(

1
z

))
+

σ2

2rz2 δ
′τ
−

(
1
z

)
e−rτz−2r/σ2

φ

(
δτ−

(
1
z

))
= e−rτz−1−2r/σ2

Φ
(

−δτ−
(

1
z

))
+

σ

2rz
√
τ

(
φ
(
δτ+(z)

)
− e−rτz−2r/σ2

φ

(
δτ−

(
1
z

)))
.

From the relation

(
δT−t
+ (z)

)2 −
(
δT−t

−

(
1
z

))2
=

(
δT−t
+ (z) + δT−t

−

(
1
z

))(
δT−t
+ (z) − δT−t

−

(
1
z

))
=

2r
σ2 log z + 2r(T − t),

we have
φ
(
δT−t
+ (z)

)
= z−2r/σ2 e−r(T−t)φ

(
δT−t

−

(
1
z

))
,

hence
∂hp
∂z

(τ , z) = e−rτz−1−2r/σ2
Φ
(

−δτ−
(

1
z

))
.

Therefore, knowing that the Black-Scholes put Delta is

−Φ
(

−δT−t
+

(
x

y

))
= −1 + Φ

(
δT−t
+

(
x

y

))
,

see e.g. Proposition 6.7, we have
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∂f

∂x
(t,x, y) = −Φ

(
−δT−t

+

(
x

y

))
+ hp

(
T − t, x

y

)
+
x

y

∂hp
∂z

(
T − t, x

y

)
= −Φ

(
−δT−t

+

(
x

y

))
+
σ2

2rΦ
(
δT−t
+

(
x

y

))
+ e−(T−t)r

(y
x

)2r/σ2 (
1 − σ2

2r

)
Φ
(

−δT−t
−

(y
x

))
,

which yields (12.24). □

Note that we have ξt = σ2/(2r) > 0 as T tends to infinity. At maturity
t = T , the delta hedging strategy satisfies

ξT =


−1 if MT

0 > ST ,

1
2 +

σ2

4r +
1
2

(
1 − σ2

2r

)
− 1 = 0 if MT

0 = ST .

In Figure 12.16 we represent the Delta of the lookback put option, as given
by (12.24).

Fig. 12.16: Delta of the lookback put option with r = 2% and σ = 0.25.∗

As a consequence of Propositions 12.1 and 12.9, we have

e−(T−t)rE∗[MT
0 − ST

∣∣Ft]
= M t

0 e−(T−t)rΦ
(

−δT−t
−

(
St
M t

0

))
+ St

(
1 + σ2

2r

)
Φ
(
δT−t
+

(
St
M t

0

))

−St e−(T−t)r σ
2

2r

(
M t

0
St

)2r/σ2

Φ
(

−δT−t
−

(
M t

0
St

))
− St

= ξtSt +M t
0 e−(T−t)r

(
Φ
(

−δT−t
−

(
St
M t

0

))
−
(
St
M t

0

)1−2r/σ2

Φ
(

−δT−t
−

(
M t

0
St

)))
,

∗ The animation works in Acrobat Reader on the entire pdf file.
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and the quantity of the riskless asset ert in the portfolio is given by

ηt =M t
0 e−rT

(
Φ
(

−δT−t
−

(
St
M t

0

))
−
(
St
M t

0

)1−2r/σ2

Φ
(

−δT−t
−

(
M t

0
St

)))

so that the portfolio value Vt at time t satisfies

Vt = ξtSt + ηt ert, t ⩾ 0.

Exercises

Exercise 12.1

a) Give the probability density function of the maximum of drifted Brownian
motion Max

t∈[0,1]
(Bt + σt/2).

b) Taking St := eσBt−σ2t/2, compute the expected value

E
[

min
t∈[0,1]

St

]
= E

[
min
t∈[0,1]

eσBt−σ2t/2
]

= E
[

e−σMaxt∈[0,1](Bt+σt/2)
]

.

c) Compute the “optimal exercise” price E

[(
K − S0 min

t∈[0,1]
eσBt−σ2t/2

)+
]

of a finite expiration American put option with S0 ⩽ K.

Exercise 12.2 Let (Bt)t∈R+ denote a standard Brownian motion.

a) Compute the expected value

E
[

Max
t∈[0,1]

St

]
= E

[
eσMaxt∈[0,1](Bt−σt/2)

]
.

b) Compute the “optimal exercise” price E

[(
S0 Max

t∈[0,1]
eσBt−σ2t/2 −K

)+
]

of a finite expiration American call option with S0 ⩾ K.

Exercise 12.3 Consider a risky asset whose price St is given by

dSt = σStdBt + σ2Stdt/2,

where (Bt)t∈R+ is a standard Brownian motion.
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N. Privault

a) Compute the cumulative distribution function and the probability density
function of the minimum min

t∈[0,T ]
Bt over the interval [0,T ]?

b) Compute the price value

e−σ2T/2E∗
[
ST − min

t∈[0,T ]
St

]
of a lookback call option on ST with maturity T .

Exercise 12.4 (Dassios and Lim (2019)) The digital drawdown call option
with qualifying period pays a unit amount when the drawdown period reaches
one unit of time, if this happens before fixed maturity T , but only if the size of
drawdown at this stopping time is larger than a prespecified K. This provides
an insurance against a prolonged drawdown, if the drawdown amount is large.
Specifically, the digital drawdown call option is priced as

E∗[ e−rτ
1{τ⩽T}1{Mτ

0 −Sτ⩾K}
]
,

where M t
0 := Maxu∈[0,t] Su, Ut := t− Sup{0 ⩽ u ⩽ t : M t

0 = Su}, and
τ := inf{t ∈ R+ : Ut = 1}. Write the price of the drawdown option as a
triple integral using the joint probability density function f(τ ,Sτ ,Mτ )(t,x, y)
of (τ ,Sτ ,Mτ ) under the risk-neutral probability measure P∗.

Exercise 12.5

a) Check explicitly that the boundary conditions (12.3a)-(12.3c) are satisfied.
b) Check explicitly that the boundary conditions (12.14a)-(12.14b) are sat-

isfied.
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